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An Essay on the Geometrical Calculns — (continuation). DBy
Emanunt Liasker.  Received May 3rd, 1897.  Communicated
May 18th, 1697, by Mr. Tucker.

In the former part of this essay® the calculus of plane spaces and
plance forms has been established. It was shown that the symbols
of planc spaces and plane forms may be composed with each other as
if the operation of composition denoted multiplication only; that &n
is not = y¢ always, but = ¢, according to the rule of signs. The
conceptions of the normal form of a space, of the plane space I at
infinity and the spherical manifoldness J at I, have been introduced, and
amultitude of motrical relations shown to take their origin therefrom.
In this part, homogeneous algebraical forms of the plane space
symbols are considered and shown to be algebraically equivalent to
tho algebraical formations of geometry. A sign X (and reciprocally x)
ig introduced as an extension of the conception of composition, and its
principal laws are discussed. Some properties of the intersections of
surfaces ave explained, especially of the group of points common to %
surfaces in the space S;.  Finally, a few applications are given to show
that the symbolism used will yield good results without much effort.

Lot the spaco in which we operate be a straight line I Let
A, B, ... I denote any point on that line, ® a group of such points, for
inatance, 4, B, and . Then ®& will be denoted by A.B.0, where
the symbol . is expressive of the fact that the various points
thus connected are to he considered as n group, collectively. The
number of such points is called the order of tho group. 1In the
natural cxtension of the symbolism used for plane spaces, [@D], or
sometimes simply @, whore D may be any point on I, will denote
the magnitude which is the product of the various magnitudes formed
by the points of the group & with I);

§D = 4AD.BD.CD.
Any equation between groups snch as
§+$'=6¢"
or . G'= ",

* Pp. 217-260 supra.
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signifies that both the right- and left-hand sides composed with an
arbitrary point symbol on ! are equal. If @ contains the point 4,

then &4 =0,
and inversely, if ®4 =0,

then ® must contain the point 4, since a product can only vanish when
any one of its factors vanishes. If P, () are any two points on the
lino I, and A, p two paramoters,

G (\P+pQ) =0

will be an equation for A, u whose roots determine the position of the
points AP+pQ of the group ®. The definitions given allow us
therefore to treat such groups @ as algebraical forms of two homo-
geneous variables and to reduce any equation between' groups to
algebraical identitics.

Liet » be any group, or, as we shall sometimes say, point-form, of the
ath order. Let A,, ... 4,, bo any = points on I, and a, ... a,, any con-
stants. Then » (q,4,+ ... 4a,4,) is a magnitude determined by «,
the position of the A, and expressible as a homogeneous rational in-
tegral function of the ay, ... a,, of the u* ovder. It will therefore con-
tain a term Ca,, ... a,, where C is a magnitude determined by » and.
tho points A,,...A,, alone. We denote the =n!th part of C by
uxA,.4,....4;. Thesign X is asymbol of operations whose properties
we propose now tostudy. I'irst of all, it is clear from its definition that

(utu')yxA,. A, =ux A, ... A +u’ X4, ... 4,
Sccondly, if we develop
u (“|A1+~'~ +anAn+aynlAn'l)

as o homogeneous form of the «;, we shall obtain altogether n+1
terms. which linearly contain the n41 purameters, the form being
only of the 2t ordor ; and, from the supposition

Apey = O’

it is clear that the factor of u!q, ... a, is again ux 4, ... 4,; that of
nlay ... a,_4a,, i8 thoreforo similarly wx 4, ... 4,.,4,,1, &c. If now
we idontify a,,; with a,, we obtain

1&XA1.A2.... An—l (/1“+A,.,|) =uX Al---v A:;-lAn+uxA1' -"An-l'Anol-
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It follows then that the symbol x in regard to linear changes of the
forms operated upon has all the properties of an ordinary multiplic-
ation symbol, and that therefore no error will be produced by treating
the 4,, ... 4, collectively, that is, as a gronp v.

The fact that % x » 13 a magnitude which changes linearly in a corre-
sponding manner to the « and v will be expressed by saying that the
operation x is distributive; or, in symbols, the operation x is dis-
tributive because

Au+pu) xv=2X (uxv)+p (v xv),
and ux (A+puv’) = X (uXv)+p (uxev),
A, p donoting constants.

To give an instance, let
w=A.B, v=0.D,
1 (a0+8D) = A («0+8D). B (a0+8D)
=a’40.30+a3 (A0.BD+ AD.B0O)+3'AD.BD;

therefore uxv=4}(40.BD+AD.BO).
Or let vw=A4.8.C, v=D.E.F;

thon uxv=23}(AD.BE.CF+AD.BF.CE+4 AE.BF.0D
+AE.BD.CF+AF.BD.OE+ AF.BE.CD).

Tf we transposo n and v, the magnitude «x v changes sign when #
i8 odd, but remains unchanged when # is even. Therefore u xu is
always 0 when # is odd, but may be distinct from O when = is even.

1t is also immediately seen that «I’, where P is any point on /, is
tho same as 1w X P". Therefore wx " =0 only if P is one of the
points of the group w.

uXv = 0 i3 a singlo condition for the coefficients of » and v; if »
therofore is fixed, u = 4,.... 4,, then v vestricted by the linear
condition u X v = 0 will only contain n independent parameters; and
it therefore follows that

v=cd, +..+c.Ap
where the ¢ are arbitrary constants.

When v is of lower degree than u, say of the m*, n—m being = A,
then v x u will be represented by the form s,

T X = 1w,
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so that identically v.P* x4 = wP,
where P remains arbitrary.
Let, for instance, w=dA.B,
and v=0C;
then vxu=3(CA4.B+CB.A).

vXu may also be defined as that form which is represonted hy the
group-of the points P for which

v.Px1=0.
If we replace, in the equation

v.Pxu = wP,

P by a,. P, +... +a,.P, and, in tho development of ».I* x u and wP s«
rational integral functions of the a, equate the respective coeflicients of
g, ... a, to each other, then we obtain, denoting further P,. ... P, by ¢,

v.iXu=wxt

If v and « avre both of the same order, v and » will be called con-
jugate or harmonic to each other whenever

vXu=0.

1f v is of inferior order to u, then v x u will bo spoken of as the polar
of v with respect to u, and, if this polar vanishes identically (equi-
valent to A+ 1 conditions), then v will be called apolar with rospect
to u.

If » has a double point 4, » being the order of «, then
At xu =0,

as is immediately clear from its manner of formation. This equation
i3 equivalent to two conditions; thereforo it is also the general con-
dition for 4 to be a double point of v. In the sanmo manner

AM Ay =0,
whenever 4 is a A-fold point of u.
If w=A"B" ... L™,

M+A+...+A being of course =1, and, if v be a form of the
»' order, such that
uxv=0,
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then » must bo of the form
APHI-M g gl oy +Ln+1;a, o

where v, v*, ... v are arbitrary forms of orders A, —1, \;—1, ... A, =1,
respoctively.  For this form satisfies the equation
uxv =0,
and contains
MM+ A =0

that is the requisite number of arbitrary constants.

If vxu =0,
where the order of v (m) is smaller than that of u (n), and
v=AM ... LA',
then i oxu=0

restricts » (n—m+1)-fold; « contains therefore only m arbitrary
constants. Henco ' '

- An+l-2, 7 n+1-2g,,"”
nu=2A4 '+ I3 “uw ...,

where again v, ", ... are arbitrary forms of orders A, 1, A\,—1, ...,
respectively. ' .
If  is given of the nt" order, v any form of the mth order, then

vXu =0,

being equivalent to n—m +1 conditions, restricts the m+1 constants
of » (m—m+1)-fold, so that 2m—n arbitrary constants remain.
One factor heing necessarily arbitrary, 2m —» must be at least = 1
so that n genceral form w of the ot order where » is odd = 2m+1

n—1
2

dotormines exactly one form v of order , apolar to % ; v can be

n—1 . . .
found by the solution of =3~ lincar equatipns. v being found, we
may express % in a specially simple manner; for instance, if v is the

product of 1-"—_‘—;;1 distinct points, it may be cxpressed as the sum of

n—1 . . . .
—5 M powers of multiples of these points. This expression for u
is sometimes called its canonical form.

LE w,, ... i ave forms of the u*h order, then any form expressible by
e+ ... +ou is said to belong to the dnvolution u, ...1w; and
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k—1 is called its degree of manifoldness. 'We suppose, of course, that

no such identity as
et ...ty =0

exists (that the u; aro lincarly independent). The k cquations
X =0, uxv=0, .. wuxv=0

restrict tho form v, supposed to he of the #t order, k-fold ; » will there-
fore be a member of an involution whose degree of manifoldness will
be n—Fk, and which may well be called the reciprocal of the involu-
tion u, ... u, orv the involution conjugale to the involution of the .
By means of this conception many truths concerning involutions can
immediately be derived from truths known to hold for reciprocal in-
volutions., For example, let
k=mn;
the involution of the v will be of manifoldness 0, and » will be uniguely
dotermined. It is therefore immediately scen that, in general, an
involution of manifoldness n—1 will contain 2 nt" powers (of points
belonging to v) ; and that the group of these will be harmonic to all
members of the involution %, ... n,, which may also bo defined by this
property. Orlet the degree of manifoldness of the involution w, ... 1,
be n—2, and let v, v, form the conjugate involution. Then the
condition that the involution =, ... %, should contain an nth power is
equivalent to the condition that v, and v, should have a point in
common.
Al .3

The equation vobxXu = (vXu)Xxt
may be geometrically illustrated as follows. Lot » be a point-group
of order m, u of order n. Then all groups of order n conjugate to «
and comprising the m points » form an involution; and so do the
system of the n—m points which combined with v are conjugate to «.
This latter involution is reciprocal to a certain group of order n—m,
whiclt is exactly v X u, the polar of v to «.

To obtain these results it is not in the least essential that the
symbols used should be points sitnated on a certain line. They mnay
be any point or plane space symbols situated anywhere. For the
definitions given for the operation x will again apply. If « is a
form of order 2 of S, symbols, £ any plane space, u¢ will denote the
result of the composition of all terms contained in » with §  Let, for
instance, « be a point-form in a plane S,, and let ! be any line

l= alll+ v +“~ulu;
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then u (a)l,+... +a,l,) will be a magnitude defrelopa.ble a8 a rational
integral function of the a, and will contain a term aq, ... a,, whose
coefficient will depend only upon the mutual situation of « and the I,
and whose n!h part may be denoted by wxll ... 1. It follows in
tho same manner as before that any linear change of the [ may be
treated as if the sign x denoted multiplication, and that the I may
be treated as if they were multiplied together. It is true that the
line-forms v in a plane cannot generally be represented as the product
of lines, but nothing prevents us from extending our definitions also
to general forms v, since v can be represented as the sum of such
products. Hence u X v is a magnitude uniquely determined by the
point-form % and the line-form v ; and the operation X is distributive.
To give an instance, let w=A.B+C.D,

and v=a.b+c.d,

the A, B, 0, D denoting peints; the a, b, ¢, d denoting lines. Then
u X v will be .

wXv=1(Aa.Bb+A4b.Ba+ 0a.Db+ Cb.Da
+ Ac.Bd+ Ad.Bc+ Ce.Dd + Cd. De).

Or let u be a point-form of the order », and P any point in the plane
of operation. Putting P=aP+..+a,P,
4P will be a line-form developable as a power-serics of tho a; whoso
coefficients are again line-forms. The coefficients of q, ... a, will be
8 line-form which depends solely upon the situation of » and P, ... D,
Since the calculus is just the same whatever the symbols may signify,
whether lines or points, the results obtained will also be the same.
u X v, where u and v are any two point-forms of order =, is therefore
a line-form uniquely determined by « and v, and the operation x is
also in this instance distributive.

After these explanations, we may announce the general result. The
operation X is applicable to forms of symbols of any manifoldness.
If u is of order », uf is the samc as ux§. The operation X,
which in the reciprocal geometry will be written *, is an extension
of that of composition, and is always distributive; uxv differs
from v X u either not at all or only in sign.

The result of « X v polarized with any new form w, written (x X v) X w,
can only differ in -gign, if at all, from ux (vxw) or (uXxw) x v, &c.
1t suffices to show this when %, v, w are products of plane forms.



1897.]  Mr. E. Lasker on the Geometrical Caleulus. 507

Let, for instance, u=§.&,
V=M1,
w = (1 . Z,,

where the ¢, n, { are any plane space symbols. Then
wxv =1} (&n.Engt+Emy. &)
and

(e x0) x W = (éndy-Emla+Emba- Emeds + i dnido+ &l €y
The law of formation makes the statement immediately obvious, so
that the wording of the proof seems unuecessary.

We come now to the problem of finding geometrical equivalents to
the algebraical forms introduced and identities established. A certain
liberty of choice will always exist, but the conception of the old
geometers cannot in any way be improved upon. Accordingly, if
h+1 is the manifoldness of the space containing all symbols of a
form u, whose symbols may be S, forms, then « will be represented
by the manifoldness of points P for which P vanishes, and u will be
called a surface. And reciprocelly, if » is a point-form, it will find
its geometrical equivalent in the manifoldness of all spaces = of h
manifoldness for which «3 will vanish. But, if u can be represented
as the product of points, this group of points—each point counted in
its proper multiplicity—is a more direct representation of ». In any
case, a S, form or point-form u and its geometrical equivalent
determine each other uniquely, if an arbitrary factor is left out of
consideration.

If « is & form of 8, symbols, where a differs from O or %, then we
might in the same manner represent it by the manifoldness of plane
forms 3 of manifoldness k—a, for which

w3 =0,

and to obtain a visible 1'epresentatio"h we should have to define =
again by a number of plane spaces 3' of manifoldness a belonging to
the involution reciprocal to 3. So then » might ultimately find its
geometrical equivalence in the manifoldness of a group of plane spaces
%', which stand in a certain relation to each other, in virtue of which
the reciprocal 3 to the involution determined by them makes u3
vanish. This representation would certainly have the advantage of
defining u uniquely, a factor being left out of consideration. But it is
wholly unsuited to aid the geometrical imagination, especially when
i itself defined as the intersection of surfaces or as a curve or geo-
metrical formation of some kind in general. For this reason we must
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ropresent o form u by the manifoldness of plane spaces 3, for which
ul =0

Remembering that certain relations ave identically satisfied by the
coordinates of a plane space other than a point or a S,—in space, for
instanco, if 4, B, ¢, D reprosent a pyramid,

AB.CD+AC.DB+AD.BC

applied to anylino would vanish—we must bear in mind, that certain
forms &, ... &, will in the light of the above definition vanish iden-
tically. Theo definition given above will therefore create a correspon-
dence between » and its geometrical equivalent only modulo &, ... &,.
This fuct, however, does not touch the validity of our equations, if it
is understood that they are always to be read modulo, the fixed
system of moduli &, ... &,

If, then,  is a geometrical formation, the manifoldness of = belong-
ing to it will be that of thoso spaces = which have with » a point in
-common ; for this is true if  reduces to a product of plane spaces,
and, since » can always be represented as the sum of such products,
in many ways, the general truth of the proposition is easily made
ovident. Tor that reason a geometrical formation € will define the
form u of which it is the representative (modulo & ... &), and we
might consequently apply our equations directly to the formations
whose symbols we use.®

The geometrical representation which we now have agreed to use
will immediately lead to some mnotable consequences. Let, for
instance, the space in which we operate be the plane. A point-group
of the second order, such as '

4 = ad*+bB 4 ¢C?,

will, in general, not be represented by two points, unless its dis-
criminant abc vanishes.
If we compose » with any point P,

wP =a.AP'+b.BP+c. CP,

* [A geometrical * formation,’ as the word is used in this cssay, denotes always o
manifoldness of points, forming a curve, a surface, &e., in spuco of any degree of
munifoldness. According to the principlo established above, an algebraical form
(of the symbols used in the geometrical calculus) will correspoud to it. 1t is, how-
cver, easily scen that the converse is not trme. A form like, for instance,
aAI® + 0O + cEF. GII, where 4, B, C, D, E, F, G, H may be situated in spuce
&8y, will not generally define a couic in space, but a line-manifoldness of the sccond
order. Tence it will bo understood that we may speak of algcbraical forins which
oxist as geometrical formations and of such as do not.}
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this will represent a line-group which will obviously contain P. If
this line-group contains also some other point @, then

uP@Q =0,

from which it follows that PQ belongs to the manifoldness of straight
lines represented by «. In other words, «P represents the two lines
‘through P which belong to the manifoldness «. Let in a similar
manner «» be a line-form, a curve, in the plane, and 7 any line; then
in the reciprocal geometry w/! will denote the point-group which u
and ! have in common.

If € is a curve in space S;, €P must denote, according to the
definitions given, the manifolduess of points @ for which

CPQ =0,

which is evidently the cone standing on € whose vertex is P. If §
is any plane in space, /S will similarly denote the point-group
common to € and 8. Generally, if € is any geometrical formation,
¢ any space, P any point on 6, then €¢ will contain the space P¢; for,
if = hag the point @ in common with P§, then

£ =0;
therefore 6¢s =0..
In the same manner §/¢ denotes the intersection of € by §.

To give an instance of the working of this, let » be a conie, and
a, b be any two lines in its plane intersecting in P. Through P
draw any third line Aa+pb. Its two points of intersection with «
are ufAa+pub, or, what is equivalent to this, u % (Aa+ub)*. If L
and M are these two points of intersection, then it follows that

L.M= M. A4ap.B+p. 6,

where %, B, € are fixed point-forms bf the second order. ‘So, then,
if L,. M, L;. M, Ly M, L,.M, are any four such point-groups, a
linear relation will connect them ; and, if we compose this with L,,
it appeavs that

I,L,. ML, LI, ML, L,L,.M,I,

are linearly dependent. Or, in other words, the three point-pairs
which are common to a conic » and three concurrent lines projected
from any point of « are in involution.

Or, let u be a surface of the second order inspace, and ! be any line
upon it. Any plane through I will be of the form Aa+pub, a and b
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representing any two distinct planes through l. This plane will cut
» in another line I'. Now

uAda+pb=1.7,
or, what is immediately seen to be equivalent to this, four such lines
U are linearly dependent. The lines of the quadric, as ecasily
follows, form two groups, belonging to two conjugate involutions of
plane line-forms of manifoldness 2..

This proceeding, which is also applicable to the intersection of
curved spaces, gives many interesting results, and can be generalized
without difficnlty.

If « and v are given forms, what does uXxwv signify ? To answer
this question for the plane will be sufficient to indicate the general
idea. Let u and v both be point-forms of the nt® order in the plane.
1 X v = w i9 thon a line-form of the nth order. Let P be any point upon
the curve w; therefore

wxP*=0;
then we have, since w=uXxv,
uxXvxXP*=0.

In the geometry of lines through P, AP composed with BP is,
according to our previous definitions, identical with ABP in point
geometry. It therefore follows that « xvX P* in point geometry is
the same a8 uP xoP in the geometry of lines through . Hencé
u X v i8 the locus of points P which have the property that the two
line-groups P and vP are conjugate to each other.

As a corollary, if u is a conic, X u is its reciprocal. If « is a
point-group of the third order on a line, u?xu? is its discriminant.
Hence, u representing a plane curve of the third order, u? % u® is the
point-form for the tangent lines of the cubic 4. Similar laws exist
for surfaccs of any order. '

We shall, of course, speak again of involutions of forms, and, in
connexion with the equation uxv = 0, of conjugate forms and con-

- jugate and reciprocal involutions respectively.

Let « now be any suiface, in the space S, and the order of » be n.
Let A, Bbe any two pointsin S. The line 4B will cut % in n points, to
be found by evaluating u/AB, or else by the following method. Any
point of the line AB may be represented by ad+ BB, a, 8 being
parameters. For the coordinates a, 3 of the points a4 + BB situated
upon %, we obtain an equation of the n'* degree,

uX(ad+BB)" = a".uxA"+n.a" . B.uxd"' . B+... =0
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1f 4 is a point upon %, 8 = 0 will be one root of tho equation, the
equation of the other n—1 roots reducing to

n.a"'uxA"'. B+ (n),a" ' B.ux A2 B+ .., =0;
uX.A"-l.B=O

is thoreforo the neccssary condition for the line 4B to have two
consecutive points in 4 in common with u, to touch u. This cqua-
tion is a single condition restricting the position of thg point B. All
the points B of this kind are thereforo situated in a certain plane
space of k— 1 manifoldness, which is said to touch » at the point 4.
We may evolve its form by calculating 4*~'. P x4, P being left un-
detormined, 7.e., by calculating the polar of 4"*! to u.

1f, however, any line through A intersccts » in two coiucidont
points, then the equation for I must be an identity; e, 4" 'xu
must vanish identically, and, vice versd, A"~ xu = 0 is the neccssary
" and sufficient condition for 4 to be a double point upon .

In the space of k—1 manifoldness 4"~' x «, we may subject I} to
the further condition that A4"-?. B*xwu should also vanish. In that
case the line AB will have three consecutive points in common
with w. The equation for B being then of the second order, tho
points B will form in the space A~ x u p surface of the second order.
If O is any point upon AB, C* will be linearly dependent upon A%
A.D, B. Hence, if

uxA"=0, uxA"'. B=0, uxA"? B =0,
then generally . uxdr?. 0P =0.

The surface of the second order in question is thorefore a cone whose
vertex is 4. If, further, we select upon that cono only such points B

for which also
A3 BPxu =0,

then 4B will have four consecutive points in common with . Thesc
lines 4B are therefore found by the intersection of the cone with a
certain surface of the third order ; or else by their property that they
are wholly contained by the surface A™*xw. Generally AB will
hiave % consecutive points in common with « whonever it is wholly
contained by the polar of 4"*!"* to u.

If 4 is a double point upon u, 4""'x u will venish identically, as
wo have seen, The points B for which A4"~*, B*x « = 0 will then be
such that AB has three coincident points in common with u. The
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cquation for B being of the sccond order, such points form a surface
of the second order, which is, as immediately follows from the co-
existence of

A"Xxu =0, A"'.Bxu=0, A" Dxu=0,

a cone whose vortex is A—the cone of contact at 4. ‘If also A" ¥xu
identically vanishes, then A4 will be a triple point upon %, and
genevally the condition for A to be a A-fold point upon u is that
A" xu should vauish identically, and the cone of contact is evi-
dently A" x u.

This is indeed only a restatement of Joachimsthal’s method.

Wo have made use of tha conception of the polar of a point-form
» of ovder m to a surface u of order n. It may be defined as that
snrface w of order n—m whose points P satisfy tlie condition

2. P""xu=0.
As before, it follows, if X% = w,
that v.EXu=wXt.

If v X w identically = 0, v will be ealled apolar to u. This equation
oxpressing the vanishing of a surface of the (n—m)® order is equi-
valent to u (n+L—m),-fold condition.

If € is a curve in space, and ! any line intersecting it, wo shall havo
Exi*=0.
If, therefore, P is any point on I, @ any point in space,
ExP'xQ'=0.
From this it follows that € x P* (or GI’) must identically vanish.

If 1 is any line intersccting € twice, then I*'. € =0 identically,
and, if I hos « points in common with @, then
e x@=0.
For let P be any point on I not on €, S any plane through I, and a, b
any two lines through P lying npou 8. Obviously there ave z (different
or coincident) lines through P in 8§ intersccting the curve €. These
lines are Aa+ub, where A and w ave to be deterinined by the equation

th Ay .
of the uth order 6 x (Aa+pb)" = 0.

Lverything else follows as before.
If P is o double point upon €, then P*-! will vanish identically,
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since (PQ)" ! x € vanishes identically wherever @ may be situated.
For a A-fold point upon €, we have, in a similar manner,

Pl €= 0.

Whenever P*-!. @ x € vanishes identically, the line PQ will touch
€in P, and wvice versi. The enrve € is a singly infinite series of
points. 1t is therefore possiblo to represent ity points II by a power-
series in a variable parameter A, '

M= P+AFP+MNP"+..,
where P is one of the curve-points corresponding to the value A =0.
Sinco I"xE =0,
we may develop II" X € according to powers of A, and equato each co-
efficient of the various powers of A to zero. It thercfore follows that

P xE=0.

But for infinitesimal values of A the point IT consecutive on ¢ to P
may be considered as being situated upon the line joining P and P.
So then the statement is verified.

It Q is not & point on thut tangent-line, then P"~'. () x € will repre-
sent a plane form of the ovder , that is (in space Sp), a surfuce. This
surface is represented by the cone of order n—1 whose vertex is P,
and which contains the cnrve G, in conjunction with the plane com-
posed of the tangent-line PP and Q. Tor let B be any other curve
point, and aP+SL any point collinear with P and IZ; then

I Qx (eP+BR)"
being identically = n.af*! (PR)*'. QP +4". P .Qx B,
and both Cx " and € x (£1)""! vanishing identically,
Ex P, Qx («P+ALR)" = 0.
In other words, Gx P*-!. @ containg all the points «P+ T, 7.e., the
cone in question. € x P*~'. @ contains ulso any point
S = aP+BP +70,
since € x P'-!, Q identically = Ex P! (AP +puP’ + Q),
and P, § xS vanishey identically.
The more complex formations of geometry may be treated in the
samce manncr.  Wo shall, however, for the present, abstain from
rigidly formulating the general laws whose existence is indicated

abovo.
VOL. XXVIIL.—NO. 607, 2L
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II. A geometrical formation @ is either irreducible or it is com-
plex. € will be called irreducible if algebraically the form repre-
senting it is irreducible. If € is algebraically reducible, it is
geometrically complex. If € is the product of several forms

E=G6.6"...G6",
then, since CP =0,
either CP=0 or E"P=0, &c.

¢’. @, ... @® containing an infinity of points, at least one of them,
say ', will contain an infinity of points. ' will therefore geometrie-
ally exist. This line of thought being followed further makes it
evident that, if a form € which has existence as a formation is re-
ducible, its various factors €'.€".... € will also represent forms
having geometrical existence; or that, in other words, a reducible
formation € is always a complex of several irreducible formations
(some of which may be identical).

If € is irreducible, a surface U contains € when containing all
of its points. U contains (' .€” when it contains € as well as €".
U countains 6* when it contains €, and besides A—1 formations
consecutive to € (not necessarily coincident with €). Bat, if U con-
tains every point of € as a A-fold point, then it may be said to
contain € A-fold, ze., to contain A formations coincident with @,
This definition of * containing " will only be of importance when the
work of Brill and Nother is consulted.

Let now € be an irreducible curve in any space S of order . A
surface U in S of order N will have ». N points in common with it,
gince this is the number of points U would have in common with €
if U were the product of planes, and since this number must be
independent of the exact values of the coeflicients of U. DBut, if N
is chosen large enough, ». N will fall short of the degree of mani-
foldness of surfaces U of order N, and other surfaces U, U”, ... of
order N will therefore exist which also contain these n.N points of
intersection.

If U and U’ are any two of these surfaces, a surface aU+bU’ may
be constructed where the constants e, b are so adjusted that

aU+bU =V

will contain, besides. the n. N points, yet another of the points of €.
€ will then have #.N+1 points in common with ¥, and, € being
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irveducible, it is in keeping with one of the fundamental principles of
Algebra to conclude that € must be wholly contained by V.

It may in a similar manner be shown that generally an involution
of surfaces of order N exists of which each member contains any
given geometrical formation €, and which is defined by this property ;
on the supposition only that N is chosen large enough.

Referring to Dr. Salmon’s classical treatises upon the theory of
curves in space, and on the order of restricted systems of equations,
we shall make use of the following fundamental proposition: That, if
@ be the complete intersection of surfaces u, v, ... w, any surface S
containing € must be of the form

S=a.u+b.v+...+c.w,
the a, b, ... ¢ denoting forms.

A proof of this proposition may be given as follows :—The pro-
position is true if the complete intersection of «, v, ... w is a group
of points, as is implicitly verified by the discussion which follows,
upon the supposition of the truth of Bézout’s theorem only. It is
algebraically evident that in this instance the g, b, ... ¢ contain the co-
eflicientsy of u,», ... w and S rationally. If, then, some of the variables
inn, v, .. wand § are treated as parameters, the truth of the pro-
position follows quite generally.. '

‘We may express the substance of this proposition by the statement
that the gecometrical substrate of the system of moduli u, v, ... w
whose resultant does not identically vanish is their complete
intersection.*

The form of the complete intersection € of the surfaces %, v, w, ...
can be found as follows :—Any k+ 1 surfaces in space S; will have a
point in coinmon if a magnitude, the resultant of the system, vanishes.
1f, then, u,», ... w arc h surfaces, join any I =1Fk+1—P% arbitrary
plane spaces S, S, ... S; to them. The resultant I2 of this system
“does not contain the cocfficients of Sy, Sy, ... S; per s¢, but only in
such combinations as are determinants of the matrix S,, S, ... S,
In other words, It depends only on the coeflicients of w«, v, ... w,
and the coordinates of the space S,| S, | ... | S in regard to some
pyramid of veference a,b,...c. Let these coordinates be called

* It might be scen and verified in a similar manner, that gencrally to any
geometrical formation @ belongs a system of moduli #, ... %, and vice versd.  The
work of Brill and Nither has to a certain extent modified the fundumental proposi-
tion, but not so as to embarrass us in its use.

212
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P1y Py -+ Pxy and let
I =T (p1, Pos +e» Pr)-

TLet the horder-spaces of & manifoldness of the pyramid e, b, ... ¢
be &, &, ... . Let

X=818]..|S8=p&+...+oxéx
Let & be the space residual to & ; then
= X&.[a 0, ... c],
Py = X§_2 e, b, ...c]y
&e.,

and € is therefore in onr notation I (&, &, ... &).

This proceeding is not of much practical value, since it involves
the necessity of the introduction of n pyramid of veference. Theo-
retically it g suflicient to show some of the most impovtant propertics
of the form belonging to €, which again ave sufficient to make the
direct evaluation nnnecessary. These are: If

%, ... u; are the & surfaces,
A, ... A their orders,

¢ will be o form whose coeflicients are rational integral functions of
the coeflicients of the %, containing those of %, in the order
‘AgAy oo Ay, e, and, considered as functions of the coeflicients of all
the ;, are of the order A, A, ... A

It @ vanishes identically, «, ... , must have in common a forma-
tion of higher manifoldness than in general, and vice versit.

Another method for the formation of € is this. According to
Clebsel’s work, the invaviants and covaviants of a system of suifaces
may be symbolieally expressed—in tho notation used here by means
of the symbol 3 and of the symbols of Algebia, applied in some
specificd manuer to the set of snvfaces under consideration. If «, for
instance, is o quadrie in space Sy, w ok w0 .., v (A+1 times) is
its discriminant, wu s « therefore the manifoldness of its tangent-
lines, # % n % u the manifoldness of its tangent-planes, &e. If « and
v are two point-pairs upon a straight line, 4 (u % v)*—3 . 4% 3 * is
their resaltant; and this form is thevefore also the product of the four
points common to « and v, if u, v denote conics; the curve of inter-
section if they denote quadrics inspace, &c. If, then, the resultant of
k forms of orders A,, ... A, in space of manifoldness k—1, in its sym-
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holical expression is known, this same expression gives also the
intersection L of surfaces u,, ... u, of orders A,, ... A, in any space.

If U is any surface of order a in the space S;, the manifoldness of
surfaces of order n containing it is p.u, where p is an arbitrary sur-
face of ovder n—a. The number of (homogeneous) constants con-
tained by p i8 (n—a<4k),; or, if we denote (n+k) by ¢ (n), it W
¢ (n—a). The order of the condition that a surface of order » should
contain all points of « is thevefore ¢ () —¢ (n—a); or A,¢ (n), by
the mtroductlon of a symbol of opcration A,, whose definition is
obvious. _

Tho reciprocal of the involution of surfaces » containing « is formed
by the =t powers of the points upon ,u, which follows from the
definition of the involution ». Hence the #th powersof any 4,9 (2)+1
points upon = will be linearly dependent.

If » and v are two surfaces of orders a, 3, any surface of order »
containing their intersection is of the f01n1

p.-utq.0.

This form would contain ¢ (n—a)+¢ (2—f3) constants, were it not
that this number is diminished by the existence of identical relations,
such as
putqv =0,
In fact this relation will be satisGed whenever
p=r.v, q=-—r.u,

where r denotes any surface of order n—a—f3. So then the number .
of independent constants in the identical relations reduces to

¢ (n—a)+9¢ (n—P)—¢ (n—a—p),

and it follows that the uth powers of any A,A,¢ (2)+1 points upon
the intersection of % and » must be linearly connected.
If u, v, w are any three surfaces of orders «, 3, y, the form

putqu+rw
would contain ¢ (n—«)+¢ (n—f3) +¢ (—y) constants,
but for the existence of identitics
pu+gutrw = 0.

Supposing the intersection of u, v, and w not to vanish identically,
the intersection of » and v will not be contained by w. If, then, the
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above identity holds good, the intersection of # and v must be
wholly situated upon +; therefore

r=au+by,
and, similarly, g= cu—>Dhw,
P =— cv—aw;

a, b, c are perfectly arbitrary forms. The diminution to be effected
would thercfore appear to be ¢ (n—a—pB) +¢ (n—a—y)+¢(n—B—7v)
were it not that some of these identities are counted several times,

since a might be changed into a+4 .9,

simultaneously b ” ’ 5y b—A.u,
¢ ” ” " c— 4. w,

without ndding to the number of identities, A denoting any form of
order n—a—pf—vy. So then the diminution is ouly

¢ (n—a=P)+¢ (n—B-7)+¢ (1—y—a)—¢ (n—a—P—7);

and thervefore the ovder of the condition that a surface of order » should
contain the intersection of u, v, w is A,AgA ¢ (). Repeating this
process, wo obtain the general theorem: If u, ... %, ave any & forms of
orders A, Ag, ... A, whose resultant does not identically vanish, then
the order of the condition that a surface of order » should contain their
intersection 1s N= Ay, Auy oor Ba, ¢ (1),
or, what is the same thing, the uth powers of any N41 poin‘ts upon
the interscetion of the U ave linearly dependent.

Now, it will be noticed, & being tho manifoldness of the Bp’tce in
which these surfaces ave situated, that ¢ (n) is a function of n of
ovder k; and that N is some integer function of 2 of order k—h.
It appears, thercfore, nt least when € is o geometrical formation
generated by the interscction of surfaces, that the order of the con-
dition for o surface of ordor 2 to contain € i an integer function N of
2, whose degree is equal to the degree of manifoldness of €; o lincar
function, for instance, for curves. We shall discuss this result later,
and show that it is valid without any restriction on the nature of the
generation of @; and, that, moveover the coefficients of the function N
of » are nnmbers in intimate relation to 6.

1f =T, N is a constant whose value is found, accordmg to ele-
mentary theorems of the calenlus of differences,

N=AX e R;_..
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Hence it follows that this is the number of points of intersection
common to & surfaces of orders A, ... A; in space Sy—another demon-
stration of this famous proposition. But theorder of the condition that
a surface of order » should contain these points will not be equal to
their number whenever # is so small that some of the identities
counted above do not exist; for instance, when # is smaller than

w=N+FNF A
When # =n"—1, ¢ (n—=") will be 0; also, when
n=n—2..n=n'—k
But, when n=mn-k-—1,
then ¢ (n—n’) willbe F1;
and therefore the order of the condition that a surface of order
NN+ AN =1

should contain the A Ay. ..o A points of intersection is not A, . Ay, ...A,,
but, since one of the identities which were counted above will cease
to cxist, only A, ... \,—1. So, then, any surface » of order

Mt FN—k =1,

containing A, ... \;—1 of the points of intersection of I surfaces of
orders A, +...+X; in space S;, will also contain the last one. In
other words, the (Aj+...+A—k~1)" powers of these points are
lincarly dependent.

JH, finally, h=k+1, then N=0. Hence the Theorem: If the
resultant of any k+1 surfaces u, ... %, in space S, does not vanish,
any surface V of order n, 2 being assumed large enough, is expressible
in the form A

V=mpu+.. +Pre1 iy
The orders of ug...u,, being denoted by A, ... A, this theorem
will hold good if = is at least = ZA\;—%. If, however, n = I\, ~k—1,
it is seen, as above, that one condition has to be satisfied for the above
identity to exist. TFor instance, if u,, 15, %5 are three conics in a plane,
V any cubic in the same plane, V will not be expressible in the form

V= pyuy+pytia+ pytty
(the p denoting lines), unless the six points of interscction of ¥ and «,

and the four points common to u, and u are situated upon one cubic.
If V= 8§ the cube of a line, 4, B, C, D the four points common to %,

and ty, and aA+bB+cC+dD = 0,
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the linear equation connecting them, then S—p,.u, will contain
4, B, C, D; hence

(84)* _
ulA - plAv
(SB)®
wB nb,
and a (84 +b (S].})a +c (8¢ +d (8Dy =0;

w, A u, B u, 0 w,D
8 must thercfore belong to the manifoldness

i s b 3 c 3 d 3
o_Ibl_ll..A +;‘l__B'B +;61_0.0 +;‘_15|D'
Hence generally the condition for V to be expressible modulo ,, 1, u,
is to be conjugate to 6.

Generally to any set of k+1 surfaces of orders \, ... Ay,, in thespace
) S must belong a point-form 6 of order A, + ... + A,y —k—1 in intimate
" relation to it (which is, in fact, that u, ... ux,; are apolar to 6) to be
found in the manner given above. If the resultant of the forms vanish,
6 will reduce to the (Aj+...+A, —k—1)t" power of the point
common to the surfaces. @ will vanish identically when w, ... %,
have more than one point in common.

Any form V of order Aj+...+2,,—F% will, as we have seen, be
expressible by p,u,+ ... +Prs; teyr.  If the coeflicients of the u; under-
go continuous changes until the resultant I? of the «; vanishes, this will
ccase to be true, for ¥V must then obey the onc condition to pass through
the point common to the % to be thus expressible. This can only be
explained by the supposition that, in conscquence of the vanishing
of I}, a new relation such as

Pt A Pama=0
is created. Hence, if the form of order A+ ...+A,1—F,
Dt Prate.

vanishes, unless p; belongs to the system of moduli Uy eee Upsr (u; ex-
cepted), one condition must be fulfilled, viz., that IX should vanish,
and vice versd.

III. If we have any group of points 4,, ... 4, in the space S,, any
k+2 of them will be connected by a linear equation, and the A points
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therefore by h—k—1 such equations. This system of equations will
have the following form :—

(1.1111 +(IrgA,+ e +ahAh = Oa
bidi+b 4yt ... +bydy = 0,

LA, 4+ LA+ ...+ 1, 4y = 0.
Multiplying the first by a,, the second by ay, ..., the last by «,, where
! = h—k—1, we can write the whole system of equations in one line

Q(‘ ..A1+"2[7 . Ag+ ...+'(2[}. . A;, = O,
where UW=a.o00+b.ay+...+1 .,
W=ay.a,+by. g+ ...+ . ay

The ay, ... a; will be perfectly arbitrary and independent of each
other. 'We may thereforo usc the geometrical calculus, interpreting
the a; as corners of a pyramid in an auxiliary space. The 2; will
consequently be == points in some space &;., of perfectly arbitravy
situation. It will also be noticed that, on account of the perfect
freedom in the choice of the a, the group A may be subjected to any
lincar transformation without ceasing to make the equation connect-
ing the 4; and ; true.

From () Ay W+ A4, W+ ...+ 4, U =0,

we may deduce any relation connecting the A;, for instance, the one
connecting A, Ay, ... A4, by composing the A in (#) with
ppa Upeq ... Wye  The A and A being situated in totally different
spaces, any operation may be performed on the ono group, while the
symbols of the other group arc treated as constants.

If A, B, C, D arc four points on a line, they are connected by two
relations, and we shall have to introduce four points 2, B, €, D on
some other line, so that

a.dA.A+0.B.B+4+¢.C.C4+d.D.D =0,
the «, b, ¢, d denoting constants. Composing with ¢ and D, we
obtain a.AC.AD+b.BC.BD =0;
similarly, composing with: € and D,
a. AD. AC4+b.BD.BE = 0;
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AC  BC _ UG  BE
AD BD — AD ' BD’
or the necessary and suflicient condition for the two groups to be
corresponding in the above-mentioned manner is that their cross-
ratios should be equal. .
(If the group A is given, the group U defined by the relation
Sa;.4,. A, =0
may be linearly constructed, 141 of them being arbitrary. To k
points 4, on a straight line correspond % points 2; of a S;_;. If, of
the k points 4, k—1 remain fixed, the last one describing its straight
line, while also, of the & points 2, the k—1 arbitrarily to be assumed
remain fixed, the last point A will describe a certain rational
curve passing through the fixed points A. Vide Nature, 17th October,
1895.) ' :

There is no reason why no more than two different space-symbols
should be used. Our definitions will apply also in this case, the
general rule being that any operation may be performed upon the
symbols of any one space, while the symbols of the other spaces are
treated as constants.

A form like the following,

ay Ay AL AY AP tan. Ay AL AL AP,
where the A4; belong to onc space, the 4; to another, &c., is called a

hence

(k+1)-linear form. The point symbols A" and their compositions
are called “different space-symbols.”
An equation between point-forms, such as, for instance,
ayty +agttg+ ... Fayu, =0,

imposes a condition upon the coefficients of u,, u,, ... %, In fact, if
the order of the u, ... %, 18 n, the a denoting unknown constants, the
order of the condition expressed by this equation is ¢ (») +1—71"(since
o form of order % in S; vanishes, the form containing % homogeneous
parameters). If, for instance, it is known that three point-pairs
4.4, B.B, C.C in a planc are linearly dependent, the six points
must satisfy a four-fold condition.

If, in an equation au + ...+ oy, =0,

the point-symbols implicitly contained in the w, ..., are subjected
to one and the same lincar transformation, and they are projected into
some other space, only the constants a, ... «, will be affected, but the
projections ... us of w, ... u, will again be linearly dependent. This
follows immediately if we compose the equation with some point P
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outside the space S of the u, and then cut it by a space 3 contained
in SP, and of the same manifoldness as S.
If we polarize the equation
ay,+ ... tau, =0

with P, . P,.... P, where P,...P, are not contained in S, and
SI, ... P, is diffevent from 0, the point-symbols 4, ... 4,, implicitly
contained in the w, ..., will combine with the P, ... P,, and we
shall obtain a relation between

4,0, APy, ... A, Py

AP, 4,P, ... A,D,,

AIP"! AQI)M eve Jl,,,l’,”

which evidently represent in the gecometry of lines tln'nugli r,p,..r,
different space-symbols. Cutting these by spaces X, 3,, ... =, of the
same manifoldness as S in SP,, SP,, ... SP,, respectively, we obtain

a relation between
, ? ’
Ah A!) e Am:

” 44 ”
Al, A?’ soe Anu

AY, 40, ... 4y,
where the 4, 4", ... ave projections of the 4,, 4,, ... 4., bat situated
in different spaces.

Thus from the original equation we obtain another which is
evidently an » linear form of different space-symbols denoting point-
groups in each separate space which are projectively identical with
the oviginal point-group. Therefore it follows that we may perform
any operation with any one of the point-gronps A’, 4%, ..., treating
the others as constants, and afterwards identify again the symbols of
that point-group with the original point-group 4 (which is but a
specialization). )

The polarized form of the power of & point P is especially simple.
That of P* is evidently P’.P” ... P™.

To give a few instances: an equation

(6) ad*+bB*+cC'+dD' +eE*+fF* = 0,
where the g, ...f are unknown constants, expresses one condition,
which is evidently that the six points 4,...F are situated upon one
conic. Writing (),
ad’+bB +c0® = — dD*—eE'—fF",
it appears that 4, B, 0 and D, E, F form self-conjugate triangles to
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some conic. Polarizing each side of the last equation with itself, we
obtain abAB +bB0" +0a0A® = deDE'+ ... ;

hence AB, BC, CA, DE, EF, FD touch one conic. Polarizing () in
regard to the cubic » formed by DE.EF . FD, which obviously con-
tains D, I, F ag double points, so that

Dxu=0 Exu=0 Fxu=0,
we have aA’xu+bl.?f"Xu+¢'zC?xu =0,
or the three polar lines of 4, B, O to the triangle D, I, F (which can
be linearly constructed) are concurrent. - Polarizing (9),
‘ ad . U+bB.B+...+fF.F=0,
further composing with F and &,
aAE . AT +bBE,, B +c. OF . CF+d.DE. DF = 0,
or the cross-ratio of the lines AE, BE, OF, DE is equal to that of
AF, BF, CF, DF.
If we put aA’+bi3’=h.A'.B',
cC*4+dD* = k.. D,
B4 fF =1.F.F,
then h.A'.B+k.C.D+1.E . F=0.

It is obvious that the line joining 0" and IV, for instance, must con-
tain either A" or I'. The figure must thercfore be that of a triangle
A'C'EF, eut by a straight line ’'D’'F', I to be on O, &c. lts
reciproeal may be derived from the identity which connects four
points upon a straight line

AD .BO+AB.CD+AC.DB =0,

which must also exist for four points in a plaue, since this form
would contain all points of the plane, and must therefore identically
vanish. The equation connccting A’ . I, &c., may be interpreted as
" meaning that if, A°. B’ and 0".D" are conjugate to any conie, L', I
will be so also. If L, M, N ave the thrce corners of the triangle
formed by AB, OD, EF, it is at once seen that

A . B = al?—-bM?,
C'.D = bM*—cN?,
I'. F = ¢cN3—al?,

I
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a, b, ¢ denoting parameters. A’B’ are therefore the double points of -
tho involution formed by 4B and LM, &c.

Let P, Q, R be any three points, and p, g, r their polars in respect to
sowe conic ». If, then, p'p", ¢'q”, " are points upon p, g, r, respect-
ively, P.p', P.p", Q.¢, Q.q", B.2', B.+" will be conjugate to the same
conic; therefore linearly dependent. It follows that points P, @, I
must exist upon p, g, 7, sothat P.P, Q. @, B.I' are linearly de-
pendent. 'Now P is collinear with QI ; hence’ it is tho cut of QR
and p. The relation is then expressed thus, QR/fp, RP/q, PQ/r are
collinear, and, the configuration being its own reciprocal, P qfr, Qr/p,
R p/q are concurrent. This may also be proved in a different manner
thus :—Let « be any conic, 4, D, C the corners of a triangle. Then
(AB)ku) «C+ (BCku) x A+ (CA#u)xBis a line-form x. Com-
posed with C it is

(BC# )k AC+ (CA %) k DO = DBC.A0 % u+CA. BG *u=0.

Henco x4 = xD=xC=0. x will therefore vanish identically.
This may also be generalized.  If #=3, this shows that the four
heights of a tetraliedron helong to one guadvric.

The curve whose points have the property that the cross-ratios of
the twice four points A, B, C D,

A” '1}” 0” D”
stand in a certain proportion p : « is the numerator of
« (A(" AD) -8 (A'C' . AIZ)
BU " BD e’ B

(the line-symbols written in their normal form), a curve of the
fourth order. If A4 .. D, A ... I ave situated upon a conic «,
B : a being the proportion of their cross-ratios with respect to the
points of Uy then the curve above defined must degenerate into two
conics u, 2’3 ' contains the eight points 40/4°C’, AC/B'D’, BDJA'C’, .
and is thus defined.

It 2, v, w ave thrce conics having two points in common, the form
a.u+b.v+c.w,the a, b, ¢ denoting lines, can only denote an involu-
tion of manifoldness 7; hence some identity such as

a.u+b.v4c.w=0

must exist, and consequently the lines a, b, ¢ joining the two variable
puints of intersection of v,w; w, u; «, v respectively are concurrent.
If now w» isa conic, 4, B,C, D, E, F six points upon it, then 4, A0.BD
and AE . BF have the points 4 and B in common ; therefore the cut.
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of CD and ET must be situated on the line joining the cuts ofAG’/JfI’
and BD/AE, which is Pascal’s theorem.

Let A, ... Ay be nine points common to two cubics. Their con-
fignration is cxpressed by the fact that their cubes are linewly
dependent.  Kight points being given, the last one is obviously duter-
mined. A construction may, for instance, be arrived at thus: We
muy have '

a,A::+a2113+ +aaAz+a0Ag =0,
Polarizing, we obtain ag a consequence
a A A Fay Ay W+ ... Fag Ay Ug+ a4 . Ay = 0.

Polavizing with the A} in regard to the cubic u xepresented by the
sides of the triangle 4,4, 4, and denoting the lines A} xu by a,
‘l.;xu by «,, ...,
. a1’1(,+..7+a5. ag. W +ag . a;. Wy = 0.

Composing with 2, /-

oy W W+ ayay . W+ .. +agay . AU Ay = 0.}
Now a,, ... a; ave known. T'he cross-ratio in which a,, a,, ag, «, is cut
by ag is equal to that of A, Ay, WAy, AAy, A A, and that of a,fa,, afa,,
wyfa,, agleg, eqnal to that of A Ay, ANy, WU, Ay, A A, Hence Yy can be
constructed as the fourth point common to two conics through
Ay A, WA, and AWy AU,

If scven points are given, 4,, ... 4,, and the other two points 4, 4,
are restricted to a given line I, only one solution is possible. Through
the seven points an involution of three cubics is possible. They cut
I in an involution whose reciprocal. will be a certain point-group
P . Q. L conjugate to any cubic containing the seven points. There-
fore P. €. 1 is linearly dependent upon the cubes of the seven
points. Representing I’. Q. Il in its canonical form as the sum of
two cubes, we find A, and 4,

1f two of the points P, (J, Il coincide, there is no solution, but, if
) = P, then F*IL will be linearly dependent on the cubes of the seven
points, and this will express that any cubic passing through 4, ... 4,
and P will touch I; that, in other words, 43 and A, are consecutive
in P upon I. It may also express that a cubic is possible through
4, ... 4; having P as a double point, the linear dependence between
A, ... 4, and P'E reducing the number of conditions this implies to
nine.

We may add, though without demonstration, that, if 4, ... 4, are
fixed and 4; moves upon any curve of order A, 4, will generally move
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upon a curve of order 8x. If, however,.the curve A4, contains the
tixed points 4, ... 4, as (a, ... q,)-fold points, denoting a,+...+q,
by B, the order of the curve 4, will be 8x—38, and it will contain
"o,y as 3A—B—a,, 4, as (3A— B—a,)-fold points, &e.
Bight points common to three quadrics satisfy a relation

a, 4]+ ... +azd5 = 0.
By reading it s A+ ... +a,Az = —ay4ds ...,

it is evident that A,4;4;4, and A,4,4,4, are two self-conjugate
pyramids to one and the same quadric. Polarizing

ad, A+...+agd U, =0,

and composing with 434, and A%, we see that 4,4,4;4, have the
same cross-ratio, whether projected from A;4, or from 4,4, We
also see that any quadric through six of the points 4, ... 4; will cut
I= 4,4, in an involution whose double points are B and C, so that

B.O= a,Aq;+asA§.

Any point-pair on I harmonic with B. U will therefore, if joined to
4, ... 4y, complete the configuration. The two points 4,, 4, though
moving upon I, will coincide in B and 0, and ! will be a tangent to
any quadric containing 4, ... 4, Bor 4,... 4, O.

Now a twisted cubic having seven points in common with a quadric
must be wholly contained in it. So any eight points upon o twisted
cubic form the configuration. Seven points 4,, ... 4, being given,
4,4, is the straight line through 4, cutting the twisted cubic through
A, ... 4, twice. So, then, ! can always be determined, except in the
following cases :— ’

(1) That 4, is collinear with any two of the fixed points 4, ... 4,
Then 4, is any point on that line, the squares of four points on a
line being always linearly dependent.

(2) That any five of the fixed points are coplanar. Then A is any
point upon their conic.

(3) That any six of the fixed points are coplanar. Then 4;is any
point of their plane; or, if the six given points are also upon one
conic, 4gis any point whatever.

(4) That the seven given points are upon the same twisted cubic.
Then 4, is any point of that twisted cubic.

In no other case can the configuration degenerate. If, for instance,
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4, ... A, are coplanar in S, the line common to S and 4;4,4, will be
. cut in involution by the conics throngh 4, ... 4,; hence a point-pair

B. 0 will exist upon it which is linearly dependent upon 4 ... 4.
But the conics passing through 4,, 44, 4, and containing B. C as con-
jugate point-pair have a fourth point 4gin common,so that B. C isalso
linearly dependent upon the 43, A5, A5, Aj

If six of the points 4, ... 4, ave given, while 4, is restricted to a
plane 8, and 44 to o line /, I to be within S, we shall find three point-
pairs 4,, Ag to complete the configuration. For 4,, ... 4, determine an
involution of four quadrics which cut 8 in an involution of conics, the
reciprocal of which is formed by the two point-forms % and ». Their
involution contains three point-paivs . I, M. M', N.N’. LI cutslin
dg while d;is=Ayx L. L. Thus the threc point-pairs 4,. 44 ave con-
structed. The lines LI/, MM’, NN’ aro obviously the sides of the
trinngle, in which the twisted cubic throngh 4, ... 4, cuts S.

Proceeding similarly when five points 4,, ... 4; are given, and a
plane § as locus for the other points, we obtain in S one point-form «
of the second order linearly dependent upon the squares d,, ... 44; 4,
yy Ag, will therefore be the cormers of any triangle self-conjugate to
#;.  And we shall have two solutions, if 4, 4,, 4, ave restricted to
lie on given lines in 8. '

A configuration of some importance, at least in the theory of sur-
faces of the second order in any space, is that of 2» points characterized

by (9), @A, B+ a4, B, + ... a,4,.B, = 0,
where it is understood that 4,,... 4, ave the corner-points of a
{non-vanishing) pyramid in space S,_,. The order of the condition

"";+1_n+ 1. Since [4,...d,] is different from 0,

imposed by (8) is

it follows that (4,..4,.B,]=0.

Hence [4, ... 4,.,B,.,1,] is generally different from 0, and
[4,... 4,sB,_,B...B.] again = 0.

Any space composed of an odd number of the B has a point in

common with the space composed by the residual 4. If, then, B, and

B, _, are assumed anywhere in 4, ... 4,.,, and 4, ... 4, ,4,, respec-
" tively, DB,., will be in the cut of

Al) .I.. A,._aA,._\-A,, and A" 0 A,._aB,._l.B";
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B,_; will be subject to three conditions to lie in the cut of
'Al oo -Au-lAn_zAn-l-Au; A) (A2 -‘lu-‘Bu—B u-lAu;
A, ase A,..-AAn—zBu-an H
B, .. will similarly be subject to 4 conditions;
B, will similarly be subject to n—1 conditions;

raising the number of conditions to ﬂ’z:_l+ 1.

In space the two pyramids 4,,...4, and B, ... B, are 8o re-
lated that each has its corner-points upon the faces of the
other.

Whenever # is an even number, the relation of the pyramids is
reciprocal. When nisodd, the pyramid of the I} points must vanish.

Let A,,...4; be eight points common to three quadrics. Join
A Ay AA,, AgAg, 4,4, There are two lines cutting these four (the
two lines of the involution reciprocal to the one formed by the fowr)
say a and b, cutting 4,4, in L, L,, A;4,in Ly, L, ... . Now, L, Ly, L,
L, being collinear, their squares are linearly dependent; also those
of L, L,, Ly, Lg. Conscquently, for any values of M, p, arelation will
exist, viz., » ) 2 .

‘ AL+ cyuLy+ cALy+cop L+ ... = 0.
Putting e AL +c,uLl = M. M,

eAL;+cu L = M,. M,

M, M, M;. M, M,.M,, and M, .M, will be linearly depéndent. The
order of the condition implied by this statement is 7. Consequently,
only a singly infinite series of such quadruples of point-pairs can
exist on the four given lines. Hence that series is exactly repre-

sented by (c,ALf+c-,ptL§), (ca)\L:+cmLf) e s

This gives rise to the theorem: The double-points of the involu-
tions (Iy.Ly, A,.4,), (Ls.L,, 4,.4,), &c., form the configuration of two
pyramids, of which each has its corner-points upon the faces of the
other.

To multiply these theorems to any extent would only require some
imagination. To write what may be considered a complete theory of
such configurations requires however more resources than are de-
veloped in this essay. We shall leave, therefore, the further dis-
cussion of configurations for a future occasion.

" VOL. XXVIIL.—No. 608. 2 u
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Metrical relations can also be derived with ease. If u is a surface,
4 and B any two points, the line AB cutting the surface in the
n points wy, w,, ... w,, then the points w are found by the solution of

uX (aA+8B)" =0,
the n roots a : B corresponding to the » points w,

a:fB=—wD:wd.

Since
uX (ad+0B)" = a"ud+n.a"'B.ux A" . B+...+ 8" ub,
it follows that the product of the roots
w,B.wB ... w,B: 'wlA.'L‘ng o w4 = uB :ud.

If 4, B are on w—say, and A points w coincide in 4, p points in B—
only n—A—p points w will remain corresponding to the equation

(n)a"* rux A" B 4 (1), B u X A* B = 0
hence )
Nw,B : TwAd = (n),. ux A*.B"*: (n),.ux A" B

Similar theorems exist for z;ny geometrical formations.

If a surface of order 2u contains 3", ‘points of its space will have a-
“ power” in regard to it. If « is such a surface, P any point, Il any
line through it, ,, ... w,,, its cuts with «, then Ilw,P is constant, and
independent of the situation of I. We have, denoting /I by D,

I Pw, : IIDw; = uP : uD.

But, D being the I of I, all Dw are 1; and, 3" being the cut of I and
4, uD is a constant multiple of (ID)”, which is 1. Putting

ul =k,
we have M Pw; = k.uP.

To give a few examples : If any surface « cuts the sect AB in n points
Wy, ... 0, then the ratio T4, : IIB, may be called the ratio in which
u cuts AB. This ratio, which is = u4 : uB, being given, =¢, it
follows that A"—¢.B" is conjugate to u; it is, therefore, equivalent to
a linear condition for u.

A conic which cuts five given sects in given proportions is therefore
generally uniquely determined. A conic cuts any six given sects in
six ratios a, 3, v, 8, €, { between which a six-linear relation exists;
for, a, B, v, 9, € being given, { is uniquely determined. This may
evidently be generalized.  The equation illustrating the situation of
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six points on a conic
ad’+bB'+c0*+dD* +eE*+ fF* =0
may be interpreted as meaning that any conic cutting the sect AB

in & given ratio (——Z—) and CD in another (— %) will cut EF

in a certain ratio (— i—) . Similarly, any curve of the nth order cut-
e

ting # of the n+1 given sects A4’, ... LL in certain ratios will also cut
the last one in a known ratio if 4, 4',... I, L' are upon one conic.
The identity (a4"—bB") + (bB*—c0") + (¢C* —ad") =0 gives Carnot’s
theorem. All this might be much generalized and varied.

Finally, as regards the calculus with 3, it follows, from our pre-
vious results, that all plane spaces £ in contact with 3J are to be
regarded as isotropic spaces. If the S of & 8, is defined as a point-
form, a space S, is isotropic, when

SxIxJ... (k—a times) =0,
and in its normal form, when the magnitude on the left-hand side
is =1. S,x3¥x3J...1is any S,., perpendicular to 8, since any two
points at I perpendicular to each other are conjugate to J. If §;is
in its normal form, so also
Si..=8.x3IxSJ....
For [S;_. S.] is the same as

Sk-a)(S,:S,.SnXSXS... =1.

But the magnitnde formed by the two spaces S;_, and S, perpen-
dicular to each other is 1, it being a product of the sines of angles,
all of which are right angles. S, is in its normal form. Hence
[Sk-. 8,] cannot be equal to 1 unless S;_, is also in its normal form.
These statements may be regarded to express all cosine theorems,
&c., in fact, all-metrical relations based upon the measurement of
angles in their simplest form. To give only one instance, D,, D,,
D,, D,, denoting points at the I of our space in their normal form
(points of a sphere), from the identity
D,D,.D,D,+ D,D,.D,D,+D,D,. D, D, = 0,
we conclude [considering that D,D; is not in its normal form, but
multiplied by sin (D,, D,), and similarly for the other line-symbols],
by polarizing with S,
sin (D,, D,).sin (D;, D,).cos (D,D,, D,D,)
+sin (Dy, Dy).sin (D,, D,).cos (D,Dy, DD,)
~+sin (D,, D,).sin (D,, D,).cos (D, D, D,D,) = 0.
2 M2
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Thursday, June 10th, 1897.
Prof, E. B. ELLIOTT, F.R.S., President, in the Chair.

Seven members present.

Mr. W. W. Taylor exhibited numerous models of the regular
convex and star solids.

Major MacMahon, Vice-President, having taken the Chair, com-
municated papers by Mr. H. MacColl, *The Calculus of Equivalent
Statements” (Sixth Paper); by Dr. G. A. Miller, * On the Primitive
Substitution Groups of Degree Fifteen.”

Mr. Love, Hon. Sec., read *“ A Generalized Form of the Binomial
Theorem,” which had been sent by the Rev. I'. H. Jackson. The
Chairman (Major MacMahon) stated that the form was a known
one.

The following present was made to the Society’'s Album :—
Cabinet likeness of Mr. W. Esson, F.R.S. (now Savilian Professor of Geometry,
Oxford). . .

The following presents were made to the Library :—

Carruthers, G. T.—*The Origin of the Celestial Laws and Motions,” 8vo;
London, 1897. .

Parasnde Ganosh.—¢ On the Potential of a Solid Ellipsoid of Revolution at an
Extcrnal Point’’ (4 copies), 8vo; Allahabad, 1897.

¢¢ Proccedings of the Royal Society,’’ Vol 1xr., Nos. 371-373.

¢ Beibliitter zu den Annalen der Physik und Chemie,’’ Bd. xx1., St. 4, 6;
Leipzig, 1897.

““Memoirs and DProcecdings of the Manchester Literary and Philosophical
Socicty,”” Vol. xur., Pt. 3, 1896-97.

¢t Jnhrosbericht der Deutschen Mathematiker Vereinigung,’® Bd. v., Heft 1,1896 ;
Leipzig, 1897. :

¢ Procecdings of the Physical Society,”’ Vol. xv., Pt. 6, No. 80; May, 1897.

¢¢ Vierteljnhrsschrift der Naturforschenden Gesellschaft in Zurich,’’ 1897, Heft 1.

¢ Wiskundige Opgaven,’’ Amsterdam, Deel vi1., 8t. 3; 1897.

¢ Niouw Archiev voor Wiskunde,”” Deel 111., St. 2 ; Amsterdam, 1897.

¢ Bulletin of the American Mathematical Society,’’ Vol. m1., No. 8 ; May, 1897.

¢¢ Adresse présentée & M. Mittag-Leffler lo 16 Mars 1896, 1848-1896," 8vo ;
Paris, 1896.

¢ Proceedingas of the Canadian Institute,’” Vol.1., No. 1, Pt. 1, February, 1897 ;
Toronto.

‘¢ Bulletin des Sciences Mathématiques,’ 1897, Mai, Tome xxt1.

¢ In Memoriam N. J. Lobatschevskii,’”” 8vo; Kasan, 1897.
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¢ Bulletin de la Société Physico-Mathématique de Kasan,"” Série 2, Tome vr.,
No. 2; 1896.

“ Praco Matematyczno-Fizyczne,”” Warsaw, Tome virr. ; 1897.

““Bitzungrberichte der Xonigl. Preuss. Akademie der Wisscnschaften zu
Berlin,” 1897, 1-25.

¢ Atti della reale Accademia dei Lincei— Rendiconti,”” Sem. 1, Vol. vi,, Fasc.
8-10; Roma, 1897,

“ Annales do la Faculté des Sciences de Marscille,”” Tome vi., Fasc. 4-6, Tome
virr., Fase. 1-4.

¢ Journal fiir die reine und angewandte Mathematik,'’ Bd. oxvrr., Heft 1, 2,

¢ Educational Times,”’ June, 1897.

¢ Annales de la Faculté des Sciences de Toulouse,’” Tome x1., Fasc. 2; Paris,
1897.

¢‘ Annali di Matematica,”” Tomo xxv., Fasc. 3; Milano, 1897.

¢¢ Annals of Mathematics,”” Vol. x1., Nos. 3, 4 ; Virginia, 1897.

¢¢ Indian Engineering,’’ Vol. xx1., Nos. 17-20, April 24-May 15, 1897,

‘¢ Collected Mathematical Papers of Arthur Cayley,” Vol. xu., 4to; Cambridge,
1897,

On the Primitive Substitution Groups of Degree Fifteen. By
G. A. Miuter, Ph.D. Received June 2nd, 1897. Read
June 10th, 1897,

If any group (@) of order g contains a non-self-conjugate sub-
group (@,) of order g, that does not include any self-conjugate sub-
group of @, with the exception of identity, then is G simply
isomorphic to a transitive substitution group (@) of degree ¢ + g,
When @, is a maximal sub-group of @, t.e., when it is not contained
in a larger sub-group of @, & is a primitive group. When this
condition is not satisfied, @ is non-primitive.*

It is a singular fact that we can find all the primitive groups of
degree 15 which do not contain the alternating group of this
degree by means of these well-known principles. The four groups

(+abedef)y, (abedef)s, (abedefglss (abodefgh)isut

* Dyck, Mathematische Annalen, Vol. Xx11., p. 94.

+ Noether, Mathematische Annalen, Vol. xv., p. 90. We follow the notation
employed by Professor Cayley in his lists of substitution groups published in the
Quarterly Journal of Mathematics, Vol. xxv.





