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and the equations for the foci are
Yy~ =o'-8=—aysecw = —=2y;

therefore (i +52a:u =7 "'82"-'/

s 5m’—6£y—8y‘= 0, =2y, or —%"—/,

@ =2y gives y* =1, w=—4:5y- gives y’=—2§5;
thus the real foci are (2, 1), (—2, —1); and the impossible

while the real directrices are %+ 15’— =+1; and the impossible

directrices _-;i—y =% v —3.]

The Application of Elliptic Coordinates and Lagrange’s Equations
of Motion fo Euler's Problem of Two Centres of Force. By
A. G. GreenmiLr, M.A.

[Read April 8¢h, 1880.]

Denoting by 2¢ the distance between the centres of force; then, if
ccos B, csin0 be the £ axes of the hyperbola c cosh ¢, ¢ sinh¢ of the
ellipse, passing through a point, and having their foci at the centres of
force,0 and ¢ may be called the elliptic coordinates of the point; and if
the axes of these conics be taken as coordinate axes, then the Cartesian
coordinates of the point are @ = ¢ cos0 cosh ¢ and y = ¢sin6 sinh¢.

Therefore, for a particle of unit mass, the kinetic energy

T=}(a"+¢")

= }¢*{( —sin 8 cosh ¢ 6+cos 6 sinh ¢¢)*
+ (cos 8 sinh ¢ 8+5in 8 cosh ¢ ¢)*}

= }¢*{ (sin® 0 cosh® ¢ +cos® 0 sinh* ¢)8*

' ~+(cos’ 0 sinh’ ¢ +sin’ 0 cosh’ ¢) '}
= }¢*(cosh 2¢—cos 26) (6 +¢Y.
Ifr,s denote the distances of the particle from the centres of force, then

r = ¢ (cosh ¢ —cos 0),
8 =c(cosh ¢+cos ) ;
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and if 4, B be the strengths of the centres of force, supposed to attract.
with intensity inversely proportional to the square of the distance, the

gravitation potential
r- 8 :
__ . 4 + B
" ¢(cosh p—cos8) ' c(cosh p+cosf)

[If we have a third centre of force, midway between the other two,
attracting with intensity proportional to the distance, of strength O,
we must add to this value of U the term

0@+

= 10¢" (cos* 6 cosh® ¢ +sin® @ sinh? ¢)

= } Oc* (cosh 2¢ +cos 20).]
Lagrange's equations of motion are

d (aT) 3T _3U

dt\pg/ 0 0’
4 (i) _sr_uw,
dt\35/ 3¢ &’

" & denoting partial, and d total differentiation.
Therefore }c* (cosh 2¢—cos 26) 6 + 4 c* sin 20 (6*—¢*) +sinh 2p 69

4. -gin@ B sin 8
¢ (coshg—cosb)® * ¢ (coshg¢+cos 6)!
' —30Clsin26......... (1),
and 3¢ (cosh 2¢ —cos 20) ¢+ sin 206 ¢ —% ¢ sinh 2¢ (6°— ")
__A __sinhg B sinhg
~ ¢ (cosh¢—cos 6 ¢ (cosh¢+cost)®
+ 1 Ccsinh 2¢ ......... (2).

If we multiply (1) by 6, and (2) by ¢, add and integrate, we obtain -
1¢* (cosh 2¢ — cos 20) (6° +¢%)

4 1 B 1
¢ cosh¢—cos6 ¢ cosh ¢+4cosf

+ 106 (cosh 29 +¢0820) —H .evvne... (3),

the equation of energy.
To obtain the second integral of these equations of motion, multiply:
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(1) by cosh 246, and. (2) by cos 20¢; and add ;. then
w (coah 99 —cos 26)(cosh 29 6'+cos 264%)

_ A sin 8 cosh 2¢0+cos 26 sinh 98

T e . (coshg—cos 8)* .
+'_§ gin 0 cosh ¢6 — cos 20 sinh ¢ ¢
c (cosh ¢+ cos 8)°

- }06’(sm 20 cosh 29 6—cos 20 sinh 2¢9) ;

and, integrating,
}¢* (cosh 2¢—cos 20) (cosh 2¢6* +cos 20¢%)
_ A20036 coshe—1 B2cosfcosho+1
~ ¢ cosh¢—cosd ¢ cosh¢+cosd _

, + }0c*cos 20 cosh 2¢—D ......... 4),
equivalent to Euler’s second mtegr&l D and H being arbitrary con-
stants, determined by the initial circumstances of the motion.

From (8) and (4),

3¢ (cosh 2¢ — cos 20)* 6*
— 420086 cosh¢—1—cos 20 _ B 2cos @ cosh ¢+1+cos 20

¢ cosh ¢g—cos 0 c . cosh ¢+cos 0
"— 3 0c* cos® 20D+ H cos 20
_2‘t:-B-cose }Go’coa’20—D+Hcos29 RPN ) X

{ 0Oc* (cosh 2 —cos 29)* ¢*

' écosh2¢+l —2cos 0 cosh¢+Beosh2¢+1+2cosﬂcosh¢
c cosh ¢—cos 8 cosh ¢ +cos 0

+ }0c cosh? 2¢ + D—H cosh 2¢
=2 245 cou 4100 008k 2 + D~ Hoosh 29 ... (6).

Therefore

24=B . 6—%0C¢* cos’ 20— D+ H cos 20

do
- = ’
(@) 24—':'—-3 cosh ¢+ 30 cosh® 2¢ + D — H cosh 2¢
the differential equation of the orbit, a. differential eqnation in which
the variables 0 and ¢ are separated.
Euler employs new variables % and v, such that % = tan iG '
v = tanh }¢; his p and ¢ being respectively ¢cos 6 and ¢ cosh ¢.
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o _ 2. 1 o (1=w\*_
Then‘ Rl g cosO—m, cos20 =2 (1+u’) 1,
'3:_12,,!’ oosh.p- ::, cosh 2¢ = 2(1+:’;) -1;-
and if O be put 0, the differential equation becomes
du?
od= B A=B (149 D (1+ud)+H(1—ut)
v

- = : = d\', suppose ;
24—'1'3 (A=) +D (1—o*)'—H (1+0%)? - ’ ,

and therefore » and v are elliptic functions of A, and, by the elimination
of A, we obtain the equation of the orbit in terms of « and v, or 6 and ¢.

The integral may also be written

. du
I\/ {_H—D+2‘i_c-i£—2 (B+D) v+ (E-D-24=F) u‘}
dv

*[ \/{D“H”‘HB 2(D+H) o+ (D-E—22%2) o] =5
and, using the notation & constant ;.
’ dz a
j V(=) (Q—k% s) =argsn (.'a, k),
this equation may be written
1
NEERICTE N
H-D—2 A_:B |
argsn H+D-2\/ {HD+ (iz_g).} w, by
1
[D+H+2\/{DH+ A+B) }]
D—g—24tB
argsn ¢ ohli=5

pHE-s o+ (S5) ]
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—B\}

'}
i
°)'}

H+D— 2\/ HD+(
when k=

H+D+2\/ {HD+

[+
+ 9
H+D—2\/ {HD+ !

oy {mor (2]

A discussion of the different cases that arise from giving different
values to D and H is given in Legendre’s * Traité des Functions
Elliptiques,” tome i.

k’_.

Theorems in the Oalculus of Operations. By J. J. WaLker.
. [ Read Aprit 8th, 1880.]

I. The subjects of operation are functions of a single variable «, or
if other variables enter these are supposed independent of 2, so that.s"
alone is considered to vary. Let u, ¢ be any such functions. The-
kind of operation considered is that of maultiplying % by some integer
power of ¢, and then taking the differential coetficient of the product
of an order differing from the index of ¢ by a given number, which
maybe 0,1, 2... Thus the symbols for a completed set of such opera-
tions may be Ijuqb, Dug... D'u¢’, where D stands for %; or Dug?,
Dup* ... r'ugp”.... A series of such terms, for shortness, may be
called a progressive series, in the sense that the subjects of successive
differentiations are not, as in Taylor's Series or Leibnitz's Theorem, one
and the same function, but form a geometric progression, the common
ratio being the fanction ¢.

The first theorem establishes the development of D"u¢™*! in a pro-
gressnve senes, the terms of which are of the form D*u¢” ; viz., writing
¢’ for Dq), it i i proved that

Dnu?n*l — ¢D‘u?u+n? ¢Dn- ,u¢n l+n n— 1 D¢¢ D""wp""

+...+aD gt Du¢+D" ‘qnp ...............(a).

The second theorem slmxlarly establishes the development of D"u¢“ -
in another progressive geries, in which the terms of the same type,
D'ug’, are multiplied by different functional coefficients; viz., now,

for convenience, writing ¢ =-¢7!, ¢ = Dy,,



