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Moreover m =0 gives 6 = o, and m =1 gives 6 =its value as defined

o b’ e
=1
7ro T Fro tare T
go that, reversing the sigm, the limits are oo, 8; or, finally, writing
under the integral sign ¢ in place of 6, the formula is
Resolved Attraction <+ Mass of Ellipsoid

=-§a J‘“’ d¢ N
o P+9) V(P +9) (0*+9) (P +9)

by the equation

which is a known formula.

On the Solution of Linear Differential Equations in Series.
By J. Hanyonb.
[Read January 14th, 1875.]

By Leibnitz's theorem,
D"9(2)y} = { $(2)D"+mg (@) D"+ ’%ﬂw(w)m-u "y
= ¢ (2+d) D"y,
where dD" = mD""!, &#D" = m(m—1)D""%, .....,,

and d operates on D only.
Thus the equation

{P@D"+ ¢, (@) D'+ ... +0. (@) y=2¢(2) ....... vy (1),

when differentiated m times, gives
{[$o(e+@D"]D" + [ (@+d)D"] D™ 4 ... +9,(c+d) D"} y = ¢"(2).
Now suppose y=y%+nz+y; -]al;- + e ;

then o, 41, ... ¥u-y are arbitrary constants, and ., %,.1, ... are found
from the equation

{D%,(d)+ D", (d) + .. + 9. ()} D"t = ¢ (0) vevrven. (2

by putting m=0,1,2 ., asnd D=y,
’ (l2 ”
Now ¢(d)=¢+d¢+—E—¢ + e ,

where ¢, ¢, ¢”... are written instead of ¢ (0), ¢'(0), ¢”(0)... for
shortness.
Thus (2) becomes
MoYmenFMYumen-1F oo FWvally = ™ eiigerenerennnns (8)s
F 2
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The general coefficient in (3) is
M= Pp+mp,_y + EO’L.

1
B )¢n—s+ seesany
9« Prr Pic +o» being all zero for all values of x not included among
x=0,1,2..%
Thus, if POe= -1 PP = by—geeeee ’
me = (1+p)"px»

and (8) becomes

¢0yaun+ (1 +P)m(¢lym0n-l+¢2ym¢n-ﬂ+ (X +¢nuny0) = ¢m ceccer (4’)7
» operating on ¢ only.

Now write (m, &) for (1+p)"¢u;
and A, for (142)"(PusiYu-1FPmea¥u-aF oreee + Purnlo) ="
therefore, from (4),

A+ (mym)y,+ (m,m—=1)y, 1+ v oo + (% 1) Ynin-1F PoYmen=0.

This is true for all positive integral values of m, Thus, putting
m=0,1,2, ...... in succession,

At oy =0, '

A+ (L, 1)yt goyunn =0,

A+ (2,2) 9.+ (2 l)y...,+¢oy...z =0,

A + (m, m) ¥a + (m, m—l) Yued + ------ +¢Ymin=10,
solving these equations,
Yon (-—-1)""‘
Ay on 0 0, eenennn 0 = S0 o, 0, ... 0
A, (1L, 1), $or 0,  cieeeers 0 (1,1), O 0, ...... 0
A, (2,2), (&)), Bus  weereeens 0 22, (1), [ TR 0
Ay (3,3), (3,2, (31) oo 0
A,... '(m, 1)1.)','(1.11, n;: 1), (m, " — 2), (m, 1) (m, m), (’”; m-1), (’”» "" " 2), %o
1 \m+1
-% ) .
Now Aj=¢.9%+datn+ ...... +»¢1.%:-x"’ ?s
A=0n4+D)ye+ 4, 0) pit ... + (1, 2) yui—¢,
A= (2 n+2)Jo+(2 n+l) Nt e +(2,8)yur—9¢",
and (m, s) = ¢K+m¢,‘_l+ n (”|12—.1) PegF cree

therefore Q,n41) =9, (2,0+2)=¢) ... .



y=

rofe-La e (2)
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Thus, the expansion of y is

”°{1" 1"‘\_ (o) z.. ?0 |L11 (¢o) ?(1%1.):, L’Zt’;"- }
’ $a(2,2)(2,1)
: 4’;-1 Po $ur 90 O a"*?

e (5)

(L,n) (L,1) ¢o |[n+2
@, n+1)(2 2)(2,1)

+ s e e i
_w”:.:__l .z—n. ,]; * ¢ ¢ _ai._:_l__ l 3 ¢ ¢ 0 zvul
+ Y Iﬁ‘:_:_l ¢o'¢l |ﬂ ( ) (1,12)(1:1) l_,_.il (%) Q, é)(l,(i) %o _—|n+2+
(2,3)(2,2)(2,1)
At sy B L
fo ¢ {n (‘Po ¢, 1)’ lﬂ+ ) o (L1) ¢ |[ng2 " (5).
. ¢II(2’ 2) (2, 1) s

When ¢,= 0, this expansion fails.
In this case, put « =2+h, where & is not a root of ¢,(h) = 0.

Then (1) becomes ¢.,(z+h)% For = p(2 D),
and y can be expanded in powers of 2.

The equation L YOO VR 1¢) N T U (6)
when treated in the same way as (1), gives

Yz) ¥ _ 90| #_(1\'|b ¢ 0 0|2
5@ ¢ () vy =+ (5) Voo ll2 (3) vggo|te@
V52 V872 g
¢Il’¢’ 3¢Iﬂ3¢l
This may be deduced from (5) by putting n =0,
o=y, ¢=y.....
Po=0, $Po=¢ ......
and (myx) = r ,l’::l'_k e
Again, putting 4:(:1:)—1 in (6) and (7),
A _1_(1yy _’__1'4"4‘0_"1
= () ety ) V5l - G) 72y g5+ O
) $"3¢p"3¢’
The cocflicients of (7) suggest that
D" {w(z)} = (D" (@) o) 0 ),
¢ () fp@) " ¥ () ¢'(2) ¢()

V@@ 2
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there being (m+1) rows in the determinant, and the last row being
¥"(2), $" (), mg" (o), "(m=1) (m‘l) "), o.M ().

Here (9) may be proved in exactly the same way, except that @ is not
made =0 in the course of the work,
There are some particular cases worth notice.

Case L—Equation (4) reduces to  ¢o¥msnt (14+2)"Ymin-r=0;
therefore (1+p)"¢, =0 when « is not 0 or 7.

Putting m=0,1,2,...... in succession,
$ =0 )
‘P;t-l = —¢ =0
93;_2 ¢K =0 when « is not 0 or »,

¢: = ( 1)K¢n =0
, a
Thus $o(®) = ¢ot E‘Po=°(1+“oE):

r-1

¢ () ={‘% ¢! _calli—s

('U -_— m'-, r-2 c _____-:_
¢7 ') _l,r__z ¢5 - a’3|1,_2)
¢.(z) = const. = ca,,

(@) =0, ¢,..(2)=0

Equation (1) then becomes, when r <

{(1+%L)D"+a,‘ 1Iy-- ......+(1»,D""}y=0 ...... (10);

and when r > n,

» n=1 mr-n —
{(1+af,l D+ D Foes 40, r.:,_b}y_o ...... (11).

Tt is easily scen that the solution of (10) is obtained from that of
(11) by solving the equation (11) when # is put =7, and then inte-
grating the result 2—7 times.

Comparing (11) with (1),

%=1,
p=ay ¢ =q, ¢7=0, ...
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Also (m, «¥) =0 except when k=7, And

(m,7) = g, +mg)_, + ’ﬂ"ﬁ—lz b ot

= a,+ma,., + ﬂ”ﬁz:—l— Gzt covenn + m(m—-l).i;r-(m—r-l-]) @

And since 7 is to be taken not less than #, a,, a,.y ...... @ney are all

zero ; therefore

[ | Lo
(m,7) = {a" Ly [m—r + N1 (m—r¥1 +oetan [r=n [m—r+n |m—'r+fn} )
Thus, expanding y by means of the relation .

Yman = — (m’ T) Yman-ry

- _=n1) . @r—n,r)(r—n1) o __ }

y—yo{l p a' + 2 T s

+1 { (r—n+1, ) o+ 2r—a+l,7)(r—n+1,7) 2ol }
N t"i'_l Grx1 % T

(r—n+2,7) o+ @Cr—a+2,r)(r—n+2,7) sis_
+y,{l-— L—— + 9r+2 T - }

+ .se are e e o
+2/ { o™ 1 ! ) nu'-l + (21’ 1 T) ('r 1 T) '”2' ... }.
nel |n_1 |n+,,__1 |n+2r-—1 '

Many well known expansions are particular cases of the solution of
(10) and (11).

Thus
{(1+z)D—n}y =0 gives tho cxpansion of (1+2)",
{(1+2)D°+D}y =0 » ” log(1+2),
{(Q+2") D*+2:Diy =0 ” ) tan-'a, -
{(1—-2)D*~2D}y=0 ” ” sin-!
{(1—2?) D*—aD+m?y =0 " ’ A sin (m sin~'x)

+ B cos(msin-'x).
CAsn I1.—The general COC‘fﬁC‘lent of equation (4) is

A+p)¢, =, F(m+n)F(m+n—-1) ... F (m+n~x+1);
thercfore, putting m=0,
¢ =0 F(@)F@-1).... F(n—x+1).

And (4) reduces to
“Oulﬁlon'*'alun;nn-l+ ------ +a/n"m = 0 ------------ (12))
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— < Yman
where Umen = F(n+n)F (m4+n—1)..."
Here (l+p)" = E}, and p = A,
Now Py = PP = BL,5
therefore ¢ = ExAL gy
Thus 0 (@) =626 v (18),

“When F(n)=1, this is the case of linear differential equations with
constant coefficients; and the general coefficient in the solution of

(@, D"+a, D" +...... +a,)y=0
is the general solution of the difference equation
aoy,,..,.;i-aly,,..,._,+ ...... +a,y, = 0.
When F(n) =na+b-1,

¢ =a,(n+bdb=1)(n+b—-2)...... (n+b—x) = a, -%%—i)—‘)-,

I (n4b)

and E;A,'.¢,‘= a-,‘4.'-('4'+7')(k'+1'—1) ...... (K+1) m;

therefore, expanding (13) and putting =0,
o (&) = aptax+aa®+...... +a,2"
The general value of ¢, (x), obtained by expanding (13), is

#e@) = gD Lo o, (t Data,, EEDLED 2y

L'(n+b—x) 2
_ T(n+b) . k42 ,
T I'(n+b—x) u{a"u-*-a'lc'ﬂl"_ﬂ' 2+a,,.q —E. e 4...
7wk
SR et }

_ U(n+d) P
= Fato—o D *®

Thus equation (1) becomes

¢0 (m) n ¢('l (’1’) n-1 ¢:), (‘”) n-2
{I‘(n+b) D* + L'(r+b-—-1) D+ I'(n+0—2)|2 D2+,
¢z ).
e W} y—(.) ........................ (14),

where ¢,(2) is any rational integral function of 2 of the sth degree.
And equation (12) becomes

Ao Ymsn Y man-1 @Y on — .
T(m+n+d) I'(m4+nt+b-—1) Foot T (m+b) 0 ...(15)
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Thus if @ be a single root of the equation ¢, (%) = 0, the correspond-

ing solution of (15) is
Yu = L (m+Db) Aa™,

and the corresponding expansion of y from (14)
2 2
y=A{P(b)+1‘(b+l)am+[‘(b+2) 3@1+ ...... } ...... (16).

The n arbitrary constants A, ... are not y,, ¥, ..., but are connected
with them by linear equations.

When b=1, equation (14) reduces to

{p@D @D+ LR H @D o fy =0,
or D" {90 (e) 3} = 0.

This gives the expansion for rational fractions ; and in the same manner,
when b is put =0, or any positive or negative integer, the expansion
obtained is that of D*-'(f), where f stands for the rational fraction,
and D*-'(f) for its (b—1)* differential coefficient ; negative indices of
course meaning integrations.

The Diagonal Scale Principle applied to Anqular Measurement
in the Circular Slide Rule. By Jorn R. CamMpBELL.

(A4bstract of Paper, read January 14¢h, 1876.]

Before entering upon the construction of diagonal scales, having, in
place of the usual equidistant parallel lines crossed by a straight
diagonal, as many equidistant concentric arcs of circles crossed by a
curved diagonal, it will be necessary for me briefly to describe the
instrament, or rather the somewhat rough home-made model of one, in
which I have introduced them.

It is simply a form of circular slide rule, combining in one arrange-
ment both the ordinary principle of two logometric scales for multipli-
cation and division, and that introduced by the late Dr. Roget (vide
Phil. Trans., Nov. 17, 1814) for the finding of powers and roots.

Fig. 1 is a plan of the face; fig. 2, a section of the instrument by a
vertical plane through the centre.

The face is a circular cardboard surface AA, 12 or 14 inches in
diameter, but which might well be nade of smaller dimensions. It
consists of two parts,—an annular rim AB for the fized scale, and a
circular disc BCB corresponding to the slide, turning on an axis C in



