
104 Mr. A. Q. Greehhffl' on [April 8,

and the equations for the foci are

y*—5 = a?9—8 = — asy sec w = -*• 2xy;

therefore *—-—2L — _IL—2} Saj9—6xy—By9 = 0, a? — 2y, or —*,
5 8 o

o • » i 4w . , 25
as = 2y gives y* = 1, a» =— •£- gives y8 =— -Q- ;

o o

thus the real foci are (2, 1), (—2, — 1) ; and the impossible

/ , 4

while the real directrices are -̂f- + -7- = =fc 1; and the impossible
4 5

directricesirectrices -£-—y = ± v^—8.

Application of Elliptic Coordinates and Lagrange's Equations
. of Motion fo Euler's Problem of Two Centres of Force. By

A. G. GREENHILL, M.A.

[Read April 8th, 1880.]

Denoting by 2c the distance between the centres of force; then, if
c cos 0, c sin 6 be the £ axes of the hyperbola c cosh <p, c sinh <f» of the
ellipse, passing through a point, and having their foci at the centres of
force, 6 and f may be called the elliptic coordinates of the point; and if
the axes of these conies be taken as coordinate axes, then the Cartesian
coordinates of the point are x = c cos 0 cosh <f> and y = c sin 0 sinh <f>.

Therefore, for a particle of nnit mass, the kinetic energy

— sin0 cosh 00-f cos 0

+ (cos 0 sinh <p 0+sin 0 cosh <p <£)'}

= |c*{ (sin* 0 cosh9 <p+coss 0 sinh8 $)&

+ (cos10 sinh1 <f> + sin9 0 cosh9 <f>) f*}

= |c9(cosh 2^-cos 20) (09+^*).

If rt8 denote the distances of the particle from the centres of force, then

r = c (cosh <f>—cos 0),
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and if A, B be the strengths of the centres of force, supposed to attract
with intensity inversely proportional to the square of the distance, the
gravitation potential

8

A , B
c(cosh0—cos0) c(cosh 0 + cos 0)

[If we have a third centre of force, midway between the other two,
attracting with intensity proportional to the distance, of strength C,
we must add to this value of U the term

= \ <7cs (cos8 0 cosh1 0 + sin10 sinh1 0)

- | Cc% (cosh 20 + cos 20).]

Lagrange's equations of motion are

dt\to

2 denoting partial, and d total differentiation.

Therefore |c s (cosh 20-cos20) 0 +|c*sin 20 (0*-09) +sinh 20 00

_ • • • A • s i n 0 B sinO

c (cosh 0 - cos 0)1 c (cosh 0 +cos 0)1

- | 0 c s s i n 2 0 . . . . v . . . (1),

and §c? (cosh 20-cos 20) 0 + sin 2000—$cf sinh 20 (09—01}

A sinh 0 B_ BJnh0
"~ c (cosh 0 —cos 0)9 c (cosh 0 +cos 0)1

+ !Cc1sinh20 (2).

If we multiply (1) by 0, and (2) by 0, add and integrate, we obtain

I c9 (cosh 20 - cos 20) (09+09)

= A i + £. i
c cosh 0—cos 0 c cosh0 + cos0

+ |CcJ(cosh20+cos20)-fl ' (3),
the equation of energy.

To obtain the second integral of these equations of motion, multiply
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(1) by cosh 20 0, and (2) by cos 200, and add; then

J c ' A (cosh 20-cos 20)(cosh 200'+cos 2001)
At

_ A Bin 0 coah 20 0* +crw 20 sinh <j> <j>
~* o (cosh 0—cos 0)$

, 5 sin 0 cosh 00 - cos 20 sinh </ 0
o (cosh 0+cos 0)9

— | Cc'(sin 20 cosh 20 0—Cos 20 sinh 2 0 0 ) ;

and, integrating,

| c1 (cosh 20—cos 20) (cosh 2001+cos 2 0 ^ )

_ A 2 cos 0 cosh <fr—l Jg 2 cos 0 cos
~~ c cosh0—cos0 c cosh0+cos0

+ JOc1 cos 20 cosh 20—D (4),

equivalent to Euler's second integral, D and H being arbitrary con-
stants, determined by the initial circumstances of the motion.

From (3) and (4),
|c» (cosh 20 -cos 20)101

__ A 2 cos 0 cosh 0 -1—cos 20 B 2 cos 0 coBh 0 + 1 -f-cos 20
~~ c cosh 0—cos 0 c cosh0+cos0

•— JOb'cos1 20-D+fl"cos 20

s 24=2-cos0-1Go*cos'20-D+.H"cos20 (5),
o •

I G<? (cosh 20—cos 20)' 01

_. 4 cosh 20 4-1—2 cos 0 cosh <p , B cosh 2^ -H 4- 2 cos 0 cosh 0
c cosh 0—cos 0 c cosh 0+cos 0

+ | (7c1 cosh120+D—Mcosh 20

— 2 ^ t ? cosh0+4(7c1cosh*20+D-Hcosh 20* (6).

Therefore

^ ? cos 0-\0<? cos120-D+jffcos 20
c

1 »2 - ^ ? cosh 0+\G<? cosh9 20+D - ffcosh 20

the differential equation of the orbit, a differential equation in which
the variables 0 and 0 are separated.

Enler employs new variables u and v, Buch that u = tan \Bt

v = tanh | 0 ; his jp and j being respectively e cos 0 and e cosh 0.
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and if 0 be put = 0, the differential equation becomes

' d u * ,

dv* »% •as d\\ suppose j

and therefore u and v are elliptic functions of X, and, by the elimination
of A, we obtain the equation of the orbit in terms of u and v, or 6 and <f>.

The integral may also be written

1
- 2 (H+D) u*

dv

a constant;
and, using the notation

this equation may be written

1

- B V M *

argsn c rrl'»A!«
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H+D-2
when h, =

A discussion of the different cases that arise from giving different
values to B and If is given in Legendre's " Traite" des Functions
Elliptiques," tome i.

Theorems in the Calculus of Operations. By J . J . WALKER.

[Read April 8th, 1880.]

I. The subjects of operation are functions of a single variable x, or
if other variables enter these are supposed independent of x, so that x
alone is considered to vary. Let u, 9 be any such functions. The
kind of operation considered is that of multiplying u by some integer
power of 0, and then taking the differential coefficient of the product
of an order differing from the index of ^ by a given number, which
maybe 0,1, 2 ... Thus the symbols for a completed set of such opera-
tions may be Buy, BPtif*... B'utf, where B stands for —; or

CM)

' . . . Dr~1«^r.... A series of such terms, for shortness, may be
called a progressive series, in the sense that the subjects of successive
differentiations are not, as in Taylor's Series or Leibnitz's Theorem, one
and the same function, but form a geometric progression, the common
ratio being the function f.

The first theorem establishes the development of Bau<f>n+l in a pro-
gressive series, the terms of which are of the form Bru<\>r; viz., writing
<pf for J)<j>, it is proved that

n n l

ty>".tt (a).
The second theorem similarly establishes the development of D"«^n~l

in another progressive series, in which the terms of the same type,
Dru$r

t are multiplied by different functional coefficients; viz., now,

for convenience, writing ip =-0"l> <£' — Btyu


