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1. The present paper is one of a series* in which the author has
endeavoured to make a contribution to the theory of integral functions
denned by Taylor's series.

Generalised hypergeometric functions form a wide class of integral
functions whose asymptotic expansions are closely connected with the
theory of linear differential equations. They appear to originate with
Clausen+; two important papers are due to Thomae,+ and the in-
vestigations of GoursatS should also be consulted. But the detailed

* Barnes, (a) "The Asymptotic Expansion of 2 , . • and the Singularities of
I I . 0 » • (•'•'+0)

^ (a;, 6) = 2 ' ' " Quarterly Journal of Mathematics, Vol. XXXVII., pp. 289-313.

(3) "The Asymptotic Expansion of Integral Functions defined by TaylorV
Series," Philosophical Transactions of the lloyal Society (A), Vol. 206, pp. 249-297.

(7) " O n certain Functions defined by Taylor's Series of Finite Radius of Con-
vergence," Proceedings of the Londot) Mathematical Society, Ser. 2, Vol. 4, pp. 284-316.

(8) " On the Asymptotic Expansion of the Integral Function."
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Cambridge Philosophical Transactions, Vol. xx., pp. 215-232.
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bridge Philosophical Transactions, Vol. xx.. pp. 253-270.
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(1884) Ada Mathematha, Bd. v., pp. 97-120.
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development of the theory is largely clue to Pochhammer,* whose volum-
inous writings form an interesting study.

In the present paper I take substantially the notation of Pochhammer.
The general type of series considered is

| a ^ a t - f 1) ••• apiflp + 1 )

1 2 ( + 1) (+I.p1...p.l 1 .2 .^(^ + 1) ... pn(/><?+1)

; r(a1+n)...r(ap+n)

wherein p^.(j. This series we shall denote by

; > ^ < / " iCI l . • • •, «T) 5 P \ , ••••» P q ' y

or, briefly, by ^F^x).
The series satisfies the differential equation

= 0 (1)

wherein & = x(d/dx). The equation is of order (tf + 1), and q other
linearly independent solutions are given by

x p'"lJ?,l[a1 — pm-{-l, ..., ap—pm-\-l; % — pm, p1 — pm-\-l, ..., p(,—pm-\-l; x\

where m = 1, 2, ..., q. Among the quantities pr—/om+l, that corre-
sponding to in = r is to be omitted.

It subsequently proves convenient to make a change in our notation;
so that, for brevity, we write

* I'ochhammer, (1886) " Ueber die Dift'erentialgleichung der allgemeineren hypergeometrische
Reihe mit zwei endlichen singuliiren Punkten," Crelle, Bd. en., pp. 76-109.

(1888) ;< Ueber gewisse partielle Differeutialgleichungen denen hypergeometrische
Integrate geniigen," Mathematischc Aimalen, Bd. XXXIII., pp. 353-371.
(1891) " Ueber die Dift'erentialgleichuug der allgemeineren F-Reihe," Mathe-

mntisehe Annaloi, Bd. xxxvm., pp. 586-597.
(1891) "Ueber die Difterentialgleichungen der Reihen F(p, a\ x) uud

/•'(p, a, T ; x)," Matltematische Anualeit, Bd. XLI., pp. 197-218.
(1893) " Ueber die Reduction der Dift'erentialgleichung der allgemeineren

/-Reihe," Crelle, Bd. cxn., pp. 58-86.
(1895) " Ueber die Difterentialgleichungen der .F-Reihen 3-ter Ordnung,"

.Uatheuiatisc/ie Amialen, Bd. XLVI., pp. 584-605.
(1898) '• Ueber die Difterentialgleichungen der J^-Reihen 4-ter Ordnung," Mathe-

matischc Annalen, Bd. L., pp. 285-302.
The reader of Pochhammer's papers will note that an earlier paper (1870, Crelle, Bd. LXXIII.,

pp. 135-157) dealt with series of a different type, to which the name " hypergeometric " was
also given.
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T{pm-l)U'T(Pm-Pl)
Qm(x) = x1-"- i r - ^

I T(pm — at)
1

—pn, ..., 1 + a,,—pm; 2 —pn, ..., pq — pn+l; ( —Tzf

(m = 1, 2, ..., q).

Then, evidently, the (q-\-l) linearly independent solutions of the differ-
ential equation (1) are

Qntt-Tx1.- (m. = 0 , 1 , 2 , ....q).

We shall put /x = q + 1— p, so that fx is an integer ^ 1.

2. Various types of integral functions were considered by the author
in the memoir "On the Asymptotic Expansion of Integral Functions
denned by Taylor's Series." Parts IX. and X. of this paper contained a
resume of results relating to the most simple hypergeometric integral
functions xFx\a; p.; x\ and QFX\P;X\. The proofs of such results were
given in detail in a subsequent paper.* By means of contour integrals
involving gamma functions of the variable in the subject of integration,
it was shewn to be possible to develop the theory of XFX [ a; p; x) with
considerable simplicity ; and from it the theory of OFX{p; x\ was deduced
by Kummer's formula

These two functions are the most simple examples of the two classes into
which higher hypergeometric integral transcendents can be divided, the
division corresponding to /J. = 1 or /x > 1. References to the history
and literature of the asymptotic theory of these two elementary tran-
scendents will be found in the paper just cited.

The corresponding theory of the higher transcendents which forms
the subject of the present investigation is by no means an obvious ex-
tension of more elementary results. The asymptotic expansions which
arise for the two simple functions XFX• a; p; x\ and QFX\P;X\ have them-
selves the form of hypergeometric series. In the more complex cases
this not true. Moreover, there does not appear to be any analogue to
Kummer's formula which we can use to deduce the cases when /x > 1
from cases when m = 1. Nor has any analogue to Gauss's expression of
2Fx{a,/3; y; 1} in terms of gamma functions been discovered, and Mellin
denies the possibility of its existence.

* Loc. at., 9 1, Paper (if).
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8. The results of the present theory were adumbrated by Stokes,*
who shewed that, if x be real and positive,

6 T(ar)

n

where J tends to unity as x tends to infinity.
The general theory when x can take any complex value is due to Orr.t

In his first paper Orr shewed that, if

|arg x | < ir\\-\-^ix\ and m = 1, 2, ...,p,

n {_x) ,
sin7ra,)V r=i sin 7r(/or—am)

)•=! (a;) a'",/+iF/)_rJaw, am+l— pl9 ..., am+l—

(A)

This result, which is obtained almost intuitively in Part I. of the
present paper, was, with Orr, the main outcome of some thir ty pages of
laborious analysis in which it was derived by an elaborate process of
induction : the notable simplification obtained by the present methods
will be at once apparent to the reader.

In his second paper Orr obtained the dominant term of the asymptotic
equality which is given in Parts II. and III. of the present memoir. In
Part III. I shew that, if | arg x | < -K and m = 1, 2, ..., fi,

/ i^-2 M>'">x1 / ' 4J-(2Tr)^-1 ) / i-4a;^^-2 l l l ) f l l " | K^l,* (B)

where 6 = [ 2 a — 2 / O + £ 0 A —1)]//*.

Orr's second paper bears traces of great compression: the argument
is most difficult to follow, and at times the methods seem open to serious
objection. Moreover, the method only gives the dominant term of the
asymptotic expansion in question, and it is obviously desirable to shew
how subsequent terms arise in the general case, even though their
€omplexity is such tha t they are not actually obtained.

• Stokes, 1'roceedings of the Cambridge Fhilosophieal Society, Vol. vi., pp. 362-366 (1839).
t Orr, Cambridge Fhilosophieal Transactions, Vol. XVII., pp. 171-199 (1898); pp. 283-291)

(1899).
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Further, Orr only adumbrates the converse theory of the expression
of the hypergeometric integral functions separately in terms of groups of
asymptotic expansions. He suggests that such should be obtained by
elimination between the results of the equations (A) and (B). In this
paper I shew that the contour integrals which I employ give such ex-
pressions even more easily than they give the converse equalities. And
the nature of certain apparent redundancies which the latter equations
seem to contain is at once apparent from the present theory, which
appears to solve every problem which the asymptotic theory of the series
presents. The importance of the theory and its generality must be my
excuse for the length of this paper.

4. The simple method used in Part 1. to obtain the formula (A) of § 3
is an obvious application of ideas which I have employed for many classes
of functions. The idea of employing contour integrals involving gamma
functions of the variable in the subject of integration appears to be due
to Pincherle,* whose suggestive paper was the starting point of the in-
vestigations of Mellin,t though the type of contour and its use can be traced
back to Riemann [CEuvres Mathematiques (1898), pp. 166-167]. The
formula (B) is, however, only obtained by the use of factorial series of a
somewhat complicated type, and the reduction of these series to more simple
forms and the development of their properties are the most novel features
of the present investigation. This use of factorial series to obtain the
asymptotic expansion of integral functions for the region at infinity for
which they are exponentially infinite is due to the author, and was em-
ployed in a recent paper 1 in which his asymptotic expansion of G${x, 0)
when i?(a;)>-0§ was obtained anew. Each type of integral function
discussed gives rise to a new type of factorial series; but wide classes
of such series possess similar properties, and the investigation in
Part III. of the present paper is, to some extent, based on the properties
of the more elementary series

| T(n-s)
n=on\{n+0Y

previously discussed.

5. When /x .= 1 the results for generalised hypergeometric integral
functions differ in character from, and can be obtained by more simple
analysis than, those which- hold good for other integral values of /x.

* Pincherle, " Sulle funzioni ipergeometriche generalizzate " (1888), Atti d. It. Aceaileunu
dei Lincei, Ser. 4, Rendiconti, Vol. rv., pp. 694-700, and pp. 792-799.

t Mellin, Ada Societatis Scientiarum Fennicce (1S95), T. xx., No. 12.
% Loc. cit., § 1, Paper (e). § Loc. cit., § 1, Paper 03), Part I I I .
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Consequently in Pa r t I I . of the present paper th is special case is con-
sidered separately.

I construct the function pSp(s) defined when E{s) > B(2a—2/>) by
the factorial series M

v r(*~s) r

and shew by transformations depending on contour integrals
(1) that vSv(s) admits of analytic continuation over the whole of

the finite portion of the s-plane ;
(2) that it has simple poles at the points

s = la-lp-r (r = 0, 1,2, ...,oo)
at which the residues can be calculated with sufficient labour, and
no other finite singularities, except the obvious ones which belong to
T{-s) and T(l-p,.-s):

(3) that, if s = u-\-iv, when u and v are real, and if u be finite
and e > 0, Ij./Sjifa) | exp-KfTr—e)|«|f can, by taking | •?'| > a
sufficiently large positive quantity V, be made less than any arbitrarily
assigned positive quantity y ;*

(4) that, if both u and \v\ be large and positive and e > 0,

|pSp(s)| < r]u exp• — fT+e) \v\\

where, for any finite positive value of k, rju exp j ku \ can be made as
small as we please by taking u sufficiently large, if .s be not in the
immediate vicinity of one of the poles of pSp{s).

From these results the asymptotic expansion of that combination
of generalised hypergeometric integral functions (/A = 1) which is ex-
ponentially infinite at infinity is deduced.

6. The case when /x is an integer >• 1 is discussed in Part III. There
I construct the function j,.S',,(s) defined when

R(s) > B[1a-

h Y{i—Pr+tin-s)
bv the series Z ^ !

n) II V{l — a,

and by more elaborate methods shew that it possesses similar properties :—
(1) j,S7(s) is an analytic function over the whole s-plane.
(2) Apart from the obvious poles which arise from T(—fxs) and

T(/JL—fxp,— fxs), it has for its sole finite singularities simple poles at

* I n t h i s ra«e I say t h a t | , A » ( * ) | e x P { ( I * — ' ) \v 1} t e n d s u n i f o r m l y t o zero a s ,v\ t e n d s
to i n t i u i t y .
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the points [ S a - S p + ^ - D - r ] / ^ (r = 0, 1,2,..., a>)

at which the residues can be calculated with sufficient labour.
(8) The expression |j,S,,(s)| expj[(/u+l) ir—e\\v\\ tends uniformly

to zero as \v\ tends to infinity, if e > 0.
(4) |pSQ(s)| < rju expj[—(JJ.-\-1)-rr—e]\v\\ when u and \v\ are large

and positive, where nu exp [ ku \ can be made as small as we please
by taking u sufficiently large and independent of \v\.

From these results we deduce the complete series of asymptotic ex-
expansions (B) given in § 3.

I do not in the present paper attempt to apply the methods used to
more general types of factorial series (e.g., when fx is not an integer), nor
do I consider the associated problem of the nature of the finite singularities
of generalised hypergeometric series of finite radius of convergence.
These questions I hope to consider on a future occasion.

PART I.

The Asymptotic Expansion of Linear Combinations of Generalised
Hypergeometric Integral Functions which are not exponentially
Infinite at Infinity.

7. Let p <! q and /u. = q-\-l— p. We proceed to shew that there
are p asymptotic equalities of the type

-Pl) ... T(l—pq) F , (_.„_, ,
r(l-a2) ... T(l-ap)

'i

— 1) IT T(pr-Pt)

+ 2
r=l

2-/0,, l - /

IT T(ai-Pt+1)

£ l ; - l /a;;- , (A)

each valid when |argre| <C 7r(l+^/x). In the asymptotic equality the
error which results from stopping at the (k-\-l)-th term of the serit?
for lj+iFp+i{—l/x} is a quantity Jk where \Jkx

a}+k, can be made as
small as we please by taking \x\ sufficiently large. The other (j)—1)
asymptotic equalities are obtained by interchanging ax with og, a3, ..., ap

respectively.
8ER. 2 . VOL. 5 . KO. 9 4 8 . F
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Let us denote the expression on the left-hand side of the asymptotic
equality (A) by II.

We will first shew that

T{-s)T(ai+s) f[ T(l-pt-s)

t=2

the integral being taken round a contour which embraces the positive half
of the real axis and encloses all the poles of the subject of integration
except those of F(a1H-s).

In the first place, since q -\-1 > p, the integral is absolutely con-
vergent. By Cauchy's theory of residues it is therefore equal to the
sum of the residues of the subject of integration inside the contour.

Now the residue of T(n—s) at its pole s = n-\-m is {—)m~llm\.
Hence the integral is equal to

9

» (_x)»
 r(f li+n) J T(l—Pt—n)

n=0 n\
II 1(1 — at—n)

+ 2 x
l->' s t f - <^- = n.

r=l 71=0 7l\ P
II T(pr—at—n)

8. We may next alter the contour of integration so as to give us
the asymptotic expansion (A).

By the asymptotic expansion of the gamma function we know that,
if | a rg s | <C -7T and \s\ be large,

T(s+a) = .s*-*+ ae-VW

where \J\ tends uniformly to unity as \s\ tends to infinity.
Hence, if s = u-\-tv where u is finite and \v\ is large,

the + or — sign being taken as v positive or negative.
Hence the contour integral (B) will vanish when taken round that part

of a great circle at infinity for which B (s) > — k where k is any finite
positive quantity, provided

|argz|< TT
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If, then, L is a line parallel to the imaginary axis which passes

between the points — a1 — k and —a-^—k—l, we shall have II = — -— I

together with the sum of the residues of

n T(i-Pt-s

ft T(l — at —
t=2

at its poles —als — ar — 1, ..., — ax — k.

Thus n = x~
n

II +/,,

and it is evident that | J"ji;icai+*| for any finite value of k can be made
as small as we please by taking \x\ greater than an assignable positive
large quantity.

We thus have the given asymptotic expansion.

9. Let us consider the set of expansions of the type (A) in detail.
When p = q = 1, so that /x = 1, we have one asymptotic expansion

of the sum of two hypergeometric integral functions, and this asymptotic
equality is valid when | arg x \ < |TT.

The single expansion is therefore equal to two separate expansions
F 2
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when R(x) < O.+ From these two we may eliminate one of the hyper-
geometric integral functions and obtain an asymptotic expansion for the
other when R{x) < 0 whose dominant term is only algebraically infinite
(or zero). The work has been carried out in ray previous paper,! where
it has been shewn that we get the asymptotic equality

More generally, when p = q > 1, so that /* = 1, we have p asymptotic
expansions of the sum of (j? + l) hypergeometric integral functions, and
these asymptotic equalities are valid when |arg.r| < '^TT. There are thus
in all 2p relations when R{x) < 0. At first sight we might be tempted
to say that by eliminating p of the hypergeometric integral functions we
can obtain p different asymptotic expansions, when R{x) < 0, for the
remaining hypergeometric function. This, however, is evidently absurd,
and, in point of fact, of the 2/; asymptotic equalities only y> + l are
independent, as may be shewn by the somewhat laborious algebra which
results from writing down the equations and actually performing the
elimination.

The single asymptotic equality which results from eliminating all the
hypergeometric integral functions in the expression II except the first
is actually the relation, valid when R{x)<0,

, (T(a,)) r ,

r T(a.) i r r(u,-u,)
a,.—pv ;

,. — a l t . . . , . . . , 1 + u,. — a j , : — l / x r

the star denoting the omission of the term 1 + a,.—ar.

10. This may be proved directly by contour integration as follows:—
We consider the integral

I ' ( -s ) H r(a,+s)
(-xYch

\pt+s)

i rr(~t<?)/Ji
2^J fi Yin

taken round a contour which embraces the positive half of the real axis

1" The reader may compare the more complex case of § 48. where the various ranges of u'rg x
are given in detail.

X Cambridge Philosophical Transactions, Vol. xx., pp. 253-279, $ 12.
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and encloses only the poles s = 0, 1, 2, ... of the subject of integration.
It is evidently, by Cauchy's theory of residues, equal to

TT fr<a«H W i
- \T(O)\ p^V[(Xl1 ' " ' Up' P1' '"' Pp' ' *

But, if | arg(—x)\ < %TT, we may swing the integral back as in § 8. We
thus see that it is asymptotically equal to

v . , - r(a,+n)irr(a,-aP-n)

Jo n! ftr, .
1=1

We thus have the given result.

11. When fi>l there is no direct analogue of the asymptotic equality
just obtained: in fact, there is no region of the plane at infinity over
which jyFqlx} can he represented by an asymptotic expansion whose
dominant term is algebraically infinite (or zero).*-

To take the simplest case, suppose that /* = 2 so that q = p-\-l.
Then we have p equalities of the type (A), § 7, each of which gives the
asymptotic expansion of a sum of (p+2) hypergeometric integral functions
valid when | arg x \ < 2x. These are equivalent to 2/? relations between
the (jp+2) functions when | arg re | < IT. But only (p-\-l) of these
relations are independent. Therefore the sum of suitable multiples of
two hypergeometric integral functions {p = q — 1 > 0) can be expressed
as an asymptotic expansion with its dominant term algebraic, and the
equality will hold all round infinity; but a single hypergeometric integral
function (p = q — 1) does not admit of such an expansion for any portion
of the plane at infinity.

In the case p = 0, q = 1, discussed in my previous memoir, no
asymptotic expansion exists whose dominant term is algebraic.

More generally, when /u !> 2, the p equalities of the type (A), § 7, give
rise to (p+1) independent asymptotic equalities, each involving (g + 1)
hypergeometric integral functions. Hence the sum of suitable multiples
of q-\-l—p = /x such functions can be represented by an asymptotic
expansion whose dominant term is algebraic, but no combination of
less than /J. is capable of such representation.

t A reference to Parts II . and III. will shew the connection between this theorem and the
fact that e* tends to zero as x| tends to infinity when |arg (—x)\ < Jir, while exp (n/x1 >•) where
fi is an integer > 1 does not possess a similar property when | arg x \ < ir.
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12. The fundamental combination of this type may be obtained by
considering the integral

T(-s) II T(ar+s) II T(l-pr-s)

2TH .
r=l

If the integral be taken round a contour which embraces the positive
p

half of the real axis and excludes the poles of II F(a,.+s)> it will be

equal to

II F (a,) q

XX X \f>r)
r= l

V '1

q 1 (/0,.— 1) 11 1 (l-t-fy — pr) 11 1 (pr — Pt)

n

2—pr, l+pi—pr, . . . ,*.. . , l+/)(/—/(>r; (—)''"''rcf.

If | arg (—a;) | < /̂A7r, the integral may be swung back in the previous
manner and we shall obtain, as the asymptotic expansion of the linear
combination of the /n generalised hypergeometric integral functions just
written down, the series

v i>r)if r(«{-ar) n

n T{pt-Or)

V-I \ar, a r + l— pv ..., ur-\-l—pn',

ar—a

The sum of these p series is asymptotic in Poincar6's sense.
In the same way, by considering other contour integrals which may

with ease be written down, we can obtain suitable combinations of any
number [less than (q-{- 2) and greater than 0* — 1)] of hypergeometric
integral functions whose asymptotic expansions have their dominant
terms algebraic.
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We thus get all the results which can be derived from the (p+1)
independent asymptotic expansions contained in the formula (A) of § 7
by eliminating any possible number of the hypergeometric integral
functions involved.

Other combinations of the hypergeometric integral functions involved
have their dominant terms exponentially infinite : to the development
of such expansions we now proceed.

PART II.

The Exponentially Infinite Asymptotic Expansions of Linear Com-
binations of Generalised Hypergeometric Integral Functions for
which p = q.

18. In the ensuing investigation we limit ourselves to the case p = q,
fx = 1, partly because the theory may be developed in a more simple
manner than the most general theory when n > 1, partly because the
results differ somewhat in character from those of that theory.

The differential equation of the functions considered is now

0 + 1 ) 0 + - l ) ] if = 0.

It is of order (p-f-1), and the independent primitives are

pPp \ a i> • • •» ap» Pv ' • •» Pv» "̂  i»

x ~Pm
pFp\al—pm+l, ..., Op—/om+l;

2 —/>,», pi — P m + 1 , .••, * •••, Pp — pm+1; X';

(m= 1, 2, ...,p).

We have seen in §§ 9 and 10 that when B{x) < 0 each of these
functions can, near | x \ = oo, be represented by an asymptotic expansion
whose dominant term is algebraic. We now proceed to find asymptotic
expansions of these functions, valid when R(x) > 0, and to find Orr's
linear combination of the functions which has an asymptotic expansion
of the same exponential type.

For this purpose we construct the function pSp(.s; av ..., ctp; pv ...,pp)
or, as we shall briefly write it, pSp(s), which, when R(s) > R(2a—Xp),
is represented by the convergent series of gamma functions

P {T(l-pr+t-s)\

I have previously discussed the corresponding function for which
p = 1, and have shewn (loc. dt., p. 263) that

<>,«.„. x _ T(-s)V(-s+l-p)T(s+p-a)
1̂ 1 (s; a; p) = =— -=-* —'- .

1 (1— a) I (p — «)
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This equality corresponds to Gauss's well known theorem. It shews that
iSiis) admits of analytic continuation over the whole finite portion of the
s-plane ; that ^ ( s ) has simple poles at s = a—p — r (r = 0 ,1 , 2, ..., oc),
and no other finite singularities except those of F(—s) and F(l—s—p);
and that, if s = u+tv and u be finite, liS^s)! exp{(§7r—e) \v\\ tends to
zero as \v\ tends to infinity, if e > 0. Unfortunately, it does not seem
possible to obtain any such simple expression for ^Spis) when p > 1.
We must therefore employ other methods to obtain the corresponding
properties of pSp(s) which have been already stated in § 5.

14. Let pSp{s) denote the sum of all terms of the series by which
pSp(s) has been defined when B(s) > B(2a—'2p) except the first k of
such terms. Choose the 'positive integer k so that R{—s-\-k+l—pr) > 0
(r = 1, 2,...,p). Let I be a straight contour parallel to the imaginary
axis passing to the left of the point —s-\-k and to the right of the
points pr—l. Then I say that

sin ITS

provided R(s) > B(2a — S/D).
For under this limitation the integral is convergent, since the subject

of integration behaves at infinity like (—<f>)~s~l<j)''a'~~Pr.
Also the integral will vanish when taken round an infinite circular

contour to the right of the axis I if this contour pass between the poles
of F ( - 0 - s ) .

Hence, by Cauchy's theory of residues, the integral is equal to

y n T{l-pr+t-s) (-)'-1

tt r-i T(l-ar+t-8)

- i n r ( l - / ° r + * - s ) V(t-s) sin ITS
t=fc ,.=i T(l-ar+ts) F ( H l )

15. We will next shew that 1}Sp(s) can be expressed as the sum
7T

of multiples of p series of the form

J TiX-pr+n-8) J ru+n)

the b's and c's being linear combinations of the as and p's which differ
for different values of r.
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Provided B(s) > R(Za—1>p), the previous integral vanishes when
taken round an infinite circular contour to the left of the axis I if this
contour pass between the poles of F(l— pr-\-<i>).

Hence TT"1 simrSpSp{s) is equal to minus the sum of the residues of

~y~^ n r ^ - ^ - j " ^ at its poles which lie to the left of the axis I.

We thus have, if B(s) > R&a—lp),

7T"1 sin TrSpSpis) = 2 TAs)

where Tr(s) = 2 —' =TTS ^

ft
the accent denoting that the term corresponding to t = r is to be omitted
in the product.

Thus

r(l-pr+pt+n)T(<Z-pr+n)
i /<

sin7r(at—/>r)— pr+n—s) t=i

Tr(s) = 2

7r I I ' sm 7r(pt—pr)
t=i

Now this series for Tr(s) is convergent if

^(s+Syo-Sa) > 0,

that is to say, under precisely the same limitation as the series by which
,,Sp(s) was defined.

Therefore, if T,.(s) denote the analytic continuation of the correspond-
ing series, we have, over the whole of the s-plane, the equality

-a--1 sin TrSpSp(s) = 2 Tr(s).

We have therefore reduced the consideration of the function ^S^s) to the
consideration of functions of the type defined, when JB(s+2/o — 2 a) > 0,
by the series . T{1_pr+n_s) ,

»r0 r(n+l) i i
Our typical series we sha'll write

It is convergent if B(s—a-f2c—26) > 0.
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The relation of the present paragraph is readily verified when p = 1.
In this case we have, if R(s-\-b—a) > 0,

" T(-s+f) T(a + t-s) _ SUIT (a-6) - T(a+t-s)T(a-b+l + t)
T(t+1) T(b + t-s) sin xs t=o r (*+ l ) r (+ l + £)

sin ITS

or

By Gauss's theorem this equality may be written

T(-s)T(b-a+s) _ simrja-b) T(a-b+l)T(b-a+s)
T(b-a)T(b) sin™ r(l+s)r(6)

It is therefore obviously true.

16. Let \ be a contour parallel to the imaginary axis passing to the
left of the point k and to the right of the points —bt (t = 1, 2, ..., j»),
where k is a positive integer so chosen that k-\-B{bt) > 0.

Then, if iT(s) denote the sum of all terms after the first k of the series
by which T{s) has been defined when B(s—a+2c—26) > 0, we will
shew that

sin7r(s—a) T/A _
kl (s) —

For, as before, the integral is equal to the sum of the residues of the
subject of integration to the right of the axis X. It is therefore equal to

,Zu r(n+i)ra-o-n+«) £ r(c,+«)
_ sinTr(s-ft) * T{a+n—s) * T(bt+n)

7T nZk r (n+l) iZTict+n)'
We thus have the given theorem.

17. The Analytic Continuation of kT(s).—We proceed now to sheio
that, if kt be the smallest integer such that R{kt-\-bt) > 0,

j . p 11 sin7r(cw—bt)

X ̂ (.s-fl-f 2 c - 2 6 + r + l , kt+b
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where

J = J - f ( H-0) ft T(l-Ct-<P) £ fr(s) )

a- = ,s—a+2c—26-f-l, #wd itf/tere X' w a contour 'parallel to the
imaginary axis which cuts the real axis just to the left of the origin.
The equality is valid for all values of s such that

Ris—a+Zc—lb+R) > 0 ;

it is therefore valid for any finite value of u if ice take R sufficiently
large.

By the asymptotic expansion of the gamma function we know that, if

Jk(s,<t>)
T(l-a-<p+s) ti\

where fo(s) = 1, fr{s) is a polynomial ins, and \Jn(s, <fi)\ tends uniformly
to zero as | <p \ tends to infinity.

Hence the integral I is convergent provided R(cr-\-R—1) > 0. Con-
sider now the integral

r - J f L
(—0)" t=i sm7r(

That value of (—<f>Y+v is to be taken which is equal to

exp \(a--\-r)\og(—<p)\,
where log(—</>) is real when <f> is real and negative, and has a cross-cut
along the positive half of the real axis. Hence the subject of integration
is one-valued in the area to the left of X'. Also, if -R(o-)+?-> 1, the
integral vanishes when taken round an infinite contour enclosing this
area. Hence, if R{o)-{-r > 1,

. ... ! II simr{cm—bt—n)
i.= i± s

"—* » •»—'•> \Of-\-n) T T . . • /7 i \IF simr(bm—b,—?i)
m=l

the accent denoting that the term corresponding to m = t is to be omitted.
Thus ' „

,, -. II ain ir (cm—bt)
V> •»• 9-1 I

l = \ -K *
II' sin 7r{bm—bt)
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where £(s, a) denotes the Riemann £ function defined, when Bis) > 1, by
the equality «> ^

^ ) J
Now, by the result of § 16, we see that

s i n j r ^ - o ) kT{s)

Hence, if we take account of the poles of the subject of integration
between the contours X and X', we have the equality given in the
enunciation, provided B{a) > 1. But all the quantities on the right-
hand side of the equality are continuous functions (except for isolated
poles), analytic if B(<r+B) > 1.

We thus have the given theorem.

18. We may now shew thai, if s = n-\-iv, and it have any finite value,

where e > 0 , can be made as small as we please by taking \v\ greater
than an assignable large positive quantity V.

We take the result of the preceding paragraph.
Then, in the first place, the integral I is such that

| I | exp i(-**—«) I» ||

tends uniformly to zero as | v \ tends to infinity. For (—0)<7+I is such
that the argument of —</> has its modulus ^ ^TT on the line of integration.
Also for any finite value of | <f> \ the expression

|r( l—a—

tends uniformly to zero as | v | increases ; and therefore

will tend uniformly to zero for all-values of </>, finite or infinite (including
even values for which <p—s is finite when \v\ is very large) on the line of
integration. Hence, since the integral is uniformly convergent with
respect to s, we have the given statement.

In the second place, the modulus of each term of the finite double
series of gamma functions of s which occurs first on the right-hand side
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of the equality of § 17 will evidently tend uniformly to zero when
multiplied by •[ exp (—^TT—e) \ v\ •.

Finally, so far as the expressions /,. depend upon s, they depend upon
the Riemaim £ functions £(cr-\-r, kt-\-bt). Now the integer kt was so
chosen that | arg (k,-\-bt) | < ^7r. Hence, by the theory of the Riemann
£ function,+ | £(rr-\-r, kt-\-bi) | exp [ (— îr—e) \ c \) tends uniformly to zero
as I 0 I tends to infinity.

Hence, by the equality of £ 17, we see that, for all finite values of u,
I 7T"1 sin 7r(s — a)i,:T(s) | exp { — ^ir—e| v \ ]• will tend uniformly to zero as
\v\ tends to infinity. Therefore | kT(s) \ exp {($TT—e) \v \ \ possesses the
same property. Now kT (s) only differs from T(s) by the sum of constant
multiples of a finite number of terms of the type T(n-\-a—s) ; therefore
I T{s) I exp • (̂ 7r—e) I v I \ will tend uniformly to zero as | v \ tends to infinity.

We thus have the given theorem.

19.+ We may now shew that, if u is large and positive, and \v\ be
large or finite,

I T(s) I < A" exp •; (-itr+e) I v \-ku;,

where k is any finite-positive quantity, e > 0, and. K is a finite quantity
independent of u and \v\. We assume that s is not in the. immediate
vicinity of the large poles a-\-n, n a positive integer, of T {s).

We have seen in § 10 that, when u is sufficiently large,

S J I I T T C S — f t ) T ( ) _ 1

where X passes to the left of the point m, and to the right of the points
— b, (t = 1, 2, ..., p), and in is the smallest positive integer which makes

m+li(bt)>0.

Now, if M{u—m-—a) > 0 and B{in — <j>) > — 1,

I V(u — m-a)\ i r a + iw + w —0) |

«i—011 fl J-*-1-™-1 a-*r+te-* d

t See. for instance, a paper by the imthor, •'The Maclaurin Suni Formula," I'roc. London
Math. Soc, Ser. 2, Vol. 2, p. 256.

X The author expresses his thanks to the referees for poiutiujr out an arithmetical error in
the original statement of this theorem.
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Also, if u is sufficiently large, and R (m—<j>) > 0,

f^ii-a-m-l ( l -a ; )~ + 't.-«rfa. < P xu-IHa)-m-l ( 1 _xyi-M<t>) fa < L

Hence \l/T(l-a-<p+s)\ < 1/j \T(u-m-a)\ \T(l+m+iv-<f>)\\.
Therefore

imrOs—a)
»T(8)

\dt\

< if exp -J ^7r(l + e) | ̂  | — ku},

as in § 18, where e > 0, if is finite and independent of u and | v |, and
^ is any finite positive quantity, however large.

Hence, if s be not in the immediate vicinity of one of the poles a+n

°f T{S)' \mT(s) | < Zexp | ( - | 7 r+e) | v | -ku\.

The same inequality is evidently true, under the same limitation, of the
finite number of terms by which T(s) differs from mT{s).

We therefore have the given theorem.

20. We can noio shew that the function vSp(s) is such that, if
s = u-\-iv, and u be finite,

where e > 0, tetids uniformly to zero as \ v | tends to infinity.

For we have seen in § 15 that
p

ir sin ITS pSp{s) = S Tr(s).

P
T V i A r p f n r p T T " 1 Q I T I T T « I p ( 3 n ' ~ e ) v I ,Q (e\\ ^ V I T 1 f « n />(4' r ~ 6 ) l" l

r = l

that is to say, is less than a quantity which tends uniformly to zero.
We therefore have the given theorem.

Again, we can show that pSp(s) admits of analytic continuation over
the whole of the finite portion of the s-plane.

For we have seen in § 17 that this is true of the functions Tr(s) ; it is
therefore true of the function pSp(s).

I t is s imi la r ly ev ident that, if u be large and positive and \v\ be very

l a r g e o r finite, \ a i w ^ xr i / <* i \ i i 7 >y J \vSp{s)\ < Z e x p {(—§7r+e) \v\ — ku\
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where K is finite and independent of u and \v\, and k is any finite posi-

tive quantity, however large, provided s be not in the immediate vicinity

of one of the poles s = n oi' 1—/or-f n {r = 1, 2, ..., p) of pSp(s).

21. We proceed now to shew that. pSP{s) has, except for those poles
which are poles of T(—s) or F( l—p r - fs ) (/• = 1, 2, ...,p), as its sole
finite singularities poles at the points

s = a1+...+ap—pl—...—pp—/• (/• = 0, 1, 2, ..., oo),

and that the residues at these poles may be obtained loith sufficient
labour.

By the definition of § 13,pSp{s) is represented, when B(s)'>B (2a
by the convergent series of gamma functions

" T(-s+t) * (Ta-pr+t-s))

t=0 r(H-i) r-i l ra-« r+*-s) j *
By the asymptotic expansion of the gamma function we know that, when
t is large,

,ii 1 Ta-ar+t-8) i ~ t'+^o-^exp "iml me "l+ r J

where, for any finite value of /m, \ J^ | can be made as small as we please by
taking t sufficiently large, and where

vm = r|x {sma-Pr-s)-sma-ar-s)\+sm(-s)-sma).

Sm(x) denotes the m-th simple Bernoullian function of x, and is a
polynomial of degree (w+1) in x.

When t is large we see, then, that the above term may be asymptotically
written . „ , T / w

1 I y fr(s) , J K ( S ) [

where / 0 ( s )= 1, and /r(s) is a polynomial in s whose value for any
assigned value of r can be determined with sufficient labour.

Consider now the function

pSp(s)-2ofr(s) f (s+r

When J R(s+E/)-2a)>0 this function may be expressed by the series

"„ jT(-s+t) A rq-pr-s+t) ^ Ms) \
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l:

(the double accent denoting that the summation 2 does not exist when
t = 0), and this series is equal to

5 Ja(s)

But this series is convergent, provided

R(s+R+?P-!a)>0.
Hence the function

has no singularities when

R(s) >2a-Zp-R.

Now the sole finite singularity of £(s) is a pole at the point s = 1 at
which the residue is unity.

Hence the sole finite singularities of pSp{s) apart from those poles
which are poles of T{—s) or F(l—pr+s) (r = 1, 2, . . . , J ; ) are poles at the

P° i n t B
 s = S a - S P - r ( , = 0 , 1 , 2 • ) ,

At the point s = 2 a —2/o—?• the residue is fr(Za—'2p—r), and this
quantity can be calculated with sufficient labour, should necessity arise.

22. We may now prove that, if |arg {—x) \ < §7r,

A |T(1-P,.)i
, = i i T d — a r ) I }> v ' W l ' '"• ' " '" ' P l > ' " ' ̂ ' ' '

— /or, ..., l + av—pf\

1 — pr, 1+Pi — pr, . . . ,*, . .

~ ' ( X) i rr0 rr' + ^ J

where \ JJt \ tends uniformly to zero as \ x \ tends to infinity. The quantity
(—YPr is the residue of pST(s) at its pole s = 2a—2p—r.

We consider the integral
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taken round a contour which encloses all the poles of. pSp(s) exeept the
P ° l e 8 s = 2a-lp-r (r = 0, 1,2, . . . , •») ,

and embraces the positive half of the real axis. The integral is con-
vergent by § 20 for all finite values of | x | , and by Cauchy's theory of
residues is equal to

(-)'1

o n\ T{t+\

+ 2 x1

r=l

V

r - 1

J>

r = l

-^ I r(l—/3r—n)
.) r=! ir(l-aP-n)

00 CO / \7l

-P.. V V ^ >
n=o c=o n\ 1 (P+.

(r(i—pr)) F ,
(ra-a,.)i 3>^1ctl

ro»P-i) fr i
n T(Pr-

\ x

T{pr-l-n) ft'
m=l

ii r(/or-

, . . . . d p , P l , . . . , P p

-Clm)

T{pr—pm—n)

-am-n)

; -x\

2 —/3r, l+z^—pr, ..., *, ..., l+pp—pr; — x\.

Again, by the results of § 20, if | arg x \ < f ir, the contour of integration
may be swung back as in § 8, and we get for the value of the integral
the asymptotic series

2 (-yPrx-'-^-
r=0

where | JR \ tends uniformly to zero as | x \ tends to. infinity. Changing x
into (—x), we have the given result.

The result of this paragraph is a generalisation of that previously
obtained t for the case p = 1. In that case the coefficients Pr admit of a
simple expression, and we have the theorem that, if |arg (—x) \ < \TT,

ja; P; x\+.W£^)(-x?-'1Fl\a-p + l; 2-p ; x-

admits the asymptotic expansion

ex(-x)a-^Fo{p-a; 1-a ; l/x\.

t Lor. cit., § 1, Paper rj, § 15.

8KB. 2. VOL. 5. NO. 948.
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28. We now see that the (p-\-l) asymptotic solutions of the differential
equation of § 18,

£ © + 1 ) 0 + - 1 ) ] y = 0, (1)) £
are the series which have been obtained in § 7,

(—x)-*'p+iFp-i \an l + ctr— plt ..., l+ar—pp;

l + ar—alf ..., *, ..., l + ar—ar; — 1/zf (A)

when r = 1, 2, ...,_p, and the series

• (-a;)*-* 5 ^ , (B)
r=0 &

which is obtained in § 22.
In § 7 we have connected each of the first series with the hyper-

geometric integral functions which exist as principal solutions of the
differential equation in the finite part of the plane, and in § 22 we have
connected the last series with the same solutions.

If R (x) > 0, the result of § 22, which is valid if | arg ( — x)\< fir, is
therefore equivalent to two relations. But in this ease the series (B) out-
weighs all the series (A), and therefore each hyper geometric integral
function which is a principal solution of the differential equation (1) can
be expressed, when R (x) > 0, as a multiple of the series (B). The
different principal solutions are therefore expressible as multiples of the
same asymptotic series, though, of course, they are not corresponding
multiples of one another. We have an illustration of Poincar6's axiom
that different functions may admit the same asymptotic expansion.

24. When R (x) > 0 the actual expression of, let us say, PFP \ x \ as
such an asymptotic expansion is not best obtained by elimination between
the results of §§ 7 and 22. It may be obtained directly by considering
the contour integral

where T (s) denotes the series defined when it! (s) > R (S a — 2 p) by the
convergent series of gamma functions

" T(n-s) P f r ( a r +n ) |
—or (»+ l ) r=1 (T(pr+n)\ "

It is evident that this function is a particular case of the function T(s)
considered in §§ 15-19 for which a = 0.



1906.] THE ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS. 88

Hence T(s) has poles when s = n. (n = 0 ,1 , ..., <x>), and when

.s = 2a—2/o—n.

If the integral be taken round a contour C which embraces the positive
half of the real axis and encloses all the poles s = n, but none of the poles
5 = 2a—2/o—n, it is evidently convergent for all finite values of | x \ ,
and equal, by Cauchy's theory of residues, to

t\ r(n+i) ,5
Now the residue a t s = 2a —2pis unity; and the residue at

s = 2a —2/o—r

can be calculated with sufficient labour from the asymptotic expansion of
the gamma function : let it be Mr.

If |arga:| •< \-rc, we see by § 18 that the contour of the integral can
be swung back as in § 8, and we get for the value of the integral the
asymptotic series , R xr T x

a*-*-l+ 2 ^ + ^
I r = l Xr XK )

where, for all finite values of B,\JR\ tends uniformly to zero as | x | tends
to infinity.

Therefore, if | arg x \ <. \TT, we have the asymptotic equality

A \IM\ F l x \ - ! * M2 i+M
, - 1 X X I

This result evidently includes that obtained by Stokes for real positive
values of the variable (vide § 3).

Evidently we can obtain similar exponentially infinite asymptotic
expansions, when R (x) > 0, for the other principal solutions

X1-?' vFp \ai — pr+l, ..., ap — pr+l J

2— pr, p1 — p r - \ - l , .-., *, ••-, pp — pr+1 5 x \

of the differential equation (1) of § 23.

25. When B(x) < 0 the result of § 22 is equivalent to but one identity.
We thus see that, when B (x) < 0, although, as in §$ 9 and 10, each

hypergeometric integral function which is a principal solution in the finite
part of the plane of the differential equation (1) of § 23 is represented
near | x \ = oo by linear combinations of the p asymptotic series whose
dominant terms are of the type x~a> (r = 1, 2, ...,p), yet one, and only
one, particular linear combination of the principal solutions exists which is

G 2
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exponentially zero when \x\ is very large. This combination is given
in § 22.

The complete asymptotic theory of the solutions of the differential
equation (1) of § 23 is now concluded. We next proceed to discuss the
more difficult case when p^= q.

PART III.

The Exponentially Infinite Asymptotic Expansions of Linear Combinations
of Generalised Hypergeometnc Integral Functions for which p=fc q.

26. We proceed now to consider the further theory of those hyper-
geometric integral functions for which p < q, and consequently n > 1.

We shall in the first place investigate the function

ySq (s ; uv ..., af ; p v ..., pq),

or, as we shall briefly write it, ,,&, (s), which, when

R(S)>R \a1+...+ap-p1-...-Pq + $ 0*-l)[//*, (1)

is represented by the convergent series of gamma functions

„ T{-8+tlM) U TQ-pr+tlfi-8)
v r= l

( ) n ra-a
,=1 \ fL I

The number ix = q-\-\—y is an integer.

By the multiplication formula for the gamma function, we have
equally under the fundamental restriction (1)

We shall shew that vSQ(s) j^ossesses properties which are analogous to
those of pSp(s) obtained in Part II., and which have already been stated
in § 6.

These properties are direct generalisations of the properties of the
function 0Si(x) denned when R(2s+p—£) > 0 by the series
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It is easy to see that, by an application of Gauss's theorem, QS^S) could be
written in the form

27. We note in the first place that pSq(s) can be written as the sum
of fi series in the form

n r(i-Pr

n °' °r(H-D frru+^j n r(i-ar+H-w//*-*)

£Ae double accent denoting that the term corresponding to m = /x—n
is to be omitted.

Each of these series is of the same type as the series pSp(s) previously
considered in Part II., with the exception that s does not occur in yu
gamma functions in the denominator of the typical term of the series.

Let, now, £Sy(s) denote the sum of all terms of the series by which
pSq(s) has been defined under the condition (1) except the first k terms.
Choose the positive integer k so that

R(-s+klfjL+l-pr) > 0 (f = 1, 2, ..., q).

Let I be a straight contour parallel to the imaginary axis passing
to the left of the point k/fx—s and to the right of the points pr— 1
(r = 1, 2,. . . , q), and also of the point (k—1)//UL—S.

Then, exactly as in § 14, we see that

•J8,(«)

F(—</>—s+n/m)
- rinx<.-n/,0

(A)

for the terms of the series pSq(s) which arise from poles of T(—0—s+n/fji)
occur when <j>-\-s—n/fi = t or <f>-\-s = t+n/n, when these points belong
to the series k/n, (fc-f-l)///, . . . ; that is to say, when

/iit-\-n ^ k.

28. We may now shew that, under the condition (1) of § 26,

lSq(s) q
if • "p / \ 11 1 ( 1 — P r i " W

27rt Ji s i n TT/J.S s in TT/X (S ~\- d>) Jt „ , . ' „

ro=l r = l
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For the previous integral (A) is equal to

i r n (1— pr

2xr J{ n ra-ar+^) n

where 8 =

—<f)) «=o ain nr(s—nI

2 j cot x (s—nj/j.)—cot
— <p) S i n TT(f) w=C

^—. {cot/usx—cot/ux(s+^)}

_ _ jj.Tr s i n

sin x/us sin x/u (s -|- <f>)

The integral is evidently convergent if

B

i.e., if B(s) >R{lfa-l)+2ar-'Lpr\lti>

which is the condition (1) of § 26.
We note that the integral just obtained may equally be written

q

i r 1(1—Pr~\~4>) F (0 ) F(—fxs—M0) • ,
jto , •. 1 I r=\ sin x/010
P q 2xt Jj X ,-,. . sinx/tisi

11 1 (1—ar-\-<p)
r = l

for by the multiplication formula for the gamma function

II F(7W-//U-|-0-|-s) =
m = l /*"

The equality (1) is, of course, obvious when the integral is once
written down : the process adopted has been employed to shew how
such an integral may be built up from others of a more elementary
character.

29. We now proceed to shew that
p

or—at) •

I I ' sinx(pP—pt)
t=i
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where Ur(s) is the function defined when

{ / + / i G l ) f > 0
by the series

fi ra+a.-^.+^i) nl

t = \ t = i

t = l

Since i* = <? + l — |) , we may put

rat = '2+t/fx-pr (t = 1, 2, ..., M - 1 )

= 1+ott—pr (t = fi, yu-f-1, ..., g),

rbi = 1+pt—pr (t = 1, 2, ..., ?);

and now we may say that Ur{s) is the function denned when

R(/jLS+fx+2b-2a) > 1

by the series Z - ^7 t : • o . II
J
 0 I (jin — fXp + Zfi) t \,(=0

where one of the quantities rbt is unity.
The theorem therefore enables us to reduce the consideration of the

function pSq(s) to that of the more simple function U{s).
Under the condition

B(s) > JBHGK-l) + Za-Zp}//x,

the integral of the previous paragraph will vanish when taken round
that part of an infinite circular contour which lies to the left of the
axis I. If, then, we apply Cauchy's theory of residues, we have

II I (pr—at—n)

the accent denoting that the term corresponding to t = r is to be omitted.
Thus . r

11 sin Mpr-)
sin SM Z

where

Z
I I ' Sin7r(/or —/

4 y 5^

n
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Now by the multiplication formula for the gamma function

Hence

„ r , , , ft I
JJ (s) = £ rpiW — fxpr + V— ft8) £=i

+ n )
4 = 1

Evidently the series Ur(s) converges if B |/us+2p — 2a—£(/* — 1)\ > 0,
which is the limitation under which the series pSq{s) was denned. There-
fore the sum of the continuations of the specified multiples of the series
UT(s) will give the function sin TT/ULS pSq{s).

We thus have the given theorem.

30. We can readily verify the preceding transformation when p = 0,
q = 1, and therefore /* = 2.

We have

and the transformation shews that
2'-1-21-1 s in2x(/)- l) ...

^ (l)

-here PC) = i «^5=&Z^tS,
i=o r ( l - f ?i)F(2—p-\- n)

the series being convergent if i2(2s-f p) > £.

- 2"2P"2<+I y Tin-p-s+pTjn-p-s+j)

and therefore, by Gauss's theorem, is equal to

Now, by definition,
o w _ 4 _ y r ( -

and therefore by a previous investigation (§ 26)

oS^s) = Tr^s inx^—^)2 2 " + 4 4 r ( -2s ) r (2-

Thus the identity (1) is immediately verified.
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81. We have now to consider the nature of factorial series of the type
Ur(s), and especially the nature of their behaviour when s = u-\-iv, and
u and | v | either or both tend to positive infinity. With this object
we shall first consider more elementary series from whose properties we
can deduce inequalities and relations of the type which we desire to
obtain.

As a simple example of the factorial series which %oe proceed to
consider, let its take the function S(s), defined lohen R(s) > 0 by the
series » T, x

»«o TOxn+l)
where JJL is an integer.

By the investigation of the binomial theorem due to Abel, we know
that for all values of x and s for which the series is convergent *

where (1—x)s = exp{slog(l— x)\ and |arg(l—x)\ < ir. When x = 1
the value of the series is zero.

Let, now, w be a special root of the equation y* = 1, so that
1, IO, w2, ..., wM~x are all the roots of the equation. Then we have

Hence

Therefore

. n=0 r(/Ufl

S00 =

2
r=O

i—s)

^+1)

- - 1

(wny

r=O

T(-s

= 0,

n=0 I

unless

if

'(w—s)

;i-wO'

'«. =

71 =

(wT.

M(tt)

Af(M).

This equality represents the function S(s) over the whole of the s-plane.
The term corresponding to r = 0 is zero; therefore

S(s) = ui-'Ti-s) *2 (l-w'T.
r=l

In this expression we have to take such a value of (1—wr) that the
modulus of its argument is < ^7r.

Now, if w = e2"11*, this being the simplest special root of y* — 1,
we have, as is readily seen from a figure,

arg(l—wr) = -rrrjix — %ir , if 2r < fi.

* A full diecusaiou of the theorem appears in a paper by the author, Quarterly Journal of
Mathematics, Vol. xxxvm., pp. 108-116.
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And the maximum value of |arg(l— ivr)\

if fx > 1.

Hence, if s = u-\-tv and v tends to infinity, the expression

where e > 0 behaves like

T ( — s ) e ( 4 i r - e ) i v | 2 ( 1 — ? / ; r ) s
e - < * ' r ,

and therefore tends exponentially to zero as \ v \ tends to infinity for all
finite values of u.

A fortiori it is evident that, except at the poles of F(—s), \S{s)\ will
tend exponentially to zero for all values of | v | if u tend to positive infinity.

82. It is evident that the previous discussion is only suggestive of
similar results for more complex series, and that for such series other
methods of proof must be discovered.

We proceed to consider the behaviour, as \v\ tends to infinity, of the
more general function defined when B(s-\-c) > 1 by the series

""^0 T(/UL)l-\-c)'

fi being an integer > 1.

As before, this series may be written
u — I x
V V

Suppose now that the coefficients ev ..., em are so chosen that

a—wx)-1 — l—zox—...—wnxn—elx
n+1 — ...—emxn+m = (1— x)mQ{x)

where Q(x) is finite near x = 1. Evidently this is always possible.
Consider now the integral

(1 _£)*+<=-! 3.-S-1 n^Zjl eiX
n+1-...-emXn

Jo (1 — wx
n+m\dx.

)
It is convergent a t x = 0 if B(n—s)> —1 and at x = 1 if R(s-\-c-\-m)>0,
provided w ^ l .

Thus it is convergent at both limits if n > R(s) > — m—B(c).
If n > B(s) > —B(c), the integral is equal to

T(t+c) & ' T(n+t+c)
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«> Y(t s)
Evidently, if w =£ 1, when 2 T , wl is replaced by the function

which it defines when R{s+c) > 0, the equality holds for all values of
s such that n > R{s) > _ m _jR( c ) .

Thus, if n and ra be sufficiently large, it holds for all values of B(s)
which are finite.

The integral may be written

o \ x I { l—wx t=i I

Instead of taking the integral along the real axis from 0 to 1, we may,
since the subject of integration is one-valued, take it along any circular
arc from 0 to 1 which does not enclose singularities of the subject of

1 x

integration.* On such arcs has a constant argument.
If w = e2rTrillJ-, it is evident that on the arc which passes through ljw,

which is the sole singularity of the subject of integration other than the
terminal points 0 and 1,

1—x i—g-'^/M I . r 7 r ) rirarg ~7~ = arg «-»"/» = arg 1 sin 7 e ) = ^^+ —
if 2 r < / u .

If 2r = fx, arg (—-) = ±TT.

\ re /

When 2M > 2 r > /*, arg ( ^ ^ ^

We see then that, if w =£ 1 and therefore »• ^= 0, the modulus of
the integral

f ( ) s U x r { ^ i ̂  „,
r(s-f-c) Jo \ ^ / (l—wx t=i I

for all finite values of u as | v \ tends to infinity, behaves like

e-Wr-WFiv), if 2r</x,

or like e-C(M-')WK-e] M ^ ^ ^ i f 2/x > 2 r > yu,

where F(v) tends exponentially to zero as \v\ tends to infinity if «• > 0.
If w = 1, we have the function defined when .R(s-f-c) > 0 by che

series S ^7—:—^, which, for all finite values of u as \v\ tends to infinity,

behaves like

m A figure corresponding to this transformation and further details will be found in § 24 of
the paper by the author quoted in $ 1 (Paper e).
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Finally, therefore, the moduhis of the function defined when

B(s) > —R(c) by the series 2 =TT-—;—I, M an integer > 1, behaves for
n=o 1 {jjn-\-c)

all finite values of u as\v\ tends to infinity like e~Mll~e)[vlF(v) where F{v)
tends exponentially to zero as \ v \ tends to infinity if e > 0.

33. We will further sJww that, if .«? = B-\-iv where B is large and
positive,

{—irlfx+€)\v\\>i^o T(ju.n-{-c)

where e > 0, and j^e*^, k > 0 but finite, is independent of v and can
be made as small as we please by taking B sufficiently large, if s is
not in the immediate vicinity of one of the points n.

"We have, if B be large and positive, u be finite, and n be just so large
that n—B > B(s),

_ s T(t-B-s) t • T(t-B-s) ,
~ iS TWHT " «=o T(t+c) w'

The integral can be taken along a circular arc as before, and its modulus is

where n is the maximum value of | l—x\ on the arc and K is independent
of v and B.

Also, if B and .R(s-|-c) be positive and greater than unity,

Hence , j / | < e(-^+«)ivi -£- K.
1 H

Again, 6B times the modulus of the largest
=b T(t+c)

term in the series, where 6 tends to a finite limit as B tends to infinity.
It is therefore less than €Re~®n~')lv* where eRekli tends to zero with 1/B
and is independent of v, provided B-\-s is not in the vicinity of one of the
zeros of T(—B-— s). Thus when B is large

«> TV/ 7? e \
y, JL \0 £h 6/ { ^. I ( ""/** + *) Iw I

«=o T{t+c) Vn

where 17̂  is independent of \v\ and nRein can be made as small as we
please by taking B sufficiently large.
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° T(nn-R-s)Hence

where ijR is independent of v and ekltt]R can be made as small as we please
by taking R sufficiently large, provided R-\-s is not in the vicinity of one
of the points n.

34. THEOREM.—Let gfi(x, 1) be the function defined when \ x | < 1 by

the series 2 . . ~, and <f?m(x) the function similarly defined by

S ^ T T T X ; ; xn, the functions beinq made one-valued by cross-
»=o T(imn+p+m-\-c) J y *
cuts along the positive half of the real axis from 1 to + oo. Further,
let Hue coefficients cm be defined by the expansion

which is oalid when y is sufficiently small. Then the coefficients a can be
so chosen that the function

F(x) = v->gM> D 2.2 vipk • « ^
Til — 0 X. \J^} '' — ̂

behaves at x = 0 &&<? xNP(x) ivhere P(x) is finite when x = 0, ancZ ai
^ = 1 like (l—x)LQ(l—x) where Q{1—x) is finite when x = 1, L, M, and
N being finite positive integers, however large, such that R((3)-\-M > L.

I have previously shewn that* g^{x, 1) admits, near x = 1, the con-
vergent expansion

| n ^ r ^ + i ( / 3 , 1),

the latter series being convergent near x = 1, and (—logx)3"1 being made
one-valued by a cross-cut from 1 to + ^ •

Also it can be shown that the function denned when | x \ < 1 by the
^ T(a-\-n) ... , ., .. ,, ,series z, ^—;—-xn admits, near x = 1, the convergent expansion

-i=o 1 (p-\-n)

T(l + a-p) J T(a + n)

wherein there is a similar cross-cut, so that | arg (1—x) \ <. -w.

* Proc. London Math. Soc, Ser. 2, Vol. 4, p. 291.
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Now

(where w is a special root of ^ — 1 =

— *io • T(l-/3-m)(l-wrx)p+m-'LUvrx)l-p-m-c

P-m) I j > f c n L a f r r T
T(j3+m+c-l) -or(2-/3-

each expansion being valid near the corresponding singularity. Therefore,
since near x = 1 all the functions in the summation 2 except that

corresponding to r = 0 are analytic, we have, near x = 1,

$ , ( / ) = - r ( l - j 3 - w ) ( l - a ; ) ' l + B - 1 a ! 1 - ' | - B - e + 2 d,,.(l-.r)",

the latter series being convergent near x = 1.
Hence the function -F(a;) behaves in the vicinity of its singularity

x = 1 like

m=0

2 ^(1-a;)'1- 2
?i=0 ii=0

«=o

oo L + N—1

n=0 /i=0

Now near x = 1 we may put x = l/(l—y), so that (l—x)/x = —y,
then the expression inside the square brackets becomes

( —]

if | y | be small. Thus F(x) near the singularify x = 1 behaves like
« L + i V - l

where Q'(x) is finite near x = 1.

Suppose now, as is evidently possible, that we choose the first N co-
efficients a so that F{x)=xNP(x),
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where P (x) is finite at x = 0. Then we may further choose the remaining
L coefficients a so that

oo L + . V - l

2 en(l-x)n- 2 anx
n=(l-x)LQ(l-x)

n=fl u=0

where Q (1—x) is finite near a; = 1.
If, then, -R(/3)+ilf > L, we have the proposition stated.

35. We will next shew that, if N be a multiple of m and if <r be such
that N>B((r)>-L-R (C) + 1,

c-\-o-) Jo

ail
r(n+c)

, I rpur—<r) I 1 _ £ (—rcOTrp8+m)r0iir+c) )

We assume that all the numbers involved are defined as in the previous
paragraph.

If N be a multiple of fx, and B be an integer >• N//J., we have

1 — x)c+<r-x x'"-1 F(x)dx

n L+N-\ n-e
= (l-x)::+<r-lx-'r-1F(x)dx- 2 anx

n(l—x)c+°-lx-'T-1dz
Jl-e » = -V J()

Jl-l r i - e
_J_ V I (1 ~.\c + <r-l ~-<r-l + fj.r
^\ £J I \X—JU) Jj

r = N/n Jo
• dx

Jp r = K t-
P + M

where J"Af(r) is defined by the equality

"' , Jtf(r) (>2

Now I have shown* that, if# | arg 0 | < ir,

Quarterly Journal of Mathematics, Vol. xxxvin., pp. 116-140, § 9.
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where | JM I tends to zero as \ <f> | tends to infinity, and the coefficients
c'm are given by the expansion

Putting <p = jur+c—1, 6 = /u—c+1,

we see that in the formula (2) i JM (r) \ < an arbitrarily assigned small
quantity »/, if R be a sufficiently large positive quantity and r > B, the
quantities cm being defined as in the previous paragraph.

Now, in the formula (1) the modulus of the first integral tends to zero
us e tends to zero if B (c-\-ar-\-L) > 0.

The modulus of any one of the second system of integrals tends to, a
finite limit as e tends to zero if N> B{a-) > — B(c). Each of the third
set of integrals has a modulus which tends to a finite limit if the same
conditions hold.

The modulus of the final integral is

(l - e

0
(

Hence, if N> B(<r)>-B(c) and R<fi+M)> 1,

x)c+v-1x—lF{x)dx?{l-

^rje-h^rowr+c)) ,

where | la \ tends to zero as JR, tends to infinity.

Thus under the same conditions

T l \ v f (1-XY+*-1 x"-lF(x)dxT(c+o) Jo

I

But, if B(/3) + M > L, the integral on the left-hand side of this equality
is an analytic function with no poles if
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Also the series on the right-hand side is absolutely convergent if

B(P+M+cr+c)>l,

and, a for tiori, if B{<T-\-L-\-C) > 1.

The equality is therefore true under the wider conditions of the
enunciation.

36. Let S(cr) be the function defined by the series 2 -,-
J
 J v w=0 T(/un

** y

when B {c-\-<r-\-(3) > 1. Then, if a = u-\-iv, and u be any real quantity
of finite modulus, \ S{s) | exp | {irjiA—e) \v\) tends to zero as \ v\ tends to
infinity if e > 0 and /A is an integer > 1.

Let 2)U(<r) be the function defined by the series 2 ^-. v-x-i ;— »̂
'i=o i {jj.n-\-p-\-7n-\-c)

if B (/3+m+c-|-<r) > 1.
Then, by the result of the previous paragraph, we have, if

N>u>-L—B(c) + 1,

1 fl / I r \ C + CT-l

^ , , , a:c 2F{x)dx
r(c+o-)Jn\ a; /

L + A'-l p /-, ^\

v) i 4 c ( f l + ) f c + t
=o r (fir+c) i Cur+z*)" «^o r 08) T Car+^+m +c) ["

Now the modulus of the first integral tends uniformly to zero, as | v \ tends
to infinity, when multiplied by exp { (TT/M—e)\v \\, as we see by the
method of the theorem of § 32. By the properties of the gamma function
the same is also true of every term in the two final summations of the
previous equality.

Also, if n be an integer > 1, | 2m(cr)| tends to zero as \v | tends to
infinity when multiplied by exp. {(TT/M—e) | v\ \, as has been proved
previously (§ 32).

Hence we have the given theorem.

37. If S(cr) be the function defined when B{c-\-<r-\-{$) > 1 by the

series 2 ^-.— , ..—rrTs> "ie function w? r has for its sole finite

SHB. 2 . VOL. 5 . NO. 9 5 0 . H
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singularities poles at the points

a — 1—fi—c—n (n = 0, 1, 2, ..., oo).

When n is large we know that! ^7—_r"' f,— -̂s admits the
asymptotic expansion

v cr(<r) , JR(U)

where the coefficients cr(a) are polynomials in o- and | Jntyi) | can for any
finite value of JR be made as small as we please by taking n sufficiently
large.

Hence the function

S{(T) " Cy((T) ?l_ { Q , {

admits, when R (c+a+fi) > 1, the expansion

n=o
•p / \

the double accent denoting that, when n = 0, the term is yrr-r—^ • The

series is convergent when B (<r+/3+c) > 1—R. And hence for this
wider range the function

S(a) - * Cr(<r) »

has no singularities except poles at the points

o- = n {n = Q, 1, 2 , . . . , <x>).

Now £(s) has for its sole finite singularity a pole at the point s = 1,
at which the residue is unity.

Hence the sole finite singularities of S{a)/T(—a) are poles at the points

o- = 1—P—c—n (n = 0, 1, 2, ..., oo);

and at <r = 1—/3—c—n

the residue is n~lcn(\—($—c—n).

t With this theorem tho reader may compare the similar proposition established in § 5 of
the author's paper '-The Use of Factorial Series in an Asymptotic Expansion," Quarterly
Journal of Mathematics, Vol. xxxvin., pp. 116-140.
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38. We proceed now to consider the behaviour of the function Sip),
defined when R (c-\-<r-\-fi) > 1 by the series

- T{fxn-<r)

for palues of or = u-\-tv for which u is large, real, and positive ichen \ u \
does or does not tend to infinity.

We will shew that

S((T) < r,,, exp •{ (—7r//x + e) | V \ \,

where t]n is independent of v, and e^vu, k > 0 and finite, can be made as
small as ive please by taking u sufficiently large and positive, unless <r be
in the immediate vicinity of one of the points n.

Suppose that o- = u-\-iv, where u is finite. Choose M such that
R(/3+M) > 0. Let R be very large, real, and positive, so that

ii!(c+crH-ii!)>0, R (c + cr + R+/3) > 1,

and R (/3+m+c+o-f-ij!) > 1 (0 < m < M).

Choose N a multiple of ĉ so large that N > 'it-f-.fi!—1. Then, with the
previous notation,

S(a+R)= 5 r ^ - ^ -^ )

a n d Zn(<r+R) = 2 ^ , ,. , o , _ , , .

Let: the a's be so chosen that, near x = 0,

M V(R-l-m) N~l

F(X) = M - ^ ( ^ , D - jo(-rcm Y^) *-(«•)- M?o w
is of the form xN P (x) where P(x) is finite when x = 0. Then, by the
result of § 35,

T(c+<r+B) Jo \ x

- 2 ( -
m=0

( 1 _ » (-)"lcmT(/3+m)r(fxr+c) I
\(r+f o r08)r(/-+/8+wt+c) J '

(1)
H 2
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Now we have seen in § 33 that, when | v | is large,

mVn exp j(—ir/jii+e) \v

where ,„»;« is independent of v, and ekR
mt]R can be made as small as we

please by taking R sufficiently large.
Also, if we employ the transformation of § 32, and take the integral

along a suitable circular arc, its modulus is less than

e x p ^ " ^ T T + W M — e ) | H r f*l!K*

where /my is the maximum value of |(1—x) | on the arc, and K is finite and
independent of ?' and R. The modulus of the integral is thus less than

K exp {(—x//*+e) |y | [ < I/K exp j —

where >//,- is independent of v, and ewV« can be made as small as we please
by taking R sufficiently large.

The final N/fx terms in the expression (1) have a sum whose moduluŝ
is less than N/fx times the modulus of the largest term, i.e.,

O/'/iexp |(-:b"+e)M!
where >/'« is independent of v, and eknn'n can be made as small as we please
by taking R sufficiently large.

Hence, finally, when | v \ is large,

| S{cr+B)\ < >»«exp K-Tr/Ac + e) | v | |

where nu is independent of v, and ekn*iK can be made as small as we please
by taking R sufficiently large.

This is equivalent to the given theorem.

39. Let

,yF(?_1 •«! , . . . , a,,; blt . . . . b,,; x\ = 2 I I
,,=0 (=1

/c//e?? | x j <C 1, where one of the quantities bv ..., 65 is unity. Further
let the coefficients fr{b, a) be defined by the asymptotic expansion

_ £ fr(b, a) , /^(n, 6, ft)

where, for all finite values of R, \ Ju(n, b, a) \ can be made as small as we
please by taking n sufficiently large. Then, however large the finite
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quantity M may be, if -we take B ( 2 6 — 2 a + E ~ l ) > M, it is always
possible to find coefficients d such that, near x = 1,

R M

TP _ /,jA 2 f (6, a) F(l 6 ?')( loffic)0+r~1 2 d (1 x)m

= (l-x)MQ(x),
where Q(x) vanishes at x = 1, and 6 = 26—2 a.

If the double accent denote that the terms E do not exist when
n = 0, we have

,( f A n a r W _ * f(b,a) I _ S J*(n, b, a)

By the properties of JR(M, 6, a) this series and its &-th derivate with
regard to x, where B(Lb—2a)-\-R — k>\, is convergent when x = 1.
But, when | x \ <C 1, the series is equal to

R

JPq-M— 2 xfr(b, a)gxb--Za+r(x, 1),

where, when | x \ < 1, gp(x, d) = J Q

But the author has shown that, near & = 1,

is one-valued and equal to

Therefore, near a; = 1, the series is equal to

This expression and all derivates up to the -&-th converge to a definite
value as x tends to unity, the various terms being made one-valued by a
cross-cut from 1 to oo along the positive half of the real axis.

Hence we can always find coefficients d so as to satisfy the proposition.

40. A suggestive deduction from the previous theorem may be
noticed.
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Since one of the constants 6 is unity, the function qFtJ-i(x) is a hyper-
geometric series in x of order q, and therefore by the researches of Thomae
and Pochhammer* we know that, near x = 1,

JFH-x{x) =9£iAlliPma-x)+Aq(l-x)6-1 Pq(l-x)

where the coefficients of the constants A are solutions of the differential
equation for qFq-i(x) near x = 1. Moreover the functions Pm(l—x)
(m = 1, 2, ..., q) are one-valued power series of (l—x) convergent near
* = 1.

We must therefore have, near x = 1, if B(Q+B—1) > M,

^here Q(x) vanishes at x = 1.

We may therefore anticipate that

lJ,.(b,a)T(l-0-r)(-\ogx) e+r-i

is either an asymptotic or a convergent expansion near x = 1 of that
solution of the differential equation for qFq^ (x) which is multiform near
x = 1.

41. Let qFq-i{x\ denote the function represented by the series

- ft r(qt+nj xH

nto t=i T(b,+n)

when \x\< 1, with a cross-cut from 1 to oo along the positive half of the
real axis. As in §29, let Ur(s) be the function defined when

by the series i r^-M^+M-^) ft

Let B, M, and N be integers such that, if 6 = 26—2a,

B(d)+B-1 > M, li(ti-Wr+»N) > Ufa) >-M-fM. (1)

* Thomae, Mathematische Annalen, Bd. n. , p. 433; Pochhammer, Crelle, T. cu., pp. 97, &c.
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Then, if the c's be suitably chosen, ice shall have

1 fl / I v \ Ju.S+M-1

s+ri Jo V x I
i n M+N \

X , ,F q _ i | a f}- 2 x»fT(b,a)ge+T{x»,l)- 2 cmx»m\ dx
{ T = 0 m=0 J

= 17,W- 2 /,(*, a) £

By § 39, if the quantities d0, dv ..., CZM be suitably chosen,

;.• M

where Qix") vanishes where x = l, if B(6)-\-B — 1 > M.
W e m a y n o w c h o o s e dM+i, dM+2, •••, du+N so t h a t t h e p r e v i o u s

M+N'
expression minus 2 dm(l—zT1 is near x = 0 equal to x^Pix*) where

P{xP) is finite at x = 0.
If, now, the coefficients c are given in terms of the quantities d thus

chosen by the relation
M+N M+N

m=0 m=0

we see that the integral in the equality (2) is convergent at x = 1 if

B(JU.S-\-/JL-{-M) > 0,

and is convergent at x = 0 if

•MS) > 0.

It is therefore convergent at both limits, provided the conditions (1) hold
good.

Let I denote the integral in the equality (2) and suppose that L is
a large positive integer >M"-fJV, and let cn = 0 when n>M-\-N. Then

r _ y» ( TT r(at+9t) _ y M^, a) _ 1 rQun+M— Mpr—/AS) r

where / I = 1 f ( i
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• i t . .,•.

and the double accent denotes that the summation 2 does not 'exist
when x = 0.

Now we may take L so large that | JR(b, a, n) | < e when n > L.
The final integral JL is then such that

T~Ti I1""s+n) I Jo «=o (L+n)

Thus |t7L| can be made as small as we please by taking L sufficiently
large, provided

R(fis) >-fi.

If, then, Rhi—npr+mN) > Rims) >—n, we have the equality

- I « r(qt+w) _ | /r(6, a) _
~ nt0 i«.i r ^ + n ) Tr0 nfl+T C( p

But under the wider conditions (1) of the enunciation I is an analytic
function, and so also is the series just written.

If, then, £ rOm-^+M-Ms) d e n o t e s t h e fimctiOn TT M, which
«=i 1 (fin—/x/or+2/x)?i

is expressible in the form of the series when R(6-\-r-\-fis-\-fi) > 0, the
equality (2) will hold within the assigned range (1).

We thus have the theorem.

42. We can noio shew that, if R{s) be finite and if s = u-\-iv,

|C/r(s)|exp|(7r-e)|t;|[

tends to zero as \v\ tends to infinity if e > 0 and n is an integer > 1.

Take the equality (2) established in the previous paragraph. If we
employ the transformation of § 32 and take the integral along a suitable
circular arc, we can shew that its modulus is less than

exp f - ( * T + 7 r / " - e ) l " " l t K

when | «31 is large, where K is finite and independent of v, and

Rifl—fipr + flN) > flU> —M—/X.

The modulus of the integral is therefore less than

exp|(— 7T + e) \v\\

if e > 0 and | v \ is sufficiently large.



1906.] THE ASYMPTOTIC EXPANSION OP INTEGRAL FUNCTIONS. 105

Again, by the theorem already proved in § 36, when u is finite

where e > 0, can be made as small as we please by taking | v I sufficiently
large.

Again, each term of the final series in the equality (2) of the previous
paragraph has a modulus less than

exp)(—Anr+e)|«|[

where | v | is sufficiently large.
Hence, since /* is an integer > 1, | U,.(s)\ exp \{ir—e) |u|[ can be

made as small as we please by taking | v | sufficiently large, if e > 0.
We thus have the given theorem, since M and N may have any

finite integral values as large as we please.

43. We can now shew that, if pSq(s) be the function defined when

B(s)

by the series
T(-s+tln) II r a - ^

r = l

n rr-^-i n ra-o,
r = l

then, for all finite values of u, \pSq(s)\ exp [-[(/* + 1 ) T T — e [ | v | ] can be
made as small as we please by taking \ v \ sufficiently large.

For we have seen in § 29 that sin 7r/ASpS(/(s) may be written

2 Ar
r=l

where Ar is a numerical coefficient independent of s. Also, by the previous
paragraph, | Ur(s) | exp {(ir—e) | v |} can be made as small as we please, if
u be finite, by taking | v | sufficiently large. The same is therefore true of

| s i n TTfiSpSq(s) | e x p {(TT—e) \v\\.

We thus have the given theorem.

44. It is now evident from the previous investigations that pSq (s) is a
one-valued function which can be continued over the whole of the finite
portion of the s-plane.
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We will noio prove that it has simple poles at the points

s = [Sa-Zp + iU-Dl/M-w/M (w = 0, 1, 2, ..., oo)

and no other finite singularities except those of Y(—/us) and

T{fi—fipr—fAs) {r — 1 , 2 , . . . , q ) .

We have seen that, if R(juLS-\-n+'Zb—2a) > 1,

_ £ Tjixv—fxpr+fx—us) j'j. r(rat+9i)
r ,(=0 rcu7i—/u/

a.

= 2 rFn(s) (say).
7!=0

Also (§ 29) the constants rat and rbt are such that

rat = 2+tlrjL-pr (t = 1, 2, M - 1 ) ,

P6f = 1+pt-pr (t= 1, 2, ..., q).

And therefore the condition under which Ur(s) can be represented by the
series is equivalent to

Now, when ^ is large, we know that we have an asymptotic expansion
of the type

v ct(s) , Jr(n)

where, for all finite values of T, \J-r(n)\ can be made as small as we please,
provided n is greater than an assignable number N. The coefficients ct(s)
are polynomials in ,s, and can be calculated from the known asymptotic

expansion for J~ by sufficient labour.

We see therefore, as in § 37, that the function

Ur(s)- 2o ct(s) £(fjLS+vi + Xb-I.a + t)

has no finite singularities except those of T{fxn~{-fx— ixpr—/us) when
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Hence the sole finite singularities of Ur(s)/T(fx—iuLpr—iuLs) are simple
poles at the points

s = {l-m + la—2b)l[x—nlfx (w• = 0, 1, 2, ..., oo),

i.e., s = [2a — I,p+%(fx — l)]lfji—nlfjL.

Now we have seen that

,,S,,(s) sin Trees' = jSi Ar^
s UAs),

where the quantities A are independent of s.

Hence all possible finite singularities of pSq(s) are included in

(1) simple poles at s = njfx (n = 0, 1, 2, ..., oo),

(2) „ s = nln-Pr+l {n=0, 1, 2, ..., oo ; r = l,% ...,q),

(3) „ s = ~»*/Ai+[2a-2/ o + J 0 * - l ) ] / / *

(M = 0, 1, 2, ..., oo).

We thus have the given theorem, and we see that the residues at the last
system of poles can be calculated with sufficient labour by use of the

asymptotic expansion which gives „-' "T •, when n is large.

45. We proceed now to show that, if s = u-\-iv, and \ v \ be finite or
infinite,

| pStl(s) | <

if e > 0, where rjue
ku (k > 0 but finite), can be made as small as we please

by taking u sufficiently large and positive if s be not in the immediate
vicinity of one of the poles of vS,t{s).

We can always choose the coefficients c so that the function

¥(») = ,,#,_! {&*( - J o uTfAb, a)g9+T(x», 1) - V cMx»m = x^'Pto?),

where PC^) is finite at x = 0. Choose N so large that
RifJL-fXpr — IJLS—IJLR + lllN) > 0

and let TT(/AS) be the function defined when
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v< 1by the series 2

Then, as in § 41, we have, if R be very large and positive,

T=o • M=O 1 (/xmH-2/x—ixpr)

When E is very large, and whether | v \ be large or not, the modulus of the
integral is less than

, T V * , , . exp ) - ( ^ T r + T r / M - e ) \fiv\\ K>^R

I I (fJL8 + flR + n)\
where K' is finite and independent of R and |« | , and nx is the maximum
value of | 1—x \ on the circular arc which, as in § 32, we take to be the
modified form of the contour of integration.

Thus, if s+R be not in the immediate vicinity of one of the poles
of Ur(s), we have

where tfRekIi can be made as small as we please by taking the positive
quantity R sufficiently large.

Now we have seen that

sin TT/XS pSq (s) = 2 Ar^* Ur (s),

where the quantities A are independent of s.
Hence a similar inequality is true of |j,Sq(s+-R)|> and we have the

given theorem.

46. Let $ denote the linear combination of hyper geometric integral
functions

1

n T(i-f
ft r<i

r = l

'/

r = l X

wherein />

l~P'T(pr

t = 7 + l

„ ...

- 1 )

~P

t « j ) > P u • • • > P<

IV T(pr-Pt)

TT T̂11 1 (pr — (It)
t = l

and q> p.

0,-prl

2-pr, .... /»«-/»r+l, (-)
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We proceed to shew that

where I = — —— pSq(s)xJds,

the integral being taken round a contour Q which embraces the positive
half of the real axis and encloses the poles

njfx, njfi—pr+l (n = 0,1,2, ...,oo; r = 1, 2, ...,q),

but not the poles —n//A+[2a—2/>-f iC"""!-)]//"

of the subject of integration.

The integral is convergent by the result of § 45 for all values of \x\.
Let T be the greatest integer such that

T/fx+n < N

and let Tr be the greatest integer such that

Then, by Cauchy's theory of residues,

N T II T(l-Pr-'n)x^+"
1= 2 LJ_ 2 — ^

n=0 n\ «=0
n r(i-aP-

7

-, N /_v< T,. r(pr—l—n) IF T(pr—pm—n)
_j_ 2 2 - — 2 w = 1 ji/ii+i-Pc+ii i j ,

n r ( ) n T(Pr—am—n)

IN denotes the integral — -— I pSq{s)xsds taken round a contour on
JiTTl J

which B(s) > N and which embraces the real axis and encloses poles
of pSqis) whose residues have not been included in the previous
summations.

By the theorem of the previous paragraph it is evident that IN can
be made as small as we please by taking N sufficientl}' large.

Now, by the multiplication formula for the gamma function,

II
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Hence, on making N infinite, we have
7

V l i l F ( l p.,. 7l) X H jr. II t

1= 2
«=0

r=\

2 2
fj.

Thus

: = y \ / »•=!

!

w ! 11 TV
11 1 (pr—aw—'i

HI=I
We thus have the given theorem.

47. T̂ e catt HOW shew that, if fx be an integer > 1 and if .

\&Vgx\ < (fX-\-l)7T,

the linear combination of hypergeometric integral functions which has
been denoted by $ admits the asymptotic expansion •

exp , nz

/̂te quantities X are definite functions of the parameters a and p
and \JN\ can be made as small as ive please by taking \x\ sufficiently large.

We have seen that, for all finite values of | /A |, $ is equal to

where / is the integral — r— rS,,(s)xsds considered in the previous
Liri )Q

paragraph.
Also, it has been established in §§ 43 and 45 that, if |argz| < (/x-fl) ir,

j j,Sq(s)x! | will tend exponentially to zero as | s | tends to infinity if B(s) is
greater than a finite negative quantity.

Let L be a contour parallel to the real axis which passes between the
points
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Then / is equal to — -— I pS(l(s)xsds together with the sum of the
YiTTL JL

residues of pSq(s)xs at the points

[ 2 a - 2 p + i 0 i - l ) ] / / * - » / / * (n = 0, 1, 2, ..., N).

Let Xn be the typical residue of pSqis) at such a pole: we have seen
that \ n is a function of the parameters a and p which can be determined
with sufficient labour.

Further, « r
_ J _ }1S(1(S)XSCIS = X[2a-2p + 4(M-l)]/^-^/ j V >

^T ' Jr.

and it is evident that \JN\ can be made as small as we please by taking
| x | sufficiently large.

We thus have the given theorem.

48. We can now shew that the previous theorem is equivalent to
different results.

For the asymptotic equality is valid if | arg x \ < (^t+1) IT. Thus it
is valid for the Ou+1) ranges

(fi — 1) 7T < arg x <

0* — 1 — 2) 7T < arg a < (M + 1 —2) ir,

(fJL — 1 — 2/x)7T < SLl'gX < (yU + 1 — 2fx)7T.

We therefore have, if m = 0, 1, 2, ..., fi, and | arg x\ <C ?r, the asymptotic
equalities

n ra-p,)

n

t=1

= exp{— i

where

UT{pr-at)

-Pr; 2-pr, ...,Pq-pr+l; {-)*x\
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Only ix of the (fi +1) results here given are independent;, tlwse
corresponding to ra = 0 and vi = /u ca?i 6e deduced from one another
by means of other asymptotic expansions of the hypergeometric
functions.

For brevity write, as in § 1,

QQ(X) = L J v*<i\av . . . , a p ; plt ..., pq; (—)

lira-a,.)

QAx) = x1

n r (/,,.-«,)
1=1

ai-pn ..., l + a p - p r ; 2-p r , ... ; pq-/or+l
Then we have, if | arg x \ < 7r,

when m = 0, 1, ...,

Also, by the result of § 7, if | arg {—x) \<

1 •<?<>(*)+ 2 - j ^
sin 7ram r=i sin rrr {pr—am)

T(am) n r ca^-

IT IL'
r= l

X q + i F p - i •• am, a w + l — pv . . . , a m + l — P Q 5 a m — ^ + 1 . •••, « » — « p + l 5 — | i

(B)

when m = 1, 2, ..., p.
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Now, in the relations (A) take m = 0 and m — p. We have

Qo(x)+ 2

r=l

Q0(x)+ i

where 0 denotes the asymptotic series

From these we deduce

Q0(x) sin 7r0+ i^ Qr{x) sin •* (6+wr-n) = 0.

This equality means that when | arg x | < 7r the particular combination of
functions Q just written down admits an asymptotic expansion whose
dominant term is of order less than that of exp |JUJC1>- when divided by
any algebraic power of x. Thus it must be possible to form the particular
combination from the q other relations contained in (A) and (B).*

Hence in (A) and (B) there are (<? + l) relations which are independent.
There are (q-\-l) functions Q which, when x is replaced by (~y.r, are

independent solutions of the equation

— 1) I ?y = 0 (1)

valid over the whole of the finite part of the plane.
There are similarly (# + 1) asymptotic solutions valid near infinity.

These are, with the same transformation, given by the expressions on the
right-hand sides of equations (A) (m = 1, 2, ..., /x) and (B). The relations
between these solutions are given by the equations (A) and (B).

49. But the equations (A) and (B) of the previous paragraph only
express the (<? + l) principal asymptotic solutions near | x \ = ao of the
differential equation (1), transformed by writing (—Y x for x, in terms
of linear combinations of the {q+1) hypergeometric integral functions
Qr(x) (r = 0, 1, 2, ..., q), which are principal solutions in the finite part
of the plane.

We have conversely to express each of the functions Qr(x) in terms of

* The same phenomenon occurs in the simple case p = 0, q = I, n — 2, and was discussed
in detail in the author's earlier paper. Loc. cit., § 1, Paper (TJ), Part n.

SKII. 2. VOL. 5. NO. 951. I
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linear combinations of the asymptotic expansions. In § 11 it has been
shewn that it is possible to express a suitable linear combination of /u, and
not less than //, functions Qr(x) in terms of the p asymptotic solutions
whose dominant terms are algebraic. The expression of a linear com-
bination of any number less than ft of the functions Qr(x) will involve
asymptotic expansions whose dominant term is exponentially infinite, and
such series will entirely overshadow the other series which were obtained
in Part I.

Evidently as typical of the general converse problem we may find the
asymptotic expansion of J}Fq {a; p; x\ when | argic | < ir.

For this purpose we consider the integral

--L[u(s)x*ds, (1)

where U(s) is the function of s defined, when

by the convergent series of gamma functions

\T{ar+n)\T{fin-ft8)
2 r=]

n=0 II \T(pr+n)\ T
r=l

By the multiplication formula for the gamma function

M n p/«, a _i_ v i

Hence the above series for U(s) may be written

U{S) = ( 2 ^ = i J 2(27r) H

Evidently U(s) is a function of the same type as the function 17,00
introduced in § 29: it possesses the same properties.

It has, besides the poles of the functions T(p.n—fis), as its only
singularities poles at the points

s = [ £ a - 2 / > + * (/K-l)]/A*-rM, (2)
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and the residue at the general pole we may take to be M~-(27r)i(1~'i)/r.
The quantity lr can be calculated with sufficient labour from the
asymptotic expansion of the general term of the series for U{s) when

R{8)> R {2a-

In particular we readily see that lo= 1.

Let now the contour C of the integral — -— I U(s)x'ds embrace the
real axis, enclose all the poles

s = n+tlfi (» = 0, 1,2, ..., ao; t = 0, 1, 2, ..., oo),

and enclose none of the poles (2).
Then the integral is convergent for all finite values of | x \. Also

_ . .. yr..,—fjLs)fi'lS / iU+1j'(Zs = 2 — -

2-7T/ Jc t = 0 t

Hence the integral is equal to

n r(«r) pFH{x\.

Again, by the results of §§ 42 and 45 the integral may be swung back
as in § 8, provided | arg x \ < ir.

We thus get for its asymptotic value

where, for any finite value of R, \ JR \ tends uniformly to zero as | x \ tends
to infinity, and the quantities I, can be determined with sufficient labour.

We thus obtain the asymptotic equality

ft T{Or)
^ ^ { a j , . . . , <iP; plt

n Tip,)
r = l

— exp \fix \ x - fi {ATT)- | ' rt] xr M u i i ' ' x ' '

valid provided | arg x\ <C TT.
Evidently this includes the result of Stokes stated i n § 8.
When p = 0, q=l, m = 2 we have the particular case previously

i 2
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discussed by the author. In this case the coefficients lr take a simple
form, and we have* the asymptotic equality

50. In a similar manner we can obtain the asymptotic expansions of
any of the hypergeometric integral functions which are the principal
solutions of the differential equation (1) of § 48.

The theory is evidently complete.

CORRIGENDA iu above paper.—

On p. 62, line 18, for ' V - l " read " 1-p , ."

,, line 19, for " «(<•--»')•"" read " <.(>«-2l'»><*•>."
„ line 20, read " 9 = [2<x-2p + £ ( f * - l ) ] . "

t> i'

On p. 80, line 8 from foot for " n r {pr-pm) " read " W r(p,-p,,1).
i mi

* J 'ule § 23 of the memoir previously cited.


