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On Clifford's Theory of Graphs. By A. BUCHHEIM, M. A.

[Read Nov. 12th, 1885.]

In the present paper I attempt to reconstruct Clifford's theory of
Graphs, from the lithographed volume of Mathematical Fragments,
and from the letter to Prof. Sylvester, published in the first volume
of the American Journal of Mathematics.

The first published account of a theory of graphs is contained in
Prof. Sylvester's paper " On an Application of the new Atomic
Theory to the Graphical Representation of the Invariants and Co-
variants of Binary Quantics " (American Journal, Vol. I., p. 64). In
this paper Prof. Sylvester showed how any concomitant of a binai'y
quantic could be graphically represented by a figure entirely analogous
to the graphic formula) used by chemists. In a letter to Prof.
Sylvester, printed in the same volume of the Journal, Clifford showed
that Sylvester's qualitative representation could be made quantitative,
inasmuch as the graph could be interpreted as a direction to perform
certain multiplications which would result in the form in question.
It is this quantitative theory of graphs that I have attempted to ex-
plain in this paper. As regards the con tents of the paper, I remark
that I have given certain preliminary explanations of the elementary
processes employed, and have then investigated the theory of the
cubic and quartic. The parts of Clifford's Fragments that I have not
considered are :—(1) The theory of systems of qualities, where the
necessity of distinguishing between different forms makes the use of
graphs troublesome, and where very little seems to be gained by using
them. (2) The theory of the quintic, where Clifford has treated an
unsymmctric graph as if it were symmetrical, and where the correct
theory would involve more trouble than it seems worth. (3) A few
fragmentary notes, some of which I was unable to understand.

It must be distinctly understood that, excepting a few cor-
rections and the last section (on form-systems), this paper
contains nothing that is not explicitly or implicitly contained in
Clifford's Fragments,* and that my only object has been to make
Clifford's theory more accessible, in the hope that it may be
taken up by others, so that it may appear whether the method is
likely to lead to new results. I must own that, owing to its essential

* An alteration which I have mado in Clifford's method is pointed out and justi-
fied below.
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identity with the symbolic methods employed by Cayley and Clebsch,
it does not seem likely to furnish anything that could not be found
quite as easily by the older methods ; at the same time, there can, I
think, be very little doubt that the representation of a concomitant
by a graph throws considerable light on the genesis of a form system,
and on Gordan's proof of the existence of a finite form system as pre-
sented by Clebsch.

I am not quite sure that I have presented the theory from Clifford's
point of view ; it is not quite clear what he conceived to be the func-
tion of the polar variables in a form, and what relation he supposed
the polar form to bear to the ultimate form in which all the variables
are scalars. The only passage bearing on this point {Math. Papers,
p. 256,1. 24) is by no means conclusive, but I imagine that Clifford
did not regard the polar form as a blank form to be filled up by
multiplication by a polar variable, which is the point of view from
which the form is considered in this paper.

I. Fundamental Operations and Notation.

If we use- a well-known symbolic; notation, we can write

if we stipulate that a^ — aik; and then, if we assume that the a's are
to obey the commutative law, we have

that is to say, if we get a lineo-lincar form by a symbolic multiplica-
tion of two linear forms, the resulting form must be symmetrical,* if
the coefficients of the linear forms obey the commutative law.

In the same Avay, if we multiply together any number of linear
forms, we get a form linear in the same number of variables, and it
is easy to see that, if the coefficients of the linear forms obey the com-
mutative law, the resulting multiple linear form will be symmetrical;
that is to say, that all tei*ms with the same number of l's and the
same number of 2's in the subscript indices will have the same co-
efficient ; thus, for a triply linear form, we get a set of terms

and, since each of these terms has two l's and one 2 in the subscript
indices, they will all have the same coefficient, a^ j moreover, wo have

axav = auax,

axava: = axazav = &c.

* As regards interchanges of x^ with yt and A* with y;.
VOL. XVII.—NO. 258. Q



82 Mr. A. Buchheiui on [Nov. 12,

Now, suppose we multiply two linear forms together without making
any stipulation as to commutative multiplication, we shall obviously
get an unsymmetrical lineo-linear form; for we get

(a, a?! + a, x.t) (»i y 1 + a2 yS) = ^ ax a, y, + a, aa», y, + aa a,a, y j + a, a.2 a, y8>

and, if we do not stipulate that

this form is obviously unsymmetrical. In the same way, if we
multiply n linear forms together, we shall get an M-tuply linear form,
and it is obvious that it will consist of n* terms, no two of which will
have the same coefficient.

If we supposo all the pairs of variables to become identical, we get
a binary quantic of the nth order, in which the coefficient of ajjaj will
be the sum of all the products of a,, a.t containing a^ times as a
factor, and a3 s times, and we can still write

provided we remember that we have made no stipulation as to the
way the a's combine in multiplication. Most of what precedes is, of
course, well known, but it was necessary to show how the symbolic
notation of Clebscli and Aronhold could be applied to unsymmetrical
forms. We have now to see how a linear form can itself be written
as a product. I call to mind that, if we use Grassmann's methods, we
replace a set of variables xv as3... xH by a singlo complex variable

whero et ... en aro "uni ts" supposed to obey the polar law of multi-
plication, so that we have

pi — (j *

e. — v,

and then wo havo for any sets
®y — -yx>

x* = 0.

The product of all the units is a scalar, and is assumed to be unity.

* Jt should liu noticed thai tho second part of this polar law is not a consequence
oi: the first, and that consequently the late Prof. Smith's objection to Clifford's system
(of — — 1, t,0 = — i'jt-j) does not seem to ho valid. The same objection would apply
to quaternions.
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If we take any unit e,, the product of the remaining units is the
conjugate of e-u and is denoted by Kex. -We have

exKcx — 1,

and this is taken as the definition of K, viz., we have

ê . Kd = 1,

e,. iTe, = 0.

Jfc, is obviously the product of the remaining units c, ... ef_i, (,>l(1... e,,
taken in such an order as to satisfy the first of the abovo equations.
In this paper I use instead of ZCe,- another quantity erf defined by the

equation c.e, = 1,

e<e,- = 0 ;

we have, obviously, e, = (—•)n"1
JBrej.

And ei(xlel+x2ei+...+xnen) = »,.

Now consider the linear form

a, ai
1 + a2a!2+. ,.+anzn.

Let re = a^e^ ... +a',,en,

then .^ = eiX,

and a1(B1 + fl2aJ2+-.-+»r»»n = a1e1aj + a.ie9a3 + ...+«„€,,»

= (a1ei + a2e2+ ... +a,,en) »,

and we see that any linear form can be written as the product of two
factors, one factor containing the variables, and the other containing
the coefficients. Now a lineo-lincar form was written abovo us the
product of two linear forms, and we seo now that it can be written as
the product of four factors, two involving the cocllicicnts, and two in-
volving the variables. It is therefore necessary to see how the factors
combine in multiplication.

Let the linear forms be

Now, we know that eje2 = — e^1}

and, as regards ex€[, e2e.', e2ej, e,e^ we stipulate that these products
G2
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shall follow the commutative law ; so that we have the following con-
vention : If we have any number of pairs (eu e2; e(, e'2; ...) the elements
of each pair combine according to the polar law, but combine luith the ele-
ments of every other pair according to the commutative law*

We have found that we can write

ax =

Now, in all that follows, we shall only have to consider the coefficients
of the forms we have to deal with, and we can therefore confine our
attention to the first of the two factors giving ax, that is to say, in-
stead of working with the linear form ajajj + ttjiBj, we can work with
the form a,el-\-aie2; or, in other words, we can consider all linear
forms, and therefore forms of any order, as involving polar variables,
instead of scalars.

I shall now change the notation, and shall use any letters to denote

the two polar variables in a binary linear form; thus, for instance, I

write as before, au = a^Ux + a^ ;

but it must be remembered that w,, w2 are, not scalars, but polarst\
and that we must multiply a,, by another polar, if we are to get a
linear form involving scalars.

II. The Fundamental Theorem.

Now, suppose we take two linear forms

a,, =

and multiply them together, we get, since

= W2 = 0 , "KJW-J = —

aubn — a^i—fla6, = (ab).

j = W2 = 0 , "KJW-J = — W3Wj =

* This is not Clifford's convention ; he make9the elements of different pairs com-
bine according to the polar law ; but, if we do this, we get into endless difficulties
with the signs, and, as a matter of fact, several of Clifford's signs arc wrong; with
the convention in the text the signs of all forms can be determined without
difficulty.

t There seems no obvious reason why polar should not be used as a noun, and it
would simplify matters considerably.
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Now, suppose we take two quadric* forms

a,n = au«1

bw = &11M1

If we write au = a ^ - f a2w2,

we have auv = ct,,a0,

bw — &„&»,

and, therefore,

»««)&./» = aHavbHbv = «,,&„• ap&p = (ab)(ab) = (a&)2,

where we must remember that

(a j fe2 — a2 &j)2 =

In the same way we should get

And obviously aua.. bubz =• (a&) a.bx,

aHa,,ctw.bubxbv = (&&) ^a,,,. bzbyi

and a,, av a«,. &„ &„by = (a.&)2 aw &„.

In working with unsymmetrical forma, we must be careful to keep
the variables in their right places, since auav and avari are not
identical; thus

a*»„ • bxbu = azbx («„&„) = azbx (a&),

a3au.b,,bx= a.(ab) bx.

We have found that

auavawaw,... bubvbzbz,... = (a&)2

Now, if the forms a, & are symmetrical, the right-hand side is
obviously the 2 (n—2)-tuply linear form answering to (abydx~ b'x~ ;
that is to say, if we multiply together two multiply linear forms
having two pairs (uu ?t2; vx, v2) of polars in common, we get the
second alliance (Ueberschiebung) of the quantics answering to the
forms. And in the same way we see, generally, that if we multiply

* I follow Clifford in classifying forms according to the order of the ultimate form
obtained by introducing scalars, and making the set of variables identical: thus,
an M-tuply linear form is an «-thic form.
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together two multiply-linear forms, having r pairs of polars in common,
we get the rth alliance of the quantics answering to the forms.'*

III. Graphs.

We have now to consider the graphical representation of forms;
suppose we have an w-tuply linear form, this is represented in the
same way as an ?t-valent atom in chemistry; viz., by a small circle
with n rays or bonds proceeding from it, each ray answering to a pair
of polars ; if we multiply together two forms having r pairs in com-
mon, we connect their representative atoms by r bonds; thus, if
we take two cubics arava._, bxb,jbt0, we represent their second alliance
(abya.hu, in the way shown.in Fig. (1), where one atom is black to
distinguish it from the other.

It is clear, without any formal proof, that what precedes can be
extended to any number of forms, so that, if we take any concomitant
written in its symbolic form, we can write down the corresponding
graph. Thus, the discriminant of a cubic is (ab)% (cd)2 (ac) (bd) ; it is
the result of the following multiplication,f

ax aya.. bxbvbtB. c,,cvcs'. dudvd,0,

and we get the graph in Fig. (2), and it is obvious that we could have
got it by putting down four " atoms " answex îng to the four forms
a, b, c, d, and joining two atoms (a, b) by a bond for every time (ab)
occurs as a factor. In the same Avay we see that (ab)% (be)2 (ca)9, the
cubic invariant of a quartic, is represented by Fig. (3), and that
(ah)3 (be) axcl is represented by Fig. (4).

It must not be forgotten that, in the first instance, a graph does not
represent the quantic, but a certain polarised blank form of the
quantic ; thus, in Fig. (5), the graph does not represent the cubic a3

x}

but the product a,,avam which gives, in the first instance, axavaz, and
then a\ when we make the three pairs of variables identical.

IV. Links and their Properties.

The determinant x1yi—xiyl will be denoted by (xy) and represented
by the graph Fig. (G); such determinants will be called links.

If we square (xy), we get
3 = 2.

* " Quare, whether this beautiful use of the method of polar multiplication is not,
in its ultimate cssonce, identical with Professor Caylcy's original method of hyper-
determinants."—Prof. Sylvester, American Journal, I., 128.

t In what follows, the original quantic we work with will always be supposed
symmetrical.
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We also find

(xy)(zy) = (a^y,—as,yi)(*iy»—2ay,) = an *,-«,«, = (»«)i

and therefore (yo>) (yz) = (rcz).

If we multiply ax by (y«), we get

or ct,(y<B) = V

We have a,6y = a161a1y1 + aI6,as1yl +

Therefore o,xby{xy) = a^^—a2bx = (a&) = axbx,

and therefore in any product of this kind, when we multiply by (xy),
we need only change a factor bv into bx.*

V. Quadrics, Skew and Symmetrical.

Consider the quadric

axay — au»jyi + a,aa;1y4+a2l

if we multiply this by #iy2—rc.2yn we get

and therefore axav (xy)

vanishes if, and only if, axay is symmetrical, and, since there is nothing
to prevent the coefficients aik from involving polars, we see that any
form a containing x, y is symmetrical with respect to these two
variables, if, and only if, a (JXIJ) vanishes. Now, if a form is to be
symmetrical with respect to all the variables involved, it is obviously
necessary and sufficient that it should be symmetrical with respect to
every pair of valuables; that is to say, the necessary and sufficient condi-
tion that a form should be symmetrical is that if tve multiply the form by
all the links formed by pairing its variables, each of the products must
vanish.

We have found the condition that a quadric may be symmetrical,
that is, that we may have

aTa,, = a,, a..

* I t would not have been enough to say that arby (xy) = ar.by (xy) = arb,= (al>)
since we stipulated that x, y combined according to the commutative law.
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We have now to find the condition that it may be skew, that is, that

we may have axav — — ayax.

This gives

On «i Vi + «!««, y% + fl« a*22/i + a22^2/2 = - a,, a?, /A -

and therefore an = c^ = 0,

a ] 2 = rt2i >

and the quadric reduces to

that is to say, if a quadric is skew, it is a multiple of the link of its
variables ; and, in the same way as before, we see that, if any form is
skew as regards any pair of variables, it is a multiple of the link of
this pair of variables.

It is always easy to determine the coefficient of the link; for, if we

have f(x)y...) —

tve get, by multiplying by (&y),

and therefore f(x, y ...) = \f(x, x ...) (xy).

Thus a.ax. bzbv

is a skew function, if a, b refer to the same quadric, for, if we inter-
change x and y, we get

azav. bzbx.

Now, if we interchange a and b, the original form becomes

b3bx. asay,

and bxa,j = aybxi

b. a. = — a. b.,

and therefore azay.bzbx = — bzbx.a.av = — a.ax.bzbp.

Therefore azay. bzbx is a skew form, and the coefficient of (xy) is

\azay. bzbv = | (ab)\
In the same way, we see that the form in Fig. (7) is skew, and that
twice the coefficient of (xy) is the graph in Fig. (8), that is to say, the
quadric invariant (i) of the quartic.
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VI. Unsymmetrical Forms.

Consider the graph Fig. (9). We see at once that its symbolical
form is (ab)z ax bx, and that it answers to the Hessian of a quartic;
but, before we can identify the two, we must see whether the graph is
symmetrical. Now, if we start with a symmetrical quartic, the graph
is obviously unchanged if we write x for y, or w for v ; to see whether
it is unaltered when we interchange x and u, we must multiply
(ai)2axfl1/.&,,&P by (xu). Now we know that this comes to the same
thing as identifying x and n, so that the product is

(ab)3aybv,

and the graph for this is Fig. (7), and we know that this is

\(yv)>

and does not vanish ; we see, then, that Fig. (9) is not symmetrical
with respect to x and w, and in the same way we see that it is not
symmetrical with respect to y and v, or x and v, or y and u. Now, there
is an essential and obvious difference between symmetrical and un-
symmetrical graphs. Suppose we have two symmetrical quartic
graphs, one having xyzw as its variables, and the other having siuv ;
if we form the second alliance of these graphs, it is obviously a matter
of indifference which pair of letters in the one we identify with a pair
of letters in the other; if, however, the graphs are not both sym-
metrical, this is not the case, and we get different results according to
the way we combine them. Thus, a sextic has an unsymmetrical
quartic covariant represented by Fig. (10), where the broad bond
denotes four bonds; if we join this to the sextic by the bonds u, r,*
we get Fig. (11) ; if we join it by (x, u), we get Fig. (12). Now, these
two covariants are not identical, for it can be shown that

where/is the sextic, and A is the invariant (ab)°.

This distinction between symmetrical and unsymmetrical forms is
of the greatest importance. If we work Avith unsymmetrical forms, we
have to be extremely careful not to identify results got by combining
them in different ways; four pages of Clifford's " Fragments " relate

* That is to say, if we multiply it by ff,,«t- ... ; I shall use this abbreviated phrase
throughout the rest of this paper.
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to the form xf+Xg, where / is a quintic, and g its covariant
of degorder (3, 5) ; now, all the results obtained on these pages are
vitiated by the fact that Clifford has treated unsymmetrical forms as
if they were symmetrical. "We must remember that every form is to
be supposed unsymmetrical until it is proved to be symmetrical.

I proceed to show how we can always get a symmetrical form
answering to a given unsymmetrical form.

VII . J&eduction of Graphs to Symmetrical Forms.

Suppose we have any unsymmetrical form, and that we wish to
make it symmetrical; the symmetrical form will obviously be ob-
tained by taking the ai'ithmetical mean of all the different values of
the form. Thus, in the case of the quartic, we get an unsymmetrical
quartic covariant h = (ab)2 axav. b,,b0: it is easy to see that, if a is a
symmetrical form, we get six different values for h ; for h is obviously
unchanged if we interchange x, y, or u, v; so that the twenty-four
possible values obtained by permuting xy, uv reduce to six. Let H be
the symmetrical form of h, then we have

6H — (ab)2 axaybHbv + (ab)% aHaybxbv+ (ab)2 axavbnbv

+ (ab)* aBavbxbH+(aby axa,tbybv+ (ab)2 auavbxby

— 6 (ab)2 axaybHbc + 2 {(ab)2 a,,aybxbe—(ab)%a^b,^,.},

where the sign 2 denotes the sum of the terms obtained by subtract-
ing the first term of 6H from each of the others.

Now, (abya,laybJtb, — (abyaJ.ayb,,bi = (ab)2 aybc (aHbx—axbu)

= (aby avbc(ux)

= | (aby(ux)(aybc-acbu),

if we interchange a, 6, and take the semi-sum of the two expressions;

and this is -j (ab)4 (ux)(yv).

In the same way, we get \ (aby (ux) (yv) from the next term, and
| (ab)4 (xv)(uy) from each of the next two; the last difference

ax ay bH bc—a,, ac bx by

vanishes, since the second term reduces to the first if we interchange
a and b.

We have, therefore,

6# = 6 (abyaxaybnbB-(ab)* (xu)(yv)-(aby (xv)(yu),
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or H = (ahY axavb,X- ^ ^ {(xn)(yv) + (xv)(yxi)} .*

In the same way, the quintic has an unsymmetrical quintic co variant

g = (ub)* (be) axctcuc0cw.

If c is symmetrical, the different values of g are got by interchanging
x with t, u, v, %o. We therefore have, if 0 is the symmetrical form of g,

t>G— (aby (be) {axctcuc0c,0->fatcxcucvcto-k-auclotcvcte

+ av ct c, cxc,B + al0 ct cu ct. cx }

= 5 (ab)4(6c) arctcHc(cw + '2i(aby(6c) {atC^c^Co—a^tC^c^],

where, as before, 2 denotes the sum of the four terms obtained by
subtracting the first term of 5Q from each of the others.

Now, (ab)* (be) (atcxcucvclB—axctcucvcw)

= (ab)* (be) cuc0cto (atcx—axct)

= (ah)* (bc)(ac) cucvcw (tx).

And therefore

Q = (aby (be) axctcucvc,0~±%(aby (bc)(ac) c,,cvc,o (ut),

= g 0 , t, u, v, w)-}%j (u, v, w)(xt),

where j (u, vf w) denotes the covariant (5, 3 ; 3),

(aby (bc)(ac) cucrcie.

As a last example, I take the covariant $ (2, 1 ; 3, 1; 3) of a cubic
and qua.dric. If the cubic is a, and the quadric is a, we have

$ (aj, yz) = (aa) a ^ a . .

Now, here the only changes which can affect the form of .& are the
interchange, firstly of x and y, and secondly of a* and z; and therefore
we shall have, if 6 is the symmetrical form of $,

36 = 3& (a, yz) + {$ (y, zz)-$ (as, yz)} + {.& (z, xy)-$ (x, yz)}.

Now 3 (y, xs)—$ (x, yz)

is a skew function of x, y, and therefore divides by (xy). We have

(aa) ayaxaz— (aa) axaua: = A (xy).

* Clifford, p. iii.
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Multiplying by (xy), we get

or A = — (aa,y a..

We therefore have

6 = (aa) o ^ c ^ - i S (aa)2 ax

This result might, of course, have been found in the same way as the
other two; I have adopted another method, partly for the sake of
variety, and partly because this last method is generally more con-
venient when we are working with graphs.*

VIII. Discriminations.

It is, in general, easy to see when a graph vanishes, or is skew or
sy mmetrical with respect to any pair of letters. Thus, consider the
graph in Fig. (13); we can see at once that this vanishes, for it
represents the covariant (5, 3; l),f

(ah)" (ac)2 (bcY cx.

This covariant changes its sign if we intei'ehange a and b, and there-
fore vanishes. In the same way, if we consider Fig. (14), we see that
this is symmetrical with respect to (x, y) ; for it is

and tlie interchange of x and y is identical with the interchange of
a and 6, and therefore leaves the graph unchanged. On the other
hand, the graph in Fig. (15) is skew in (as, y) ; for it is

(abf (ac)(bc) axbycucecw,

and the interchange of x and y gives

(ab)i(ac)(bc)avbxcucvcie>

which is what the oi"iginal covariant becomes when we interchange
a and b and change the sign.

Clifford says (p. iii.) that the gi-aph in Fig. (1G) is a multiple of
(xy) ; but we can see at once that it is not skew, but symmetrical,

since it is (fib)1 (ac)(bc) axbycucc,

* The symmetrical forms of//, &, on Clifford's pp. ix., iii., are not correct.
t Covariant of quintic of degordcr (3, 1).



1885.] Clifford's Theory of Graphs. 93

and the interchange of x and y leaves it unaltered. From this Clifford
infers that it vanishes (which is not the case),* and this leads to
some other incorrect results.

For triangular graphs we get the following rules :—

1. If two saturatedf vertices of a triangle are joined by an odd
number of bonds, and are joined to the third vertex by any the
same number of bonds, the graph vanishes.

2. If two vertices, each having one free bond, are joined by an odd
number of bonds, and are joined to the third vertex by any the same
number of bonds, the graph is a multiple of the link of the free bonds
at the two first mentioned vertices, the coefficient being one-half the
graph obtained by joining these two vertices by an additional bond.

3. If two vertices, each having one free bond, are joined by an even
number of bonds, and are joined to the third vertex by any the same
number of bonds, the graph is symmetrical with respect to the free
bonds at the two first mentioned vertices.

As a particular case of (1), we see that, if two saturated atoms are
connected by an odd number of bonds, the resulting invariant
vanishes.

If two atoms, having one free bond each, are connected by an odd
number of bonds, the resulting quadric covariant is skew.

If two atoms, having one free bond each, are connected by an even
number of bonds, the resulting quadric covariant is symmetrical.

IX. Elementary Redtictions.

Suppose we have any form / (xu) containing two letters, and as
many besides as we please ; then we have

Now, the first bracket is obviously a symmetrical function of #, u, and
the second bracket is a skew function, and we see that every form
containing two letters can be decomposed into two parts, one sym-
metrical and the other skew with respect to these two letters, and
this decomposition is unique. $

* If the graph were a multiple of (xy), the coefficient would he £ («i)3 (ac)(bc) cucc,
which vanishes, and therefore the graph would vanish.

t In Fig. (13), the vertices at the base of the triangle are saturated, and the third
anglo has one free bond; in Fig. (16), the two vertices at the base have respectively
the free bonds x, y.

X Let a be any quantity, E any distributive operator, then a can be decomposed
uniquely into two parts, a, fi, such ihat Ea=\a, £'j8=;u/8, A, fi being unequal scalars,
for we have a = a + j8, Ea = Aa + f*fi, and o, 0 are determined uniquely.
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In what follows (.4 : xu, yv) denotes a function which is unaltered
when we interchange x, u, and also when we interchange yv; (A : xu)
means a function which is unaltered when we interchange a;, u*;
A (xu) denotes, as before, a multiple of the link (xu).

We have seen that we can write

/ (a, y, u,v) = A (xu) + (A' : xu),

where, of course, A, A' involve yv; transforming these in the same

way, we get A = Bl (yv) + (B3: yv),

.4'=
and therefore

/(x, y, u, v) = Bl (xu)(yv) + (Ba: yv)(xu) + (£„ : xu)(yv) + (Bt: xu,yv).

If/ contains moi'e than four letters, we can, of course, go on in this
way, and it is easy to see the form of the general result. The formula
just given is enough for the purposes of the present paper.

Now, suppose t h a t / is known to change sign when we interchange
x, u, and also interchange yt v; we have

f—Bl (xu)(yv) + (B% : yv)(xu) + (J53 : xu)(yv) + (Bt: xu} yv),

-f = Bt (ux)(vy) + (Ba : vy)(ux) + (Ba : ux)(vy) + (Bt: ux, vy),

and, remembering the meanings of (B3 : yv), &c, and that (xu), (yv)
are skew, we get

0 = -Bj (xu) (yv) + (Bi : xu, yv),

and / = (J3a : yv) (xu) + (Bs : xtt) (yv) (a).

If / is unaltei'ed Avhen we interchange a;, u, and also y, v, we shall find
in the same way

/ = Bx (xtl)(yv)^(Bi: xu, yv) (ft).

Multiplying (a) by (yv), we get, if / was f(x, y, u, v),

/(»»y> «> y) — 2 ( ^ 3 : x u ) -

Multiplying it by (xn), we get

f(x, y, x,v) =2(I?j : xu).

* This is not a good notation, but I have been unable to devise another that
should look better, aud at the same time guard against all risk of contusion.
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If / i s ( / : xy> uv), B%y Ba are obviously the same forms. Thus, con-

sider the form (ab) axau bubv.

The substitution (xu)(yv)* is obviously equivalent to the interchange
(ab), together with a change of sign, and we can therefore use (a).

This gi^es (ab) axavbubv = B3 (xu) +B3 (yv).

To determine J58 multiply by (yv), and we get

(a&)"alf&. = 2£, ,

and in the same way (ab)%axbu = 2J5B;

and we have therefore

(ab) axaybubv = | (ab)3 axbu (yv) + £ (ab)1 avbv (xu).

This, equation is represented graphically in Fig. (17).

X. Form-Systems.

Wo have now all the materials we require for the graphic construc-
tion of the form-system of a quantic.

I call to mind that forms are classified according to their degree
and weight. If we write down the graph corresponding to a given
form, the degree of the form is the number of atoms in the graph,
and its weight is the total number of bonds connecting the atoms;
thus Fig. (16) represents a form of order four, degree three, and
weight four, appertaining to a quartic.f

Moreover, if we consider the reductions of graphs already given,
we see that, if a graph of weight w reduces, as in Fig. (17), to a sum
of links, the coefficients of the links are at least of weight w-\- 1, and
that, if we find the symmetric form answering to a given graph, of
weight w, the two forms differ by a sum of products of links and
forms of weight w + 1, at least.

Now, the way we construct a form-system is as follows : Suppose
we start with an n-thic. Joining this to itself by n bonds, we get the
heaviestJ form of the second degree ; joining the quantic to itself by
n—1, n — 2 . . . bonds, we get all the forms of the second degree

• I use here the ordinary notation for cyclic substitutions ; the word interchange
or substitution will always be used when this is the case, to prevent confusion.

f This rule is easily seen to be correct by considering the symbolic expression
answering to the graph.

% It seems natural, and is certainly convenient, to describe n gruph (or form) as
heavier than a form of less weight.
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arranged according to their weights, in descending order. Some of
these forms (all the forms of odd weight) will reduce to sums of links,
and these reductions must be effected, and unsymmetrical graphs must
be made symmetrical. After finding in this way all the forms of the
second degree, we get the forms of the third degree by joining the
w-thic to these forms of the second degree, beginning Avith the
heaviest, and in each case we form the combinations in the order of
their weights, beginning with the heaviest.

We have now to see Avhat happens when we join the quantic (/) by
r bonds to a form reducible to a sum of links, or to an unsymmetric
form. Suppose we have a form <p of any degree, and of weight «>,
and that this contains a term

xf/. (an*) ,*

where »/> is of weight w + 1; then f gives a form of weight w-\-r, and,
as regards the term just mentioned, three cases may present thern-
selves:—

1. a;, u may both be among the r bonds by which we join f to (f>)
then, since/is supposed symmetrical,

and the term contributes nothing.

2. Let one of the two letters, say x, be among the r bonds; the
factor (xu) changes x to u, and we have to join / to \p, by r —1
bonds, and the weight of the resulting ternx is

w + l + r — 1 = w + r.

3. Let neither x nor u be among the r bonds ; then we have to join
x to ^ by r bonds, and we get the pi'oduct of (xu) and a form of
weight w + r + 1.

In the third case, the form of weight w + r + l will have been ob-
tained before Ave got doAvn to the forms of weight w+r, and need not
be considered.

In the second case, the form of weight iv + r is got by joining/to a
form of weight w + 1, and all the combinations of this form with /
will have been disposed of before we got down to forms of weight to.

We see, then, that if Ave arrange our forms in the order agreed

* I t must be remembered that, since (Olebsch, p. 8) the coefficients and the
variables are transformed by inverso substitutions, tho weight of a link may be
taken to be — 1.
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upon, we may neglect all forms reducing to sums of links, since
everything that such forms could furnish will have been obtained
before we get to them, and that we can neglect the complementary
part* of any unsymmetric graph; or, in other words, that we can
treat any graph as symmetrical, and jo in / to it in whatever way may
happen to be most convenient.

It must be noticed that we are not at liberty to reject a graph be-
cause it contains, as part of itself, a graph reducible to a sum of links;
this is simply because the reducible part is lighter than the graph
from which the whole graph was derived. If, however, a graph con-
tains, as part of itself, a graph reducing to a sum of products of links
and invariants, it may obviously be rejected.

I proceed to apply these principles to the theory of quadric, cubic,
and quartic forms.

SEC. 1. Quadric.

The forms of the second degree are given in Figs. (18, 19) ; the
reduction in Fig. (19) is obvious, and we see that there can be no
irreducible forms of the third degree.

SEC. 2. Cubic.

The forms of the second degree are given in Figs. (20—22); of these
(20) vanishes, (21) is symmetrical [for, if we multiply it by (xy), we
get (20)], (22) reduces by Fig. (17). We need, therefore, only con-
sider (21), which is the Hessian.f

The forms of the third degree obtained from (21) are given in
Figs. (23, 24) ; of these (23) vanishes, as I proceed to show. Written
symbolically, the graph is

(ah)2 (be) (ac)cx;

we get three forms of this by interchange of a, b, c, and, taking one-
third of the sum of these, we get

(abY (bc)(ac)cx = ± {(aby (be)(ac) c,+ (6c)8 (ca)(ba) ax

• +(cay(ab)(cb)bx}

= - ( b c ) ( c
q

a ) ( a b ) {(ab) cx+(bc) ax + (ca) bx} = 0.J

• The complementary part of an unsymmetric graph is the sum of links that has
to be added to make it symmetrical.

f A in Clebsch's notation; I use Clebsch's notation throughout for all the forms
considered.

% I have given the above proof instead of Clifford's; Clifford provos that (23)
vanishes, by reasoning of which I am unable to see the force.

VOL. XVII.—NO. 259. H
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Now that we have proved that (23) vanishes, we can see that (24)
is symmetrical, for, if we multiply it by (xu), we get Fig. (23) ; (24)
is therefore a symmetrical covariant of degorder (3, 3), and is there-
fore what Clebsoh denotes by Q. The covariants of the fourth degree
derived from Q nve given in Figs. (25—27). Of these (25) is an in-
variant, the discriminant (12). The reduction in Fig. (26) is obvious;
(27) is got by joining the Hessian to Fig. (22), and is found at once to
be reducible, in the way shown in the figure; we see that the only
iiTeducible form of the fourth degree is an invariant, and that there
are, therefore, no irreducible forms of higher degrees, so that the
form system of the cubic consists of the forms/, A, Q, B.

SEC. 3. Quartic.

The forms of the second degree are given in Figs. (28—31). (28) is
the invariant i; the reduction in (29) is obvious; (30) is un-
symmetrical, and its symmetrical form has already been found to be
(32) ; this symmetrical form is the Hessian (H) ; (31) reduces in the
way shown in the figure. I shall go through the calculation here, as
Fig. (31) does not agree with Clifford's results. The symbolio form of

( 3 1 ) i s / M i. i. i
(ab) axaya. bttb0b,0.

This form changes sign if we effect the substitution (am) (yv) (zw) ;
and therefore, when we expand it in a series of links, we need only
keep the skew terms ; we have, therefore,

(ab) axaya.bttboba = A (ttu)(yv)(zw) + 2(B : yv, zw)(xu).

Multiplying by (xu)(yv)(zw), we get

(aby = 8A.

Multiplying by (ait), we get

(ab)% ayazbvba = 2A (yv)(zw) + 2 (B : yv, zw),

and therefore

(B : yv, zw) = | (aby ayazbvb,0—A (yv)(zw),

and we get similar values for the other B'B ; substituting and re-
ducing, we get

*(ab) axavazbubvbt0 = j'2t(abyalla1bi)bu,(xu)— •— (xu)(yv)(zio)

* Clifford only gets the first part of this ; but it can easily bo verified directly that
the above result is correct.
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The forms of the third degree got from H are given in Figs. (33—36).
Of these (33) is the invariant,/; the reduction in Fig. (34) is obvious.
I shall follow Clifford in showing that (35) is reducible, but I shall
not use graphs in reducing it, as it is easier to get the signs right if
we use symbolic methods. We have

(ab) azayaz bubvbiB — \ (aft)1 avaz bvb,0 (xti) + | (ab)" a£az btlbw (yv)

+ 1 (ab)2 axay bubv (zw) - -^- (xu)(yv)(zw).

Now, multiply this into cxcycHct; we get

(ab)(acy (be) a.b^b^Ct — | (ab)2 (ac)(bc) azb,ocvct

+ ±(aby(ac)i(bc)bvct(zw)

+ i (abf (acf (bc)bvct(zw).

Now (ab)(acY (^c) a.&e&,oct— (ab)(ac)(bc) a.bvbtca

= (ab)(ac)* (be) azbv (b,oct—btcw)

= (ab)(acy(bcyasbv(wt),

and therefore, if we compare our results, we get

-I (oc)» (o6)(6c) azbvbtcw + \ (ah)* (ac)* (be) bvct (zw)

= (ac)* (ab)(bc) azbvbtclB+(acy (be)* (ab) azbv (wt);

and therefore

—4 (ab)(acy (be) azbvbtcw

= | (ab)% (acf (be) bttct (zw)-(ab)(ae)* (6c)8 azbv (tvt)*

But (ab)2 (acy (be) b,ct = \ {ab)* (ac)2 (be)2 (vt),

and therefore = \j (vt),

- | (ab)(ac)2 (be) azb,btc,B = i [ (vi)(no)

= i_ j (vt)(zW)
2 (

Clifford finds
i {ab){aoy (be) a,bvbtca = (ab)(acy(bcf azb0 (lw)-\(ab)(ac)- (bef btct (zw).

H 2
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[since (zv)(wt) + (vw)(zt) + (wz)(vt) = 0]

or (ab)(acy (be) aXhcw = | - {(vt)(wz) + (vw)(tz)}*

Now, it was found before that the symmetrical form of the Hessian is

Multiplying this into cxcXictc^ we get

(aby (ac)(bc) aybvctca-\- — cycvctca.

Multiplying H into cxcvctcm we get

(aby (acybubvctct0— — cucoctcw.

Now, 5" and c are symmetrical forms, and therefore, allowing for the
change of y into v, we get the same result whether we join them by
x, u or by x, y ; we have, therefore, if / denotes the quartic,

(aby (acybubvctc,B- -^-f— (aby (ac)(bc) ay60c<cM,+ - | - /
o o

and therefore

(aby (acy bubvctcl0 = - | -

Fig. (36) answers to the covariant T of degorder (3, 6) ; it is obviously
unsymmetrical, since, if we join y, z, we get (35), which does not
vanish.

In getting the forms of the fourth degree we need only consider T.

* As already remarked, Clifford makes {ab){ac)* (be) azbvbtcl0 vanish identically;
but this is obviously impossible, since (vt)(wz) + (vto)(zt) does not vanish.

t Clifford, having made (ab)2(ac) (be) avbvctc,0 vanish identically, gets

(ab)^ (ac)Hubi,ctcw = - ^- j

but, apart from the mistake in sign, this equation is impossible, since the left-hand
side is unsymmetrical; if we make (ab)2(ac)2bHbvctC,0 symmetrical, the complemen-
tary part consists of the terms involving j in the equation in the text.
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The forms are given in Figs. (37—40). Of these (37) vanishes, since
it contains the vanishing graph (ab)s (ac)(bc) cxcy; (38) is reducible
since it contains (29). The redaction in Fig. (39) is obvious, and
the coefficient of (xy) is got by joining/to the reducible graph (35) ;
(40) is got by joining (31) to itself, and therefore reduces.* We see
that there are no irreducible forms of the fourth degree, and there-
fore none of higher degrees.

It is obvious that we might nse this method in finding the form-
system of any quantic ; but it is also obvions that in the case of higher
quantics the application of it would be exceedingly tedious, and
accordingly Clifford has abandoned this method for the quintic (after
finding the forms of the first, second, and third degrees), and has
contented himself with taking the irreducible forms from Clebsch's
Theorie der Binaren Formen.

XI. Theory of the Compound Form.

The cubic has a covariant (Q) of the third order, and the quartic
has a covariant (H) of the fourth order ; if we take two parameters
K, X, we can find the form-systems of the compound forms, rf+XQ,
K/+XH", for the cubic and qnartic respectively; the problem is, to
express each form of the system in terms of K, X, and the form-system
of/. Clebsch solves this problem by the introduction of a certain
differential operator ; Clifford has used a method of direct formation,
which I proceed to explain; it should be mentioned that Clifford has
only worked out the results for the cubic and quintic ; but, as already
explained, the results for the quintic are vitiated by an error.
As regards the quartic, he has put down certain results of
Clebsch's theory, in a way which shows that at the time he had
either forgotten, or not yet noticed, that the graph for H is un-
symmetrical.

In what follows, I denote the rth alliance of / , f by

It must be remembered that

I denote the compound form (*./+ Xff or K / + X Q ) by F. If \js is any
form appertaining t o / , the corresponding form for .Fis denoted by tf/F.

* Another form of this, chosen by Clifford, reduces as shown in Fig. (41).
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SEC. 1. Cubic.

Consider first the theory of the form

f being a cubic.

We have first of all to find AF. We have

, Q),+X9 (Q, Q),

(/, / ) 9 is, of course, A; (/, Q), is given in (26). We have, if a, y are
the free bonds, and 12 is the discriminant,

(Q, <2)s is given in (42). Now, it is obvious that, in order to join the
two graphs in the way shown in tho figure, one of them had to be
turned round end for end ; and it is easy to prove, by considei'ing the
symbolic form answering to the graph, that this operation multiplies
a form by (—)'", if to is the number of bonds joining the atoms of the
graph, i.e., the weight of the form. Therefore the graph in Fig. (42)
represents [not (QQ)z but] — (QQ)a; now, this graph is obviously
got by joining A to (26) by one bond, and therefore it is —1/2. jffi. A,#

and therefore we have

and therefore

( ¥ ) (xy) = 6A + (cXi? (xy).

Now, the left-hand side is a quadric form; the right-hand side con-
sists of a symmetric part, 0A, and a skew part; and therefore, as we
have to make all forms symmetrical, we must leave out the skew term

and write Ap = 0A.f

To get QF, we have to join this to F by one bond. We get

QF= 0{A, Kf+XQ], = 6 {K(A,/)1 + X(A, Q),} ;

• The graph is
$ . S. (xz) A: £„ = - £ . R . A. (xz) A,, =-§.£. AxAy.

t Clifford says,—" In any kind of multiplication fQ <=— Qf, and therefore we
have only to find tho Hessian of Q-" I venture to think that the reason why tho
term involving K\ disappears from the result is that stated in the text; the term does
not necessarily disappear, but it is rejected when we make Aj- symmetrical.
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(A>/)i is Q; (A, Q) is given in (43), and is obviously got by joining
(26) to / by one bond. We have therefore

which gives QF = e ( icQ- ^ -

R is the discriminant of A, and therefore

RF = 9*R.

SEC. 2. Quartic.

In the theory of the quartic we consider the function

F=Kf+\H.

We must l'emember that the graph of the Hessian is unsymmetrical,
and that we have to use the symmetrical form (32). The Hessian
of F in its ultimate* form is

, = K2 (/, / ) 3 + 2 K \ (/, 2I)3+X» (£T, H)r

The coefficient of K2 is, of course, H.

To find the coefficient of 2«:X, we take Fig. (32), and join it t o / by
u, v, and we get at once Fig. (44) ; but it was proved before that

(aby(acybxbyctct, = £--t{(xwXty) + (xt)(tvy)} (a),

and therefore, if we take the ultimate forms, we get, for Fig. (44),

2 3 6 '

To find the coefficient of Xs we have to join J3" to itself by two bonds,
so that we have to multiply

by

* The ultimate form of a quantic is what we get when we introduce scalars, and
make all the sets identical; it is, in fact, the ordinary form of the quantic.
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We get (abY (bcY (cdy axavd.dfi •

If we take equation (a) above, and multiply it by didwdad^ we get

(ah)* (ac)* (cdy bxbvdtdp = ~ {cdy dadpcxcy+ -£- dadpdxdv1

a o

and therefore, if we take the ultimate forms, the coefficient of \2 is

2 3 3 3 6 '

And therefore we get

O = *-f*. 3
To find TF, we have to join this to F by one bond; we get

Now, if we take the ultimate forms, the first alliance of a quantic
with itself vanishes, and we have also

and therefore

and therefore

To find v, we have to find
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(/»/)* is * ', (E, f)i is j , by definition ; (H, E)i is

but we easily find, by using equation (a) above, or by considering the
graph,that

and we therefore get

We have SjF = ( i f f - / £ ? , «/+XH)4

_ . dfi , Xia dO .dO . . dO

~ 9 *T + T d 7 ™dx ;dx '

a n d

XII. Form-Systems.

In this section I show how parts of Gordan's researches on form-
systems, as given in Clebsch's Bindre For-men, can be simplified by
the introduction of graphs.

1.

It will be remembered that the fundamental theorem in the theory
of systems of quantics (if two qualities have a finite form-system, then
their joint system is derived from a finite form-system) follows
immediately from a lemma which can be expressed as follows :—If a
power of a quantic is to be joined to any other quantic, the index of
the power must not be greater than the order of the second quantic*
This is quite obvious if we consider the graphs of the two quantics.
If the order of the second quantic 0 is X, and the index of the power
of the first / is p, then, since the order of the alliance /* cannot be
greater than X, we are certain to satisfy all the conditions if we join

* This iB not Clebsch's enunciation, but is equivalent to it.
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p fa to <f> by one bond each, and then we are certain to have some / ' s
left over; so that we get the product of a covariant and a power of/.

2.
In the theory of form-systems Clebsch speaks of parts of an

alliance, and of the substitution of parts of an alliance for the alliance
itself. This is a very simple matter if we consider graphs, for, if a
graph is not symmetrical we have to make it symmetrical by adding
links, and then, if we join two forms, we get, in the first instance, the
graph got by joining their graphs, and then a series of terms obtained
from the links. Moreover, if we join two graphs by a given number r
of bonds, we can do so in various ways, since we can join any r bonds
of the one to any r bonds of the other; the resulting graphs can only
differ by terms derived from the complementary terms ; and then it
is obvious, from section (X.), that if we classify forms according to
degree (in ascending order), and according to weight (in descending
order), the graphs resulting from the union of two graphs by any
given number of bonds can only differ by terms involving earlier
forms, and that, therefore, in constructing a form-system, we can join
two graphs in any way we please, provided we classify our forms in
the way just described.

3.
The fundamental theorem (Clebsch's Zerlegungssatz) in the theory

of form-systems seems much moi'e obvious and natural if we regard
it as a consequence of the following lemma:—Every graph can be re-
duced to a sum of simple polygons, where a simple polygon means an
open or closed graph in which no atom is joined to more than two
atoms.

For, assuming the truth of the lemma, it is obvious that in a simple
polygon one of two things must happen; either all the vertices have
free bonds proceeding from them, or some of the vertices are
saturated; moreover, if a vertex containing an w-valent atom is
saturated, it must be joined to one of the adjacent vertices by n/ 2 bonds
at least; and, if the polygon was derived from an n-thic and has no
saturated vertex, we can, by taking off one free bond from each vertex,
get a graph derived from an (n—l)-thic, and we have the theorem :
Every graph derived from an n-thic can be expressed as a sum of
graphs, some of them derived from an (n—l)-thic, and the rest
having one side at least containing at least ?i/2 bonds. This is the
Zerlegungssatz.

As regards the proof of the lemma, we have only to start with the

formula (a6)(ac)(bxcv+bvct) = (afc)scxcv+ (ac)* &«&„--(6c)3axaV)

and then the lemma can be proved without any difficulty.


