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while (27), (28) lead to
f *mn (W"'m—u"n) +4 (c;m—bym)® = 0,
or dey mb—3 (4byc; — 8f ") mn + 3 (b3 ¢y — 3F ") mnd— 483 n® = 0...(29).
. The resultant of (28), (29), after division by f*, is
271" (5 b1} (3 o4
X {(3f c—4ch) 03— 2 (87— Abygy) w'u” + (8 b—48}) '"'}
+6f {(8f'c—4c3 )(c3 b— b} ¢) (csb — by f) — 20, (37D — 4:b3 )(be—cyf )V} v
+6f {(8b—48} ) (B} o= B) (Byo —oaf ) — 2By (80— e} ) (csb — b} "
+64 (c3b+byc—2byef)*=0....c....... et (80).

This equation is of the twelfth order in zyz, and is reducible there-
fore to the sixth, when the differential coefficients are expressed ex-
plicitly in terms of the coefficients of the quartic. It is of the ninth
order in those coefficients, and in this respect is not reducible, as I have
found by examining some particular cases.

In using the term Inflexion-Tangential Equation, of course it is un-
derstood that it is so only to %u prés, where % is a quadratic form ; just
as two forms of the Bitangential Equation may be arrived at, pursuing-
different methods of investigation, which shall differ by a sum of terms
in which % is a factor.

Hereafter, if I should find leisure to resume the study of this con-
comitant of the ternary quartic, I hope to be able to lay further results
before the Society. '

On the Singularities of the Modular Equations and Curves. By
Hexry J. StepeN Swr, Savilian Professor of Geometry in
the University of Oxford.

[Read February 14th, and April 11¢h, 1878.]

Art. 1.—1It is proposed, in this paper, to examine the characteristic
pingularities of the modular equations and curves. The method
employed is applicable to all the modular equations hitherto considered
by geometers;* but, for brevity, the discussion is confined to the

* [The modular equations considered by Jacobi in the Fundamenta Nova aro (2)
the cquation botween # = ¢ (w), and v = ¢ (), (see Art. 4 of this paper, equations 3
and 4,) and (5) the equation between 8 and v%, of which the characteristics are
dlscusscd here. M. Kronecker, in his reseurches on the modules which admit of
complex multiplication, would secem to have also employed (3) the equation between
u? and ¢*, and (4) the equation between ut and v, (Sce the account of these re-
scarches in tho Reports of the British Association for 1865, pp. 332 and 358; see
also Professor Cayley, Phil. Trans., Vol. clxiv. p. 4560.) M. Joubert (Comptes Rmdu:,
Vol. xlviii., pp. 200—294; was the ﬁrst to consider (6) the equation botween w8 (1—uf)
and v8(1~¢3), Dr. Felix Miiller, in his Ins,uguml Dissertation (Berlin, 1867),
. drow attention to the equation (7) butween

1—u8 4 ul6)3 1— 084 16)3
2= (G w0 T‘“)‘me's%'
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equations containing the squares of the modules, and to the case in
which the order of the transformation is uneven.

.Art. 2—We represent by g, the square of the modulus of a given
elliptic function; by p, the square of the transformed modulus, the
transformation being primary,* and of the uneven order V; by

1) ... F(p, q,1)=0
the modular equation subsisting between p and ¢; in connection with
this equation, we consider the modular curve C, of which the trilinear
equation @) ...... F(a, B, y) =0
is obtained by writing p = £, ¢ = -g We de-. P

Y

note by P, @, R the vertices of the triangle afy;
and by S the point a=8=1y, or p=¢g=1; the

three intersections (P83, QR), (@S, BRP), (RS, PQ)
we represent by a, b, c. Weregard p and g asthe < “ B

and the discussion of this equation has recently been resumcd by Professor Klcin
(Mathematische Annalen, Vol. xiv., p. 112, May 1878). These geometers have ex-
pressed T'(w) and T (Q) rationally in terms of a third indetcrminate, in the cases
N =24;3,057,13; the deficiency of the equation (7) being zero in these six
cages ; but neither of them has givon any example of the equation in its explicit
form. Writing z for T'(w) and y for 7'(Q), I find, when N = 3,
(x+21.3.6%+y (y+27.3.6%3 25,53 + 211, 33, 312%2 (r + )

~22.33, 9907y (& + 4T + 2. 34.13.193. 6367273

+29.3%.6%. 44712y (2'+y)—2'8.6%.22073ry = 0.

The equations (2) ... (7) are symmetrical with regard to the two indeterminates, and,
the number & being uneven, they are of tho order 4 + B (Art. 3) in the indeterminates
separately, and of the order 24 in the indeterminates joiutly. I have recently
found that the Eulerian functions x (w) and x (Q), dofined by the equation

x(ﬂ)) = 2/262‘- x ?(l—(—l)'eﬁm‘)’

satisfy an equation (1) having the same properties; for the cnube yx (w) this had
already been shown by M. Kwnigsberger (Borcharde's Journal, Vol. Ixxii., p. 182
sqq.) Writing 1y = x (w), v, = x (22), wo have, in the cases N = 5, 7, 11,

. 1S+ 25 u S5 — 280, + 08 = 0,

w3+ 8. 2ol —ddu o9+ 44 . 280 ToT— 44, 2 w05 4 2203032, 2l + 010 =
68 =16u o7 +Tuint 22y +¢8 = 0, -

The function x (w) is a twenty-fomth root of (1l -« ; tho formulm relating to
its linear transformation have been given by M. Hermite (Comptes Rendus, 1§58,
Vol. xlvi,, p. 721). In respect of simplicity of formn, the equations (1), (2)...(7)
agpont to arrango themsolves in this numerical order; but, in respeet of simplicity
o

algelraical theory, the order is reversed, as the deticiency decroases from (1) to
(n.—H.J.8.8.)

¢ A trausformation , 6, | of the uneven order N is primary when it satisfics

. [ I . -~

the congruence 'a, 51=11, 0], mod. 2. For the theory of the elliptic multi.
¢, d 0,1 ’ .

plier it is convenient to fix the signs of abed by the additional condition 6= 1, mod.

. 4; but for our present purpose thisrestriction is unnecessary.

R 2
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parameters of two pencils of lines a—py, 8—gqv, of which the centres
are @ and P, and between the rays of which a correspondence is estab-
lished by the equation (1); we observe that, to the values 0, 1, 0 of
either parameter, there answer in the two pencils respectively the rays
QR, @S, QP; PR, PS, PQ; and that, by a known property of the
modular equation, the pairs of rays (QR, PR), (@S, PS), (QP, PQ)
are corresponding rays in the two pencils, either ray of any of these
pairs being the only ray answering to the other ray of the same pair;
the modular curve O is the locus of the intersections of corresponding
rays in the two pencils.*

‘We denote by m and » the order and class of 0; by H its deficiency ;
by K and I its cuspidal and inflexional indices; by D and T its
discriminantal order and class; by I (p) = E (g) the highest, by
E' (p) = F'(g) the lowest, exponcnts of p and ¢ which present them-
selves in the equation (1). ‘

_ Arts. 3—8. N not divisible by a square.
~ Art. 8.—We confine ourselves, in the first instance, to the case in
which & is not divisible by any square ; and we represent, in this case,
by A the sum of the divisors of N which surpass ,/N; by B the sum
of the divisors of N which are less than +'N; by » the number of
divisors of either sort, so that 2» is the whole number of divisors of N.
'We then have the formule

G.) ... m = 24,
(i) ... n = 34—B
(iii.) ...... H =1(4+B)—3v+1],
@Gv.) ...... K =24+2B—6v,
v) ... I-K=3(A-B),
(vi) ...... D =44'"-54+B,

(vii) ...... T—-D= (A-D)(54—B).
To these we may add the equations
E(p)=E (¢) =A+B,
E (p) = E'(g) = 2B.
Of these formule (i.) and (viii.) are well known ; of the remainder, it
will suffice to attend to (iii.) and (iv.), because, when the values of m, H,

and K are given, the values of n, I, D, and T are known from the equa-
tions of Pliicker.

(viil) ......

* [In a paper which I hope shox'tly to lay before the Society, I have discussed, with
some fulneas of detail, the rolation of the algebraical singularities of the arametrio
equation F(p, ¢, 1) = 0 to the characteristic smgulantles of the curves of which the

equations are included in the formula F( 4 -5 1)- 0, 4, B, 0, D being the

equations of straight lines. The discussion comprises an examination of the effect
of any quadric transformation on the singularities of & curve.—H. J. 8. 8.]
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" Art. 4.—The Deficiency.—The demonstration of the formulm (iii)

and (iv.) depends on the simultaneous expression of the modular para-
meters p and g as transcendental functions of the ghotient of the
periods of the given elliptic function. As we have already developed.
these considerations elsewhere,* we shall in this place assume the
results of the discussion as known, and shall confine ourselves to their
application to the formule (iii.) and (iv.)

Denoting by = and y real quantities, of which y is essentially posi-

* In an Introduction (now in the press) to Mr. J. W. L. Glaisher's Tables of the
Theta Functions. The method indicdted in this article has been already employed
by Professor Klein, iu the paper to which reference has already beon made (Math.
Ann., Vol. xiv., p. 111; see especially §§ 6—8, 7—13), and by Professor Dedekind,
in uletter addressed toM. Borchardt (Juhe 1877, see Borchardt’s Journal, Vol, Ixxxiii.,
p- 266, especially §§ 1—4 and 7). In the year 1873, I submitted to the Academy
of Sciences in Paris a Mémoire Sur les Equations Modulaires (Comptes Rendus, August
1873, Vol. Ixxvii., p. 472). In this Mémoire (which was ultimately presented, with-
out alteration, to the Accademia dei Lincei, aud was printed in their 4ets, Vol. i.,
series 3, p. 136, February 1877), I had employed the same method (see Arts. ii., ix.,
and x. of the Mémoire) to establish the relation which exists between the modular
equations of ordor N and the binary quadratic forms of the positive determinant . The
Mémoire was devoted to that theory alone, as I attached more importance to it than
to any other result relating to the modular equations at which I had then arrived.
But I had already in the year 1873 obtained :—(i.) a proof of the existence of the
modular equations, simpler perhaps than that of M. Dedekind, and based solcly on
those elementary properties of the function ¢ (w), which were deduced from the
theorem of Fourier by Cauchy and Poisson, without employing any elliptic formule ;
(ii.) a determination in the simpler cases of the Pliickerian characteristics of the
modular curves; (iii.) a solution of one part at least of the problem relating to com-
plex modules, proposed by Jacobi in Art. 32 of the Fundamenta Nova. I com-
municated to Professor Cayley, in 1873, the formulw for the deficiency of the-
equations (2) ... (5) when &V is an uneven prime (sce his Memoir on the Transforma-
tion of Elliptic Functions, presented to the Royal Socicty in that year); the formule
for the cuspidal index I obtained by transforming into normal developments the
parametric developments which give the deficioncy (sce Art. 6 of this paper); thus,
the order of the curves being known, all their Pliickerian characteristics were detcr-
mined. The case when ¥ is a product of uneven primnes presents no greater difficulty
than the case when N is a prime; and I had (in fact) obtained the tormula for this
more general case as early as 1873. The case when N is divisible by a squure, and
still more the case when XV is itself a square, appoared to involve some difficulty;
and these I left untouched till the spring of the present year, when I found that the
introduction of the arithmetical function f* (see Art. 9 of this pnperg caused the
supposed difficulty to disappear. To the more exact detcrmination of the indices
characteristic of each special singularity of the modular curves, T was guided by the
mothods employed in a former paper on the Higher Singularities of Plane Curves.

A complete system of formula, analogous to that given in the present paper for

_the modular equation (6), I have already obtained for the equations (2), (3), and
(4); with the equation (7), and with the eight equations betwcen corresponding
powers of x (w) and x (f2), T have not advanced equally far, but I have not found
that they offer any peculiar difficulty.

In the Mémoire sur les Equations Modulaires, I have confined myself (as in
the present paper) to the equation (5) between the squarces of the modules. At the
time when the Mémoire was written, I was woll acquainted with the characteristic
property of the function T'(w); viz., that it is unchanged by any linear transforma-
tion of the clliptic functions; and 1 even thought ot employing it in the Mémoire
instead of. the function ¢°(w). I had conjectured (crroncously however) that the
modular curves T' derived from tho equation (7) would represent ordinary pesiodic
ceutinued fractions with positive integral uoticats, in the sume way in which the
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tive, and by w the complex variable -+ 1y, which is thus subject to the
restriction that the coefficient of ¢ in its imaginary part is positive, we
define the function ¢ (w) by the equation

I gy 1 + eﬂn'no

@) ...... p(w) =42.¢? Hmm;

and we consider the 4+ B quantities Q, of which the values are given
by the equation

g, §* being any two conjugate divisors of N, and‘ I being a.ny term of a
complete system of residues for the modulus g. We then have the
fundawental theorem, :

“If ¢ = ¢°(w), the 4+ B corresponding values of p are included in
the formula p=0%();
or, which is the same thing,

F(p, ¢ 1) =0[p—¢*(Q)],

the sign of multiplication extending to the A+ B values of €.”

It results from the discussion to which we have referred, that, if we
regard ¢ as an indopendent complex variable, and represent its values
in the usual manner by the points of a plane, p, considered as a func-
tion ¢, has no spiral points other than the three ¢=0, ¢=1, g=o0 (it
will be remembered that in the plane of double algebra the infinitely

modular curves C derived from the equation (5) represont periodic continued fractions
with even quotients. DBut I was doterred from employing the equation (7) by the
consideration that there wus not a single calculuted example of it; indeed, at that
time I was not acquaiuted with the rescurches of Dr. Felix Miiller, and did not know
that the equation had attracted any attention. I have since found that the curves T'
do not precisely represent the reduced forms of Gauss, but instead a system of forms
determined by a different regulative principle. I am disposed to think (notwith-
standing the considerations mentioned in the note on Art. 1), that there is some
advantage in continuing to regard the equation between the squares of the modules,
us the principal modular equation, ruther than either the equation (1) or (7). At lcast,
as far as concerns tho arithmetical theory to which the Mcmoire relates, and which
1 have since extonded to the equations (1), (2), and (7), (the theory of the equations
(3), (4), and (6) hardly requiring a separate discussion,) the modular curves (6) pre-
sent phenomena in some respects simpler than those presented by the curves (7),
and in all respects simpler than those presented by the curves (1)...(4). -

Both in the Mémoire and in this paper, I have given especial attention to the
case in which N is a square, because the solution of the problem of Jacobi for the
transformations of order N depends on a consideration of the spuces into which
modular curves of order N? divide a plane. A note published in’ the Transunti of
the Accademia dei Lincei (Vol. i., p. 42, 7 Jan., 1877), contains what is in fact a solu-
tion of Jacobi’s problem for the case N = 1; to this particular caso of the general
problem, the attention of geometers had been called by M. Herniite in tho note
appended to the second volume of M. Serrot’'s edition (1862) of the Differential
Culculus of Lacroix, pp. 421—426.—11. J. 8. 8.]
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distant is & point). Thus, if we cause ¢ to describe any closed contour,
not including one of the three points 0, 1, oo, the values of p will un-
dergo no interchange ; but each root of the equation F'(p, ¢,1) =0 will
return, when the contour is closed, to the same value which it had at
the beginning ; although the contour may include points (other than
0, 1, &) at which two of the values of p become equal. But the case
is different if we cause ¢ to describe & closed contour round one of
the three exceptional points. At each of these points all the values of
p become equal to one another, and to the value of ¢ indicated by the
point. As the general result is the same for each of the three points,
it will suffice to attend to one of them only; for example, to the point
¢=0. If, then, we cause g to describe a closed contour round 0, the

g values of p, or of the expression ¢° (gi;—Q—k), which contain the

divisor g in the denominator, change into one another cyclically, #rnd
thus the Zg= A4 B roots of the equation arrange themselves in 2y
cycles, corresponding to the different divisors of N; or, which is the
same thing, the developments obtained by expanding the different
values of p in series proceeding by ascending powers of ¢ are singular;
being, in fact, of the type
’ [
(8) vernie wp=A+....

Similarly, at the points +1 and o, we have singular developments of

the types c
) ...... r—=1=A(g-1)"+...,

As these are all the singular developments that can exist, we infer
that, if W (p) represent the number of the spiral points of p, each point
being reckoned with its proper multiplicity,

W(p) =382(9—1) = 8(4+B)—6b».
Substituting, in the equation of Riemann,
8) ...... 2H = W (p)—2E (p) +2,
the value of B (p) (equation viii., Art. 3), and the value just obtained for
W (p), we find H=1}(4+B)—-3v+1,
which is the equation (iit.)
"Art. 5. The Cuspidal Indez.—To determine the cuspidal index of O,

we first consider the developments (5) which appertain to the point R.
Since N is not.a square, we cannot have g =44 if ¢ > g, we have the
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normal development*

if g > ¢’, we have the normal development

L
B _ ( ay
10) ...... S =pul— e
10) y =kt

The branches corresponding to the developments (9) and (10) have,
for their cuspidal indices, g—1 and g'—1 respectively. Hence each of
the lines QR, PR is touched at the point R by a set of branches of
which the aggregute cuspidal index is B—v.

In the same manner, it will be found that at the point S each of the
lines @S, PS is touched by a set of branches having the same cuspidal
indices as the branches which touch QR or PR at R.

Lastly, from the developments (7), we deduce normal developments
of the types

B\
ain ... Z_=,1(- Fon, g0

and from these we infer that the line PQ is touched at each of the
points P and @ by a set of branches of which the aggregate cuspidal
index is A—B—v.
Since U can have no other cuspidal branches, we find
K=2(B—v)+2(B—v)+2(4—-B—v)
= 2(A+B)—6»,

which is the formula (iv.).

Art, 6. The discriminant of F(p, ¢, 1).—The valnes of m, E(p),
E (q), E’(p), E’'(g) are inferred from the equation (1), by a method,
due (as it would seem) to M. Kronecker, of which examples are given .
iu the Report on the Theory of Numbers (Reports of the British Asso-
ciation for 1865, p. 349 sqq.) This method is also applicable to the

¢ If 4, B, C represent straight lines forming s triangle, a development of the type

A By~ B
E:hl(a) +Ag(~0-)"+...,
in which ay, ag ... are positive and increasing, and «, is greater than unity, is termed

a'normal development; A is, of course, the tangent to the branch, B is any line -
yassing through the point to which tho development refers.-
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discriminant of the equation (1)*; i.e., to the expression

(13) ... V(9) = O [¢°(D) —9° ()T,

where the sign of multiplication extends to every pair of values of £.
Let 14) ...... (A+B)’ = 4,+B,, '

where 4, comprises all the terms in (4 +B)* which are greater than
N, and B, all the terms which are less than N; as for the terms which
are equal to N (of which the sum is evidently 2vN), we divide them
eyually between 4, and B,; thus, if g,, gy, ... g are all the divisors of
N (unity and N included), we have

retgnt

A, =vN+ Z Zg:gn 99> N;

rat gmt

a1s) ...... By=vN+2 29,9, 9.9.<N;
rut =t
4+ Br=5 00 = (4+D)
Applying the method of M. Kronecker, we find that the highest power

of ¢ in V(g) is 24,— A—B, and that the lowest power of ¢ is
2B,—A4—B. By a known property of the modular equation,
FQA—-p,1-q,1)=F(p, ¢ 1);
hence V (g) must be divisible by 1—g as often as by ¢; we have,
therefore,
(16) cee. V(9) = (g—g)"*“ " x x(9) 3
where x (g) is a rational and integral function of g, not divisible by ¢

or 1—g, and of the order 24,—4B;+(4+ B).
By another property of the modular equation we have the identity
(pq)“"xF(;l;. %, 1) =F(p, ¢ 1)
If therefore we write p-+p’ for p, and g=+q for g, the dialytic dis-
criminant of the bipartite binary quantic

Derxp(Z, L, 1)
FOTI )
is symmetric with regard to g and ¢; 7.e., itis dftl}b form

an ... (4 @ — DT> 42 % x (g q’j}
where x (g, ¢’) is symmetric and of the order 24,—'4B,+4+B.

* 1t has been applied by M. Koenigsberger (Vorlesungen siber die Theorie der
Elliptischen Funktionen, Vol. IL, p. 164) to the discriminant of the modular equa-
tions between # and v, in the case in which ¥ is not divisible by any square ; the
result had already been given by M. Hermite in his Mémoire sur la Théorie des
Equations ' Modulaires (Comptes Rendus, Vol. xlviii,, p. 1079.) The discriminant of
the modular equation between x®(w) and x3(0) has been similarly treated by M.
Krause (Math, Annaien, Vol. xii., pp. 1—3). :
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It will be observed that the order of the discriminant (17) is
8 (2B,—A—B)+24,—4B,+A+B
=2(4,+B,)—2(4+B)
=2(4+B)(4+B-1),

as it ought to be; and that the equation V (g) =0 is to be regarded as
having 2B,—A—B infinite roots, and as having lost the same number
of dimensions.

‘We may add that x(q) is a perfect square. For, if g—g, be any
factor of x(g), all the developments of p, proceeding by powers of
g¢—qp have integral exponents; the exponent of g—g, in x(g) is the
sum of the discriminantal indices of these developments taken in pairs;
and this sum is always even,

Art. 7. The discrimindntal indices of P, Q, R, S.—We next examine
the discriminantal indices in the carve O of the points P, Q, 'R, S. Re-
presenting these indices by D (P), D(Q), D(E), D(S), we have

18) {D(P) = 24'-4,—4 =D(Q),
""" D(R) =2B,-24 =D(S).

To establish these formuls, it will suffice to consider the points P and
R. At P we have v superlinear branches of the aggregate order 4 —B
touching PQ; we may symbolize the branch of which (11) is the
normal development by (¢’,g), where gg’=N, and ¢'>+N >g. The
discriminantal index of the branch (¢, g) taken by itself is ¢’(g'— g—1);
the joint discriminantal index of the two branches (g, g) and (g, 9,)
is 2¢’(g9i—9,), if g’ > gi, and consequently g < g, Hence we have

(19) ......D (P) = 2¢'(§' —9—1) + 2224 (35— g0),
the summations extending to all values of g" and g; which satisfy the
inequalities "¢>VN, gi<g, gi>+vN.
Attending to these inequalities, we find
29" 4+ 223g'g;- = A4,
3¢’ = A,
2g'g + 222, = 4, -
and substituting these values in (19), we obtain the va.lue of D (P),
glven by the formula (18).
Again, at the point R; we first consider the branches touching PR,
the normal developments of which are of the type (10). For the dis-
criminantal index of these branches, taken singly and in'pairs, we have

the expression )
(20) ...... 29 (9'=1).+ 223g,9, .
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"the summations extending to all divisors ¢ and g, which satisfy the
inequalities
@n ... g>~N, g¢,< 9 Hi> ~N.

The discriminantal index of the branches touching QR is evidently
the same as that of the branches touching PE-; and as the aggregate
order of each of the two sets of branches is B, they intersect one an-
other in B points, and the part of D (R) which arises from their
crossing one another at B is 2BY. We have, therefore,

D (R) = 22g (9'— 1) +422g,4'+ 2B%;
but, attending to the mequahtles (21), we also have
Zg =4, Z2¢'9+22¢9,9 = B;— B,
whence, in accordance with (18),
- D(R) =2B,-

Art. 8.—The intersections with C of the polar curves of P and Q.—
Since the branches which touch PR at R are of the aggregate clags™
A—B, the line PR, considered as a tangent drawn from P, counts
A—B times as a tangent at B. Similarly PS counts 4—B times as
a tangent at S. Again, since the branches which touch PQ at P and
at @, are of the aggregate order A — B, and of the aggregate class B,
PQ, considered as a tangent drawun from P, counts A—B+B= 4
times as a tangent at P, and B times as a tangent at Q. Thus the
three lines PR, PS, PQ count as

(4-B)+(A-B)+(4+B) =84—B

tangents from P; 1.e., no other tangents can be drawn to C from P.
Again, the polar curve of P intersects 0 at P, @, K, S, in

D(P)+A = 24— 4,,

D(@Q+B .=24'-4,+B—4,

D(R)+4— ‘B= ZB, =B—A4,

D(S)+A—B =2B;—-B—A,
points respectively ; or, in gll, in 4-A’+_4B,—2A,-_: 3.'1'1—1? points. The

whole number of intersections of C by any ote’ of ity first polars is
24 (24—1); hence the polar of P intersects U in

24 (24~1)— (44°+4B,—24,—34—B) = 24,—4B,+ A+ B
points, other than P, @, R, 8. "These 24,—4B, +A+ B intersections
‘correspond in the discriminant of F'(p, g, 1) to the factors of x (g), of

which the aggregate order is the same.’
As the intersections other than those at P, Q, X, Scorrespond to the
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factor x (g), so also the intersections at R correspond to the factor
¢"%-4-2, and the intersections at S to the factor (1—g¢)*>~4-2, But it
is proper to observe that the remaining intersections at P and Q (of
which the aggregate number is 44*—24,+ B— A) surpass the order of
the remaining factor ¢’**-“4-? of the complete dialytic discriminant;
the difference

(44'—24,+B—A) — (2B,— A~ B)
=24 (24—1)—2 (4+B) (4+B—1)

being, a8 it ought to be, equal to the difference between the number
of intersections of 0 by any one of its polars, and the order of the
dialytic discriminant. We reserve, for a future communication to the
Society, & complete discussion of the relations which subsist between
the exponents ofrthe factors of the dialytic discriminant of any
parametric equation, and the corresponding intersections of the locus
curve by the polars of the centres of the generating peucils.

The points, other than P, @, R, S, in which O is intersected by the
polar of P, are all ordinary double (or it may be multiple) points, free
from superlinearity, and having tangents which do not pass through P.
For O hasno superlinear branches beside thoese at P, @, R, S, and the
only tangents which pass through P are PQ, PR, PS. The same
thing is also evident from what has been said in Art. 6 of the
exponents of the factors of x (y).

Axts. 9—11. N divisible by a square,

Art. 9.—Definition of certain Arithmetical Functions.—We now pass

to the general case in which N is any uneven number whatever. Let
N=qarapay ...,

@y, Gy ... being different uneven primes; let g, ¢’, as before, be two -
conjugate divisors of N, and let 7 be the greatest common divisor of g
and . We resolve g into the prodact of two factors y, and y, of
which y, contains only those prime divisors of g which do not occur in
n and g'; and y, contsins only those prime divisors of g which do occur
in nand ¢. Représedting by f(z) the number of numbers prime to
any given number ¢ and not surpassing it, we write

I (@) =nf(rss

and we observe-that we have the equations

(o) _f@_f@,
7 g g
each. of these, quotients being equal to

(1-4)
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if e denote any prime divisor of . 'We still retain the symbols », 4,
B, Ay, B,; but with extended significations, which we proceed to

explain.
We define » by the equation

(20) ...... 2v = 2f (n),

the sign of summation extending to every divisor ¢ of N. 'We observe

that, in general, each term f(n) occurs twice in 2f (3), because 5 is the

same for each of any two conjugate divisors ; but that, if N= 6' isa

perfect square, the term f(8) = f’ (8) occurs only once in 3f ().
Again, we define 4 and B by the equations

@l) ...... A=3f'(g), 9> VN,
(@2) ...... B=3f'(g), g< VN,

the summations extending to all divisors g of N which satisfy the
inequalities (21) and (22) respectively; when N =6 is a perfect
square, we divide the term f’(0) =f(6) equally between 4 and B,
‘We thus have in every case

A+B=3f (g),

the summation extending to every divisor g of N.
‘Lastly, we define 4; and B; by the equations

(@3) ...... 4, = 23f’ (91 (95)s 9:95 i N,
29 ...... B, = 22f" (9,) f (95)s glgsé N;

in which ¢, and g, are any two divisors of IV (the same or different)
which satisfy the inequalities specified ; so that, if g, and g, are different,
the term f* (g,) f (9,) occurs twice in 4y, or in B,, as the case may be.
If g,9; = N, we divide the double term 2f’(g,) ' (g,), corresponding
to these two divisors, equally between 4, and B,; .if, in: particular,
N = 6® is a perfect square, the single term [f(6)]? is to be.divided
equally between 4, and B;. It is evident that we have, in every case,

A+ B, = (A+B)".

The sums 2v = 2f (), and 4+ B = 2f’ (), may be conveniently
expressed in terms of the prime divisors of V. = Observing (1) that
the terms of the prodact

O[l4a+a*+ ...a%]
represent, a.fi;er development, all the divisors of V, and (2) that
@) =F () xf (b)),
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if g be & product of two relatively prime factors &, and &, we find
(@) =0[f M +f (a)+:..f ()]
=0[1+(a—1)+a(a—-1)+...4a**(a=—1) +a"]
=1 [a"‘-}-a‘] ;
whence (25) ...... A+B = Nx1II (1+-‘1;).

Again, if we write f” (g) for £ (n), and give to k,, h, the same signifi-
cation as before, f” (g) satisfies the equation
@) =" (k) xf* (hy) ;

whence we infer that

() =T )+f" @ +..+f (aI]
First, let a = 2u+1; then

O+ (@) +...f" (@)
=2[14(@—1)+a(a—1)+...+a*"' (a—1)] = 2a~
Secondly, let a = 2p; then

FO+f @) +...+f" (a*)
=21+ (a—1)+a (a—1)+...+a?*(a—1)]+a*' (a—1)
= ap+a,»-
If therefore N = Ub**!xIIc*, where b, ..., ¢, ..., are different prime
numbers, we have

(@6) ...... f (n) = 2v = NM2H x I (1+%).

It will be observed that the definitions which we have now given of
the symbols », 4, B, 4,, B, coincide, in the case in which & is not
divisible by any square, with the definitions of Arts. 3 and 6.

Art, 10. Case when N is not a square.—Excluding, for the present,
the case in which Nis a perfect square, we have to show that, in all
other cases, the formuls of Arts. 3—8 hold. without further modifica-
tion. For brevity, we shall establish only a few of the assertions included
in this genera.l statement, as the method to be pursued with regard to
all of them is the same.

(1) If & (N) is the sum of the divisors of N, and e, ¢, ... are the
primes of which the squares divide V, the order of the irreducible
modular equation of order AV is

N .
o (N)—20 —§)+z«b (;m)—
(See M. Joubert, Comptes Rendus, Vol. 1.; p, 1041; Report on the
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Theory of Numbers, loc. cit., p. 332). But this expression has for its
value NTIL (1 +%) ; t.e., the order of the modular equation in p or in
g is A+ B (equation 25).
(i) If we write g= ¢*(w), the A+ B corresponding values of p are
given by the equation
— a8 g’w + 2
p=¢(7FF),
in which % is any one of the L(”-'l—)-g = f’(g) residues of g which are
prime to 7, the greatest common divisor of g and ¢". If, as in Art. 4,

we cause ¢ to describe a closed contour round 0, the f” (g) values of p,
which answer to any given divisor g, arrange themselves in f (1) cycles

each containing —% roots; and thus the developments (5), which

appertain to the simultaneous values p = 0, ¢ = 0, assume, in the‘
general case which we are now considering, the form

g
@n ...... =N () G
the least common denominator of the.exponents being —:— It will be

observed that there are f (7) developments, in which g and ¢ have the
same values ; the coefficients A having different values in these f(n)
developments. Similarly, there are Zf (n) developments of each of
the types £og

@8) ...... (=D =A(g=1)" " *+...,

= L
(29) ..,...%: (1) T

Hence W (p)=8Zf(n) [-% —1]

= 83 (9)—3%/ (1) = 8 (4+B)—6v;
and, consequently, as in Art. 4,

H=3}(4+B)—3v+1.

(iii.) From the developments (27), (28), (29), we can deduce the
normal developments of the six sets of branches which touch PR and
QR at B, PS and QS at S, PQ at P and Q. Each set comprises »
branches; if &* is the greatest square dividing N, b of these are linear .
in each of the first faur sets; all the rest are superlinear. It
will suffice here to determine the cuspidal and discriminantal
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indices of the branches touching PQ at P. The normal developments
of these branches ave of the type

., gte

B g
(30) ... {‘Z‘="(’;) o
' g>g.

Hence their aggregate cuspidal index is
)} (4 _9_ N
f (n) ( P 1): g< VN
or, which is the same thing, '

9>J/N, g</¥, g<J/¥,
2f' (9) — 2f' (9) — 2f (n) = A—B—v.
To obtain the discriminantal index, we first consider a single group

of f (1) branches corresponding to given values of g, g. The discrimi-
nantal index of one of these branches, taken by itself, is

g (ﬂ'_ _.9_._1) ;
n\vn 0
the joint discriminantal index of two differént branches of the group is
P (_.‘i_'_.fl) ;
n\n 9
so that the aggregate discriminantal index of the group (¢, g) is

FxL (L—2-1) 4717 (n-11xL (£-2)

n
=@ L @)—f (@-1)

We next -consider the two groups (¢, g) and (g;, &) consisting
respectively of f (7) and f(n,) branches. If ¢'> g, or, which is the
same thing, if g'g, > N, the joint discriminantal index of the two groups

s fmIxL (LB =97 (¢) [F DS @)
Thus the aggregate discriminantal index of the branches tonching PQ
at P is given by the equation
D(P) =3 (¢) [f G —f (9)—1]
+222f (9) [f’ () —f (9:),

the summations extending to all values of ¢ and g which satisfy the
inequalities 7> VN, a<d, n>VN
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But, as in Art. 7,
@I +2221 () f (9) =4, 2f (9) =4,
3 (9) f'(9)+222f (9) f (91) = 4,—4’;
whence, as before, D (P) =24*—4,—A.

Art. 11.—Case when N 1s a square.—The case in which N= 6 isa
perfect square requires separate consideration, because the modular,
curve of order 6 meets the line PQ in f(0) points distinct from one
another and from P and @ ; arnd again, at edch of the points R and 8,
it has f(6) linear branches, of which the tangents are different from
one another, and from the lines EP, RQ, SP, SQ. Thus some of the
characteristics of the singularities at PQRS are changed; and with
them some of the characleristic indices of the curve.

We write & for f(6) =;” (6). It will be found, on referring to Art.
10, i. and ii., that

E(p)=E(g) =A4+B, m=24,
H=4%(A+B)—3v+1,
a8 in the case when N is not & square. Again, the cuspidal index of
- each of the four sets of branches which touch PR and QI at R, PS
and Q8 at S, is, as before, B—v; but the cuspidal index of the branches
at Pand Qis A—B—v+18 instead of A—B—v». For this index is

2 (g) — 2f (g) — Zf (),
9>/ N, g<yJN, g<yN,
(see Art. 10, iii.) ; and

9> /N
3f'(9) = A—3#H,
g<JN
2f'(9) = B—{¥,
g<JN

3 (n) =v—14f.

To find the discriminantal indices of PQRS, we denote by 14, B, I_», .lT,
the numbers obtained by omitting in ABA,DB, the terms depending on
0; we thus have 3 — A—_%g’, B= B-19, '

Ay = A, - 204 +307%,

B, = B,—20' B+ 16"
Using these expressions, we find, as in Art. 10, iii.,
D(P)=D(Q) =24'-4,—1;

or, substituting for 4 and Z—, their valucs,

D (P) = D(Q) = 24'—A,— 4+ }6.
VOL. IX.—No. 140, S
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To determine D (R), we have :—(i.) For the discriminantal index of
the set of braunches touching either PR or QR, E,—Z-—l—ij; (ii.) for
the joint discriminantal index of these two sets of branches, 9B ;
(iii.) for the joint discriminantal index of the 6’ linear branches,
¢ (6’'=1); (iv.) for the joint discriminantal index of the linear branches
taken with the branches touching either PR or QR, 20'B.

Hence D (B) =D (S8)=2[B,—4—B']+2B'+0 (¢ ~1)+46B
=2 (B,—4),

as in the case when N is not a square.

There is no change in the expressions for the order of V (g), and for
the exponents of the factors g and 1—¢ in V(g) (see Art.6); cnd
these expressious agree with the values which we have obtained for
D(R) =D(8), and for D(P) =D (Q). For PR, touching the
curve at R, counts as 4 —B tangents drawn from P; aud hence the
order of ¢ in the discriminant ought to be, what in fact it is,

2(B,—4)+(4—B) = 2B,—4-B.

And again, PQ, considered as drawn from P, counts as A—3}6 tan-
gents at P, and as B—{0’ tangents at Q. Thus, the number of inter-
sections of C by the polar of P, which lie on the line P@, is

2 (248 - Ay— A +30) +(A—10") + (B—46') = 44'—24,+ B~ 4;

and this number is, as it ought to be, the excess of 24 (24—1) above
the order of V (g); t.e., the excess of the whole number of intersec-
tions above tl.e intersections lying on PQ.

Arrs. 12—14.  Formulms applicable to all values of N.

Art. 12.—If, in the formule relating to the case when N is a square,
we omit the terms containing the symbol 8 defined by the equation

¢ = 7(8) = f (6) =/ (VN), |
we obtain the corresponding formules for the case whep N is not a
square. We shall hencelorward denote by 6’ v number which is equal
to zero when N is not s square, and which is equal to f(+/N) when N

is a square; and we shall treat the two cases simultaneously, except
when it is necessary to call attention to the difference between them.

Art. 13.—The discriminantal class of the cﬁperlinewr branches.—In the
paper on the Higher Singularities of Plane Curves® (Arts. 12 and

# Proceedings of the Society, Vol. vi., p. 163,
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13), it has been shown that, if d and ¢ are the order and class of a
superlinear branch, D and T its discriminantal order and class, we

have the equation . T-D=28-d.
And again, that if there be a second superlinear branch of the order d’
and class ¢ touching the first, and if we represent by T and D the

joint discriminantal indices (of order and class) appertaining to the
two branches, we have the equation

T—D = 2 (¢ —dd).

Combining these two results, we obtain the theorem—
“1f any number of branches touch one another at the same point, the
difference between the discriminantal order and class of the singularity

is equal to the difference between the squares of its order and of its
class.”

Employing a notation explained in ‘Art. 14, we apply this theorem to
determine the discriminantal class of the branches (PPQ), (PQQ),
(PER), (QRR), (PS8S), (@SS). Wo thus find )

(31) ...... T(PPQ)—D (PPQ) = T (PQQ)—D (PQQ)

= (B—-46)'—(4-B)"
32)...... T (PRR)—-D(PRR) = T(QRR)—D (QRR)
= T (PSS)—D (PSS) = T (QSS)—D (QSS)
= (4-B)'-(B—-}¥);
so that T (PPQ) = T (PGQ) = B,—B'—A—6B+}0 +46"

= B,-B'-4
= D (PBR) = D (QRR) = D (PSS) = D (QSS),
- and T(PRR) = T (QRR) = T (PSS) = T (Q8SS)
= '2A’-—A,-—A.+ %9’

= 24'~4,—4 = D (PQQ) = D (PPQ).

Art. 14.—Summary of the results.—For convenience of reference, we
exhibit the preceding results in & tabular form.

Characteristics and Singularities of the Modular Curve C.

I. Ezplanation of the symbols.— -
(1) The order of the transformation is the uneven number V.
(2) g and ¢’ are conjugate divisors of N'; i’ is the greatest square
dividing N. : o C
(8) nis the greatect common divisor of g and g
(4) f(n) is the npumber of numbers élot surpassing n and prime to it.
8
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(5) £ (g) and f'(g") are defined by the equation
£ £ 7).
g 1 g

(6) 22=3f(n), A+B=2f(y), 4+B,=(4+B)"

In these equations the summations 2 extend to all divisors g of NV; 4
comprehends all the terms f” (g¢) in which ¢ > /2, and also, if ¥=6",
the term 30’ = 1 f(#); A, comprehends all the terms of Zf" (g X Zf" (gy),
in which ¢,¢,>2, aud one-half of every term in which g,g,= N, ¢,
and g, denoting any two divisors of XV, the same or different. The
definitions of B and B, follow from those of A and A4,.

(7) m,n, K, I, D. T, H denote respectively the order, the class, the
cuspidal index, the inflexional index, the discriminantal order, the dis-
criminantal class, and the deficiency of the carve.

. (8) The symbol (XXY) or (YXX) denotes a branch, or an aggre-
gate of branches, tonching the line XY at the point X.
- (9) The symbols O(XXY), ((XXY), K(XXY), I(XXY),
D(XXY), T(XXY) denote the order, class, cuspidal index, in-
flexional index, discriminantal order, discriminantal class of the
branches (XXY). The symbols O(X), K(X), D(X), 0(XY),
I(XY), T(XY) are to be similarly interpreted with regard to the
branches which pass through a given point X or touch a given line XY.
" Lastly, the symbols D (XXY, XXZ) and T (XXY, XYY) denote
respectively twice the number of points common to the branches
(XXY), (XXZ), and twice the number of tangents common to the
branches (XXY), (XYY).
I1. Characteristics of the Curve.®
m =24, n=34—-~B-0,
H=}(4+4B)-8+],
K=2(A+B)—6v+0,
I=54—B—6r—29,
I-K =34—-3B-30,
D = 44°-~54+B+0,
T = (84~B—0)'—54+B+0,
T—D = (34—B—0)"— 44

II1. Characteristics of the Special Singularities.

(i.) Characteristics of (PPQ) and (PQQ).

0 (PPQ) = A—B; 0 (PPQ)=DB—1¥,

K (PPQ) = A—B—»+10, I(PPQ)= B—v,
D (PPQ) = 24'— A,— 4+18,

T (PPQ) = B,—B'— A—t/B+}0'+ 16"

* Several of the formuli: which follow may be more simply expressed by using
the symnbols 2, B, I, T, of Art. 11, and hy writing » = v —10".
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The number of distinct branches is v—36’. They are all superlinear;
viz.,, corresponding to every divisor g of &V, which is less than v XV,
there are in (PPQ) f(n) superlinear branches, each of the order

L‘;_'Z’ and of the class -3-; (PQQ) is of the same type as (PPQ).

(ii.) Characteristics of (PRR), (QRR), (PSS), (QS8S).
All these singularities are of the same type.
O(PRR) = B—}6'; C(PRR) = A-B,
K (PRR) = B—yv,
I(PRR) = A—B—v+1¥,
D (PRR) = B,— B'—A—0'B+46'+ 46",
T (PRR) = 24*—4,—A+16.
The number of distinct branches in (PRR) is »—3}6; of these,
h—0 are linear (Art. 10, iii.); the characteristics of (PRR) and (PPQ)

are reciprocal; viz., corresponding to any divisor g of N, which is
less than /V, there are in (PRR) f(n) branches, each of the order

ag— and of the class -L;-‘l

(iii.) Oharacteristics of (PQ).
0 (PQ) =20 (PPQ) =2B-0';
I(PQ) =2I(PPQ) =2B—%,
T (PQ) = T (PPQ)+T (PQQ) +T (PPQ, PQQ)
= 2T (PPQ)+2 (B—19)*.
= 2B,—24—40'B+6 (6'+1).

(iv.) Oharacteristics of (R) and (S).
These are the same for the two points.

) ...... 0 (R) = O(PRR)+0(QRR)+0 (9)
= 2B.

@) .oone K (R))="K (PRR)+K (QRR)
= 2B—2». :

®)...... D(R) = D(PRR)+D(QRR)+D (PRR, QRR)
+D(6)+D (6, PRR)+D (6, QRE)
=2 [B,—B'-A—-0B+}60+16"]+2 (B—-{0)
+6 (0 —1)+40' (B—10)
= 2 (B,—A4).
The symbol () is nsed to represent the ¢’ linear branches which pass
through R, having tangents distinct from one another and from PR, QR.
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(v.) Tangents to the Curve from PQRS.

(1) PQ, considered as drawn from P, counts as A—~}16 tangents at
P, and as B—}6 tangents at ; PR counts as A—B tangents at R;
thus PQ. PR, PS count as 34— DB —¢'=n tangents drawn from P.

(2) The tangents to the branches (PRER), (QER), and (6) count as
2(A—16)+20' = 24+¢ tangents drawn from R. Thus, there are
A—B—260 other tangents which can be drawn to the curve from R.*

(vi.) Intersections with the Curve of the sides of the quadrangle PQRS.

(1) PQ meets the curve in 4 —16" points at P, and in as many at @ ;
and in & non-singunlar points distinct from either P or Q. ’

(2) PR meets the curve in A—1 points at P; at I it meets the
branches (PRR) in A—1¢ poiots; the branches (QRR) in B—36’
points; the branches (6) in 6 points; in all in 24 points. The same
statements hold, mutatis smutandis, for the lines QR, PS, @S.

(3) IS meets the curve 2 (B—36')+6¢' = 2B points at R, and in a8
many at S; and also in 2 (4—2DB) other points.}

IV. Residual singularities of the Curve.

Designating by K,I,D,T, the parts of the indices KIDT which
arise from the singularities connected with the points and lines of the
guadrangle PQRS, we find, from the preceding formule,

K, =2(4+B)—6v+9,
I, = 44—-2B—6r+426,
D, = 44°+4D,-24,—-64+4¢,
T, = 84'+20;—44,—6A~46B+36'+ 0%
and for the residual singularitics we have
K,=0,
I, = A+B—44,
D, = 24,—4B,+ A+B,
Ty= 44'+4B*+ A,— 5B, +60'(B—A4) + A+ B—2¢".

*If x (—lll_’ q ) = 0 represent the equation of the multiplier, which is of the order

A+B in %, and of the order } (4 —B) in g, the values of ¢ appertaining to the
points of contact of these tangents are determined by the equations

X(\/”, ﬁ“‘) =0, X("\/”; q—&) =0;

when ¥ = ¢, the first of these equations has & roots equal to zero, and ¢’ infinite
roots; both these sets of roots are to be rejected.

t At cach of these points we have p =¢. The equation F(p, p,1) = 0 is divi-
sible by [» (p—1)]*2; the remaining roots, which are 2.4 — 45 in number, give the
intersections of the curve by RS at points other than R and §. These roots may be
determined by the method (due {o M. Kronecker) described in the Report on the
Theory of Numbers, Arts. 131—133. . ’
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Arrs. 15, 16.—Case when N is a square. The Linear Branches (6).

Art. 15. The developments appertaining to the 6 linear branshes U,
which intersect PQ at points other than P and @, are

_1 e e (1+e“‘) € (1+e") (21 +11™)
(33) ...... =7 +& 2 fag Foeeeny
where %= 2—1%11, 21+1 being any term of & system of residues prime

to 20, We hence obtain the normal developments

(34) ...... ﬁ"*”;;“(“"%’) 51— e"")"'-l- .....

so that the tangents of the 6’ branches are the lines
B—}r+e*(a—3y) =0,
whick meet one another in the point a=8=1y; .6, in the point O

in which RS intersects abd.
The developments appertaining to the 6 linear branches at R are

(85) coe.. p =g+ (1=e”) ¢'+.....5
where v = % , h being any term of a system of residues prime to 6;

so that the tangents are a-e’f3=0,

none of the branches being inflected at R.
Similarly the developments appertaining to the 8’ linear branches at
8 are

(86) ..o p—1 = €* (g—1) +1e® (1—e*) (=1 +......
and the tangents are a—y=¢"(B—y),

there being no inflexion.
The two sets of tangents at I and S meet PQ in the same points in
which it is intersected by the linear branches U ; for, if
21+1+2h = (2k+1) 6,
we have u+v = (2k+1)~, whence ¢* = —e~™,
Art. 16. The developments (33—36) may be obtained as follows,

with the help of formulem established in the Report on the Theory of
Numbers already cited.

If w=1+ —"—, where o is- positive and increases without limit,

g=19° (w) & l—¢'° (w) increases without limit; and the limit of
g~+16€™ is unity. - The corresponding values of p are comprised in the

+3) +2")

formula ¢ (9'( —
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where g and ¢’ are conjugate divisors of N, and g, ¢, ¥ have no com-
mon divisor. But this expression may be exhibited in a form from
which the dimensions of ¢ (), as compared with ¢ (w), may be in-
ferred ; viz., we have (Report, loc. cit., p. 850.) :

(14 L) + 2k 5
?3(9 ( ;) >=¢_,( w+d21+1)’

where d’ is the greatest common divisor of g'+2k and g, d = %,r-, and

21+1 is determined by a certain congruence for the modulas d. In
order that the development of %—, in a series proceeding by powers of
—;—, should correspond to & branch intersecting P@ elsewhere than at

P or @, % and -;— must be of the same dimensions. But

&
xe

Lim.p = el = l,. Lim.g+e* = 1;
hence d'=4d, or N is necessarily a square, and d =d = 6. Since
6 =d is the greatest common divisor of ¢g'+2k and g, let g=A4,
g = _f:; then 8 divides -:-+2k; ie, % divides g, ¢/, and 2%, which
are relatively prime. Hence A=0, ¢g=6'=N, ¢'=1. Now there
. are just 0" values of 2k for which 0 is the greatest common divisor of

6* and 1+42k; viz., if 2u+1 be any number less than 20 and prime to
6, the & values of 2k are included in the formula 2k = (2u+1) 6—1;
and it will be found that the congruence determining 21+1 is
(2p+1)(21+1) =—1, mod. 6. Hence we have, for the 6 values of 2k

which we are considering,

1
—+1+ 2k>
o= ol Q1N afe
P(E0) = o o 1) = s 2)
Expanding the valnes of
1__  ¢Go9) 1 _ o of. 4
g~ 1—¢%(@i0) and of -IT =¢ (w+ 1r ),
by means of the formula
(87) ...... ¢° (@) = 166" (1 —8e'™ +dde¥™—......),
which arises from the expansion of (3); and equating the coefficients of
like powers of e~™ in the series '
1_A4.B.C
—==+=+=+
r ¢ ¢ ¢
wo obtain the developments (33).
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Similarly the developments (85), which appertain to the linear
branches at R, may be obtained by substituting the expansions of

p=¢* (£¢+ {—) and ¢ = ¢°(%0) in the assumed series
p=Agq+Bg+......

ARrTrs. 17—19. The Stz Modulur Curves.

Art, 17. If we represent by e (z) any one of the six anharmonic
functions

1 1 ‘z z—1

(38) ...... e, l—g > I =1 =

the modular equation (1) is unchanged by the simultaneous substitu-

tion of e (p) for p and e(g) for g. Hence, if ¢,(2), € (z) denote any

two, the same or different, of the functions (88), the thirty-six
substitutions

39) ...... Fle,(2), &(g), 1]

give only six different equations. As representatives of these, we
take the following '

G) eor. FA—=p, ¢ 1) =0,
i) ooone P (p, %, 1) =o,
(iii.) .. ( -—p, 1—_1_—9, 1) =0,

@iv.) ceoee. F(py ¢, 1) =0,
(%) v F(’l—p, L 1) =0,

() oo B (py 725, 1) =0,

The equation F (p, ¢, 1) = 0 is symmetric with regard to p and ¢;
and it will be found that the equations (i.), (ii.), (iii.) possess the same
property ; thus, for example, the equations

1 1
F (p, > 1) =0, and F (g, 5 1) =0,
are the same, because
Fo,31) = F @2 1) = @) *F (3, %, 1).
The fifth and sixth equations, on the other hand, are changed, each into
the other, by the interchange of p and ¢.
Art. 18. Denoting by X and Y rectangular Cartesian coordinates,
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and writing in the equations (i.) ... (vi),
40) . {22 1+X-¥
( ) k3 +X+1Y

we obtain the equations of six curves, which, in the Mémoire Sur les
Egquations Modulaires, we have called the first, second, third, fourth,
filth, -and sixth modular turves. The equations of the ﬁrst four of
these cnrves are real, as appears from the symmetry of the equations
(i.)—(iv.) with regard to p and ¢; the equations of the fifth and sixth
curves are imaginary and conjugate to one another.

The first and fourth curves are each of them symmetric with regard
to both axes; the fourth curve is its own inverse (anallagmatic) with
regard to each of the two real circles

| XL+ =1;

and the first curve with regard to each of the two i 1magma.ry circles

X4+ (Y §) =1
The second and third curves are symmetric with regard to the axis of
X, and symmetric to one another with regard to the axis of ¥; the
fifth and sixth (imaginary) curves are symmetric with regard to the
axis of Y, and symmetric to one another with regard to the axis of X.
The second and third curves are the inverses of the first, with regard
to the circles (X—3)'+Y'=1, (X+})'+=1,
respectively ; similarly the two imaginary curves are the inverses of
the fourth curve with regard to the two imaginary circles

X+ (T ki) =—1.
Lastly, the substitution X =1¢Y’, ¥Y=—1X’ -
changes the first curve into the fourth, the second into the fifth, the
third into the sixth, and vice versd. .

These assertions are the geometrical equivalents of the properties of
the modular equation stated in Art. 17; it will suffice to verify one of
them. The equation of the first modular curve is

F—X+1Y, $+X+1Y, 1) =0;
its inverse with regard to the circle (X+4)’+¥*=1 is obtained by

" 1 ~ 1
writing }—X+iY = oy gy o
: o 1
4} X—1Y= -}-—-X’-}-iY”
g0 that JHX+i¥=1-_——2

}=X'4Y"



1878.] Singularities of the Modular Equations and Curves. 267

The equation of the inverse curve is therefore

Fimp=y - 1) =0

and this is identical with the equation

1

FHE—T o

1) =0;
i.6., with the equation of the second modular curve, because

F(l—lg 1—11:, 1)"'=0

e eq s . 1 _
1s identical with F (:a, e l) =0.

Art. 19. The equations of the first and fourth modular curves are
iucluded in the general equation

F(a, B, 7) = 0;
viz., to obtain the first curve, we write
a=}—X+i¥, B=}+XHY, y=1;
and, to obtain the fourth curve, we write
a=}+X—1Y, B=}+X+iY, y=1L

Thus the theory of the singularities of these two curves is implicitly
contained in the preceding discussion of the singularities of C.

In both curves the points P, @ are the cyclic points, and (ad, RS) or
O is the origin: in the first curve ab and ES are the axes of X and Y;
@, b being the points (%}, 0), and R, S the points (0, & }+): ¢ is the
point at an infinite distance on the axis of Y'; in the fourth carve R, S
are the points (==}, 0), and a, b the points (0, 2 }1), ¢ being the point
at an infinite distance on the axis of X. Both equations (as has been
already said) are real; and it follows, from the theory explained in the
Mémoire cited, that both of them represent real curves, except when
N=38, mod. 4; in which case the fourth curve reduces itself to the
pair of conjugate points (3, 0).

When &V is not a square, both curves are completely and paraboli-
cally cyclic, having at each cyclic point v branches, of the aggregate
order A—B and class B, touching the line at an infinite distance.

When & is & square, each of the two curves has 6’ real infinite
branches. The fourth curve has also 8’ rcal branches passing through
each of the points (4, 0); (theso two points always belong to the
curve, though, when IV is not a square, only as isolated points:) the
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tangents to the 8 branches are parallel to the asymptotes of the curve.
Similarly the first modular curve acquires 6 linear, but imaginary,
branches at each of the points (0, &= }); the tangents to these branches
being imaginary lines parallel to the real asymptotes.

The equations of the asymptotes of the first and fourth curves are
respectively

Ycos-'zi—Xi; —'zi =0,
41) ......
Ysm—+Xoos ; 0;
. 2l+1 . . .
u denoting g ™88 in Art. 15. And it may be inferred from the

developments (33) and (84), given in that Article, that the rectangular
hyperbola

(Ycos %—Xsin %) (Ysin—;‘— + X cos %) = bsinu

osculates at an infinite distance the branches asymptotic to the two
lines (41).
Lastly, if v= %h =, a8 in Art. 15, the tangents of the fourth curve

at the points (& }, 0).are
Ycos%+ (X&) sin 5 = 0;

the tangents of the first curve at the imaginary points (0, 4 §¢) are

2

and these tangents are paraliel to the asymptotes of the curves to
which they respectively appertain ; because, if

21+1+2h = (2k+1)6,

(Y:h-}i)sinl’z-ﬂXcosl’- =0;:

tan 12‘- = cob %

The points (& $, 0) and (0, &+ }1’) are foci, and indeed the only foci,
of both curves: of these, the points (0, = }1) lie on the first carve, and
the two real points (& $, 0) are its two foci (properly so called) ; the
axis of Y being the only corresponding cyclic axis, or directrix. The
points (£}, 0) belong to the fourth curve (only as isolated points,
when N is not a square), and this curve ‘has, properly speaking, only
the pair of imaginary foci (0, £ }).

Art. 19. The socond snd ¢hird modular curves may be regarded as
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derived from the equation (1), by the substitution
p — _d._ -
7 ’ Ij *
42) ...... Ja =1+ (X—1Y),
8=} =% (X+1Y),
y=1,
X and Y being rectangulat Cartesian coordinates, and the upper signs
relating to the second curte, the lower to the third.
Thus the theory of each of these curves is comprehended in that of
the curve (, of which the trilinear equation is
{ (By)*=4x F(ap, v, By) =0,

or
(ay)®~4 x F(ap, v*, ay) = 0.

The singularities of 0" may be examined by the method already em-
ployed in the case of . Attending, for brevity, only to the case in

which N is not divisible by any square, we write p = %, q =%, in
the parametrié developments of Art. 4, and we deduce, as follows, the
normal developments of the singnlar branches of C’.

(i.) From (6) we obtain
4
Y=Y = (—7-_—’3)' + ... H

4 B
or, multiplying by -;- =1+ 'Z_"']Lg,
44) ...... a_—i;_'y__k (7_ﬁ)'+ ______ ,

which is itself a normal development, if ¢’ > ¢, and gives rise, by rever-
sion, to such a development, if ¢ < g. Hence 0" has a singularity at S,
having the same characteristics as the corresponding singularity of C.

(ii.) From (5) we infer

‘
e Y
—=A(5) +......
Y (F) + -
Here, when p and ¢ are small, @ must be small compared with y, and
v compared with f3; i.e., the coordinates of the point (p=0, ¢g=0) are
a=0,y=0; and the normal development is
e
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(iii.) Similarly from the development (7) we deduce

4
—Z—:X(%)"F ...... .

Thus the coordinates of the point (p = o, g= ®) are =0, y =0; and
we find, after reversion and multiplication by -Z, the normal deve-

lopment

which is of the same type as (45).

Thus the carve hds at P and Q singularities of one and the same
self-reciprocal type; not resembling the singularities which O has at
the same points. The point B does not lie on O,

ArT. 20.
Characteristics and Singularities of the Modular Curve O'.
1. Characteristics of the Curve,
m =2442B, n=384+DB,
H=4}(4+B)—8+1,
K =24+4B—6v,
I =54+ B—6v,
I-K=3(4-B),
D=4(4+B)-54-3B,
T = (844 B)*—~54-3B,
T-D = (34+B)—4 (4+B)*
= (4—B) (54+3D).
It will be noticed (1) that these formuls do not contain 6, although

the case when NV is & square is included in them; (2) that, when N is
not a square, I~K has the same value for 0" as for O.

IL. Characteristics of the Special Singularities.
(i.) Characteristics of (PPR) and (QQR).
0 (PPR) = A+B = O (PPR),
K(PPR) = A+B~2 = I(PPR),
D (PPR) = A4,+3B,—24—2B = T (PPE).

The number of distinet branches at each of the points P and Q is 2»;
viz., corresponding to every divisor ¢ of &V, there are in (PPR), f(n)

branches of the order <L and of the class %; of the 2» branches, k are
f’
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linear, and, in particular, when IV is a square, § of these are also non-
inflexional.

(ii.) Characteristics of (PSS), (QSS), and (8).

These are the same for 0" as for C (see Art. 14, I11.,ii. and iv.). When
XN is a square the equations of the tangents to the linear branches are

—y=€"(y-8)
(see Art. 15, equation 86).

(iii.) Tangents to the Curve from PQRS.

(1) PR, considered as a tangent drawn from P, counts as 24+2B
tangents at P; and PS counts as A—B tangents; hence PR and PS
are the only ta.ngents from P.

(2) RP, considered as a tangent drawn from R, counts as A+ B
tangents at P; and so does R@ at @; thus there are 4 —13 other tan-
gents which can be drawn to C° from R.

(3) Besides the tangents at S, there are 4 —B—2¢ other tangents
which can be drawn to the curve from S (see Art. 14, III,, v., 2).

(iv.) Intersections with the Curve of the sides of the quadrangle PQRS.

(1) PQ meets the carve in A+ B points at P, and in 4+ B points
at Q. Thus it never meets the curve again, and touches it nowhere.

(2) PR and QR each meet the curve in 24 4 2B points, touching it
at P and Q respectively, and meetlng it nowhere else.

(3) PS and QS meet the curve in A+ B points at S, and in A+B
points at P and @ respectively ; thus they never meet the curve again.

(4) RS mects the curve in 2B points at S, and in 24 other points.*

III. Residual Singularities of the Curve.
Employing the notation of Art. 14, IV., we have

K, = 244+ 4B—06v,
I, =44-6v+6,
D, =24,+8B,—64—-4B,
= 44’4+ 6B,—~6A—4B+V.
KI = 0)
I, = A4+ B¢,
Dy =24,—4B,+ A+ B,
Ty, = 24'—2B'+34,—3B,+ A+ B-¢.

The indices K,, Dy have the same values for O and (', becanse these

* The points of contact of the .4~ B tangents, iii. 2, and of the 4 —B—2¢' tan.
gents, iii. 3, und the 2.4 points of interscction, iv. 4, can be determined by methods
similar to those indicated in the Notes on Art, 14,
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indices refer to singularities which do not lie, in either figure, upon
the fandamental triangle of the quadric transformation by which the
curves are changed into one another. The equality of the indices I,
when N is not a square, implies the theorem :

“ Each of the first three modular curves has as many mon-singular
inflexional tangents as it bas osculating circles, which pass through the
point (4, 0) ; or again, through the point (-4, 0).”

Of the formulw contained in the preceding enumeration, we shall
demonstrate only one; viz., the expression for D(PPR) or D(P).
We have, as in Art. 10, iii.,

D(P) = 2f () L (£ — 1) + 3/(a) [ () -1] LLED)
+235,f(n) £ () 2UED),

where g is any divisor of N, and ¢’ is the conjugate divisor of g; g, is
any divisor less than g, so that g, > g’; the summations 2, and 2 extend
to every value of g, and g respectively. Hence we find

47) ...... D(P)=2f @) [f @+f@N-2[f (9 +f )]
+222,f'(g,) {f' @+f (9’)]-

But we have, evidently,
2 (9 () +222,f(9) £ () = (44 B = 4,+By;

2[f(9)+(g)] =24+2B;
and, observing that ¢'g, < N, we also find

. 27 @) f (9)+22,f (901 (9) = By
Introducing these values into the equation (47), we ohtain
D (P) = 4,+3B,—24 2B,
in accordance with the formaula II. i. supra.

The following presents were made to the Library in the Vacation : —

¢ Educational Times,” August—November, 1878,

 Reprint of Mathematics from the Educational Times,” Vol. xxix.

“ Proceedings of the Musical Association for the Investigation and
Discussion of Subjects connected with the Art and Science of Music,”
4th Session, 1877-8.

¢ Monatsbericht,” Juni, Juli, August, 1878.

* American Journal of Mathematics, Pure and Applied,” Vol.i., No. 8;
Baltimore, 1878.
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1877 ; No. 83, 1878.)
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“Proof of Stirling’s theorem 1.2.8 ... n = v/(2nx) n"e™" (Ditto,
No. 57, 1877).

“On Expressions for the Theta Functions as Definite Integrals
(“Proceedings of Cambridge Philosophical Society,” Vol. iil., Pt. iii.,
May 1877).

“On a Formula of Ca.uchy 8 for the Evaluation of a cla.ss of Definite
Integrals” (Ditto, Vol. iii., Pt. i., Nov. 1876).
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hardt’s Tables” (1 to 8000000), and Dase’s Tables (6000000 to
9000000), (Ditto, Vol. iii., PP- 17——23 47—156).

VoL, IX,—N0. 140.



274 Proceedings.

“On certain Determinants,” and *“On a Series Summation, leading
‘to an expression for the Thets Function as a Definite Integral ”
(* Report of British Association,” 1876).

“On certain identical Differential Relations” (* Prooeedmgs of Lon.
don Mathematical Society,” Vol. viii., Nos, 106, 107).

“ Numerical Values of the first twelve Powers of =, of théir Rec:pro-
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“On Factor Tables,” with an account of the mode of formation of
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‘hang mit den hyperelliptischen Functionen (p = 2),” von Karl Rohn;
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“Boletin de la Institucion libre de Ensefianza,” 30 do Junio de 1878,
No.83; and “Suplemento al Ntimero 87" (Afio tercero curso de 1878-9).
- “Institucion libre de Ensefianza, 1* Conferencia” (25 Nov. 1877),
“Las Elecciones Pontificias por el Exc™ 8§° D. E. Montero Rios”;
Madrid, 1877.

“Ricerche sulle equazioni algebrico-differenziali,”” (Memoria di F.
Casorati a Pavia,) estratto dagli Annali di Matematica (26 pp.)

“M. S. Verification of Pervouchine’s first result (Divisibility of
28" 41 by 7.2¥+1)”; by T. Muir, M.A.

: “Ditto, and also of second result (Divisibility of 2"+1 by
5x2¥+1)”; by J. Bridge, M.A. :

“ Reale Istituto Lombardo di Scienze e Lettre,” — ‘‘ Rendiconti,”
Serie ii., Volumes ix., x., 1876-7; * Memorie,” Classe di Scienze Mate-
matiche e Naturali, Vol. xiii. (iv. della Serie iii., Fasc. iii. e ultimo),
1877; Vol. xiv. (v. della Serie iii., Fasc. i.), 1878; Milano. '

“The analytical Theory of Heat,” by J. Fourier; translated, with
Notes, by A. Freeman, M.A., Cambridge, 1878 : from the Translator.

" “Publications of the Cincinnati Observatory” (No. 4, * Micrometri-
cal Measurements of Double Stars,” 1877).
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“Proceedings of Royal Irish Academy” (Vol. ii., Series ii., Jan. 1877,
No. 7; Vol. i., Series ii., March 1877, No. 12; Vol. iii., Series ii., Aug.
1877, No. 1).

“Transactions of the Royal Irish Aca.demy" ['Vol. XXV., XX. (Nov.
1875). Vol. xxvi., vi. (Nov. 1876); vii, viii., ix. (Ang. 1877);
(March 1878) ; xi,, xii. (Aprll 1878) ; xiii., xiv. (July 1878); xv., xvi.
(Aug. 1878). Vol xxvii,, Pt. 1 (March 1877)]

" “Vierteljahrsschrift der Naturforschenden Gesellschaft in Ziirich,”
redigirt von Dr. Rudolf Wolf; 21* Jahrgang, 1%, 2%, 3%, 4* Heft;
22¢ Jahrgang, 1%, 2, 3%, 4* Heft.

“ Mémoires de la Société des Sciences Physiques et Naturelles de
Bordeanx,” 2° Serie, Tome ii., 3° cahier; Paris, 1878,

APPENDIX.

Tur result of Professor Cayley’s researches on the Double Theta
Functions (p. 29) is given in his Memoir *“On the Dounble Theta Func-
tions” (*Crelle,” 85 Band, 3* Heft, pp. 214—245, in continuation of
83 Band, pp. £10—233).

Herr Weichold’s solution of the Irreducible Case, of which an
abstract was given in Vol. viii. (pp. 8312—316), is printed tn extenso in.
No. 1 of the “ American Journal of Mathematics, Pure and Applied "
(pp- 82—49).

We may refer to the same Journal, No. 8 (pp. 261—276), No. 4
(pp. 384, 885), for a very full and nearly complete Bibliography of
Hyper-space and non-Eaclidean Geometry, by G. B. Halsted (cf. Note
to Vol. viii., London Mathematical Socisty’s ‘ Proceedings,” p. 810).

“On the Theory of Groups” (pp. 126—133), sce’ remarks by. Prof,
Cayley in the American Journal above cited, No. 1 (pp. 50—52), ‘No. 2
- (pp- 174—176) ; see also “ Mathematische Annalen,” Band xiii., -4%
Heft (pp. 561—565). _ .

The same Journal contains a paper by M. Edonard Lucas, * Théorie
des Fonctions Numériques simplement Périodiques” (pp. 184—240,
289—321), bearing upon a subject treated of in the *“ Proceedings” by
Prof. H. J. 8. Smith and Mr. Samuel Roberts. . L

In No. 4 of the same Journal (pp. 350-358), in & paper entitled
‘ Applications of Grassmann’s Extensive Algebra,” Prof. Clifford gives,
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in a brief form, the purport of his once contemplated paper, “On the
Classification of Geometric Algebras” (Vol. vii., p. 135). '

Prof. Clifford’s * Classification of Loci” (Vol. viii., p. 184) was pre-
sentod as a paper and received by the Royal Society, April 8, 1878.
An abstract of its contents is given in Vol. xxvii, No. 187, of the
“ Proceedings of Royal Society,” pp. 370, 371.

Mr. J. C. Malet’s paper, “ Proof that every Algebraic Equation has a
Root” (Vol. viii,, p. 289), is printed in the “ Transactionb of the Royal
Irish Academy’ (Vol. xxvi., July 1878, No. xiv.)

In connection with Dr. Hirst’s *“Note on the Correlation of two
Planes” (Vol. viii.,, pp. 262—273), see “ Annali di Matematica” (Dec.
1877, pp. 287—800)

Prof. H. J. S. Smith’s Presxdentlal Address (Vol viii., pp 6—29) is
translated by Dr. H. G. Zeuthen, and appears in the *Tidsskrift for
Mathematik” (May, 1877).

There is a passage in Chasles’ “ Apergu Historique” (p. 125),—* Si
3 une épicycloide, engendrée par un point d'une circonférence de cerclo
qui roule sur un autre cercle fixe, on circonscrit des angles tous égaux
entre eux, leurs sommets seront situés sur une épicycloide allongée ou
raccourcée,”—wherein Prof. Wolstenholme’s like discovery (Vol. iv.,
p- 380) is anticipated.

A paper by Sir W. Thomson, “On a Machine for the Solation of
Simultaneous Linear Equations,” (“Proceedings of Royal Society,”
Vol. xxviii., No. 191, pp. 111—113), is, if we mistake not, connected
with his communication, “The Integration of the Equations for the
Motion of a System acted on by Forces expressed by Linear Functions
of the Displacements and Velocities” (Vol. vi., p. 114). An account
of the recent communication will be found in “Nature” (Vol. xix.,
pp. 161, 162).

- An account of Robert Flower, the logarithmist (p. 75), is given in a
letter from Mr. A. J. Ellis to the Editor of the *“ Academy” (*‘Academy,”
April 20, 1878, pp. 847, 848).

In connection with Dr, Klein’s pa}ier (p- 128), see his fuller paper
iri the “ Mathematische Annalen,” xiv. Band (Heft i., p. 111, to Heft i1,
p. 172),: entitled, “ Ueber die Transformation der elliptischen ano-
tionen und die Auﬁosnng der Glexchungen fiiriften Grades.”
© On p. 148 the reference, in the text, to “Nature” is incorrectly
~ printed : it should be Vol. xviii,, and the form should be 22" +41.
Verifications of both M. Pervouchine's results have been presented to
the Society by Mr. J. Bridge, M.A. (¢f. “ Nature,” Vol. xix., pp. 17,
and 78, 74) ; and & verification of the earlier result has also been made
and presented to the Society by the author, Mr. T. Muir, M.A. (¢f.

‘Nature,” Vol. xviii., p. 652).



