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THE ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS
DEFINED BY GENERALISED HYPERGEOMETRIC SERIES

By E. W. Barnes, Se.D.
{Received December 3rd, 1906.—Read December 13th. 1906.]

1. The present paper is one of a series* in which the author has
endeavoured to make a contribution to the theory of integral functions
defined by Taylor’s series.

Generalised hypergeometric functions form a wide class of integral
functions whose asymptotic expansions are closely connected with the
theory of linear differential equations. They appear to originate with
Clausent; two important papers are due to Thomae,; and the in-
vestigations of Goursat§ should also be consulted. But the detailed
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development of the theory is largely due to Pochhammer,* whose volum-
inous writings form an interesting study.

In the present paper I take substantially the notation of Pochhammer.
The general type of series considered is

1 a;(a;+1) ... apap,+1) 2,
+ 1 Pl . IB+ 1.2.p,(01+1) ... pylpg+1) i

— P(Pl) cee P(Pq) hd I‘(al+'n) F(C‘p+n) "
I'(ay) ... T'{ay) =0 2! T'(p,+n) ... I'(py+n)

wherein p €. This series we shall denote by

oFpiay oty pry ey py; X
or, briefly, by I, (2).
The series satisties the diiferential equation

[6+a) . G+a)— £ 6+p-1 . (s+p,,—1):|y—0 1)

wherein $ = x(d/dx). The equation is of order (g+1), and ¢ other
linearly independent solutions are given by

‘zl‘pm)rFq':al_Pm-'-l, ceey ah_f)m+1; 2_Pnu Pl_Pm+1’ EERE ] Pq_Pm+1; IC}

where m = 1,2, ..., ¢q. Among the quantities p.—pn+1, that corre-
sponding to » = r is to be omitted.

It subsequentiy proves convenient to make a change in our notation ;
so that, for brevity, we write

U
IHIa—pe)

Qo) = '—1'——— Ay s Py e Py (4P
II I'l—u,)

re=1

* Pochhammer, (1886) ‘¢ Ueber die Differentialgleichung der allgemeineren hypergeometrizche
Reihe mit zwei endlichen singuliiren Punkten,’’ Crelle, Bd. cm., pp. 76-159.

(1888) ¢ Ueber gewisse partielle Differentialgleichungen denen hypergeometrische
Integrale geniigen," Mathematische Annalen, Bd. xxxa11., pp. 353-371.

(1891) ‘¢ Ueber die Difterentinlgleichung der allgemeineren F-Reihe,”’ Mathe-
matische dAnnalen, Bd. xxxvur., pp. 586-597.

(1891) ** Ueber die Difteventialgleichungen der Reihen F(p, o; 2) und
Fpy o7 ), Muthematische Annalen, Bd. xv1., pp. 197-218.

(1893) ** Ueber die Reduction der Differentialgleichung der allgemeineren
/-Reihe,’" Crelle, Bd. cxi1., pp. 58-86,
——— (1895) ‘¢ Ueber die Ditferentialgleichungen der F-Reihen 3-ter Ordnung,’”
Mathematische Annalen, Bd. xLvI1., pp. 584-605.

(1898) ¢* Ueber die Differentialgleichungen der F-Reihen 4-ter Ordnung,’”’ Mathe-
matische cAnnalen, Bd. L., pp. 285-302.

The reader of Pochhammer's papers will note that an earlier puper (1870, Crelle, Bd. Lxxusr.,

pp. 135-157) dealt with series of a different type, to which the name ‘‘ hypergeometric’’ was
also given.
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"
Tpn—1) ,H: Llpm—p)

Qm (z) = xl—p,,

o
nr (Pm_ a)
t=1

prqil+‘11_Pm, teey 1+‘1p—/’m; 2‘—Pm, EERT) Pq_ﬁn+1; (_)“55}
m=12,..49).

Then, evidently, the (g41) linearly independent solutions of the differ-

ential equation (1) are
Qn'(—)yz: m=0,1,2, ...9.

We shall put 4 = q+1—p, so that u is an integer > 1.

2. Various types of integral functions were considered by the author
in the memoir “On the Asymptotic Expansion of Integral Functions
defined by Taylor’s Series.” Parts IX. and X. of this paper contained a
résumé of results relating to the most simple hypergeometric integral
functions F\ia; p;«} and (Fy{p;z}. The proofs of such results were
given in detail in a subsequent paper.* By means of contour integrals
involving gamma functions of the variable in the subject of integration,
it was shewn to be possible to develop the theory of ,F)iu;p;«’ with
considerable simplicity ; ‘and from it the theory of Fip; x| was deduced
by Kummer’s formula

oFrpsai = 02'"51F1‘:,P_"}; 2p—1; —dct;.
These two functions are the most simple examples of the two classes into
which higher hypergeometric integral transcendents can be divided, the
division corresponding to #« = 1 or u > 1. References to the history
and literature of the asymptotic theory of these two elementary tran-
scendents will be found in the paper just cited.

The corresponding theory of the higher transcendents which forms
the subject of the present investigation is by no means an obvious ex-
tension of more elementary results. The asymptotic expansions which
arise for the two simple functions ,F,{a; p;z} and (F,{p;z' have them-
selves the form of hypergeometric series. - In the more complex cases
this not true. Moreover, there does not appear to be any analogue to
Kummer’s formula which we can use to deduce the cases when u > 1
from cases when w = 1. Nor has any analogue to Gauss’s expression of
oF1{a, B; y; 1} in terms of gamma functions been discovered, and Mellin
denies the possibility of its existence.

* Loc. est., ¢ 1, Paper (7).
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3. The results of the present theory were adumbrated by Stokes,*
who shewed that, if z be real and positive,

11 T(a)

ar.
L:_l__ ),F,,{a:} = (27,)&(1—:1)#—%[&-2”;(»—1)]/,, eXp{,ua;‘/"}J
_llllr(Pq)

where J tends to unity as x tends to infinity. :
The general theory when z can take any complex value is due to Orr.t
In his first paper Orr shewed that, if
jarg z| < 7{14+3p! and m=1,2,...,p,

1 . d Q-(—72)
sin Ta,, Qol—2)+ El sin 7 (pr— ay)

4
I’(a,,.) H I‘(am_P'r+ 1)
— 1)1=1 (x)—am "+1FI)_1.:¢1"“ am+1_p1, aeey am+1—P'1;
'
kg El r(l +am_ar) am_a1+1! cey am—ap+1 3 _l/x}'
(4)

This result, which is obtained almost intuitively in Part I. of the
present paper, was, with Orr, the main outcome of some thirty pages of
laborious analysis in which it was derived by an elaborate process of
induction : the notable simplification obtained by the present methods
will be at once apparent to the reader.

In his second paper Orr obtained the dominant term of the asymptotic
equality which is given in Parts II. and III. of the present memoir. In
Part III. I shew that, if jargz| <7 and m=1,2, ..., p,

9
Q@+ 2 eI Q, (z)
» An g-n('Zm-p.)m/p.

— exp { —u 6(;;-—'2))1) me'm $l/y. : (27)5 (p.—l)‘u—?_;zelu G(F—Qm.)Om. néo mnlp.

®)
where 0 =[2a—Zp+3—1]/u.

Orr’s second paper bears traces of great compression: the argument
is most difficult to follow, and at times the methods seem open to serious
objection. Moreover, the method only gives the dominant term of the
asymptotic expansion in question, and it is obviously desirable to shew
how subsequent terms arise in the general case, even though their
complexity is such that they are not actually obtained.

® Stokes, Proceedings of the Cambridge Philosophical Society, Vol. vi., pp. 362-366 (1839).
'+ Orr, Cambridge Philosophical Transactions, Vol. xvi., pp. 171-199 (1898); pp. 283-290
{1899).
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Further, Orr only adumbrates the converse theory of the expression
of the hypergeometric integral functions separately in terms of groups of
asymptotic expansions. He suggests that such should be obtained by
elimination between the results of the equations (A) and (B). In this
paper I shew that the contour integrals which I employ give such ex-
pressions even more easily than they give the converse equalities. And
the nature of certain apparent redundancies which the latter equations
seem to contain is at once apparent from the present theory, which
appears to solve every problem which the asymptotic theory of the series
presents. The importance of the theory and its generality must be my
excuse for the length of this paper.

4. The simple method used in Part 1. to obtain the formula (A) of §3
is an obvious application of ideas which I have employed for many classes
of functions. The idea of employing contour integrals involving gamma
functions of the variable in the subject of integration appears to be due
to Pincherle,* whose suggestive paper was the starting point of the in-
vestigations of Mellin,+ though the type of contour and its use can be traced
back to Riemann [Euvres Mathématiques (1898), pp. 166-167]. The
formula (B) is, however, only obtained by the use of factorial series of a
somewhat complicated type, and the reduction of these series to more simple
forms and the development of their properties are the most novel features
of the present investigation. This use of factorial series to obtain the
asymptotic expansion of integral functions for the region at infinity for
which they are exponentially infinite is due to the author, and was em-
ployed in a recent paper! in which his asymptotic expansion of Gg(z, 6)
when R(z) > 0§ was obtained anew. Each type of integral function
discussed gives rise to a new type of factorial series; but wide classes
of such series possess similar properties, and the investigation in
Part III. of the present paper is, to some extent, based on the properties
of the more elementary series

2 T'in—ys)
w=0n! (n+ 6)°
previously discussed.

5. When w.= 1 the results for generalised hypergeometric integral
tunctions differ in character from, and can be obtained by more simple
analysis than, those which- hold good for other integral values of wu.

* Pincherle, ‘‘Sulle funzioni ipergeometriche generalizzate’’ (1888), Ac¢ti d. R. dccadeniu
dei Lincei, Ser. 4, Rendiconti, Vol. 1v., pp. 694-700, and pp. 792-799.

T Mellin, deta Societatis Scientiarum Fennice (1895), T. xx., No. 12.

t Loc. cit., § 1, Paper (). § Loc. cit., § 1, Paper (8), Part III.
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Consequently in Part II. of the present paper this special case is con-
sidered separately.

I construct the function ,S,(s) defined when R(s) > R(Za—Zp) by
the factori ¥
he factorial series 2 T(t—s) 2 T—p+t—s)

2 e L Ta=a+i=9

and shew by transformations depending on contour integrals
(1) that ,S,(s) admits of analytic continuation over the whole of
the finite portion of the s-plane ;
(2) that it has simple poles at the points
s =Za—2p—r (r=0,12 .., o)
at which the residues can be calculated with sufficient labour, and
no other finite singularities, except the obvious ones which belong to
I'(—s9)and T'(1—p,—s):
(8) that, if s = «+w, when % and v are real, and if « be finite
and € >0, |,S,()|exp @r—e|v|l can, by taking [v]| > a
sufficiently large positive quantity ¥, be made less than any arbitrarily
assigned positive quantity » ;*
(4) that, if both « and |v| be large and positive and ¢ > 0,
|;1Sp(s)| < 7 exp : —%7+€) |1J I :
where, for any finite positive value of k, 7, exp{ku; can be made as
small as we please by taking « sufficiently large, if s be not in the
immediate vicinity of one of the poles of ,S,(s).
From these results the asymptotic expansion of that combination
of generalised hypergeometric integral functions (« = 1) which is ex-
ponentially infinite at infinity is deduced.

6. The case when p is wn integer > 1 is discussed in Part III. There
I construct the function ,,S,(s) defined when

R(s) > R[Za—Zp+3u—1)])/u

»  V(—s+tuw I'I 1'Q—p,+t/n—s)
r=1

by the series ,;

O Tt 1D —ad-tfu—s)
r=1 r=1

and by more elaborate methods shew that it possesses similar properties :—
(1) ,S,(s) is an analytic function over the whole s-plane.

(2) Apart from the obvious poles which arise from 1'(—us) and

T'(u—wmp.—us), it has for its sole finite singularities simple poles at

* In thix cave I say that |,8,(s)| exp {(37—e)|¢|} tends uniformly to zero as  v| tends

to infiuity.
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the points [Ta—Zp+3u—1—r)/u (r=0,1,2, ..., ®)
at which the residues can be calculated with sufficient labour.

(8) The expression |,S,(s)| exp{[(u+1) r—e]|v|; tends uniformly
to zero as |v| tends to infinity, if > 0.

(4) |pSq(s)| < nu exp{[—(@u—+1) 7—e]lv|} when u and [v| are large
and positive, where 7, exp{ku! can be made as small as we please
by taking u sufficiently large and independent of |v|.

From these results we deduce the complete series of asymptotic ex-
expansions (B) given in § 8. '

I do not in the present paper attempt to apply the methods used to
more general types of factorial series (e.g., when u is not an integer), nor
do I consider the associated problem of the nature of the finite singularities
of generalised hypergeometric series of finite radius of convergence.
These questions I hope to consider on a future oceasion.

Part L.

The Asymptotic Ezpansion of Linear Combinations of Generalised
Hypergeometric Integral Functions which are not exponentially
Infinite at Infinity.

7. Let pZ q and n = q+1—p. We proceed to shew that there
are p asymptotic equalities of the type

T{a)TQ—py) ... T1—p, -
(?)(liag)p.l.). I‘(l(—a,,)pl) pFilany oo @ pry ooy pgi (=707}

T(w=p+ 1) T(p,—1) I Tp,—p)

1'
E (pr—a)

Xz " F,lay—pA1, ..., ap—pit1;

2_’)7" 1_'Pr+P], ceey l_p'+pq; (—)p_‘lz:.
q
[(ay) ’1_—_[1 I‘(al—p,,-}- 1)

T :,+1Fp—1](‘l]y (11_P1+1a cery al—pq"‘l 5

»
T —_
T Ita—a) aq—ayt1, . ag—ayb1; —1/z), (A)

each valid when |argz| < w(14+3w). In the asymptotic equality the
error which results from stopping at the (k+1)-th term of the serie:
Jor guiFpai—1lz} is a quantity J, where |Jyz***, can be made as
small as we please by taking |z| sufficiently large. The other (p—1)
asymptotic equalities are obtained by interchanging a, with ay, ag, ..., ap
respectively.

SER. 2. VOL. 5. No. 948. F



66 Dr. E. W. Barnss [Dec. 18,

Let us denote the expression on the left-hand side of the asymptotic
equality (A) by II.
We will first shew that

I'(—8) Tlay+s) I T(1—pi—s)
H —_— L j t=1

> z* ds, B)
II F(l—ag—S)
t=2

the integral being taken round a contour which embraces the positive half
of the real azis and encloses all the poles of the subject of integration
except those of T'(a,+s).

In the first place, since g1 > p, the integral is absolutely con-
vergent. By Cauchy’s theory of residues it is therefore equal to the
sum of the residues of the subject of integration inside the contour.

Now the residue of I'(n—s) at its pole s = n+4m is (—)""'/m!.
Hence the integral is equal to

q

g (—z)" T(a,+n) :I=Il T'A—p—n)
n= »

o I_I 'd—a,—n)

t=1

+ rz:: e E (—z)" T, —1—n) El T'pr—pi—n) I'ay+1—pr+n) 5

1 n=0 !
" T(pp—ar—n)
2

joon B

¢

8. We may next alter the contour of integration so as to give us
the asymptotic expansion (A).
By the asymptotic expansion of the gamma function we know that,
if |arg s| < = and |s| be large,
C(s+a) = s 4*2g*y/27J

where | J | tends uniformly to unity as |s| tends to infinity.
Hence, if s = u+w where u is finite and |v| is large,

IT(s+a)| = exp { —37 |v|} | o>+ —detbme| v/ 2r ],

the 4+ or — sign being taken as v positive or negative.

Hence the contour integral (B) will vanish when taken round that part
of a great circle at infinity for which R(s) > — k where % is any finite
positive quantity, provided

larg z| < (¢+8—p) 3,
i.e., larg z| < 7 (}+3w).
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If, then, L is a line parallel to the imaginary axis which passes

1
between the points —a,—% and —a;—k—1, we shall have I =-— 2—j
L JL

together with the sum of the residues of

T'(—s)T'(a,+59) liI I'Qd—p—s)z*

ﬁ F(l—ag—s)
t=2

at its poles —a;, —ay—1, ..., —ay—k.

T(ay+n) I T(1—po+a,+n)

[ S ey )
Thus =z 3 (—2) +Ji,

v=0 nl ﬁ T'Q—a+a,+n)
t=2

and it is evident that |Jyz***| for any finite value of % can be made
as small as we please by taking |z| greater than an assignable positive
large quantity. '

We thus have the given asymptotic expansion.

9. Let us consider the set of expansions of the type (A) in detail.
When p =g =1, so that u = 1, we have one asymptotic expansion
of the sum of two hypergeometric integral functions, and this asymptotic
equality is valid when |argz| < §=.
The single expansion is therefore equal to two separate expansions
F 2
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when R(r) <0.* From these two we may eliminate one of the hyper-
geometric integral functions and obtain an asymptotic expansion for the
other when R(r) < 0 whose dominant term is only algebraically infinite
(or zero). The work has been carried out in my previous paper,! where
it has been shewn that we get the asymptotic equality

oo _Llp)
1F11“9P='2»—'I\(P_a)

(—x)~*,Fyla, 14+a—p; —1/z!.

More generally, when p = ¢>1, so that » = 1, we have p asymptotic
expansions of the sum of (p+41) hypergeometric integral functions, and
these asymptotic equalities are valid when |arg.r| < ?7. There are thus
in all 2p relations when R(z) < 0. At first sight we might be tempted:
to say that by eliminating p of the hypergeometric integral functions we
can obtain p different asymptotic expansions, when R(z) < 0, for the
remaining hypergeometric function. This, however, 1s evidently absurd.
and, in point of fact, of the 2p asymptotic equalities only p41 are
independent, as may be shewn by the somewhat laborious algebra which
results from writing down the equations and actually performing the
elimination.

The single asymptotic equality which results from eliminating all the
hypergeometric integral functions in the expression Il except the first
is actually the velation, valid when E(r)<0,

]'i [RNCAY

—* " Fiu «w,: st
L p iUy ooy v Pry e P
o1 (T ! ! !

T'(«,) I’]',' I'(—u)
t=1

p+11'1,:—1 ]‘“r: ]-+“1'_P1.' ceey ]-+al'—Pp;
14a,—uy, o, ¥ oo, 1t u—uy; —1/z},

»
=3 (—o™
r=1

[
I 1'pr—w)
t=1

the star denoting the omission of the term 14a,—«,.

10. This may be proved directly by contour integration as follows :—
We consider the integral

— _1_j
27t

taken round a contour which embraces the positive half of the real axis

I'(—s) 1T 1 (a+5)
=1

(—ux)ds

r]—-l-‘Ix T (Pt =+5)

t The reader may compare the more complex case of § 48, where the various runges of urg »
are given in detail.
3 Cambridge Philosophical Transactions, Vol. xx., pp. 263-279, § 12.
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and encloses only the poles s = 0, 1, 2, ... of the subject of integration.
It is evidently, by Cauchy’s theory of residues, equal to

II - ==X 1@y, vy Aps Pry wees Pp; L be
] lF(p;)JPFp‘al’ » Up; Py Pps Tj

But, if |arg(—=)| < 3w, we may swing the integral back as in § 8. We
thus see that it is asymptotically equal to

—n Da,4n) ﬁ' T(ay—a,—n)
£ t=1

o n! e
II T(pr—a,—n)
=1

Il b=

B

(__x)—al.

r=1

=
il

We thus have the given result.

11. When u>1 there is no direct analogue of the asymptotic equality
Just obtained : n fact, there is no region of the plane at infinity over
which Fi{z} can be represented by an asymptotic expansion whose
domanant term is algebrazcally wnfinite (or zero).*

To take the simplest case, suppose that w = 2 so that ¢ = p+41.
Then we have p equalities of the type (A), § 7, each of which gives the
asymptotic expansion of a sum of (p+2) hypergeometric integral functions
valid when |argz| << 2. These are equivalent to 2p relations between
the (p+2) functions when |argz| << 7. But only (p+1) of these
relations are independent. Therefore the sum of suitable multiples of
two hypergeometric integral functions (p = ¢—1> 0) can be expressed
as an asymptotic expansion with its dominant term algebraic, and the
equality will hold all round infinity ; but a single hypergeometric integral
function (p = g—1) does not admit of such an expansion for any portion
of the plane at infinity.

In the case p =0, ¢ =1, discussed in my previous memoir, 10
asymptotic expansion exists whose dominant term is algebraic.

More generally, when u = 2, the p equalities of the type (A), § 7, give
rise to (p+1) independent asymptotic equalities, each involving (¢+41)
hypergeometric integral functions. Hence the sum of suitable multiples
of ¢g+1—p = u such functions can be represented by an asymptotic
expansion whose dominant term is algebraic, but no combination of
less than u« is capable of such representation.

1 A reference to Parts II. and III. will shew the connection between this theorem and the
fact that ¢* tends to zero as x| tends to infinity when |arg (—x)| < §m, while exp (uf2!#) where
u is an integer > 1 does not possess a similar property when |argz| < =.
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12. The fundamental combination of this type may be obtained by
considering the integral

T(—s) I Tla4s) 0 Td—p—s)
r=1 r=p+1 (—x)sds.

11 T (p,+9)
r=1

If the integral be taken round a contour which embraces the positive
»

half of the real axis and excludes the poles of II I'(a,+s), it will be
r=1

equal to

P
II T'(a,)

f:l_ IL T(1—pn)pFylay, ey ap; pry <oes po; (=)}
I‘I F(P'r) r=p+1
r=1

P 1
L.~ I T'd+a—p) II' T(or—p)
t=1 (=p+1

+ r=:21+1 (_z)l—m- o
t—IIl F(Pt"l"l'—P)‘)

x;rFq':1+a[_PT; EEE) 1+ap_/’r;
2_"P1': 1+P1‘—Pn [ERT) # LEE) 1+P11_Pr; (_)’l-]lxl,_

If |arg(—=2)| < 3uw, the integral may be swung back in the previous
manner and we shall obtain, as the asymptotic expansion of the linear
combination of the u generalised hypergeometric integral functions just
written down, the series

. T I’ Tw—a) T T+a—p)
E (_x)—u,. t=1 t=p+1
r=1

14
II T'(py—a)
t=1

XpetFyo1ity dpt1=—py, .., ap+1—py;
14a—ay, ..., * ..., 14a,—ay; —1/z}.

The sum of these p series is asymptotic in Poincaré’s sense. _

In the same way, by considering other contour integrals which may
with ease be written down, we can obtain suitable combinations of any
number [less than (g+2) and greater than (u—1)] of hypergeometric
integral functions whose asymptotic expansions have their dominant
terms algebraic.
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We thus get all the results which can be derived from the (p+1)
independent asymptotic expansions contained in the formula (A) of § 7
by eliminating any possible number of the hypergeometric integral
functions involved.

Other combinations of the hypergeometric integral functions involved
have their dominant terms exponentially infinite : to the development
of such expansions we now proceed.

Parr II.

The Exponentially Infinite Asymptotic Exzpansions of Linear Com-
binations of Generalised Hypergeometric Integral Functions for
which p =gq.

18. In the ensuing investigation we limit ourselves to the case p = ¢,

w =1, partly because the theory may be developed in a more simple

manner than the most general theory when u > 1, partly because the

results differ somewhat in character from those of that theory.
The differential equation of the functions considered is now

[O+a) .. OFa)— & G+p—1) ... G+p—D]y = 0.

It is of order (p+1), and the independent primitives are
PFP{alv ceey Aps Pry «oos Pps :t:-,
g Fylay—putl, .., ap—pnt1;
2_P'm’ Pl_Pm+1, e, Pp'—Pm+1; 1‘:‘
m=1,2, ..., .

We have seen in §§ 9 and 10 that when R(z) < 0 each of these
functions can, near |z|= o, be represented by an asymptotic expansion
whose dominant term is algebraic. We now proceed to find asymptotic
expansions of these functions, valid when R(z)> 0, and to tind Orr’s
linear combination of the functions which has an asymptotic expansion
of the same exponential type.

For this purpose we construct the function ,Sp(s: «y, ..., ap; py, ..., pp)
or, as we shall briefly write it, ,S,(s), which, when R(s) > R(Za—Zp),
is represented by the convergent series of gamma functions

s I'(=s+9 it (FA—p,+t—9)|
=0 L(¢+1) L5 | Tdl—a+t—s)"

I have previously discussed the corresponding function for which
p = 1, and have shewn (loc. cit., p. 268) that
(=9 ' (—s+1—p)I'(s+p—a)

I'l—a)l'p—w :

Si(s5a30) =
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This equality corresponds to Gauss’s well known theorem. It shews thut
S1(s) admits of analytic continuation over the whole finite portion of the
s-plane ; that ,S,(s) has simple poles at s = a—p—r (r=20,1,92, ..., @),
and no other finite singularities except those of I'(—s) and I'(1—s—p);
and that, if s = u+w and « be finite, |,S,(s)| exp{@r—e) |v]} tends to
zero as |v| tends to infinity, if ¢ > 0. Unfortunately, it does not seem
possible to obtain any such simple expression for ,S,(s) when p > 1.
We must therefore employ other methods to obtain the corresponding
properties of ,S,(s) which have been already stated in § 5.

14. Let ;S,(s) denote the sum of all terms of the series by which
Op(8) has been defined when R(s) > R(Za—Zp) except the first k of
such terms. Choose the positive integer k so that R(—s+k+1—p,) >0
(r=1,2,...,p). Let I be a straight contour parallel to the imaginary
azis passing to the left of the point —s-k and to the right of the
points p,—1. Then I say that

sin s 1 T'(—¢—s) £ Tl—p,+¢)
— = 2mJ 1“(1¢i¢) i I‘(l—a,+$) o

provided R(s) > R(Za—Zp).

For under this limitation the integral is convergent, since the subject
of integration behaves at infinity like (—g)=s=1¢* %™,

Also the integral will vanish when taken round an infinite cireular
contour to the right of the axis I if this contour pass between the poles
of T'(—¢—s).

Hence, by Cauchy’s theory of residues, the integral is equal to

S 1f Lad=pti=s) (=)t
t=k r=1 r(l_ar+t_5) F(t+1)r 1+S—t)
=3 I”I IF'l—p,4t—s) I'(t—s) sin =s
S Tl—ati—s) TGFD =

sin s

15. We will next shew that »5p(8) can be expressed as the sum

of multiples of p series of the form

s TA—ptn=9) f Libtn)
n=u r n+ 1) t=1 P(,-C;+'I?;)

the b's and c’s being linear combinations of the o’s and p’s which differ
for different values of r.

=12 ..,p),
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Provided R(s) > R(Za—2Zp), the previous integral vanishes when
taken round an infinite circular contour to the left of the axis I if this
contour pass between the poles of I'(1 —p,+ ¢).

Hence 77'sinws}S,(s) is equal to minus the sum of the residues of
I'(—¢—s) 1!’1 I'l—p,+¢)

T'i—¢) o1 T'l—a+9)

We thus have, if R(s) > R(Za—2Zp),

at its poles which lie to the left of the axis i

77! sin s ,S,(s) = ‘1_2’1 T.(s)

I)

II' T (o, — pr—

where T.(s) = £ = A Llat1—p,—g) (=) )
n=y ‘ I'e—p.+n T'@®+1)

the accent denoting that the term corresponding to ¢ = r is to be omitted
in the product.
Thus

. 11 T —pr+atn)
7.6 = 5 —

II' TA—pr4p+n) T'(@—p.+n)
t=1 P
II sin 7 (a;—p,)

 LA—=prtn—s) =1
Tn+1)

T fI' sin T (pe—po)
t=1
Now this series for T.(s) is convergent if
R(s+Zp—2a) > 0,

that is to say, under precisely the same limitation as the series by which
»3p(s) was defined.

Therefore, if T'.(s) denote the analytic continuation of the correspond-
ing series, we have, over the whole of the s-plane, the equality

»
-1 . —_ ?
w1 sin ws ,Sp(s) = 2 T.(s).
We have therefore reduced the consideration of the function ,S,(s) to the

consideration of functions of the type defined, when R(s+Zp—Z2a) > 0,
by the series 2 T(l—p,+n—s) i T(b+n)
w0 Tm+1) 5 Tetn)’
Our typical series we shall write
2 Ta+n—s) &£ T'+n
10 = 2 s e
It is convergent if R(s—a+Zc—Zb) > 0.
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The relation of the present paragraph is readily verified when p = 1.
In this case we have, if B(s+b—a) > 0,
E I'(—s+1%) Tla+t—s) _sinm@a—0b) 2 Lla+i—s)Ta—d+1+9)
i=o I'(¢4+1) Td+t—s) sinws =0 TLE+1D)Ta+1+9

I'(—s) . h—sg-
To= )F(a —s; b—s; 1)
sm ""'("A 0 T'(e—0+4+1)
gin s T@+1) Ji e
By Gauss’s theorem this equality may be written

I'(—s)T(b—a+s) _sinwla—b) L'a—d+1)TI'(b—a+s)
FG—a)T(®) = sinws INTESIND) :

It is therefore obviously true.

_or

—s, a—b+4+1;a+1; 1)

16. Let X\ be a contour parallel to the imaginary azxis passing to the
left of the point k and to the right of the points —b, (¢ =1,2,...,p),
where k is a positive integer so chosen that k+R(b) > 0.

Then, 1f T (s) denote the sum of all terms after the first k of the series
by which T(s) has been defined when R(s—a+Zc—Zb) >0, we will
shew that

sin T (s—a) _ 1 L(—¢) {1 Dotg)
w e =g s Ti—ag s L Tt g &
For, as before, the integral is equal to the sum of the residues of the
subject of integration to the right of the axis A. It is therefore equal to
3 (=) b Tbtn)
wer T+ T (1 —a—n+s) =1 Tie+n)
sm 7 (s—a) ‘i T'a4+n—s) ﬁ T'(.4n)
T a=k Lm41) o) Dieetn)”
We thus have the given theorem.

17. The Analytic Continuation of T(s).—We proceed now to shew
that, if ki be the smallest integer such that R(k.+b) > 0,

IT' T(bp—b—n)

sin 7 (s—a) kil I'(0+n) m=1 (=)
Sinw(s—a) pey -
- 1 L'(s) 121 nEO P Z a4 b 1—9) H T (0 —by— I‘(n-{-l)
m=1

1 ﬁ; ”}1] sin 7 (¢, —b,)
o= H' sin 7 (b, —by)

m=1
X Es—a+Zc—Sb4r+1, ket b)+1

"
— 2

0
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where

_ 1 [ ( T(=¢ P T(A—a—¢) & fils) )
I= 27nj I'd—a—¢+9) :,131 I'a—b—¢) rEO (—e¢)*

L] sinvr(c,-l—f d
X31=Il sin 7 (b:+ ¢) #

o =s—a+2Zc—2b+1, and where N s a contour parallel to the
smagmary axis which cuts the real axis just to the left of the origin.
The equality 1s valid for all values of s such that

Ris—a+Zc—2Zb+R) > 0;
it s therefore valid for any finite value of w if we take R sufficiently
large.
By the asymptotic expansion of the gamma function we know that, if
larg (—¢) | <
I'(—¢) I Fd—a—¢) _ E Jr(s) + Ji(3, ¢)

Tl—a—g¢+9) o TA=b—¢) 2o (—¢F™ ' (—¢)F*F
where fy(s) = 1, f.(s) is a polynomial in s, and |Jz(s, )| tends uniformly
to zero as |¢| tends to infinity.

Hence the integral I is convergent provided R(c+R—1)> 0. Con-
sider now the integral

I = 1 J 1 2 gin 7r(c;+¢)

! 2‘7!‘1 A (—(/))"“t 1 8in T(bt+¢)

That value of (—¢)°*" is to be taken which is equal to
exp {(e+7) log(—¢) !,

where log (—¢) is real when ¢ is real and negative, and has a cross-cut
along the positive half of the real axis. Hence the subject of integration
is one-valued in the area to the left of A’. Also, if R(e)+» > 1, the
integral vanishes when taken round an infinite contour enclosing this
area. Hence, if R(o)+7r>1,

de¢.

P
I T mIL sin 7 (¢ — b —n)
I L\l MEI (b + ).,--H P

ok O II' ‘sin 7 (bp— by —n)

m=1

]

the accent denoting that the term corresponding to m = ¢ is to be omitted.
Thus »
,, II sin w(ca—b)
I'r="' "—'S(G'+7 btk) 25+
II' sin 7 (bm—b))

m=1
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where (s, @) denotes the Riemann ¢ function defined, when R(s) > 1, by
the equality ° 1

| {Gs,a) = ’_EO axar
Now, by the result of § 16, we see that

gin 7 (

__iﬁ)_ wT(s)
™

- _1_5 _T=¢) pildza—¢) sinmlatd)) g
27t A F(l—a—¢+3) t=1 ‘I‘(l—b,—¢) sin T(bg+¢)J 7"

Hence, if we take account of the poles of the subject of integration
between the contours A and A, we have the equality given in the
enunciation, provided R(c) > 1. But all the quantities on the right-
hand side of the equality are continuous functions (except for isolated
poles), analytic if R(c+R) > 1.

We thus have the given theorem.

18. We may now shew that, if s = u+w, and u have any finite value,
| T(s) | exp {3mr—e)| v |},

where ¢ > 0, can be made as small as we please by taking | v| greater
than an assignable large positive quantity V.

We take the result of the preceding paragraph.

Then, in the first place, the integral I is such that

|I]exp i(—37—e)|v |}

tends uniformly to zero as |v| tends to infinity. For (—¢)"*" is such
that the argument of —¢ has its modulus £ 4 on the line of integration.
Also for any finite value of | ¢ | the expression

|ITA—a—¢p+s)|exp {Gr—e)|v|}
tends uniformly to zero as |v | increases ; and therefore

I'(—¢)
FrQ—a—¢+s)

exp {(—3m—d|v]}

will tend uniformly to zero for all*values of ¢, finite or infinite (including
even values for which ¢—s is finite when || is very large) on the line of
integration. Hence, since the integral is uniformly convergent with
respect to s, we have the given statement.

In the second place, the modulus of each term of the finite double
series of gamma functions of s which occurs first on the right-hand side
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of the equality of §17 will evidently' tend uniformly to zero when
multiplied by jexp(—ir—e|v]:.

Finally, so far as the expressions I, depend upon s, they depend upon
the Riemann ¢ functions {(e+r, k+0). Now the integer k; was so
chosen that |arg (k,+0)| <47. Hence, by the theory of the Riemann
¢ function,t | {(r+7, kD) |exp ;(—3m—e) | |} tends uniformly to zero
as | v | tends to infinity.

Hence, by the equality of § 17, we see that, for all finite values of ,
| 7 sin7w(s—a) i T(s) | exp { —37m—e|v |} will tend uniformly to zero as
|v| tends to infinity. Therefore |,T(s)|exp {(3m—e)|v|; possesses the
same property. Now ;T (s) only differs from 7'(s) by the sum of constant
multiples of a finite number of terms of the type I'(n+4a—s); therefore
| T(s)| exp {3m—e) | ¢ |} will tend uniformly to zero as | v| tends to infinity.

2

We thus have the given theorem.

19.; We may now shew that, if w is large and positive, and |v| be
large or finite,
T <Kexp | (—ir+e|v|—ku!,

where I is any finvte positive quantity, e >0, and K is « finite quantity
idependent of w and |v|. We assume that s is not in the immediate
vicinity of the large poles a+n, n a positive integer, of T (s).

We have seen in § 16 that, when « is sufficiently large,

sin 7 (s—a) _ 1 TI(=¢) & 1‘(1)1-{—511)
T nl(9) = 21 L F'l—a—¢p+s) II=11 1‘((:,+gb) dgp.

where A passes to the left of the point m, and to the right of the points
—b (t=1,2, ..., p), and m is the smallest positive integer which makes

m—412 (b) > 0.
Now, if Ru—m—a)>0 and R (m—¢) >—1,
| 'te—m—a)| | T A+ w+m—g) |

1
=|Tw—a+14w—¢]| H e R O M £
0

+ See. for instance, a paper by the author, *¢ The Maclaurin Sum Formuls,”” ree. London
Math. Soc., Ser. 2, Vol. 2, p. 256.

+ The author expresses his thanks to the referees for puinting out an arithmetical error in
the original statement of this theorem.
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Also, if « is sufficiently large, and R (m—¢) > 0,

1
j’ zu—a-m—l (1_z)m+m—¢ da:
0

< Sl xu—R(a)-m—l (l_x)m—h'(cﬁ)dz < 1.
0

Hence |1/T(1—a—¢+s)|<1/{|T@—m—a)| |TQA+m+w—g¢)|}.
Therefore

sin 7 (s—a) T(s)

1 I'(—¢) L Lt ¢)
< 27 | T (w—m—a) |L I'a+m+w—¢) El T+ ¢) | g1

< Kexp {37146 |v|—ku},

as in § 18, where ¢ > 0, K is finite and independent of » and | v |, and
k 18 any finite positive quantity, however large.
Hence, if s be not in the immediate vicinity of one of the poles a+n

of T'(s), |wT(s)| < K exp {(—37+e) |v| —kul.

The same inequality is evidently true, under the same limitation, of the
finite number of terms by which 7' (s) differs from ,.T'(s).
We therefore have the given theorem.

20. We can now shew that the function ,S,(s) is such that, if
s = utw, and u be finite,

| PSP (s) | glr=9alv I,
where € > 0, tends uniformly to zero as|v| tends to infinity.
For we have seen in § 15 that

P

7
w7t sinws pSp(8) = El T, ().
Therefore |7 ~!sin s |e®"=91°1] 8 (s)| < él | T, (s)| =9 1%,

that is to say, is less than a quantity which tends uniformly to zero.
We therefore have the given theorem.

Again, we can show that ,S,(s) admits of analytic continuation over
the whole of the finite portion of the s-plane.

For we have seen in § 17 that this is true of the functions T, (s) ; it is
therefore true of the function ,S,(s).

It is similarly evident that, if w be large and positive and |v| be very

large or fimite, | o ()| < K exp {(—3m+e) |o| — ku}
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where K s finite and independent of w and |v|, and k is any finitec posi-
tive quantity, however large, provided s be mot in the vmmediate vicinity
of one of the poles s =n or 1—p,+n (r=1, 2, ..., p) of »S,(5).

21. We proceed now to shew that ,S,(s) has, except for those poles
which are poles of I'(—s) or T'(1—p,+s) (r =1, 2, ...,p), as s sole
Jinite singularities poles at the points

S=al+---+a1)—Pl_-"—Pp_r (r= 0’ 11 21 [ERE) m))

and that the residues at these poles may be obtained with sufficient
labour.

By the definition of § 13, ,S,(s) is represented, when R (s) >R (Za—2Zp),
by the convergent series of gamma functions

$ D(=s+t) 2 (Td—p,+t=9)
2o LA+ o \TA—arti—s)) "

By the asymptotic expansion of the gamma function we know that, when
¢ is large,

L(—s+t) {I‘(l—p,+t—s)l 1
a4+ o

N G i
T(l—a,+t—s)) fri+2e=2a P l,,.zl me™ ’"+

where, for any finite value of u, | J,| can be made as small as we please by
taking ¢ sufficiently large, and where

V= 2 {Sall—pr—9)—Su (L —ar—8)} +Sn(—5)—Sn (D).

Sn(z) denotes the m-th simple Bernoullian function of =z, and is a
polynomial of degree (m+1) in z.
When ¢ is large we see, then, that the above term may be asymptotically
written 1 (B ﬁ (s) + JR (s)l
B

FrI+5—%a | ,_0

where f,(s) =1, and f,(s) is a polynomial in s whose value for any
assigned value of r can be determined with sufficient labour.
Consider now the function

R
pSp(s)—jéofr (S) §(8+’r+1+2p—2a).
When B (s+Zp—Za) > 0 this function may be expressed by the series

w (L=s+8) y TA—p—s+8 5 __fr(s)
2 {F(1+t) Elr(l—ar—s+t) TEO tr+a+l+29—74}
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"
(the double accent denoting that the summation Z does not exist when

t = 0), and this series is equal to o
e (s)

2 FpmEmm
But this series is convergent, provided
R(s+R+Sp—Sa) > 0.

Hence the function
Iy
pSp (s)— '..En.f;- (s) ((5 +7'+ 1 +2p—2a)

has no singularities when
R >Za—Xp—R.

Now the sole finite singularity of {(s) is a pole at the point s =1 at
which the residue is unity.

Hence the sole finite singularities of ,S,(s) apart from those poles
which are poles of I'(—s) or I'(1—p,+s) r =1, 2, ..., p) are poles at the

points s=Sa—S%p—r (=019, ..., o),

At the point s = Za—Zp—r the residue is f,(Za—Zp—7), and this
quantity can be calculated with sufficient labour, should necessity arise.

22. We may now prove that, if |arg (—z) | < 3=,
P T (Q—p)

.~I;I1 iTA=a) oFolay, <o aps pry oeey pps L}

, T (p,—1) I T (o,~pu)
+ > (_x)l—p'_ - m=1
=t II F (pr_“m)

n=1
X Fy 114 aq—pyy ..., L+ ap—p.;
2—pr, L4p1—pr -, ¥, ooy 1 pp—pr; &)
(

I ,
= 6”(_1:)2::.—5,) A z &'i'(ﬂ"

lyop = x*)

where | Jy | tends uniformly to zevo as |z | tends to infinity. The quantity
(=) P, is the residue of ,Sy(s) at its pole s = Za—Zp—r.

We consider the integral

-1 :
2mjps,, () z°ds,



1906.) THE ASYMPTOTIC EXPANSION' OF INTEGRAL FUNCTIONS. 81

taken round & contour which encloses all the poles. of ,S,(s). exeept the
poles s=2Za—2Zp—r (r=0,1,2, ..., ®),
and embraces the positive half of the real axis. The integral is con-

vergent by § 20 for all finite values of |z]|, and by Cauchy’s theory of
residues is equal to :

° & _( )n P I'(l—p,— ")) een
n?:o E n! T'(t4+1) 'rl-Il \ra —a,—-n)J.z

I (or—1—n) II' T (or—pm—) -
m=1 zl+n

n ® o (__)n
+22n 3 3 :

r=1 n=0 t=0 M. r(t+1) ﬁ F(Pr_am-n)
m=1

T r(l r)
= ¢ rI_I1 ll"(l_p i WFplay ooy aps pyy ey pp; —x}

,  T—1 I To,—pn)
+e* 2 e . el
=t H P(Pr_am)
m=1
XpFp {14 ay—pr, ..., 14 ay—pr;
2—pr L4py—prs ooy *y ooy 14 pp—pri —2Z}.
Again, by the results of § 20, if |argz| < $m, the contour of integration

may be swung back as in § 8, and we get for the value of the integral
the asymptotic series ’

I M=

(_)1P x_x—f.p r+J’ /xZu—Zp+1¢

r=0

where | Ji | tends uniformly to zero as | z | tends to.infinity. Changing z
into (—z), we have the given result.

The result of this paragraph is a generalisation of that previously
obtainedt for the case p = 1. In that case the coefficients P, admit of &
simple expression, and we have the theorem that, if |arg (—z)| < §,

ra— 1 )
Fﬁl_P;IFl*“”” *+rEp )( ' B, fa—p+1; 2—p; 2]

admits the asymptotic expansion

E(—ua)* Py {p—a; 1—a; 1/z;.

t Joc. cit., § 1, Paper n, § 5.
8ER. 2. VOL. 5. No. 948.
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28. We now see that the (p+1) asymptotic solutions of the differential
equation of § 18,

[(3+al) o Ota)— L Otp =D .. @D ]y =0, O

are the series which have been obtained in § 7,
(—=2)~* piFp1{am 14+ap—py, ..., 1+ar—pp;
Tta—ay .o *, ooy 1t a,—ap; —1/z} (A)
when r =1, 2, ..., p, and the series

¢ (—zp=-® 3 I ®)
r=0 T
which is obtained in § 22.

In §7 we have connected each of the first series with the hyper-
geometric integral functions which exist as principal solutions of the
differential equation in the finite part of the plane, and in § 22 we have
connected the last series with the same solutions.

If BR(z)> 0, the result of § 22, which is valid if |arg (—z)|<< 3w, is
therefore equivalent to two relations. But in this case the series (B) out-
weighs all the series (A), and therefore each hypergeometric integral
function which is a principal solution of the differential equation (1) can
be expressed, when R (z) > 0, as a multiple of the series (B). The
different principal solutions are therefore expressible as multiples of the
same asymptotic series, though, of course, they are not corresponding
multiples of one another. We have an illustration of Poincaré’s axiom
that different functions may admit the same asymptotic expansion.

24. When R (z) > O the actual expression of, let us say, ,F,{z} as
such an asymptotic expansion is not best obtained by elimination between
the results of §§ 7 and 22. It may be obtained directly by consideriag
the contour integral

1 s
o J T(s) z°ds,

where T (s) denotes the series defined when R(s) > R(Za—Zp) by the
convergent series of gamma functions

& I'(n—s) IPI _(I‘(a,-}-n)}
neo L(4+1) ;5 (Lp4n))

It is evident that this function is a particular case of the function T'(s)
considered in §§ 15-19 for whick @ = 0.
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Hence T (s) has poles when s = n (. =0, 1, ..., @), and when
s=Za—Z2Zp—n.
If the integral be taken round a contour C which embraces the positive
half of the real axis and encloses all the poles s = n, but none of the poles

s=Za—3Zp—n, it is evidently convergent for all finite values of |z |,
and equal, by Cauchy’s theory of residues, to

5 3 4 (Tatn) (e _ 2 T gy
220 Tk aTogs = S ARG e las o5 2h

Now the residue at s = Za—Zp is unity; and the residue at

s=Za—Zp—r

can be calculated with sufficient labour from the asymptotic expansion of
the gamma function : let it be M.

If |arg z| < 37, we see by § 18 that the contour of the integral can
be swung back as in § 8, and we get for the value of the integral the
asymptotic series

s 1y & Mo i)
o {1t 5 T )

where, for all finite values of R, | J;| tends uniformly to zero as |z | tends
to infinity.
Therefore, if |arg z| < 47, we have the asymptotic equality

0 {fa) Fote) = ewme 14 2 T4 )
This result evidently includes that obtained by Stokes for real positive
values of the variable (vide § 8).
Evidently we can obtain similar exponentially infinite asymptotic
expansions, when R (z) > 0, for the other principal solutions

2 JFy {ay—pr+1, ..., ay—pr+1;
2—py, pr—pr+1, .. ¥, oy pp—prt1; T}
of the differential equation (1) of § 28.

25. When R (z) < O the result of § 22 is equivalent to but one identity.
We thus see that, when R (z) << 0, although, as in §§ 9 and 10, each
hypergeometric integral function which is a principal solution in the finite
part of the plane of the differential equation (1) of § 28 is represented
near |z|= ® by linear combinations of the p asymptotlc series whose
dominant terms are of the type z~%(r=1, 2, ..., p), yet one, and only
one, particular linear combination of the principal solutions exists which is
G 2
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exponentially zero when |.|is very large. This combination is given
in § 22.

The complete asymptotic theory of the solutions of the differential
equation (1) of § 28 is now concluded. We next proceed to discuss the
more difficult case when p = q.

Parr III.

The Exponentially Infinite Asymptotic Expansions of Linear Combinations
of Generalised Hypergeometric Integral Functions for which p 3 q.

26. We proceed now to consider the further theory of those hyper-
geometric integral functions for which p < ¢, and consequently u > 1.
We shall in the first place investigate the function

P P € 7 N T T W
or, as we shall briefly write it, ,S, (s), which, when
R > Rlay+...4ap—pi—...—py+3 u—1) ! u, (1)

is represented by the convergent series of gamma functions

D(=s+¢) IL T(1—pet-tfu—s)

1= f[ T (t_+_) ﬁ F(l—a,-{-t/,u.—s)'

7
r=1 o~ r=1
The number x = ¢+ 1—p is an integer.

By the multiplication formula for the gamma function, we have
equally under the fundamental restriction (1)

T (—s+¢/w) Iill (=t t/u—s)

Q

wh

pSg(s) (2m)pe=D =t = |

C D41 I T —attfu—s)
r=1

We shall shew that ,S,(s) possesses properties which are analogous to
those of ,S,(s) obtained in Part II., and which have already been stated
in § 6.

These properties are direct generalisations of the properties of the
function (S, (z) defined when R(2s+4p—3) > 0 Dby the series

’E’ I'(—s+3)T(1—p—s+139)
=0 I'ét+1)1I'Ge+H '
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It is easy to see that, by an application of Gauss’s theorem, ,S,(s) could be
written in the form

7 lsin 7w (p—3) 2# ¥ I (—25) ' (2—2p—29) ' 25+ p—3).

27. We note in the first place that ,S,(s) can be written as the sum
of n sertes in the form

y-1 I'(—s+it+nju) IqI I'A—prt+t+n/u—s)
2 AN r=1

P
n=0 t=0

’

T (t+1) I“Ii' F(t+ ”‘j") I T(—ar+t4n/u—s)
m= r=1

the double accent denoting that the term corresponding to m = u—n

ts to be omitted.

Each of these series is of the same type as the series ,S,(s) previously
considered in Part II., with the exception that s does not occur in u
gamma functions in the denominator of the typical term of the series.

Let, now, ;;'S,,(s) denote the sum of all terms of the series by which
»9¢(s) has been defined under the condition (1) except the first & terms.
Choose the positive integer % so that

R(—s+klu+1—p) >0 (r=1,2,...,9.

Let ¢ be a straight contour parallel to the imaginary axis passing
to the left of the point %/u—s and to the right of the points p,—1
(r=1,2,...,q), and also of the point (k—1)/u—s.

Then, exactly as in § 14, we see that

Pl Ira
- S L
w=osinm(s—n/w) Iy ) 1 Dmfut-pto) I Dl—ar+9)
m=1 r=1
(A)

for the terms of the series f;S,,(s) which arise from poles of I' (—¢p—s+n/u)
occur when ¢+s—nfu = ¢ or ¢+s = t+n/u, when these points belong
to the series %/u, (k+1)/u, ... ; that is to say, when

ut+n > k.

- 28 We may now shew that, under the condition (1) of § 26,
55,09
__ 1 S 7w 8in Tup I (¢)
1 8in 7us sin Tu (s+¢) fI Timfu+¢+9) I"I I'(1—a+9)
m=1 r=1

I (= prtg)

dg.

- 27t
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For the previous integral (A) is equal to

'I

Qe 5 = Od¢
! H, T(1—a,+¢) I} T (m/u+¢+s)
M5! ™ I'A—n/u4¢+s) I'( —p—s+n/u)
where O = 120 sin (s —n/u) TA—9)

1 n=1 7'_2

- I'A—¢) vgo sin 7(s—n/u) sin(rp+s—n/u)

w? K

TTA—9 s g =

1

{eot 7 (s—n/u) —cot w(p+s—n/u)}
2
= — m {cot usm—cot um (s+¢)}

— M sin e I'(¢)
sin s sin 7 (s+¢)

The integral is evidently convergent if
R (us+ 23 430 —Satp—g)>1,

r.e., if R(s) > R{}(u—1+Za,—Zp.}/ u,

which is the condition (1) of § 26
We note that the integral just obtained may equally be written

L o TP PTOT 70D i g st

kS, () = =— =
P =g 1 T1—a+9) sin mus (0"
r=1

for by the multiplication formula for the gamma function

M 3(p—1)
I Tmfu+gts) = F(’“”“L’,“ﬁii)ff ™

The equality (1) is, of course, obvious when the integral is once
written down : the process adopted has been employed to shew how
such an integral may be built up from others of a more elementary
character.

29. We now proceed to shew that
II sin 7 (pr—ay)

sin wu (p,— 1) uretrt!

sinw(p,—1) 2

sin s ,8 () = — 3 U,

1

sin 7 (p, — py)

iTﬂc )
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where U.(s) is the function defined when

Bi{us+Zp—2Za—3—1); >0
by the series

» n—1
E r(l‘n_ﬂpr"’l‘_ﬂ tI=Il Ld+a—petn) };Il F(2+t/,u.—p,+n).

n=0 I'(p.n—,upr+2,u)

T T+ p—prtn)
Since u = ¢+1—p, we may put
A = 24+tu—p, (t=1,2, ..., u—1)
1+a—pr (= u, u+1, ..., 9),
b= 14p—pr E=1,2 ..., 9);
and now we may say that U,(s) is the function defined when
Rus+u+2Zb—2a) > 1

7] Al _ _ Q
by the series b T (un—ppr+p—pus) 1 I'(.a,+n)

n=0 F([l'n'—[lpr'*' 2,“) t=1 F(rbl+n’)

where one of the quantities ., is unity.

The theorem therefore enables us to reduce the consideration of the
function ,S,(s) to that of the more simple function U (s).

Under the condition

R() > R{3w—D+Za—Zp}/n,

the integral of the previous paragraph will vanish when taken round
that part of an infinite circular contour which lies to the left of the
axis . If, then, we apply Cauchy’s theory of residues, we have

q
II’ F(PT—Pt_"') -1 -
. : 4 B (—)""'sin mu(p,—1—mn)
sin mus,S,(s) = X T = YY)
r=1 u=0 17.I 1‘(p,—a¢—n) F(?L+1) (27!')
t=1

X T (p,—1=n) T (—ps—upr+uun) uPrmH7wmeetd

the accent denoting that the term corresponding to ¢ = r is to be omitted.
Thus o
. 1L sinw(p,—a)
sin mus S, (s) = — 12——:1 '7’1———

T II' sinw (- —po)

t=1

sin wu(p,—1) potetl
sin 7w (p,— 1) ou—t

U.(s)

where
U.(s)
— (QT)i(u—l)#wr—QH-év §

n

=~

1 I'd+a—p-+n) e I'(un—up,—us+u)

T+ pr—pitn) I'@—prtn)

-
=l
-

0
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Now by the multiplication formula for the gamma function

wn—pp,+2u—4

T (un—pp,+2m) = “E?W I T(1—pr+2-+t/u).

Hence 1
P p—
ra — PrT 1I I‘ 2 — Py
_© T(un—uprtu—us) t£11 A +a—pr+n) e Q+t/u—p.+mn)
Ur(s) - n§0 r(p_'n—p,P +2Iu) q .
’ I T (1+p—petn)

Evidently the series U,(s) converges if R {us+Zp—Za—3@u—1)} > 0,
which is the limitation under which the series ,S,(s) was defined. There-
fore the sum of the continuations of the specified multiples of the series
U, (s) will give the function sin wus ,Sy(s).

We thus have the given theorem.

80. We can readily verify the preceding transformation when p =0,
q =1, and therefore u = 2.
We have

; 26+25+3
oS1(8) = 2i L T(1—p+¢) [(g) [ (—2s—2¢) 2027 27772 5

T sin 27rs (2w}
and the transformation shews that
9%+2-% gin 2w (p—1)
2/7)} sinw(p—1) v
2 27T (2n—20—2s+2)
where V&= I, FagmTe—pin
the series being convergent if R(2s+p) > 3.

_ 2% 2 2 Tin—p—s+1)T(n—p—s+3)
Now U(s) - (277-)& n=0 I‘(1+7L)P(2_P+71') ’
and therefore, by Gauss’s theorem, is equal to
222+ T(1—5—p) ['(3—s—p) ['(—3+p+29)
(2m)? FA+s)I'@E+s)
_ 22 T(@2—20—25)T(p—3+25)
- T(142s) )

(1)

sin 27s,S,(s) = —

Now, by definition,

_ o T(—s+3)TA—p+ht—9) .
]
OSI(S)W - l§0 r(t+1) 2‘ ’

and therefore by a previous investigation (§ 26)
oS1(s) = 7T 'sin w (p—3) 2%+ ' (—25) I'(2—2p—25) T'(2s+p—13).
Thus the identity (1) is immediately verified.
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31. We have now to consider ‘the nature of .factorial series of the type
U.(s), and especially the nature of their behaviour when s = w4, and
u and |v| either or both tend to positive infinity. With this object
we shall first consider more elementary series from whose properties we
can deduce inequalities. and relations of the type which we desire to
obtain.

As a simple example of ihe factorial sertes which we proceed to
consider, let us take the function S(s), defined when R(s) >0 by the

seres
2 T'(un—s)

u=0 I'(un-+1)

where u is an integer.

By the investigation of the binomial theorem due to Abel, we know
that for all values of z and s for which the series is convergent *

s F'm—s) o _ s
n=0 I‘('n+l)ac = (=9 1—2)

where (1—z)' = exp{slog(l1—=z)} and |arg(l—=z)| < 7. When z =1
the value of the series is zero.

Let, now, w be a special root of the equation y* = 1, so that
1, w, w? ..., w*~! are all the roots of the equation. Then we have

-1
:‘Z:'o (w")" = 0, unless n = M(u)
=u, if n = Mu).
© — r—1 n—
T'(un—s) _ T'in—s) (W

Hence b Z Tlant1) = 2 o2 Tt 1)

p—1
Therefore S(s) = u1T(—s) ‘_E) 1—w").

This equality represents the function S(s) over the whole of the s-plane.
The term corresponding t0 » = O is zero; therefore

S(s) = u-'T(—s) “g (1—w".

In this expression we have to take such a value of (1—w") that the
modulus of its argument is < 3.
Now, if w = ™", this being the simplest special root of y* = 1,
we have, as is readily seen from a figure,
arg(1—w") = wrjp—37, if 2r <p.

; * A full discussion of the theorem appears in a paper by the author, Quarterly Jowrnui of
Muthematics, Vol. xxxvur., pp. 108-116.



90 Dr. E. W. Barnes [Dec. 18,

And the maximum value of |arg(1—w")|
= dr—w/p
if u>1.
Hence, if s = u+w and v tends to infinity, the expression
|S5)| exp{(m/u—e) |v]}
where € > 0 behaves like
[(—s) edv=ov] ':gl (1 — ") g=Gr=molv]

and therefore tends exponentially to zero as |v| tends to infinity for all
Sfinite values of u.

A fortiori it is evident that, except at the poles of I'(—s), [\S(s)| will
tend exponentially to zero for all values of |v| if  tend to positive infinity.

82. It is evident that the previous discussion is only suggestive of
similar results for move complex series, and that for such series other
methods of proof must be discovered.

We proceed to consider the behaviour, as |v| tends to infinity, of the
more general function defined when R(s+c) > 1 by the sertes

& T'(un—s)
n=o T (un+c)’
u being an integer > 1.
As before, this series may be written
1 ";’ 3 I'(n—s)
u =0 a=0 T(n+c)
Suppose now that the coefficients e,, ..., e, are so chosen that

1—wz) '—1—wz—...—w'z"—e, "' —... —enz"*™ = (1—2)" Q(z)
where ()(z) is finite near x = 1. Evidently this is always possible.

Consider now the integral -

(,l T)’Il

1 n+1
L (1—gz)y*e-tg—-1 :% ——elx"“—...—emz“*’”}- dz.

It is convergent at z =0 if R(n—s)> —1and at z=1if R(s+c+m)>0,
provided w = 1.

Thus 1t is convergent at both limits if » > E(s) > —m—E(c).

If n > R(s) > — R(c), the integral is equal to

ol w (L(t=s5)T(s+0) %‘: ¢ Fn+t—s)L'(s+0)

:=§+1 T'(t4c) P B Tn+t+o)
_ s Lt—=s) . § Lt=9) s, Lntt—s)
=T6+912 [rg ™~ 2 Tugg ¥ F(n+t+c>}'
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. . o D(t—s) , . :
Evidently, if w %1, when Eo TiTo w' 18 replaced by the function

which it defines when R(s+c) > 0, the equality holds for all values of
s such that n > R(s) > —m~—R(c).

Thus, if » and m be sufficiently large, it holds for all values of R(s)
which are finite.
The integral may be written

n

1 — E] n+1l
j. (1— z) .’6-1(1—'$)c_1 ((LOJJ) - E BLW"‘H}‘ dZ.
o\ T 1T—=wz & |

Instead of taking the integral along the real axis from O to 1, we may,
since the subject of integration is one-valued, take it along any circular
are from O to 1 which does not enclose singularities of the subject of
1—z

integration.* On such ares has a constant argument.

It w ="k, it is evident that on the arc which passes through 1/w,
which is the sole singularity of the subject of integration other than the
terminal points O and 1,

11—z _ 1—e ™% (T gy re
arg el arg Py e arg 12 sin 7 e +rmiu) J — %7"+ _;
if 2r < .
It 2r = u, arg (__1;—.1:) =+

When 2u >2r>u, arg (1;:0) = —i{r—7 rT

We see then that, if 2 =1 and therefore » %0, the modulus of
the integral

1 (M1=2\ _ipq et (02" %)
F(S+C)j’o( z ) =2 \1—=wz 1%1 Gl ldx’

for all finite values of « as |v| tends to infinity, behaves like
e~k F (), if 2 L u,
or like e~ W=Vl ) if Qu > % S u,

where F'(v) tends exponentially to zero as |v| tends to infinity if e > 0.
If w = 1, we have the function defined when R(s4+c) > 0 by the

. & Tin—s) . ; L. infini
series ’EO ToTo which, for all finitevalues of u as |v| tends to infinity,
behaves like e~Gr—aivl F(y).

* A figure corresponding to-this transformation and further details will be found in § 24 of
the paper by the author quoted in § 1 (Paper ¢).
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Finally, therefore, the modulus of the function defined when
_ .2 THun—ys)
R(s) > —R(c) by the series 'Eo Tnto’ M
all finite values of w as |v| tends to infinity like e~ =91 F(v) where F(v)

tends exponentially to zero as |v| tends to wnfinity if ¢ > O.

an integer > 1, behaves for

83. We will further show that, if s = R+w where R is large and
positive, o _
3 IT'(un—3s)
w=0 I (un+-c)
where € > 0, and npe*®, k> 0 but finite, vs independent of v and can
be made as small as we please by taking R suficiently large, if s is
not in the immediate vicinity of one of the points n.

< npexpi(—w/u+te |v|}

We have, if R be large and positive,  be finite, and n be just so large
that n—E > R(s),

_ 1 1 1—2xz\* o Rte-1 wn+lxn.—R
I—I‘(R+s+c)jo( z ) (1—a) 1—wz de
_ 2 T¢—R—y ,_ 3 Tt—R—9 ,
i=0  I'(t+c) =0 I'(t+c) )

The integral can be taken along a circular arc as before, and its modulus is
< e—(&rr+w/p.-—e)|v| l,wn+1 | ,U-RK

where u is the maximum value of | 1—z| on the arc and K is independent
of » and R.
Also, if R and R(s+c) be positive and greater than unity,

IT(R)| |Ts+0)| < |TE®+s+0)|.

B
A (-miutelv] M g
Hence Il < e T ®) K
. 2 T(t—R—s) 1 : !
Again, ‘§0 Tuta w'| < OR times the modulus of the largest

term in the series, where 8 tends to a finite limit as R tends to infinity.
It is therefore less than eze~®"~9!”i where eze** tends to zero with 1/R
and is independent of v, provided E+s is not in the vicinity of one of the
zeros of I'(—R—s). Thus when R is large

e T(¢t—R—ys)

! =t o]
2 “T(+o < e

wt

where 7, is independent of |v| and #,e* can be made as small as we
please by taking R sufficiently large.
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3 Dun—R—y
=0  I'(un—c)
where 5z is independent of v and e*7; can be made as small as we please

by taking R sufficiently large, provided R +s is not in the vicinity of one
of the points n.

Hence < ppel-Tirolr]

84. Tueorem.—Let gg(x, 1) be the function defined when |z | <1 by

. g x" . ..
the series ,Eo m, and ®,,(x) the function stmilarly defined by

3 I (uin+c)

w=0 I’ (un+B+m~+c)
cuts along the positive half of the real axis from 1 to +oo. Further,
let the coefficients c,, be defined by the expansion

(log(l—y) 8

which is valid when y is sufficiently small. Then the coefficients a can be
so chosen that the function

z, the functions being made one-valued by cross-

-1 o
A=y~ =m2=0 Cn{—y)™,

5 M __\m mI‘ m ,’,+l\;—l n
l((‘l:) = M-Bgﬁ(w”’ 1)— m§:0 ( ) cr(ﬁ(\'B+ ) éM(x“)_ 11%0 Un '

behaues atx =0 lLike ¥P(x) where P(z) is fintte when « = 0, and at
=1 lke (1—x)*Q(1—zx) where Q (1—z) is finite when z =1, L, M, and
N being finite positive integers, however large, such that R (8)+M > L.

I have previously shewn that* ge(z, 1) admits, near r =1, the con-
vergent expansion

Ta—-B(—log o za+ 3 e L8, 1),

the latter series being convergent near z = 1, and (—log £)*~! being made
one-valued by a eross-cut from 1 to .
Also it can be shown that the function defined when |r|<<1 by the

oo Ta+n)
series Eo Totn)

7" admits, near & = 1, the convergent expansion

TF'A4a—p) E T (a+n)
Te—1 =oT'Q+tu—p+n

(1 —z)“)

I'A4+a—p)(1—m)yp 1 gl-r—

wherein there is a similar cross-cut, so that |arg(1—u)| <.

* Proc. London Math. Soc., Ser. 2, Vol. 4, p. 291.
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Now

3 I'(un4c) o 1S 2 T'n4c)
@)= 2 Tt BrmTo® — w0 2020 Tt BrmTo

(where w is a special root of y*—1 = 0)

(2cTx)™

) .
=— X . F(l—ﬁ—f'n)(l_w?x)ﬂﬂu—l (,wrm)l_p_m_c

w =0
- P(l—ﬁ—m,) 5 I(c+n) o
I‘(ﬁ+m+c_ 1) u§0 I‘(2_‘B_”L+n) (1 — .'l'-) } ,

each expansion being valid near the corresponding singularity. Therefore,
since near z = 1 all the functions in the summation 12 except that

corresponding to » = 0 are analytic, we have, near z =1,
P (2") = ';1: FA—B—m)(1—g)p+n-t gl=p-m—c4 Eo d.(1—2)",

the latter series being convergent near z = 1.
Hence the function F(z) behaves in the vicinity of its singularity
£ =1 like

- Al e ¥ (e T (B+m) T (1—B—m)
pPTA—PB)(—plogz)f~'g7*— = T0
L+N-1

w
X (l_w)ﬂ+m—l L]—ﬁ—m—c_*_ 20 e, (1—23)”— 20 a,,:c"
n=

n=

= DA—Bamt (loa)[(_zloga)® e, 8, (128)"]
m=0 z

M Z 1—z

L+N-1

+ ngo [ (1 _m)n_ gu a, Eno

n=

Now near £z =1 we may put z = 1/(1—y), so that (1—z)/z = —y;
then the expression ingide the square brackets becomes

—_— —_ B-1 M
{ ]0 ;1 l) }. (1 _y)l&-c'__mgo Cm (_y)m »
( ]

= ("y)M+l l mEO 0M+m+1(_y)mj

if | y | be small. Thus F(z) near the singularify z = 1 behaves like

2 L+N-1
n.§0 6,,,(1 —-a;)"‘—- !§0 an xn+(1 _97)'8+M Q’ (x),
where Q' (z) is finite near z = 1.

Suppose now, as is evidently possible, that we choose the first N co-
efficients a so that F@) =" P @),
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where P (z) is finite at z = 0. Then we may further choose the remaining
L coefficients a so that

L+N-1

éﬂ en(1—z)"— ,Eo az* = (1—2)'Q(1—=z)

where @ (1—z) is finite near r = 1.
If, then, R(B)+ M > L, we have the proposition stated.

35. We will next shew that, if N be a multiple of u and if o be such
that N> R@)>—L—R©+1,

1 ! S p\eto— —o— ,
oto) L (Q=z)y* -tz F(z)dx

_ —L+N-—la F(i:f)
=y "T'(n4c)

$ Twr—o)i 1 _ ¥ (reulB+mTrto)
r=Niw D'(ur—4c) | (ur4wp)?  m=o I'(ur+B8+m+tc) )

We assume that all the numbers tnvolved are defined as in the previous
paragraph.

If N be a multiple of u, and R be an integer > N/u, we have

1
j (l—=z)*to-lz=o"' F(x)dz
)
1 L+N-1 1-¢ .
= j (1 "".1})""+”_l .’1:_"_1 F(:c) dr— 2\, f an‘,cn(l_x)twa—lx—a—l dr
1—¢ n=. 0
=1 1—¢
+ E j (l_x)chy-—l ‘,E—cr—-l+p.r
r=Nlu Jo
el 1 ‘zl (=)*enL(B+m) Llwrta ),
lur+wf w0 T@BT(wr+B+m+c) 1

Tt Iy (1)
A+ T

1—¢ ]
+ J (l_w)c+a—1 z-o-1 3 dzx, 1)

o r=R

where Jy(7) 1s defined by the equality

1 ¥ ()wlBEmTwrtd | Iul) o
wrdwP  w=o T T B+mturtc  rP#H° 2

Now I have shown* that, if |arg ¢ | <,

I‘(:B) _ el (—)’“c,'nI‘(,3+m)l“(1+¢_)+ Jar
Ot+eF 2o T@E+mtetD) o

Quarterly Journal of Mathematics, Vol. Xxxvur., pp. 116-140, § 9.
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where | Jy | tends to zero as | ¢ | tends to .infinity, and the coefﬁclents
¢m are given by the expansion

{ —log (1—y9) ) #!
Putting ¢ = uwr+c—1, 0= pu—c+1,

A=yt = Z cu(—y™

we see that in the formula (2) | Jy () | < an arbitrarily assigned small
quantity , if B be a sufficiently large positive quantity and » > R, the
quantities ¢, being defined as in the previous paragraph.

Now, in the formula (1) the modulus of the first integral tends to zero
a8 € tends to zero if R (c+o+L)> 0.

The modulus of any one of the second system of integrals tends to.a
finite limit as e tends to zero if N> R(s) > — R(c). Each of the third
set of integrals has a modulus which tends to a finite limit if the same
conditions hold.

The modulus of the final integral is
p-R@—1+nr

1-¢ .
< "g (l_x)l(cq-w) 1 2
0

< Iy s dz.

Hence, if N > R() >—R() and RB+M) > 1,

1
s A=x)*to-tg= " F(z) dx
[)]

“g“a Fetal'n—o) 5" Ilcto)
wsn [c+n) r=Np ['(ur+c)

( 1 e (_)m. Cn I‘_(B_'}':’n) r (I‘r+ C) | -
X 1(#,'._*_#)5 1n2=:0 I‘(B) F(m"f’-ﬁ+m~i P ; + 1k,

where |I,.»| tends to zero as R tends to infinity.

I (ur—o)

Thus under the same conditions

r(c+ )5 (l_z)c+u 1 —u—lF(x) dx

_ &t Te—o) , & T'wr—a)
=x “"Toto) T rkw Tr+o

x{ 1 s (=)en I (B4m) T(ur-o))
wrFuf wzo I B Lur+B+m+co |-

But, if R(B)+M > L, the integral on the left-hand side of this equality
18 an analytic function with no poles if

N>ER(o)>—L—E().
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Also the series on the right-hand side is absolutely convergent if -

R@B+M+o+c) > 1,
and, a fortior, if R+L+4c)>1.

The equality is therefore true under the wider conditions of 'the
enunciation.

B I (un—o)
36. Let S(o) be the Junction defined by the series 2( F———(p.n FomFir

when R (c+o+8) > 1. Then if o =u+w, and w be any real quantity
of finite modulus, | S(s) | exp {(w/u—e) |v| | tends to zero as |v| tends to
infinity if e > 0 and w is an integer > 1. A

hd I’ (un—a)
Let Z,.(s) be the function defined by the series X TGmt BFm¥o’

it BR(B+m+c+o)>1.
Then, by the result of the previous paragraph, we have, if

N>u>—L—R ()41,

1 F (1—-m)L 01 22 F(z)dx

Tc+o) 0
M L+N-1
= w50 = 2, (-r o et 0= 2 0 pe
_ NS T (ur—o) | 1 ¥ (= e, T'(B+m) L(ur+c)) ‘

Z Tlrto (P 2o T@T wrt+B+mto

Now the modulus of the first integral tends uniformly to zero, as | v | tends
to infinity, when multiplied by exp {(m/u—e)|v |}, as we see by the
method of the theorem of § 32. By the properties of the gamma function
the same is also true of every term in the two final summations of the
previous equality.

Also, if u be an integer > 1, | Z.(0)| tends to zero as |v| tends to
infinity when multiplied by exp. {(w/u—e)|v|}, as has been proved
previously (§ 82).

Hence we have the given theorem.

87. If S(o) be the function defined when R(c+o+B8)>1 b y the
series § Llun—o) the function 1.,(_(_)

2=0 T (un+c)(n+1)F’ )

SBR. 2. VvoL. 5. wxo0. 950. H

has for its sole finite
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singularities poles at the points

o=1—-8—c—n (r=0,1,2, ..., ®).

. I (un—o) . »
When 7 is large we know thatt admits the
B
asymptotic expansion Tluntountw
s _&l) o T

r=0 ([L)l,)”+ﬂ+c+' (#,n)u'+5+u+l-"

where the coefficients ¢, () are polynomials in o and | J.(#)| can for any

finite value of R be made as small as we please by taking » sufficiently
large. '

Hence the function

&2 _ o Cy (0')

uP EO o TETeRT Clo+B4c+r)
admits, when R (c+a+8) > 1, the expansion
En JR(n)

n=0 (#n)a+ﬂ+C+I:’

the double accent denoting that, when » = 0, the term is 11:((0—)‘;:3. The

series is convergent when R (c+B8+4c¢)>1—R. And hence for this
wider range the function

J R
%‘5“)— Z, ;“pi Eot+Btetn)

has no singularities except poles at the points
co=n nn=0,1,2, ..., ®)

Now {(s) has for its sole finite singularity a pole at the point s =1,
at which the residue is unity.
Hence the sole finite singularities of S (s)/I" (—a) are poles at the points

c=1-B—c—n ®=0,1,2, .., ®);
and at c=1—-B—c—n

the residue is p~'c,(1—B—c—n).

+ With this theorem the reader may compare the similar proposition established in § 5 of
the author's paper ¢ 'The Use of Factorial Series in an Asymptotic Expansion,”” Quarterly
Journal of Mathematics, Vol. xxxvin., pp. 116-140.
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88. We proceed now to consider the behaviowr of the function 8 (o),
defined when R (c+o+B) > 1 by the series

§ T'un—o)
w=0 I'(un+c)(n+1)~’
Sor palues of o = u+w for which u is large, real, and positive when | v |

does or does not tend to infinity.
We will shew that

S(a') <7y exp { (_.”-/lu'+€) l v |}"

where n,, is independent of v, and ™ ny, k >0 and finite, can be made as
small as we please by taking u sufficiently large and positive, unless o be
wn the immediate vicinity of one of the points n.

Suppose that ¢ = w4, where w is finite. = Choose M such that
R(,8+ M) > 0. Let R be very large, real, and positive, so that

B(c+o+R) >0, R+o+EB+P) > 1,

and RERB+m+c+o+R)>1 OZmZ M.
Choose N a multiple of x so large that N > w+R—1. Then, with the
previous notation,
2 I'(un—o—R)

S@+B) = X roatomti)P

_ 2% TI'(un—oc—R)
and Znc+R) = Z Cun+B8+m+c)”

Let the a’s be so chosen that, near z = 0,

M N ' N-1
Fl@) = uPgalen D= 2, (-1 on b S0 — 3, 02"

is of the form z¥ P (z) where P(z) is finite when z = 0. Then, by the
result of § 35,

1
T'(c+o+R)

[[(2) amarrsen poras

0 x

M A
= wPSER— £, (-1t G S+ By

_ N/f‘ I'wr—o—Rk) | 1 _ i‘f (=) e L (B+4m) I'(ur+c)
r=0 Curde¢)  (wr4w?  w=o I'(B)I'(uwr4+B+m+c) }

(1)
H 2



100 Dr. E. W. Barnes [Dec. 18,

Now we have seen in § 83 that, when |v|is large,
Z.(c+R) < wpexp {(—wlute |v]|}

where .z is independent of v, and €'’z can be made as small as we
please by taking R sufticiently large.

Also, if we employ the transformation of § 82, and take the mtegml
along a suitable circular are, its modulus is less than

W(C—%"_-_FR)—" exp{—@r+r/u—e|vliuK,

where u, is the maximum value of |(1—z) | on the are, and K is finite and
independent of » and RB. The modulus of the integral is thus less than

F(R)Kexp (=mfute |v]|} <nmpexp{—mnfutalv];,

where #;; is independent of v, and e
by taking R sufficiently large.

The final N/u terms in the expression (1) have a sum whose modulus
13 less than N/u times the modulus of the largest term, <.e., '

“tyr can be made as small as we please

< npexp {(—=3r+e v}

where 7 is independent of v, and ¢"” 5 can be made as small as we please
hy taking R sufliciently large.
Hence, finally, when |v| is large,

| Se+R)| < nrexp {(—m/ute|v|}

where 5y is independent of v, and e/ y*

by taking R sufficiently large.
This is equivalent to the given theorem.

can be made as small as we please

39. Let
1 T(a,+7b)
U] ‘ 2 n
’ bI } n=0 zHl r(bz+’")

when | £ | < 1, where one of the quantities b,, ..., by vs unity. Further,
let the coefficients f, (b, @) be defined by the asymptotic expansion

I”I Tl +n) _ ’2 £, a) +J,¢(n,b a)

o1 r(b,-{-’)l) re0 ,n:b—..a+7 n:b Za+kR ?

i
WFor 1y, ooy @5 Oy, oo

where, for all finite values of R, | Jr(n, b, a) | can be made as small as we
please by taking n suffictently large. Then, however large the finite
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quantity M may be, if we take R (Zb—Za+R—1)> M, it is always
possible to find coefficients d such that, near x =1,

R M
Foa@— Z fr(0. ) LA1—=0—1)(=logz)’*""'— Z d, (1—2z)"
= (1—2)" @),

where Q (x) vanishes at x =1, and § = Tb—2Za.

B
If the double accent denote that the terms X do not exist when

. r=Q
n = 0, we have

So (g Dladtn) 3 f0@) . _ 3 Jenba),
nzo [ :Hl P(bz+1l) =0 n= ) =Z Sh—Su+ R

=0 N7

By the properties of Jr(n, b, a) this series and its k-th derivate with
regard to z, where R(Zb—Za)+R—k > 1, is convergent when z = 1.
But, when |z | <1, the series is equal to
R
qu—l (x)-— f§0 lmf"r(by a’)gib—n'f'r(ws 1)1

n

where, when |z| <1, gs=, 6) = nEO e

But the author has shown that, near z =1,
gs (, )—I 1 —B)(—log z)f~'x~*
18 one-valued and equal to

» 1)
( n+1) §n+l(/8 9)

n=0 X

Therefore, near z = 1, the series is equal to
R
Fer@— X f, (b, a) { T (1~ b+ a—n)(—log 2= +r-1

+.2 () GnEb—Zatr, 0}

This expression and all derivates up to the ‘k-th converge to a definite
value as z tends to unity, the various terms being made one-valued by a
cross-cut from 1 to o along the positive half of the real axis.

Hence we can always find coefficients d so as to satisfy the proposition.

40. A suggestive deduction from the previous theorem may be
noticed.
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Since one of the constants b is.unity, the function ,F,_, (z) is a hyper-
geometric series in z of order g, and therefore by the researches of Thomae
and Pochhammer* we know that, near z = 1,

9-1
:,Fvl—l(x) = mz_—l Aum(l'_x)+Aq(1—x)0_l Pq (1 —Z)

where the coefficients of the constants 4 are solutions of the differential
equation for ,F,_.(z) near £ = 1. Moreover the functions P, (1—z)
(m=1,2, ..., @ are one-valued power series of (1—2) convergent near
z=1.

We must therefore have, near z = 1, if R(6+R—1) > M,
R
Z,fr(0,a) L1 —0—1)(—log 2)"*"'—4,(1—2)°~' P (1—2) = 1 —2)¥ Q(2),

where @ (z) vanishes at z = 1.

‘We may therefore anticipate that
r—_E-’of"(b’ a) r(l _6_7)(—log x)9+1'-1

is either an asymptotic or a convergent expansion near z =1 of that
solution of the differential equation for ,F,_,(r) which is multiform near
z=1.

41. Let Fo_1{z} denote the function represented by the series

2 o T'(a;+n) o

Lt

n=u =1 F(bt.-*'?b)

when |2 < 1, with a cross-cut from 1 to © along the positive half of the
real axis. Asin §29, let U.(s) be the function defined when

Rus+u+Zb—=Za) > 1

S I'(un—pp,+u—uns) o I'a+n)
by the series 'Eo I'wn—up,+2u) 15 L'be+n)

Let R, M, and N be tntegers such that, if 6 = Zb—2Za,
RO+E—1> M, Bu—pp4ulN) > Eus) >—M—u. (1)

* Thomae, Mathematische Annalen, Bd. 11., p. 433; Pochhammer, Crelle, T. cu1., pp. 97, &c.
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Then, if the ¢'s be suitably chosen, we shall have

1 F (1—x>f~-‘+““ U
Tus+wn) Jo\ =

f l R M+N m‘
X 1!1Fq—1{xu [— '§0 .’E“f,.(l), a’)go-l—r(x’ly 1)_ "50 me"' , dx

_ ok S T'(un—upr4p—nus)
= U.(s) 3__‘0 f+(b, @) .,E’x I'(un—pp,+2u) 0+

MV L(um~p—ps—upy)
méﬂ Cm T (,U.'Vn+ 2,U~ - ,U~P|') ' (2)

By § 39, if the quantities dy, d;, ..., dy be suitably chosen,

M

I
lqu—l{xM} - 'r§0 fE“f.,.(l), a‘) 99+1($“, 1)— 'm2=0 dm(l_'xu)m = (l—zu)MQ(x“)

where Q) (z*) vanishes where z =1, if R(O)+R—1> M.

We may now choose duys1, dyrse, --., daren so that the previous
M4N’

expression menus %H dn(1—z*)" is near z = 0 equal to z*Y¥ P(z*) where
n=

P(2*) 1s finite at z = 0.
If, now, the coefficients ¢ are given in terms of the quantities d thus
chosen by the relation
M+N M+N

z dp(l—2)" = Z cpz™
m=0 m=0

we see that the integral in the equality (2) is convergent at « = 1 if
Bus+u+M) > 0,
and is convergent at z = 0 if
R(u—pupr+uN—us) > 0.

It is therefore convergent at both limits, provided the conditions (1) hold
good.

Let I denote the integral in the equality (2) and suppose that L is
a large positive integer > M+ N, and let ¢, = 0 when n> M+ N. Then

L [ . ° 2
— sl Datn) _ & £,0,0) _ ) Tuntu—upr—us)
I= ‘,Eo lEl Td+n) 2, »f* Onf I'(un+2u—up,) +Ju

_ 1 Fl=z\wrl o e [ 2 e a,n) )
where J, = Ts+) L( T ) IR nSL T pSrE = J dz,
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e : I'I . o
and the double accent denotes that the summation r;ﬂ does not ‘exist

when z = 0. :
Now we may take L so large that |Jx(b,a,n)| <e when n> L.
The final integral J), is then such that

’ 1 _ ol e “ o
|J, | < € j (1 — )R Bt R 1—p, —us ) x iz
0

[T (us+w)| w0 (L)1
Thus |J,| can be made as small as we please by taking L sufficiently
g Provided L) > Rlus) > — .
If, then, R(u—up,+uN) > R(us) >—nu, we have the equality
i Latn 5 4,0 ) Twuntu—pp—ps)

)
S Yv_

(
I w=0 L=t D(b4n) =0 2+ Oy T (un+42u—up,)

But under the wider conditions (1) of the enunciation I is an analytic
function, and so also is the series just written.
3 I'(un—upr+pu—ns)
If, then, nz=:1 I‘(;m—#:.-{-é‘y)n"“
is expressible in the form of the series when R(6+4rt+us+u) > 0, the
equality (2) will hold within the assigned range (1).
We thus have the theorem.

denotes the function T, (us), which

42. We can now shew that, if R(s) be finite and if s = u+w,
| Ue(s)| exp {(r—e) |v]}
tends to zero as |v| tends to infinity if € > 0 and u is an integer > 1.

Take the equality (2) established in the previous paragraph. If we
employ the transformation of § 32 and take the integral along a suitable
circular are, we can shew that its modulus is less than

|I‘_(ys1-TJ| exp { —@7+7/u—e|uv|} K

when |v| is large, where K is finite and independent of v, and
Ru—pp,+uN) > pu > —M—p.
The modulus of the integral is therefore less than

exp {(—7+e) |o]}
if ¢ > 0 and |v| is sufficiently large.
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Again, by the theorem already proved in § 86, when u is finite
| T, (us) | exp {(w—¢) | 0]},

where ¢ > 0, can be made as small as we please by taking |v| sufficiently
large.

Again, each term of the final series in the equality (2) of the previous
paragraph has a modulus less than

exp {(—um+e) 0]}

where |v| is sufficiently large.

Hence, since u is an integer > 1, | U,(s)| exp {(w—e) |v|} can be
made as small as we please by taking | v| sufficiently large, if ¢ > 0.

We thus have the given theorem, since M and N may have any
finite integral values as large as we please.

48. We can now shew that, if ,S,(s) be the function defined when
R(s) > R{3u—1)+Za—Zp}/u

q
w L(—s+t/w) H I‘(l—-p,-+t/#—8)
by the series z

t=0 M t+4 )
his ( T ) I Tl —attu—s)

then, for all finite values of w, |pS,(s)| exp [{(+1)w—e}|v|] can be
made as small as we please by taking |v| sufficiently large.

For we have seen in § 29 that sin wus,S,(s) may be written
q
Z A Uyle)

where 4, is a numerical coefficient independent of s.  Also, by the previous
paragraph, | U.(s)| exp {(m—e) |v|} can be made as small as we please, if
u be finite, by taking | v| sufficiently large. The same is therefore true of

| sin wus,S,(s) | exp (7w —e) |v]}.
We thus have the given theorem.
44. It is now evident from the previous investigations that ,S, (s) is «

one-valued function which can be continued over the whole of the finite
portion of the s-plane.
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We will now prove that «t has simple poles at the points
s=[Za—Zp+3—D])/u—n/u ®=0,1,2, ..., @)
and no other finite singularities except those of 1'(—us) and
I'(u—pmpr—nus) (r=1,2,...,9q.
We have seen that, if B(us+u+Z0—2Za) > 1,

2 I'(un—pp,+p—mns) 4 I'(a+n)
()= Z a 11
U im0 LU'un—upp.42u) 21 I'Gb+n)

= ﬁo 2Vals) (say).

Also (§ 29) the constants .a, and ), are such that
@y = 2+tpu—p, (=1, 2, u—1),
=1+a—p, ({E=u n+l, .., q),
b= 14p—pr (=12 ..., q)

And therefore the condition under which U, (s) can be represented by the
series is equivalent to

Rlus+Zp—2a—3(u—38)]> 1.

Now, when = is large, we know that we have an asymptotic expansion
of the type
JT('IL)

pHs e+ ZU—Za+1'?

! c:(s)
rVn (S) = E : St +

o 1lu3+}t+§b—
where, for all finite values of 7', | J»(n)| can be made as small as we pleass,

provided » is greater than an assignable number N. The coefiicients c;(s)
are polynomials in s, and can be calculated from the known asymptotic

T'(a+n)
T (b+n)

We see therefore, as in § 37, that the function

expansion for by sufficient labour.

,
U,(s)— Z, cils) Cws+u+Z0—2a+1)
has no finite singularities except those of I'(un+u—mp,—us) when

Bws+u+2Z0—2Za)>1-T.
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Hence the sole finite singularities of U,(s)/I' (u—up,—us) are simple
poles at the points
| s=A—p+Za—Zb0)/u—n/u =0,1,2, ..., ®),
i, s = [Sa—Zp+4 w=D]/u—n/u.
Now we have seen that
»S,(s) sin 7rus = él A 1 U, (s),

where the quantities 4 are independent of s.

Hence all possible finite singularities of ,S,(s) are included in

(1) simple poles at s = n/u n=0,1,2,..., o),
(2) ” s=nfu—p,+1 ®=0,1,2, .., o;7r=12,..,9),
(3) ” s=—n/u+[Za—Zp+3u—1]/u

=012 ..., o).

We thus have the given theorem, and we see that the residues at the last
system of poles can be calculated with sufficient labour by use of the
asymptotic expansion which gives ?—g—:*_*%';, when 7 is large.

45. We proceed now to show that, if s = u+w, and |v| be finite or
wnfinite, 4 ‘
[0Sy ) | < muexp {[—w+Dw+e] o]},

if €> 0, where ne™ (k> 0 but finite), can be made as small as we please
by taking w sufficiently large and positive if s be not in the immediate
vicinity of one of the poles of ,S,(s).

We can always choose the coeflicients ¢ so that the function

K N-1 .
¥ (@) = Fiaiz't — Z atfe (b, @) gosr (e, 1) — = 0zt = @Y P2,

where P(c*) is finite at £ = 0. Choose N so large that
Bu—upy—us—uR~+uN) >0
and let T,(us) be the function defined when
RO+7+us+u) >0,
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; . : o L'n—pp,+u—ns)
by th ; r )
y the series 2\ Tln—rp 20
Then, as in § 41, we have, if R be very large and positive,

1 V—x\WrRh R du—2-pp,—uR :
T s TR H ) et Y )

— .__ 5 N Dwm+u—us—pR—upy).

= UG+R Eo f: 0, A T (us+uF) méocm I'(um—+2u—up,)
When R is very large, and whether | v| be large or not, the modulus of the
integral is less than

1
[T (us+uR+w|
where K' is finite and independent of R and |v|, and g, is the maximum
value of | 1—z | on the circular arc which, as in § 82, we take to be the
modified form of the contour of integration.
Thus, if s+R be not in the immediate vicinity of one of the poles
of U, (s), we have

| U, s+B) | < e exp {(—m+e) o]},

exp {—@Gr+m/u—e | no|} K'ut®

where 7ze'® can be made as small as we please by taking the positive
quantity R sufficiently large.

Now we have seen that
q
sin us S, (5) = T A-u U, (s),

where the quantities A are independent of s.

Hence a similar inequality is true of |,Sq(s+ R)|, and we have the
given theorem.

46. Let ® denote the linear combination of hypergeometric integral
Sfunctions

IqI F(l—p,.)
':l PF'Z':“D ceny Ups Py cees Pos (—)"x}
0 T(l—a)
r=1
v
q 1I' T'(p,—ps)
+ r§1 z " I'(p,—1) 171 FF(I{1+a1_Pn ooy 14 ap—py;

I Lier—a) 2—pr, -y pe—prt+1, (=)}

wherein u = q+1—p and g > p.
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We proceed to shew that

b = exp | —ua' ! (2mR-D AT

-1 ,
where I= o, L pSq(8) ' ds,

the integral being -taken round a contour @ which embraces the positive
half of the real azis and encloses the poles

nfw, wu—p.+1 ®=0,1,2,..,0; r=12,..,9),
but not the poles —nfu+[Za—Zp+3(u—1))/u
of the subject of intergration.

The integral is convergent by the result of § 45 for all values of |z|.
Let T be the greatest integer such that

Tlu+n < N
and let T, be the greatest integer such that
T /ju+1—p,+n < N.

" Then, by Cauchy’s theory of residues,

N (_)n T ﬁ I‘(l_pn"—’)b)(l)t/“+"
I = 2 r=1

z
n= ,' - 4 *
© M Ta—a—n T T (H)
r=1 r=1 M

v
q N (_)n T, r (pi_ 1 _n) ”i[=I; F(Pr'-Pm —71)

+ =

Wl l=p +n
x 4 Ix.
r=1 =0 Nn! 1=0 +

ﬁ F(t+m) f[ T(p,—a,—n)

m=1 M m=1

Iy denotes the integral —51—-5 Sq(8) z°ds taken round a contour on
™

which R(s) > N and which embraces the real axis and encloses poles
of ,S,(s) whose residues have not been included in the previous
summations.

By the theorem of the previous paragraph it is evident that Iy can
be made as small as we please by taking N sufficiently large.

Now, by the multiplication formula for the gamma function,

1T T(tfutglw) = @mie-Du-t-4T41).
y=1
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Hence, on making N infinite, we have

"
M .I_I] r 1 —pPr— n) #5 " ;‘ e ”f

276D S T(¢+1)

IPI I'l—a,—n) (
r=1

' !
@mreD S FE41)°

=1

7
e I'e,—1—n) II' T'(py— pm—mn) e 2

U] 0 (

+ 2

r=1 au=0 N '

P
II I‘(Pr'—am—n)
Thus =t
Texp | —ua | @m)te=

, 1T T —p,—n)
r=1

_ (=) .
w=0 ot P v
II TA=a,—n)
r=1
l’ t
[} % n F(P-,»'—l_)l») I F(Pr_Pm_"')
+ > e > (=) m=1 = .

r=1 n=0 ’N!

lli— r (Pr —anT n)

m=1

We thus have the given theorem.

47. We can now shew that, if u be an tnteger > 1 and tf -,
largz| < (u+1),

the linear combination of hypergeometric integral functions which has
been denoted by ® admits the asymptotic expansion -

N
! 3u-1),, -4 [Sa—Sp+i(u- { A Iy
exp | —urlH! ()2 =Dy ~d plBa=Sp+iG-Dlik .‘ 'EO cc——"tb“ + ol

where the quantities N are definite functions of the parameters a and p
and | Jy| can be made as small as we please by taking |z| sufficiently large.
We have seen that, for all finite values of | x|, ® is equal to

exp | —ua't (2m)te-Dy 4T

where I is the integral — %_-‘S ,S,(s)x*ds considered in the previous
paragraph. ¢

Also, it has been established in §§ 43 and 45 that, if largz| < (u+1) =,
| ,S,(s)2* | will tend exponentially to zero as |s| tends to infinity if R(s) is
greater than a finite negative quantity.

Let L be a contour parallel to the real axis which passes between the
points‘

[Za—Zp+3w—D)u—N/x and [Sa—=Zp+3@—D]k—N+1)/u.



1906.] THE ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS. 111

Then I is equal to —2_1'—5 »S.(s)2°ds together with the sum of the
. t )1

residues of ,S,(s)z° at the points
Ea—Zp+3—D)u—n/p »=0,1,2,...,N).

Let A, be the typical residue of ,S,(s) at such a pole: we have seen
that A, is a function of the parameters a and p which can be determined
with sufficient labour.

Further, 1

—_ Q;l j ’,S(I(S)-ESCZS — x[:“-“:P*’&(F—l)]/ﬂ—N/#JN’
L .

and it is evident that |Jx| can be made as small as we please by taking
| | sufficiently large.
We thus have the given theorem.

48. We can now shew that the previous theorem is equivalent to (u—+1)
different results. '

For the asymptotic equality is valid if jargz|<< (u+1)7. Thus it
is valid for the (x+1) ranges

=7 <argz < (u+1)m,
wm—1-2r<arge < (u+1—2),

(u—1—=2u)r <arge < (u-+1—2u) .

We therefore have, if m =0, 1, 2, ..., u, and |arg z| < 7, the asymptotic
equalities

1 C(—p,)

= JFia; p; (=) x}
IIIrd—a)

r=1

q
T'(p.—1) (El T(p,—pi)

Ul
(e —2m)(1—p,) me 1—p,
+ r§1 ¢ v h
H I‘(P/'—al)
t=1

prq {1+Q_P'r, 2_Pn teey Pq_P1+1 ; (_)“I}

n (Qm—p)m
= exp | —u gkm2m) min T} (Qmpe—D = g =2 i 3 X, g n—r) ey

H
n=0 Lt

where 0=Za—2Zp+3i(u—1).
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Only w of the (u+1) results here given are independent : those
corresponding to m =0 and m = u can be deduced from ome another
by means of other asymptotic expansions of the  hypergeometric
Sfunctions.

For brevity write, as in § 1,

QO(I) = r%l——_'qu {al) ooy Qpy Py ooey Pq; ('—)“Z},
H I‘(]._ar)
r=1

T'(o,—1) I1' T (o, — py)
t=1

Q’(x) = zl—P,- P
tI—-Il F (Pr_at)

X, Fo{lda,—py, ooy 1t ap—pr; 2=pr, ..o po—prt1; (=) z}.

Then we have, if |arg z | < ,

Qola)+ 3 eb=m=rim Q. (z)

: $(u—-1) . d A"ell(ﬂnl—#)!n"p
= exp : —u =2y mu 41 M-} ,(2_7‘;)3__ 28 1 glr—2m)Bmu "-2:‘0 po , (A)
when m=0,1, ..., u
Also, by the result of § 7, if | arg (—2) | < 3uw+,
1 e 1 _ pme(l—p,)
s rap, Qo@+ El sin 7 (p,—ay,) € @ ()
l' N
r(am) II r(am—Pr“I"]-)
= pr:l 7% e Cm
= II' TQ4ap—a,)
r=1
’ 1 b 1—po; am— a1, oy am—tp bl —
X 41 Fp-1 1 4 ant+1—py, s dm Po; am—oyt1, ..., an—up i
B)

when m=1,2,..p
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Now, in the relations (A) take m = 0 and m = u. We have

qQ
Qo@)+ Z e eI Q (z) = exp[ux'] 2’ '™ O,
r=1

4
Q@)+ Z e V™Q (zx) = exp[ux'*]z =m0,
r=1 .
where O denotes the asymptotic series

@rH & ()

13 n=0 z"

From these we deduce
Qo (@) sin 76+ '.s':; Q» (@) sin 7 @+ ppr—mu) = 0.

This equality means that when |arg z| < 7 the particular combination of

functions () just written down admits an asymptotic expansion whose
dominant term is of order less than that of exp {uz'*} when divided by
any algebraic power of z. Thus it must be possible to form the particular
combination from the g other relations contained in (A) and (B).*
Hence in (A) and (B) there are (g+1) relations which are independent.
There are (¢+1) functions Q which, when z is replaced by (—)* ¢, are

independent solutions of the equation
[6+a) . O+a)— L O+p—D ... G+p—D y=0 W

valid over the whole of the finite part of the plane.

There are similarly (g+1) asymptotic solutions valid near infinity.
These are, with the same transformation, given by the expressions on the
right-hand sides of equations (A) (m =1, 2, ..., u) and (B). The relations
between these solutions are given by the equations (A) and (B).

49. But the equations (A) and (B) of the previous paragraph only
express the (g+1) principal asymptotic solutions near |z |= o of the
differential equation (1), transformed by writing (—)*z for z, in terms
of "linear combinations of the (g+1) hypergeometric integral functions
Q@ (r=20,1,2, ..., 9, which are principal solutions in the finite part
of the plane.

We have conversely to express each of the functions ()r(z) in terms of

* The same phenomenon occurs in the simple case p =0, 9 = 1, u = 2, and was discussed
in detail in the author’s earlier paper. [Loc. cit., § 1, Paper (5), Part 1.

SEnr. 2. vorL. 5. No. 951. 1
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linear combinations of the asymptotic expansions. In § 11 it has been
shewn that it is possible to express a suitable linear combination of u, and
not less than u, functions @, (z) in terms of the p asymptotic solutions
whose dominant terms are algebraic. The expression of a linear com-
bination of any number less than u of the functions Q,(z) will involve
asymptotic expansions whose dominant term is exponentially infinite, and
such series will entirely overshadow the other series which were obtained -
in Part I.

Evidently as typical of the general converse problem we may find the
asymptotic expansion of ,Fy {a; p; z} when |argz| < .

For this purpose we consider the integral

- 2_71; S U‘(s)'x‘ds,' o 1)
where U (s) is the function of s defined, when
B> R{Za—Zp+3 w—1}/n,
by the convergent series of gamma functions

w ﬁ T (a,+n)} T'(un—pus)

r=1 ps—un+1l
7 .

n=0 ﬁ {Lp+n)} T'n+1)

r=1

\o!

By the multiplication formula for the gamma function

Am ps—g p—1

T'(un—us) = @D I_I I'n—s+7r/u).

(2

Hence the above series for U(s) may be written

- II (T (a,+m)] H I'(’n—s—l-'r/y)

& -
U(-S‘)_ (2 ;;(“ ) Eor =

Ln+1) I_l: (pr+mn)

Evidently U(s) is a function of the same type as the function U, (s)
introduced in § 29 : it possesses the same properties.

It has, besides the poles of the functions I'(un—pus), as its only
singularities poles at the points

s=[Za—Zp+3 w=1)Yu—r/u, @
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and the residue at the general pole we may take to be u~3(2m)U-#1(,.
The quantity I, can be calculated with sufficient labour from the
asymptotic expansion of the general term of the series for U(s) when

Rs)>R{Zu—Zp+3(u—1)!/u.

In particular we readily see that {, = 1.

Let now the contour C of the integral — % j U(s) 2’ ds embrace the
real axis, enclose all the poles ‘e

s=n+tlp ®=0,1,2, .. o; ¢t=0,1,2, ..., o),

and enclose none of the poles (2).
Then the integral is convergent for all finite values of [z|. Also

1 S—un+1 .9 —_ 3 (—)t '“t Nty — ! 1u!
— | Twun—pus)u**ids = ¥ gt = atexp {—uz *;.
2me Jo t=0 ¢!
Hence the integral is equal to

»

II T(a,)

exp { —ux'} "71 pFolz}.

' II T (p,)

r=1

Again, by the results of §§ 42 and 45 the integral may be swung back
as in § 8, provided |argz | < =.
We thus get for its asymptotic value

. 2 J
pUEa=30 436Dl =3 (9} 0= I' 1+ 3 5+ I ,
where, for any finite value of R, | /x| tends uniformly to zero as |z | tends
to infinity, and the quantities I, can be determined with sufficient labour.
We thus obtain the asymptotic equality

P

II r(ar) .

?_:{.l—pqu{al’ ceey (p s Pry ceey Py 'E;

i1 )

- 1/ [Za=Sp+d (=1} ,, =3 (D )i —p) '1 g _l" + Jr !
= exp {,u.x } x moE2m) i + i h 1‘7;7‘,"

valid provided |argz| < .
Evidently this includes the result of Stokes stated in-§ 3.
When p =0, ¢ =1, » =2 we have the particular case previously
1 2
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discussed by the author. In this case the coefficients /. take a simple
form, and we have* the asymptotic equality

oFiles 2) =%(75T)$*‘*"e”*2Foip—%, 3—p; 1/@ah}.

50. In a similar manner we can obtain the asymptotic expansions of
any of the hypergeometric integral functions which are the principal
solutions of the differential equation (1) of § 48.

The theory is evidently complete.

CorriGexpa in above paper.—
On p. 62, line 18, for ¢“ p,~1"" vead * 1=p,."”
' line 19, for *¢ elu-2m)om?? ypqq ¢ glp - 2mlows'n 1
' line 20, read ¢ § = [Za—Sp+4 (u—1)].""

P »
On p. 80, line 8 from foot for ¢ M T (p, —pm) *’ read * II'l T(pr=—pu).”’
m=l me

¢ Tide § 23 of the memoir previously cited.



