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In the former part of this essay* the calculus of plane spaces and
piano forms has been established. It was shown that the symbols
of piano spaces and plane forms may be composed with each othor as
if the operation of composition denoted multiplication only; that £»j
is not = ii$ always, but = =fcr/£, according to the rule of signs. The
conceptions of the normal form of a space, of the plane space I at
infinity and the spherical manifoldness3 at I, have been introduced, and
a multitude of motrical relations shown to take their origin therefrom.
In tin's part, homogeneous algebraical forms of the piano space
symbols are considered and shown to be algebraically equivalent to
tho algebraical formations of geometry. A sign X (and reciprocally #)
is introduced as an extension of the conception of composition, and its
principal laws are discussed. Some properties of the intersections of
surfaces are explained, especially of the group of points common to h
surfaces in tho space 8k. Finally, a few applications are given to show
that the symbolism used will yield good results without much effort.

Lot the spaco in which we operate bo a straight lino I. Let
A, B,... L denote any point on that line, © a group of such points, for
instance, A, B, and 0. Then © will bo denoted by A.B.O, where
the symbol . is expressive of tho fact that the various points
thus connected are to be considered as a group, collectively. The
number of such points is called the order of tho group. In the
natural extension of the symbolism used for plane spaces, [@D], or
sometimes simply ©./.), where D may be any point on Z, will denote
the magnitudo which is the product of the various magnitudes formed
by the points of the group © with ]);

Any equation between groups such as

© + ©'=©",

or ©.©'=©",

• Pp. 217-2G0 supra.
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signifies that both the right- and left-hand sides composed with an
arbitrary point symbol on I are equal. If © contains the point At

then GU = 0,

and inversely, if ®A — 0,

thon & must contain the point A, since a product can only vanish when
any one of its factors vanishes. If P, Q are any two points on the
lino Z, and A, fi two parameters,

®(\P+AiQ) = 0

will be an equation for X, /x whose roots determine the position of the
points XP + pQ of the group ©. The definitions given allow us
therefore to treat such groups © as algebraical forms of two homo-
geneous variables and to reduce any equation between groups to
algebraical identities.

Let u be any group, or, as we shall sometimes say, point-form, of the
nttl order. Let Alt... AM bo any n points on I, and a,, ... a,,, any con-
stants. Then n (a,/1,4-... +nnAn) is a magnitude determined by u,
the position of the A, and expressible as a homogeneous rational in-
tegral function of the a,, ... an, of the ntU order. It will therefore con-
tain a term Gav ... a,,, whore G is a magnitude determined by u and
the points Ax,...An, alone. We denote the n\th part of G by
u x Al.Ai. ...An. The sign x is a symbol of operations whose properties
we propose now to study. First of all, it is clear from its definition that

x i , , ... An = M X ^ . , , . An + u'xA^... An.

Secondly, if we develop

as a homogeneous form of the aj, we shall obtain altogether ?»-fl
terms which linearly contain the «-f-l parameters, the form being
only of the nth ordor; and, from the supposition

«n+i = 0,

it is clear that the factor of n\ rtj ... an is again u xAl ... An; that of
?i! a,... a,,_,a,,+I is thorcforo similarly ttX-4j ... An.\An.u &c. If now
we identify a/l+1 with a,,, we obtain
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It follows then that tho symbol X in regard to linear changes of tho
forms operated upon has all tho properties of an ordinary multiplic-
ation symbol, and that therefore no error will be produced by treating
the yl,, ... An collectively, that is, as a group v.

The fact that n X v is a magnitude which changes linearly in a corre-
sponding manner to the u and v will be expressed by saying that the
oporation x is distributive; or, in symbols, tho operation X is dis-
tributive becauso

xv — X ( M X U ) + ^ (u'xti),

and ttx(Xv+/uw') = X ( H X « ) + / » ( « X I ' ' ) ,

A, ft donoting constants.

To give an instance, lot

u = A.B, v-O.D,

n (aO + (3D) = A (aO+flV) .B(nO+j3D)

therefore u x v = \(AO .BD + AD .BO).

Or let n = A.B.C, v = D.E.F;

thon uxv = | (AD.BE.CF+AD.BF.CE + AE.BF.OJ)

+ AE.BD.CF+AF.BD.OE + AF.BE.CD).

If wo tranRposo >i and v, tho magnitude uXv changes sipn when n
is odd, but remains unchanged when n is even. Therefore u x n is
always 0 when n is odd, but may bo distinct from 0 when n is even.

It is also immediately Been that nl\ where P is any point on /, is
tho same as u x P". Therefore u x P" = 0 only if P is one of the
points of the group u.

u X v = 0 is a single condition for the coefficients of u and v; if «
theroforo is fixed, u = A^. ... An, then v restricted by tho linear
condition uxv — 0 will only contain n independent parameters; and
it therefore follows that

v = c,/!"-}-... +cHA*,i

where the c are arbitrary constants.
\Vhen v is of lower degree than «, say of the mth, n — m being = A,

then v X M will be represented by the form ?<',

l 'X« = W,
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so that identically v.Py X u — wP,

where P remains? arbitrary.

Let, for instance, u = A.B,

and v = C ;

then vx u = \ (GA. 13 + CI1.A).

vxu may also bo dofinod as that form which is reprosonted by the
group-of the points F for which

tl.P*XH = 0 .

If we replace, in tho oquation

v . F x u = wP,

P by al.Pl+ ... +ay.PM and, in tho developmentof v.Px x u atid toPas
rational integral functions of the a, equate tho respective coefficients of
Uj... aK to each other, then we obtain, denoting further P,. ... Px by t,

v.txu — toxt.

If v and M are both of the same order, v and u will be called con-
jugate or harmonic to each other whenovor

Jf v is of inferior order to u, then vxu will bo spoken of as thopolat
of i1 with respect to u, and, if this polar vanishes identically (equi-
valent to A+l conditions), then t> will be called apolar with respect
to «.

If u has a double point A, n being the order of u, then

as is immediately clear from its mannor of formation. This equation
is equivalent to two conditions; thereforo it is also tho general con-
dition for A to be a double point of u. In the samo manner

whenever A is a X-fold point of «.

If u=AHBK% ...L\

A, + A, + ... +Xt being of course = n, and, if v be a form of tho
»U) order, such that

u x v = 0,
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then v must bo of the form

where v\ v", ... v{li) are arbitrary forms of orders \—1, A,—1,... At—1,
respectively. For this form satisfies the equation

and contains . _ .
A,4-Aa+...H-At = n;

that is the requisite number of arbitrary constants.

If « x « = 0,

where the order of v (m) is smaller than that of u (n), and

v = A*...L\

then v x u = 0

restricts u (n—ra + l)-fold; u contains therefore only m arbitrary
constants. Henco

u = An+i-x'u+lin+1-x'u"+... ,

where again n\ u'\ ... ai'e arbitrary forms of orders Xj_l, Aj —1, ...,
respectively.

If u is given of the nth order, v any form of the mtb order, then

v x u — 0,

being equivalent to n — m-\-\ conditions, restricts the m-\-\ constants
of v (w—m + l)-fold, so that 2m — n arbitrary constants remain.
One factor being necessarily arbitrary, 2m — n must be at least = 1 ;
so that a general form u of the «"' order where n is odd = 2w + l

1

determines exactly one form v of order -, apolar to «; v can be

found by the solution of <r~ linear equations, v being found, we

may express n in a Rpecially sirnplo manner; for instance, if v is the
n ]_

product of -- distinct points, it may be expressed as the sum of
a

—-—- ?ith powers of multiples of these points. This expression for u
is sometimes called its canonical form.

If w,, ... iik are forma of the nth order, then any form expressible by
c,M|-f-...+<**<*, is said to belong to the involutu/ii t*x ... tt4; and
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h—1 is called its degree of manifoldncss. We suppose, of course, that
no such identity as

= 0

exists (that the u( are linearly independent). The h equations

restrict tho form i>, supposed to be of tho «*'' order, &-fold ; v will there-
fore be a member of an involution whoso degree of manifoldncss will
be n—Jc, and which may well bo called the reciprocal of tho involu-
tion ux...nk, or the involution conjugate to tho involution of the n.
By means of this conception many truths concerning involutions can
immediately be derived from truths known to hold for reciprocal in-
volutions. For example, let ,

1 Jc= n;
the involution of tho v will be of manifoldness 0, and v Avill be uniquely
determined. It is therefore immediately seen that, in general, an
involution of manifoldness n—1 will contain n nth powers (of points
belonging to v) ; and that the group of these will be harmonic to all
members of the involution ux ... nM •which may also bo defined by this
property. Or let the degree of manifoldness of the involution ux... uk

be n—2, and let v,, v2 form the conjugate involution. Then the
condition that the involution ux ... uk should contain an nth power is
equivalent to the condition that vx and i>a should have a point in
common.

The equation

may be geometrically illustrated as follows. Lot v be a point-group
of order m, u of oi'der n. Then all groups of order n conjugate to u
and comprising the in points v form an involution ; and so do tho
system of the n—m points which combined with v arc conjugate to u.
This latter involution is reciprocal to a certain group of order n—m,
which is exactly v X w, the polar of v to «.

To obtain these results it is not in the least essential that tho
symbols used should be points situated on a certain line. They may
be any point or plane space symbols situated anywhere. For the
definitions given for the operation X will again apply. If u is a
form of order n of Sa symbols, $ any plane space, «£ will denote the
result of the composition of all terms contained in u with £. Let, for
instance, u be a point-form in a plane S2, and let I be any lino
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then u (a^i + ...+nnin) will bo a magnitude developable as a rational
integral function of the a, and will contain a term a,... aB, whose
coefficient will depend only upon the mutual situation of u and the l(,
and whose n!th part may be denoted by ux.lxlt... I,,. It follows in
tho same manner as before that any linear change of the I may be
treated as if the sign x denoted multiplication, and that the I may
be treated as if they were multiplied together. It is true that the
line-forms v in a plane cannot generally be represented as the product
of lines, but nothing prevents us from extending our definitions also
to general forms v, since v can bo represented as the sum of such
products. Hence uxv is a magnitude uniquely determined by the
point-form wand the line-form v\ and the operation X is distributive.
To give an instance, let . _ _ _

u = A.B + C.D,
and v = a.b + c.d,

tho A, P», (7, D denoting points ; the a, 6, c, d denoting lines. Then
u x v will be

t*xv= I (Aa.Bb+Ab.Ba+Oa.Db + Cb.Da

+ Ac.Bd+Ad.Bc+Cc.Dd + Gd.Dc).

Or let u be a point-form of tho order w, and P any point in the piano
of operation. Putting _

i = alPl + ...-\-a,lFnt

uP will be a line-form developable as a power-series of tho a ; whoRo
coefficients are again line-forms. The coefficients of a,... a,, will bo
a line-form which depends solely upon the situation of « and P, ... P,,.
Since the calculus is just the same whatever the symbols may signify,
whether lines or points, the results obtained will also be tho same.
uxv, where u and v are any two point-forms of order n, is therefore
a line-form uniquely determined by u and v, and the operation x is
also in this instance distributive.

After these explanations, we may announce the general result. The
operation x is applicable to forms of symbols of any manifoldness.
If u is of order w, u£ is the same as u x f . The operation x ,
which in the reciprocal geometry will be written *, is an extension
of that of composition, and is always distributive; »xti differs
from vxu either not at all or only in sign.

The result of u X v polarized with any new form w, written (u x v) X to,
can only differ in sign, if at all, from ux (»xw) or (ttxw) xv, &c.
It suffices to show this when ?*, v, w are products of plane forms.
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Let, for instance, w = £,.£„

v = ^ . i ? , ,

w = £,.£„

where the £, qt £ are any plane space symbols. Then

t* X v =
and

The law of formation makes the statement immediately obvious, so
that the wording of the proof seems unnecessary.

"We come now to the problem of finding geometrical equivalents to
the algebraical forms introduced and identities established. A certain
liberty of choice will always exist, but the conception of the old
geometers cannot in any way be improved upon. Accordingly, if
/t-f-1 is the manifoldness of the space containing all symbols of a
form «, whose symbols may be S^ forms, then u will be represented
by the manifoldness of points P for which uP vanishes, and u will be
called a surface. And reciprocally, if u is a point-form, it will find
its geometrical equivalent in the manifoldness of all spaces 2 of h
manifoldness for which u2 will vanish. But, if u can be represented
as the product of points, this group of points—each point counted in
its proper multiplicity—is a more direct representation of u. In any
case, a Sk form or point-form u and its geometrical equivalent
determine each other uniquely, if an arbitrary factor is left out of
consideration.

If « is a form of 8, symbols, where a differs from 0 or /<, then we
might in the same manner represent it by the manifoldness of plane
forms 2 of manifoldness A—a, for which

u2 = 0,

and to obtain a visible representation we should have to define 2
again by a number of plane spaces 2' of manifoldness a belonging to
the involution reciprocal to X. So then u might ultimately find its
geometrical equivalence in the manifoldness of a group of plane spaces
X, which stand in a certain relation to each other, in virtue of which
the reciprocal 2 to the involution determined by them makes u2j
vanish. This representation would certainly have the advantage of
defining u uniquely, a factor being left out of consideration. But it is
wholly unsuited to aid the geometrical imagination, especially when u
is itself defined as the intersection of surfaces or as a curve or geo-
metrical formation of some kind in general. For this reason we must
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represent a form u by the manifoldness of plane spaces 2, for which

u2 = 0.

Remembering that certain relations are identically satisfied by the
coordinates of a plane space other than a point or a Sh—in space, for
instanco, if A, B, 0, I) represent a pyramid,

AB.GD + AC.DB+AD.BC

applied to any Vmo would vanish—we must bear in mind, that certain
forms <2>, ... <§k will in tho light of the above definition vanish iden-
tically. Tho definition given above will therefore create a correspon-
dence between u and its geometrical equivalent only modulo <&, ...@*.
This fact, however, does not touch tho validity of our equations, if it
is understood that they are always to be read modulo, the fixed
system of moduli (£>, ... €>*.

If, then, u is a geometrical formation, tho manifoldness of 2 belong-
ing to it will bo that of fehoso spaces 2 which have with u a point in

•common; for this is true if u reduces to a product of plane spaces,
and, since u can always be represented as the sum of such products,
in many ways, the general truth of the proposition is easily made
evident. For that reason a geometrical formation 6 will defino the
form u of which it is the representative (modulo @ ... ©*), and we
might consequently' apply our equations directly to the formations
whose symbols we use.*

The geometrical representation which we now have agreed to use
will immediately lead to some notable consequences. Lot, for
instance, the space in which we operate be the plane. A point-group
of the second order, such as

u = aA*+bBi+cC,

will, in general, nob be represented by two points, unless itB dis-
criminant ale vanishes.

If we compose u with any point P,

nP-a. AP* + b .BP%+c. GP\

• [A geometrical " formation," as tho word is used in this essay, denotes always a
manifolilnoHH of poiiitH, forming a curve, a Burfiico, &c, in upaoo of any degree of
manifoldneHS. According to tho principlo eHtablitshed abovo, an algebraical form
(of the symbols used in the geometrical calculus) will correspond to it. I t is, how-
over, easily scon that tho converse is not t rue A form like, for instance,
aAW + bCJP + cEF. GJf, where A, JJ, C, D, E, F, 0, II may be situated in space
63, will not generally define a conic in space, but a line-manifoldneas of the second
order. Hence it will bo understood that we may speak of algebraical forms which
exist as geometrical formations and of such as do not.]
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this will represent a lino-group which will obviously contain P. If
this lino-group contains also some other point Q, then

uPQ = 0,

from which it follows thatPQ belongs to the manifoldness of straight
lines represented by u. In other words, uP represents the two lines
through P which belong to the manifoldness u. Let in a similar
manner u Jbe a line-form, a curve, in the plane, and I any line; then
in the reciprocal geometry ujl will denote the point-group which u
and I have in common.

If G is a curve in space S8, (£P must denote, according to the
definitions given, the manifoldness of points Q for which

GPQ = 0,

which is evidently the cone standing on S whose vertex is P. If S
is any plane in space, 6/S will similarly denote the point-group
common to (£ and S. Generally, if (£ is any geometrical formation,
£ any space, P any point on (5, then @£ will contain the space P£; for,
if 2 has the point Q in common with P£, then

£3 = 0;

therefore

In the same manner (£/£ denotes the intersection of (£ by £.

To give an instance of the working of this, let u be a conic, and
a, 6 be any two lines in its plane intersecting in P. Through P
draw any third line Aa+/*6. Its two points of intersection with u
are ti/Xa+pb, or, what is equivalent to this, u * (Xa + ftb)9. If L
and M are these two points of intersection, then it follows that

where % S3, 6 are fixed point-forms 'of the second order. So, then,
if L,. JW,, Jv3.if.j, .L8.il.f8, l^.Mi are any four such point-groups, a
linear relation will connect them ; and, if we compose this with Lt,
it appears that

JO, Ir,. M, Liy Ir2 Lt. ilfs Ir4, I»3 L4. ilfj,L4

are linearly dependent. Or, in other words, the three point-pairs
which are common to a conic n and three concurrent lines projected
from any point of u are in involution.

Or, let M be a surface of the second order in space, and / be any line
upon it. Any plane through I will be of the form Aa-j-/i6, a and b
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representing any two distinct planes through I. This plane will cut
u in another line V. Now

u/Xd-\-fib s / . l\

or, what is immediately seen to be equivalent to this, four such linos
I' aro linearly dependent. The lines of the quadric, ae easily
follows, form two groups, belonging to two conjugate involutions of
plane lino-forms of manifoldness 2.

This proceeding, which is also applicable to the intersection of
curved spaces, gives many interesting results, and can be generalized
without difficulty.

If u and v are given forms, what does uXv signify ? To answer
this question for the plane will be sufficient to indicate the general
idea. Let n and v both be point-forms of the wth order in the piano.
«Xti = to is then a line-form of the nlh order. Let P bo any point upon
the curve w; therefore

wxP" = 0;

then we have, since w = u x t>,

u x v x P" = 0.
In the geometry of lines through P, AP composed with BP is,

according to our previous definitions, identical with ABP in point
geometry. It therefore follows that wXuXP" in point geometry is
the same as uP x vP in the geometry of lines through P. Hence
ii X v is the locus of points P which have the property that the two
line-groups uP and vP are conjugate to each other.

As a corollary, if u is a conic, u x u is its reciprocal. If w is a
point-group of the third order on a line, u* X u1 is its discriminant.
Hence, u representing a plane curve of the third order, u* * u* is the
point-form for the tangent lines of the cubic u. Similar laws exist
for surfaces of any order.

We shall, of course, speak again of involutions of forms, and, in
.connexion with the equation « x « = 0, of conjugate forms and con-

• jugate and reciprocal involutions respectively.
Let u now be any surface, in the space 6'*, and the order of u be n.

Let A, B be any two points in S. The line AB will cut u in n points, to
be found by evaluating u/AB, or else by the following method. Any
point of the line AB may be represented by uA+(3B, a, /3 being
parameters. For the coordinates a, fl of the points aA + ftB situated
upon «, we obtain an equation of the wth degree,

... = 0 .
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If A is a point upon u, ft — 0 will bo one root of tbo equation, the
equation of the other n—1 roots reducing to

n. a""1. u X An-y. B + (»), a"'2 /3 . u X ̂ ""2 . J3'+ ... = 0 ;

u x .4"-1. # = 0

is thoreforo the necessary condition for the line AB to have two
consecutive points in A in common with u, to touch u. This equa-
tion is a single condition restricting the position of thq point B. All
the points B of this kind are therefore situated in a certain piano
space of k— 1 manifoldness, which is said to touch u at the point A.
Wo may evolve its form by calculating An~l , P x « , P being left un-
determined, i.e., by calculating the polar of A'"1 to u.

If, however, any lino through A intorsects u in two coincident
points, then tho equation for B must be an identity; i.e., A"~lXu
must vanish identically, and, vies versa, A"'1 x u = 0 is tho necessary
and sufficient condition for A to be a doublo point upon u.

In the space of k—l manifoldness An~l XK, we may subject B to
the further condition that A"'2. B* xtt should also vanish. In that
case the line AB will have three consecutive points in common
with u. The equation for B being then of the second order, tho
points B will form in the space An~x X u a surface of the second order.
If 0 is any point upon AB, G* will be linearly dependent upon yl2,
A . B, B\ Hence, if

l.B = 0, u x i - ! . 2 3 a = O ,

then generally u x An'2. G3 — 0.

The surface of the second order in question is therefore a cone whose
vertex is A. If, further, we select upon that cone only such points B
for which also

then A B will have four consecutive points in common with «. These
lines AB are therefore found by the intersection of the cone with a
cei'tain surface of the third order; or else by their property that they
are wholly contained by the surface An~zxti. Generally AB will
have h consecutive points in common with u whonever it is wholly
contained by the polar of 4"*1 * to u.

If A is a double point upon u, A11'1 x w will vanish identically, as
we have seen. The points B for which A"~'1 , J? !XM = 0 will then be
such that AB has three coincident points in common with n. The
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equation for B being of the second order, such points form a surfaco
of tho second order, which is, as immediately follows from the co-
existence of

a cone whoso vortex is A—the cone of contact at A. If also A"~2xu
identically vanishes, then A will bo a triple point upon M, and
generally the condition for A to be a X-fold point upon u is that
i ' " ' ' ' x i ( should vanish identically, and the cone of contact is evi-
dently A"~x x u.

This is indeed only a restatement of Joachimsthal's method.
Wo have made use of the. conception of the polar of a point-form

v of order •»*- to a surface w of order n. It may be defined as that
surfaco w of order n—m whose points P satisfy the condition

v. rn-m x« = o.
As before, it follows, if v x u = to,

that v. t X u = w x t.

If 11X11 identically = 0, v will bo called apolar to u. This equation
expressing tho vanishing of a surfaco of the (n—m)th order is equi-
valent to a (n + lc—?)i)rfold condition.

If (J is a curve in space, and I any lino intersecting it, wo shall have

If, therefore, P is any point on I, Q any point in space,

KxP"x Q" = 0.

From this it follows that (SxP" (or GP) must identically vanish.

If I is any line intersecting 6 twico, then Z"'1. 6 = 0 identically,
and, if I has a points in common with (?, then

For let P be any point on I not on 6, S any plane through I, and a, b
any two lines through P lying upon S. Obviously there are n (different
or coincident) linos through P in ti intersecting the curve ($. Tlieso
lines are Xa + fxby where A. and /x are to be determined by the equation
of the wth order ~. „ , INll „

&x(\a+i.tb)" = 0.
Everything else follows as before.

If P is a double point upon (S, then P""1 will vanish identically,
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since (PQy^xQi vanishes identically wherever Q may be situated.
For a A-fold point upon 6, we have, in a similar manner,

Whenever P""1. Qx& vanishes identically, the line PQ will touch
6 in P, and vice versa. The curve- (S is a singly infinite series of
points. It is therefore possible to represent its points II by a power-
series in a variable parameter A,

where P is one of the curve-points corresponding to the value A. = 0.
Sinco lT'x(S = 0,

we may develop H" X (5 according to powers of X, and equate each co-
eilicient of the various powers of X to zero. It thoreforo follows that

P'-1.P'x(S=0.

But for infinitesimal values of A, the point II consecutivo on Of to P
may bo considered as being situated upon the line joining P and P".
So then the statement is verified.

If (2 iy n ° t a point on that tangent-line, then P"~l. Qx (£ will repre-
sent a piano form of the order «, that is (in space $8), a surface. This-
surface is represented by the cone of order n — 1 whose vertex is P,
and which contains the curve 6, in conjunction with the plane com-
posed of tho tangent-line PP' arid Q. For let R be any other curve
point, and uP+{31l any point collinear with P and 11; then

P"-l.Qx(aP+pliy

being identically = n .aft"'1 (PR)"1. Ql'+P".P'"1 .Qxll'\

and both (ixiJ" and (Sx (Pli)H~l vanishing identically,

In other words, dx P"'1. Q contains all the points aP + /3Z2, i.e., the
cone in question. (S x P"~l. Q contains also any point

since KxP""1. Q identically = (SxP""1. ( \P+/ iP ' + Q),

and P""1. SxS" vanishes identically.

The more complex formations of geometry may be treated in the
same manner. Wo shall, however, for tho present, abstain from
rigidly formulating the general laws whose existence is indicated
abovo.

VOL. XXYIII.—NO. 607. 2 L
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II. A geometrical formation (S is either irreducible or it is com-
plex. (§. will be called irreducible if algebraically the form repre-
senting it is irreducible. If (£ is algebraically reducible, it is
geometrically complex. If 6 is the product of several forms

then, since

either (S'P = 0

;(£'.

GP

or

6"....

= 0,

(S"P = 0, &c.

(£'. 6". ... (5(ft) containing an infinity of points, at least one of them,
say (£', will contain an infinity of points. (£' will therefore geometric-
ally exist. This line of thought being followed further makes it
evident that, if a form (& which has existence as a formation is re-
ducible, its various factors ($'. Q,". ... (£(t) will also represent forms
having geometrical existence; or that, in other words, a reducible
formation S is always a complex of several irreducible formations
(some of which may be identical).

If (£ is irreducible, a surface TJ contains 6 when containing all
of its points. TJ contains (f . Q." when it contains (§,' as well as (£".
U contains (£x whon it contains (£, and besides X—1 formations
consecutive to 6 (not necessarily coincident with (£). But, if U con-
tains every point of (J as a X-fold point, then it may be said to
contain (£ X-fold, i.e., to contain X formations coincident with (S.
This definition of " containing " will only be of importance when the
•work of Brill and Ntither is consulted.

Let now 6 be an irreducible curve in any space S of order n. A
surface V in 8 of order N will have n . N points in common with it,
since this is the number of points TJ would have in common with d
if TJ were the product of planes, and since this number must he
independent of the exact values of the coefficients of If. But, if N
is chosen largo enough, n. N will fall short of the degree of mani-
f old ness of surfaces U of order A7, and other surfaces V\ U'\ ... of
order N will therefore exist wrhich also contain these n. N points of
intersection.

If U and V are any two of these surfaces, a surface aU+bU' may
be constructed where the constants a, b are so adjusted that

aU+bir=V

will contain, besides. the n. N points, yet another of the points of (£.
6 will then have n . J^+1 points in common with. F, and, 6 being
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irreducible, it is in keeping with one of the fundamental principles of
Algebra to conclude that ($ must be wholly contained by V.

It may in a similar manner be shown that generally an involution
of surfaces of order N exists of which each member contains any
given geometrical formation 6, and which is denned by this property;
on the supposition only that N is chosen large enough.

Referring to Dr. Salmon's classical treatises upon the theory of
curves in space, and on the order of restxueted systems of equations,
we shall make use of the following fundamental proposition: That, if
(S be the complete intersection of surfaces n, v, ... w, any surface 8
containing G must be of the form

S — a.u + b .v+...+c.w,

the a, b, ... c denoting forms.

A proof of this proposition may be given as follows :—The pro-
position is true if the complete intersection of n, «, ... w is a group
of points, as is implicitly verified by the discussion which follows,
upon the supposition of the truth of Bezout's theorem only. It is
algebraically evident that in this instance the a, b, ... c contain the co-
efficients of u, v, ... to tind 8 rationally. If, then, some of the variables
in u, v, ... w and 8 are treated as parameters, the truth of the pro-
position follows quite generally.

We may express the substance of this proposition by the statement
that the geometrical substrate of the system of moduli u, v, ... to
whoso resultant does not identically vanish is their complete
intersection.*

The form of the complete intersection (5 of the surfaces u, v, w, ...
can be found as follows :—Any k+ 1 surfaces in space 8k will have a
point in common if a magnitude, the resultant of the system, vanishes.
If, then, n, v, ... to are h surfaces, join any I = k + l—h arbitrary
plane spaces #„ S2, ... St to them. The resultant It of this system
does not contain the coefficients of #,, 82, ... St per se, but only in
such combinations as are determinants of the matrix S,, #2,... St.
In other words, E depends only on the coefficients of u, v, ... w,
and the coordinates of the space &, | /S'2 | ... | 8t in regard to some
pyramid of reference a, b, ... c. Let these coordinates be called

* I t might IJO neon and verified in a Himilar manner, that generally to any
geometrical formation (5 belongs a system of moduli «, ... «*, and vice vcrsd. Tlio
work of Urill and Niither has to a certain extent modified tho fundamental proposi-
tion, but not so as to embarrass us in its use.

2 L 2
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PuPv -•' Pit, and let

R^FiPiiPn— Pit)-

Lot the horder-spaccs of h manifoldness of the pyramid a, b, ... c
be £„ £,, ... £v. Lot

A ' = Sf, | 6'., | ... | JS ,=2» ,&+. . .+!*&.

Let I; be the space residual to £,; then

Pi = X$x . [a, b, ... c],

p8 = Xf2 . [a, b, ... c],

and ($ is thcrcfoi'O in our notation !''(£„ ^, ... £iV).
Tin's proceeding is not of much practical value, since it involves

the necessity of the introduction of a pyramid of reference. Theo-
retically it is sufficient to show some of the most important properties
of the form belonging to ($, which again are sufficient to make the
direct evaluation unnecessary. These are: If

ttj ... uk are the h surfaces,

\ ... A* their orders,

(5 will be a form whose coellicionts are rational integral functions of
the coefficients of the «„ containing those of «, in the order
A2A!t... Xk, &c, and, considered as functions of the coefficients of all
the Hi, aro of tho order A, A.2 ... A*.

If ($ vnnishes identically, nl ... vk must have in common a forma-
tion of higher manifoldness than in general, and vice versa.

Another method for the formation of (5 is this. According to
Clebsch's work, tho invariants and covariants of a system of surfaces
may bo symbolically expressed—in tho notation used here by moans
of the symbol ^ and of the symbols of Algebra, applied in some
specified manner to tho set of surfaces under consideration. If n, for
instance, is a qundric in space $h, u :f: n * n ... $: u (h + 1 times) is
its discriminant, n ^ u therefore the manifoldness of its tangent-
lines, n * n >f: n the manifoldness of its tangent-planes, &c. If n and
v aro two point-pairs upon a straight line, 4 (n * v)a—3 . na * v* is
thoir resultant; and this form is therefore also tho product of the four
points common to u and v, if ti, v denote conies ; tho curve of inter-
section if they denote quadrics in space, &c. If, then, the resultant of
k forms of orders \u ... A* in space of manifoldness k—1, in its sym-
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bolical expression is known, this same expression gives also the
intersection L of surfaces «„ ... uk of orders A,, ... \k in any space.

If U is any surface of order a in the space Sk, tho manifoldness of
surfaces of order n containing it is p . u, where p is an ai-bitrary sur-
faco of order n—u. The number of (homogeneous) constants con-
tained by p is (n — a + k)k; or, if we denote (n + 7c)k by f (n), it in
<f> (n—a). The order of tho condition that a surface of order n should
contain all points of u is therefore <p (n)—(p (n — a) ; or Aâ » (n), by
the introduction of a symbol of operation Au, whose definition is
obvious.

Tho reciprocal of the involution of surfaces v containing u is formed
by the n®x powers of the points upon ,w, which follows from the
definition of the involution v. Hence the nth powers of any Aa^ (ii) + l
points upon u will be linearly dependent.

If u and v are two surfaces of orders a, /3, any surface of order n
containing their intersection is of the form

p .n + q . v.

This form would contain 0 (n—a) +(f> (n—fi) constants, were it not
that this number is diminished by the existence of identical relations,
such as _

pit + qv = 0.

In fact this relation will be satisfied whenever

p = r .v, q = — r . u,

where r denotes any surface of order n—a—/3. So then the number
of independent constants in the identical relations reduces to

(j, (n-a)+<f> (n-ft) -tf> (n-a-/3) ,

and it follows that tho nih powers of any Aa^p<p («) + l points upon
the intersection of n and v must bo linearly connected.

If zt, v, w are any three surfaces of orders a, /3, y, the form

pii + qv + rw

would contain <p (n—a)-\-(f>(n—/3)+^(«—y) constants,

but for the existence of identities

= 0.

Supposing the intersection of u, u, and w not to vanish identically,
the intersection of u and v will not be contained by w. If, then, tho
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above identity holds good, the intersection of u and v must be
wholly situated upon r ; therefore

r— au + hv,

and, similarly, q = cic — lno,

p = — cv—aio;

a, b, c are perfectly arbitrary forms. The diminution to bo effected
would therefore appear to be <p (n—a—fi)+<p (n—a— y)+0(w —fi — y)
were it not that some of these identities are counted several times,
since . , , , , . .

a might be changed into a+A . v,

simultaneously b „ „ „ b — A.ut

c „ „ „ c — A.w,
without adding to the number of identities, A denoting any form of
order n — a—ft— y. So then the diminution is only

0 (n—a—/3)+0 (n — ft — y)+<p (n — y — a)— <[> (n—a—ft — y) ;

and therefore the order of the condition that a surface of order n should
contain the intersection of u, v, 10 is &aAf,&Y(f> (n). Repeating this
pi'occss, wo obtain tho general theorem : If ux ... up are any h forms of
orders Aj, X2, ... Xft whose resultant does not identically vanish, then
the order of tho condition that a surface of order n should contain their
intersection is __ A • , N

N— A A,, AAlJ, ... AAft0(7i),

or, what is tho name tiling, tho nth powers of any ^7"+l points upon
tho intersection of tho U are linearly dependent.

Now, it will bo noticed, k being tho manifoldness of the space in
which these surfaces are situated, that <j> (n) is a function of n of
order k • and thnt N is some integer function of n of order k—h.
I t appears, therefore, at least when (5 is a geometrical formation
generated by the intersection of surfaces, that tho order of tho con-
dition for a surface of order n to contain (5 is an integer function N of
n, whoso degree is equal to the degree of manifoldness of 6 ; a linear
function, for instance, for enrves. We shall discuss this result later,
and show that it is valid without any restriction on the nature of the
generation of (5 ; and, that, moreover the coefficients of the function N
of n are numbers in intimate relation to (5.

If h = k, N is a constant whose value is found, according to ele-
mentary theorems of the calculus of differences,

N = \ ... \k.
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Hence it follows that this is the number of points of intersection
common to k surfaces of orders A,... \k in space $*—another demon-
stration of this famous proposition. But the order of the condition that
a surface of order n Rhould contain these points will not be equal to
their number whenever n is so small that some of the identities
counted above do not exist; for instance, when n is smaller than

ri —
When n = ri— 1, <f> (n—ri) will be 0; also, when

n = ri— 2 ... n = ri—-k.

But, when « = ri— h — 1,

then Q (n—ri) will be =F 1;

and therefore the order of the condition that a surface of order

should contain the Xt. Aa. ... X* points of intersection is not X, . Xa. ...AA,
but, since one of the identities which were counted above will cease
to exist, only Xj... Xt—1. So, then, any surface v of order

containing \ ... XA—1 of the points of intersection of h surfaces of
orders A,-}-...+Xfc in space Sk, will also contain the last one. In
oilier words, the (X,-f... +Xfc—k — l ) t h powers of these points are
linearly dependent.

If, finally, 7i=fe + l, then N— 0. Hence the Theorem: If the
resultant of any 7c+ 1 surfaces ux... nk+l in space St does not vanish,
any surface Fof order n,n being assumed large enough, is expressible
in the form

7
The orders of w2...?ift+1 being denoted by A^.A^+j, this theorem

will hold good if n is at least = 2A,—k. If, however, n = 2A,—k — 1,
it is seen, as above, that one condition has to be satisfied for the above
identity to exist. For instance, if «,, «3, u3 are three conies in a plane,
V any cubic in the same plane, V will not be expressible in the form

(the^denotinglines), unless the six points of intersection of Fandttt

and the four points common to u% and «3 are situated upon one cubic.
If V = S3, the cube of a line, A, B, C, D the four points common to u%

and Ws, and aA + bB + cC+dD = 0,
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the lineai' equation connecting them, then Si—p1. w, will Contain
A,B, C,D; hence

(81!)'

8 must therefore belong to the manifoldness

6= JL..A*+±-.B+
ttxA uxB uxG ujj

Hence generally the condition for Ftobe expressible modulo it,, w2, w8

is to be conjugate to 0.
Generally to any set of 7c-f-1 surfaces of orders X,... X*+1 in the space

S/s must belong a point-form 0 of order X, + ... +X*+i—7c —1 in intimate
relation to it (which is, in fact, that « t . . . uk+i are apolar. to 8) to be
found in the manner given above. If the resultant of the forms vanish,
9 will reduce to the (XJ+... +XA+1—h—l)th power of the point
common to the surfaces. 6 will vanish identically when «t, ... wA+1

have more than one point in common.

Any form V of order X,+ ...+Ajt+1—k will, as we have seen, be
expressible by j3i«i+ ••• -f-jp*+i M*+J. If the coefficients of the u{ under-
go continuous changes until the resultants of the ut vanishes, this will
cease to be true, for V must then obey the one condition to pass thi'ough
the point common to the u to be thus expressible. This can only be
explained by the supposition that, in consequence of the vanishing
of It, a new relation such as

is created. Hence, if the form of order X,+ ...

vanishes, unless pt belongs to the system of moduli «,. . . %*+, (w4 ex-
cepted), one condition must be fulfilled, viz., that B should vanish,
and vice versa.

III. If we have any group of points Au ... Ah in the space Sk, any
k+2 of them will be connected by a linear equation, and the h points
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therefore by 7i—k—1 such equations. This system of equations will
have the following form :—

= 0,

Multiplying the first by a,, the second by a2, ..., the last by a,, where
I = h—k — 1, we can write the whole system of equations in one line

where 9(, = a,. al + bx. a2 -f... + Z,. a,,

The a,, ... aj will be perfectly arbitrary and independent of each
other. We may therefore use the geometrical calculus, interpreting
the a{ as corners of a pyramid in an auxiliary space. The 51,- will
consequently be = points in some space ©,_i of perfectly arbitrary
situation. It will also be noticed that, on account of the perfect
freedom in the choice of the a, the group % may be subjected to any
linear transformation without ceasing to make the equation connect-
ing the Ai and % true.

From (0) Al.%+A%.%+...+Ah.>]lh = 0,

we may deduce any relation connecting the Ah for instance, the one
connecting Av A2, ... Ak+2 by composing the 51 in (ft) with
*̂+3̂ U+4 ••• 91A. The A and -}i being situated in totally different

spaces, any operation may be performed on the one group, while the
symbols of the other group are treated as constants.

If A, B, 0, D arc four points on a line, they are connected by two
relations, and we shall have to introduce four points 51, S3, 6, 5) on
some other line, so that

a. A . 21 + b . B. 93 + c . G. & + d. D . © = 0,

the a, 6, c, d denoting constants. Composing with 0 and 5), we

similarly, composing with 6 and D,

a .AD. MS+6. BD. 9S(S = 0;
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, AC . BC _ 916 . 93(5
AD ' BD " m ' 232);

or the necessary and sufficient condition for the two groups to be
corresponding in the above-mentioned manner is that their cross-
ratios should be equal.

(If the group A is given, the group 91 defined by the relation

may be linearly constructed, Z + l of them being arbitrary. To 7c
points Af on a straight line correspond h points % of a JS>*_S. If, of
the h points A, fc—1 remain fixed, the last one describing its straight
line, while also, of the 7c points 91, the A;—1 arbitrarily to be assumed
remain fixed, the last point 91 will describe a certain rational
curve passing through the fixed points 91. Vide Nature, 17th October,
1895.)

There is no reason why no more than two different space-symbols
should be used. Our definitions will apply also in this case, the
general rule being that any operation may be performed upon the
symbols of any one space, while the symbols of the other spaces are
treated as constants.

A form like the following,

where the At belong to one space, the A\ to another, &c, is called a
(7c + 1)-linear form. The point symbols A[s) and their compositions
are called " different space-symbols."

An equation between point-forms, such as, for instance,

o1«, + a2M2+ ... +aAwA = 0,

imposes a condition upon the coefficients of «,, «2, ... uh. In fact, if
the Order of the ux ... uh is n, the a denoting unknown constants, the
order of the condition expressed by this equation is <p (w) -f 1 —h (since
a form of order n in Sk vanishes, the form containing h homogeneous
parameters). If, for instance, it is.known that three point-pairs
A . A', B .B\ C. C in a plane are linearly dependent, the six points
must satisfy a four-fold condition.

If, in an equation a,w, + . . . +aA«A = 0,

the point-symbols implicitly contained in the «, . . .% are subjected
to one and the same linear transformation, and they are projected into
some other space, only the constants ax... nA will be affected, but the
projections u{... u'h of ux... uh will again be linearly dependent. This
follows immediately if we compose the equation with some point P
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outside the space S of the u, and then cut it by a space 2 contained
in SP, and of the same raanifoldness as S.

If we polarize the equation
= 0

with P , .P 3 . . . .P , , , where Px ... Pu are not contained in S, and
jS'P, ... PH is different from 0, the point-symbols Ax ... Am implicitly
contained in the M, ... «A will combine with the Px...Pn, and wo
shall obtain a relation between

A V A V A V

which evidently represent in the geometry of lines through Px, PSJ... P,,
different .space-symbols. Cutting these by spaces 2,, %, ... 2,, of the
same manifoldness as S in SPlt SP.,, ... SPn, respectively, we obtain
a relation between

- " I t • " » ! • • • • " IH I

•^1 i - ^ 2 > • • • •"-„„

y i l I - " o » • * ' • " « » I

where the A', A'\ ... are projections of the Au Av ... Am, but situated
in different spaces.

Thus from the original equation we obtain another which is
evidently an n linear form of different space-symbols denoting point-
groups in each sepax'ate space which are projectively identical with
the original point-group. Therefore it follows that we may perform
any operation with any one of the point-groups A', A", ..., treating
the others as constants, and afterwards identify again the symbols of
that point-group with the original point-group A (which is but a
specialization). >

The polarized forni of the power of a point P is especially simple.
That of P" is evidently P'.P" ... P(ll).

To give a few instances : an equation

(6) a A' + b JBS + cC + dD* + eE> +fF* = 0,

where the a,... / are unknown constants, expresses one condition,
which is evidently that the six points A,...Pare situated upon one
conic. Writing (6),

aA' + bBt + cC* = -dl?-eEi-fF\

it appears that A, B, 0 and D, E, F form self-conjugate triangles to
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some conic. Polarizing each side of the last equation with itself, we

hence AB, BO, CA, DE, EF, FD touch one conic. Polarizing (0) in
regard to the cubic u formed by DE . EF. FD, which obviously con-
tains D, E, F as double points, so that

we have aAixu + bBiXu + cC3xu — 0,

or the three polar lines of A, B, .0 to the triangle D, E, .F (which can
be linearly constructed) are concurrent, Polarizing (0),

aA. <H + bB . S3 + ... +fF. ft = 0,

further composing with E and $,

a A E . W + bBE,, $ 5 + c. OE . 65 + d. DE . <Dg = 0,

or the cross-ratio of the lines AE, BE, OE, T)E is equal to that of
AF, BF, OF, DF.

If we put aA* + bB* = h . A'. B',

eE2+fF2 -l.E'.F',

then h.A'.ir+k.C'.D'+l.E' .F'=0.

It is obvious that the line joining 0' and E', for instance, must con-
tain either A' or B'. The figure must therefore be that of a triangle
A'O"S\ cut by a straight line B'D'F\ B' to be on O'E\ &c. Its
reciprocal may be derived from the identity which connects four
points upon a straight line

AD . BO+AB. OD + A 0. DB = 0,

which must also exist for four points in a plane, since this form
would contain all points of the plane, and must therefore identically
vanish. The equation connecting A' . B\ &c, may be interpreted as
meaning that if, A'. B" and 0' . 2 / are conjugate to any conic, E'. F'
will be so also. If L, M, N are the three corners of the triangle
formed by AB, OD, EF, it is at once seen that

A'.B'-aV-blP,

O'.D'==bM3-cN\

E'. ¥ == cN'-aV,
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a, fe, c denoting parameters. A'B' are therefore the double points of
tho involution formed by AB and LM, &c.

Let P, Q, R be any three points, andp, q, r their polars in respect to
some conic u. Tf, then, %>p" •, q'q", vr" are points uponp, q, r, respect-
ively, P.p\ P.p", Q.q', Q-q", U.r\ 11.r" will be conjugate to the same
conic; therefore linearly dependent. It follows that points P', Q', R'
must exist upon p, q, r, so that P.P", Q. Q\ R.R' are linearly de-
pendent. 'Nowi v i s collinear with QU', hence'it is tho cut of Qll
and p. The relation is then expressed thus, QR/p, RP/q, PQ/r are
collinear, and, tho configuration being its own reciprocal, P q/r, Qr/p,
R plq are concurrent. This may also be proved in a different manner
thus :—Let u be any conic, A, B, G the corners of a triangle. Then
(AB * u) :<C+ (BG * n) x A + (GA * n) x B is a line-form x . Com-
posed with G it is

(BG* u) * AG + (GA * n) * BG ~ BG .AO * u+OA. BG * « = 0.

Honco X.A = x J> = X 0 = 0. X will therefore vanish identically.
Tin's may also be generalized. If « = 3, this shows that the four
heights of a tetrahedron belong to one quadric.

Tho curve whose points have the property that the cross-ratios of
the twice four points , T> n T)

jl, x», O, is,

A\ IT, G\ D\

stand in a certain proportion /3 : a is the numerator of
169. - 6R\-a\BG'BDI

(the line-symbols written in their normal form), a curve of the
fourth order. If A ... D, A'... I)' are situated upon a conic «,
/3 : a being the proportion of their cross-ratios with respect to the
points of u, then the curve above denned must degenerate into two
conies «, M'J U contains the eight points AG/A'G\ AG/B'D', BJ)\A'0\ ...,
and is thus denned.

if u, v, w are three conies having two points in common, the form
a. n + b. v + c . to, the a, 6, c denoting lines, can only denote an involu-
tion of manifoldness 7 ; hence some identity such as

« . u + b . v + c. w = 0

must exist, and consequently the lines a, b, c joining the two variable
points of intersection of v, w; wt u; w, v respectively are concurrent.
If now u is a conic, A,B, C, D, JE7, F six points upon it, then «, AO. BD
and AE. BF have the points A and B in common ; therefore the cut.
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of GD and BF must ho situated on the line joining the cuts of AG/BF
and BDjAE, which is Pascal's theorem.

Let Ax ... A$ he nine points common to two cubics. Their con-
figuration is expressed by the fact that their cubes are linearly
dependent. Eight points being given, the last one is obviously deter-
mined. A construction may, for instance, be arrived at thus : We
may have

l l = 0.
Polarizing, we obtain us a consequence

chA\ . % + a.iAl. %+... + a6Al. \-^a,Al. % = 0.
I'olarizing with the A] in regard to the cubic u represented by the
sides of the triangle AOA7AS, and denoting the lines A\xu by a,,
. t jxuby a2, ...,

a,. at 91, +. . . +a6. a6. % + a0 . a,. % = 0.

Composing with Q(o,
a,a,. 91,91, + Uja,. %%+ ... + asa5. 9(59(O = 0.|

Now a,, ... a5 arc known. The cross-ratio in which a,, a2, as, a4 is cut
by a6 is equal to that of ^11^, ^I2%, Q(3-̂ u, Q(4Q(U, and tbatof a,/a4, a2/«4,
«j/o4, «5/«4, o(1nal to that of W,9(o, «(SQ1O, %\, %\. Hence Q(ecan be
constructed as the fourth point common to two conies through

if seven points are given, A{, ... AJt and the other two points A8, Ao

are restricted to a given line Z, only one solution is possible. Through
the seven points an involution of three cubics is possible. They cut
I in an involution whose reciprocal, will be a certain point-group
P . Q . II conjugate to any cubic containing the seven points. There-
fore P.Q.ll is linearly dependent upon the cubes of the seven
points. Representing P . Q . R in its canonical form as the sum of
two cubes, we find /!„ and Ao.

If two of the points P, (I, 11 coincide, there is no solution, but, if
(I == P, then lylll will be linearly dependent on the cubes of the seven
points, and this will express that any cubic passing through Ax... A7,
and P will touch I; that, in other words, As and^l8 are consecutive
in P upon I. It may also express that a cubic is possible through
J , ... A7 having P as a double point, the linear dependence between
Ax ... A7 and P*li reducing the number of conditions this implies to
nine.

We may add, though without demonstration, that, if Al...Aa are
fixed and As moves upon any curve of order X, A9 will generally move
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upon a curve of order 8\. If, however,. the curve Aa contains the
fixed points Ax ... A1 as (ax ... a7)-fold points, denoting a,+ . . .+« 7

by /3, tlie order of the curve AQ will be 8A—3/3, and it will contain
/lx as 3 \ —ft—av A2 as (3 \ —/8—a2)-fold points, &c.

Eight points common to three quadrics satisfy a relation

axA\+...+a6A\z=0.

By reading it axA\-\-...+aiAi = — a6A&...,

it is evident that A^A^^Ai and A6A0A7As are two self-con jugate
pyramids to one and the same qnadric. Polarizing

and composing with A8A7 and 9(95(5 we see that AxAiAaAi have the
same cross-ratio, whether projected from A6A0 or from A7AS. We
also see that any quadric through six of the points Ax... Ao will cut
l = A7A8 in an involution whose double points are B and G, so that

B . 0 •=• a7A"7 + a&As.

Any point-pair on I harmonic with B. 0 will therefore, if joined to
Al... Ao, complete the configuration. The two points A7, A8, though
moving upon Z, will coincide in B and 0, and I will be a tangent to
any quadric containing Ax... A6, B or Ax... Aa, 0.

Now a twisted cubic having seven points in common with a quadric
must be wholly contained in it. So any eight points upon a twisted
cubic form the configuration. Seven points Alt ... A7 being given,
A7A6 is the straight line through A7 cutting the twisted cubic through
Ax... Ao twice. So, then, I can always be determined, except in the
following cases:—

(1) That A7 is collinear with any two of the fixed points Ax... Aa.
Then As is any point on that line, the squares of four points on a
line being always linearly dependent.

(2) That any five of the fixed points are coplanar. Then As is any
point upon their conic.

(3) That any six of the fixed po.ints are coplanar. Then As is any
point of their plane; or, if the six given points are also upon one
conic, As is any point whatever.

(4) That the seven given points are upon the same twisted cubic.
Then As is any point of that twisted cubic.

In no other case can the configuration degenerate. If, for instance,
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Ax ... At are coplanar in S, the line common to S and A6AaA7 will be
cut in involution by the conies throngh Ax ... Ai; hence a point-pair
B. 0 will exist upon it which is linearly dependent upon A\... A].
But the conies passing through Ab, A6, A7 and containing B. G as con-
jugate point-pair have a fourth point As in common, so that B. G is also
lineai'ly dependent upon the YI*, A'l, A\, A\.

if six of the points Al ... Ao are given, while A7 is restricted to a
plane 8, and A6 to a line Z, I to be within #, we shall find three point-
pairs A7, A8 to complete the configuration. For Au ... Aa determine an
involution of four quadrics which cut 8 in an involution of conies, the
reciprocal of which is formed by the two point-forms u and v. Their
involution contains three point-pairs L. L\ M. M', N. N'. LI! cuts I in
J8, while yl7is = As x L . IS. Thus the three point-pairs A7.A6 are con-
structod. The lines LL\ MM', NN' aro obviously the sides ox the
ti-innglo, in which the twisted cubic through Ax ... Aa cuts S.

Proceeding similarly when live points AV...A6 are given, and a
plane S as locus for the other points, we obtain in S one point-form u
of the second order linearly dependent upon the squares Alt... A6; Ao,
A7, AB, will therefore be the corners of any triangle self-conjugate to
Uj. And we shall have two solutions, if A6, A7, A6 are restricted to
lie on given lines in S.

A configuration of some importance, at least in the theory of sur-
faces of the second order in any space, is that of 2» points characterized

where it is understood that Au ... An are the corner-points of a
(non-vanishing) pyramid in space <S,,_i. The order of the condition

imposed by (0) is —— ra + 1. Since [>41...yj[,,] is different from 0,

it follows that r ( - „ -, n
\_Al ... An.xDn] — V.

Hence [.4,... ^...a^ii-i^H] is generally different from 0, and

[At... A^B^B^B,,] again = 0.

Any space composed of an odd number of the B has a point in
common with the space composed by the residual A. If, then, Bn and
#„_! are assumed anywhere in Ax ... A,t.u and Ax ... Au.%AUf respec-
tively, JB,,_2 will be in the cut of

Au ... An_3An_iAu and Alt... ^ . a B , , . ^ , , ;
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£,,_3 will be subject to three conditions to lie in the cut of

Ax ... An.iAn_2An_iAu ; At ... An.tBn^3Bn.iAn ;

Ax ...A,^iAu_2BH.iBui

Blt.t will similarly be subject to 4 conditions;

Bx will similarly be subject to «—1 conditions;

raising the number of conditions to ——̂  f-l«

In space the two pyramids Av...At and Bu ... Bt are so re-
lated that each has its coiner-points upon the faces of the
other.

Whenever n is an even number, the relation of the pyramids is
reciprocal. When n is odd, the pyramid of the B points must vanish.

Let AU...A6 be eight points common to three quadrics. Join
AAAV A^A^ A&Aa, A7A6. There are two lines cutting these four (the
two lines of the involution reciprocal to the one formed by tho four)
say a and b, .cutting AXA3 in Lu L2, A6At in Ls,Lt... . Now, L,, L8) X6)

Lj being collinear, their squares are linearly dependent; also those
of L.2i Lt, La, L&. Consequently, for any values of A, ft, a illation will
€)xist, viz.,

Putting cl\\ \

Ml.Mi, M^.M^ Ma.M0, and M7.Ma will be linearly dependent. The
order of the condition implied by this statement is 7. Consequently,
only a singly infinite series of such quadruples of point-pairs can
exist on the four given lines. Hence that series is exactly repre-
sented by

This gives rise to the theorem: The double-points of the involu-
tions (Jy,.2y2, Al.A^), (X8.Jy4, Aa.At), &c, form the configuration of two
pyramids, of which each has its- corner-points upon the faces of the
other.

To multiply these theorems to any extent would only require some
imagination. To write what may be considered a complete theory of
such configurations requires however more resources than are de-
veloped in this essay. We shall leave, therefore, the further dis-
cussion of configurations for a future occasion.

VOL. xxvm.—NO. 608. 2 M



580 Mr. E. Lasker on the Geometrical Oalcidue. [May 13,

Metrical relations can also be derived with ease. If u is a surface,
A and B any two points, the line AB cutting the surface in the
n points wv w^ ... iv,'t, then the points w are found by the solution of

the n roots o : /3 corresponding to the n points w,

a : j3 = —
Since

it follows that the product of the roots

iOjB.i^B ... w,,B : wxA.io%A ... wnA = uB : uA.

If A, B are on w—say, and X points w coincide in A, ft points in B—
only n—X—p points w will remain corresponding to the equation

(«)xa"-x-".MX4"-\5J+...-f (n)ltp
n-x-".u^A"Bn-" = 0;

hence

Similar theorems exist for any geometrical formations.
If a surface of order 2n contains 3", points of its space will have a

" power " in regard to it. If u is such a surface, P any point, 2 any
line thi-ough it, wu ... m,,,, its cuts with u, then Tltfj.P is constant, and
independent of the situation of I. We have, denoting l/I by D,

UPtVi : IIDw, = uP : uD.

But, D being the I of I, all Dw are 1; and, 3" being the cnt of I and
«, uD is a constant multiple of (ID)n, which is 1. Putting

ul) = fe,

we have IIPIUJ = fc.uP.

To give a few examples : If any surface u cuts the sect AB in n points
wu ... «»„, then the ratio llilw : HB^ may be called the ratio in which
it cuts AB. This ratio, which is = uA : «B, being given, = c, it
follows that An—c.B" is conjugate to u; it is, therefore, equivalent ta
a linear condition for u.

A conic which cuts five given sects in given propoi'tions is therefore
generally uniquely determined. A conic cuts any Bix given sects in
six ratios a, /3, y, 3, e, I between which a six-linear relation exists ;
for, a, j3, y, 5, e being given, £ is uniquely determined. This may
evidently be generalized. The equation illustrating the situation of



1897.] Mr. E. Lasker on the Geometrical Calculus. 531

six points on a conic •
= 0

may be interpreted as meaning that any conic cutting the sect AB

in a given ratio ( ) and CD in another ( 1 will cut JEF

in a certain ratio ( — ^—). Similarly, any curve of the nth order cut-
ting n of the n+1 given sects AA', ... LU in certain ratios will also cut
the last one in a known ratio if A, A', ... L, L' are upon one conic.
The identity (aAn-bBn) + (bBn-c0n) + (cCn -aA") — 0 gives Carnofs
theorem. All this might be much generalized and varied.

Finally, as regards the calculus with 3, it follows, from our pre-
vious results, that all plane spaces £ in contact with 3 are to be
regarded as isotropic spaces. If the 3 of a 8k is defined as a point-
form, a space Sa is isotropic, when

SI x 3 x 3 ... (k-a times) = 0,
and in its normal form, when the magnitude on the left-hand side
is = 1 . Sax 3 x 3 ... is any Sk.a perpendicular to 8a, since any two
points at I perpendicular to each other are conjugate to 3. If Si is
in its normal form, so also

For [$*_. #o] is the same as

&_aXi8L = ffa.i8fax3x3... = 1.

But the magnitude formed by the two spaces Sk_a and Sa perpen-
dicular to each other is 1, it being a product of the sines of angles,
all of which are right angles. Sa is in its normal form. Hence
[Sk-a &a~} cannot be equal to 1 unless Sk.a is also in its normal form.
These statements may be regarded to express all cosine theorems,
&c, in fact, all metrical relations based upon the measurement of
angles in their simplest form. To give only one instance, Dlt D2,
D$, J>4, denoting points at the I of our space in their normal form
(points of a sphere), from the identity

D1DS.D8D4+D1D,.D4D,+A2>4-AA = 0,
we conclude [considering that BlDi is not in its normal form, but
multiplied by sin (J.),, Da), and similarly for the other line-symbols],
by polarizing with 3,

sin (Du A ) • sin (D8, D4). cos (Dl D2, A A )
+ sin (A, A)-sin (A, A) -cos (AA, AA)
,+sin (A, A) .sm (A, A) cos (AA. A A) = 0.

2 M 2
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Thursday, June 10th, 1897.

Prof. B. B. ELLIOTT, F.R.S., President, in the Chair.

Seven members present.
Mr. W. W. Taylor exhibited numerous models of the regular

convex and star solids.
Major MacMahon, Vice-President, having taken the Chair, com-

municated papers by Mr. H. MacColl, "The Calculus of Equivalent
Statements " (Sixth Paper) ; by Dr. G. A. Miller, " On the Primitive
Substitution Groups of Degree Fifteen."

Mr. Love, Hon. Sec, read " A Generalized Form of the Binomial
Theorem," which had been sent by the Rev. F. H. Jackson. The
Chairman (Major MacMahon) stated that the form was a known
one.

The following present was made to the Society's Album :—
Cabinet likeness of Mr. W. Esson, F.B.S. (now Savilian Professor of Geometry,

Oxford).

The following presents were made to the Library :—
Carruthcrs, G. T.—"The Origin of the Celestial Laws and Motions," 8vo;

London, 1897.
Parasada Ganosh.—" On the Potential of a Solid Ellipsoid of Revolution at an

External Point" (4 copies), 8vo ; Allahabad, 1897.
" Proceedings of the Royal Society," Vol. LXI., NOS. 371-373.
" Beibliitter zu den Annalen der Physik und Chemie," Bd. xxi., St. 4, 6;

Leipzig, 1897.
"Memoirs and Proceedings of the Manchester Literary and Philosophical

Society," Vol. XLI., Pt. 3, 1896-97.
" Jahrosberichtder Deutschon MathematikerVereinigung," Bd. v., Heft 1,1896;

Leipzig, 1897.
" Proceedings of the Physical Society," Vol. xv., Pt. 6, No. 80 ; May, 1897.
" Vierteljahrssclirift der Naturforechonden Gesellschaft in Zurich," 1897, Heft 1.
" Wiskundigo Opgaven," Amsterdam, Deelvu., St. 3; 1897.
" Niouw Archiev voor Wiskunde," Deel in., St. 2; Amsterdam, 1897.
" Bulletin of the American Mathematical Society," Vol. m., No. 8 ; May, 1897.
"Adresse presentee a M. Mittag-Leffler le 16 Mars 1896, 1846-1896," 8vo;

Paris, 1896.
" Proceedings of the Canadian Institute," Vol. i., No. 1, Pt. 1, February, 1897 ;

Toronto.
" Bulletin des Soiences Mat&draatiques," 1897, Mai, Tome xau.
" In Memoriam N. J. Lobatechevskii," 8vo; Kasaa, 1897.
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"Bulletin de la Soci6te Physico-Mathematiquo de Kasan," S6rie 2, Tome vi.,
No. 2 ; 1896.

" Praco Matematyczno-Fizyczno," Warsaw, Tome vin. ; 1897.
11 Sitzungnbcrichto der Konigl. Preuss. Akademie der Wisficnschaften zii

Berlin," 1897, 1-25.
"Attidella reale Accademia dei Lincei—Rendiconti," Sem. 1, Vol. vi., Faac.

8-10 ; Roma, 1897.
" Annalcs do la Faculte des Sciences do Marseille," Tomo vi., Fasc. 4-6, Torn©

vin., Fasc. 1-4.
"Journal fur die reino und angewandte Mathematik," Bd. oxvni., Heft 1,2.
"Educational Times," Juno, 1897.
" Annales de la Faculte des Sciences de Toulouse," Tome xi., Fasc. 2; Paris,

1897.
" Annali di Matematica," Tomo xxv., Fasc. 3 ; Milano, 1897.
" Annals of Mathematics," Vol. xi., Nos. 3, 4 ; Virginia, 1897.
" Indian Engineering," Vol. xxi., Nos. 17-20, April 24-May 15, 1897.
" Collected Mathematical Papers of Arthur Cayley," Vol. xn., 4to; Cambridge,

1897.

On the Primitive Suhstitution Groups of Degree Fifteen. By

G. A. MILLER, Ph.D. Eeceived June 2nd, 1897. Read

June 10th, 1897.

If any group (G) of order g contains a non-self-conjugate sub-
group (Gx) of order gx that does not include any self-conjugate sub-
group of G, with the exception of identity, then is G simply
isomorphic to a transitive substitution group ((?') of degree g -f- gv

When Gx is a maximal sub-group of G, i.e., when it is not contained
in a larger sub-group of G, G' is a primitive group. When this
condition is not satisfied, G' is non-primitive.*

It is a singular fact that we can find all the primitive groups of
degree 15 which do not contain the alternating group of this
degree by means of these well-known principles. The four groups

(+abcdef)u, (abcdef)iS, (abcdefg)m, (abcdefgh)lSiif

* Dyck, Mathcmaiische Annalen, Vol. xxn., p. 94.
t Noether, Mathematisehe Annalen, Vol. xv., p. 90. "We follow the notation

employed by Professor Cayley in his lists of substitution groups published in the
Quarterly Journal of Mathematics, Vol. xxv.




