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In avowed imitation of the plan of the Journal, and in a similar
form (called 12mo in the catalogues, but more of the size of a 24mo of
tho present time), the Nouvelles de la Bepublique des Lettres was
commenced as a monthly publication, "to be written as well as
printed" at Amsterdam, in March, 1684j and maintained, with
breaks, until 1718. During one of these interruptions, a similar
publication, with the title Uistoire des Ouvrages des Scavans, was
started at Rotterdam, in September, 1687, and continued until June,
1709. The last two Journals are quoted sometimes as Nova and
Ilisloria Batavius, or Nouvelles d1 Amsterdam and de Rotterdam,
respectively.

The Ada Eruditorum (Note, p. 11), which was aided by a sub-
vention from the Elector of Saxony, continued to appear in yearly
volumes until 1777. The Ada Helvetica, quoted p. 15, was founded
in 1751, and maintained until 1787. But, before the middle of the
eighteenth century, the Memoires of the Academies of Paris (1666)
and Berlin (1702) had become the medium for tho more elaborate
essays of the analysts of the time.

Proofs of Steiner's Theorems relating to Circumscribed and
Inscribed Oonics. By Professor G. B. MATHEWS. .

[Read Nov. nth, 1890.]

Tho theorems hero disenssed are enunciated without proof in
Steiner's memoir, entitled " Tcoromi rolativi alle coniche inscritte
o circonscritto" (Werke n., p. 329, or Grello xxx., p. 97). The
most important aro those relating to tho maximum conies inscribed
in a given quadrilateral, and the minimum conies circumscribed to a
given quadrangle; the others, in fact, aro preliminary to those, but,
for tho sako of completeness, proofs of them all have been given. It
will bo observed that the second principal problem admits of three
proper solutions, besides nine improper onus, so that a purely geo-
metrical method would necessarily involvo tho employment of curvos
other than conies and straight lines.
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1. Adopting ordinary trilinear coordinates referred to a triangle
ABO, let

0 fa y*z) — (M»v* wi u> v't **>']£#, y> zY = o
be the equation of any conic, and let

$ (*, r,, 0 = (U, 7, Tf, 17', F , TT'J4,»?, O1 = 0

be the equation of the same conic in line-coordinates, so that

JJ= vw—u*, &o.

Further, let A denote the discriminant

A =

w, w\ v

v, u, w

Then, if T be written for * (a, 6, c), where a, 6, c are the sides of
ABO, the square of the area of the conic is equal to ilfA2/F8, where
M is a constant.

In order to determine M, let the conic be the circumcircle of ABO;
then we may put

u = v = w = 0, u' = a, v' = 6, to' = c,

giving A = 2ahc,

= 16S2,

where iS is the area of ABO.

Hence ""* =

or, since It = abc/AS,

M = 4BV6VS1,

and tho square of the area of the conic

= ^ W c ^ W / r 8 ...(1).

2. Now, let

ZV+m22/' + ?iV — 2mnyz—2nlzx—2lmxy — 0
bo any proper conic inscribed in ABG, and liliving its contre at
(«, 0, y).

c2
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Then
I : m '. n = a (&/3+cy —aa) : b (ey-faa —&/3): (aa + &/3—cy).

Suppose the sides of ABO are bisected in the points A't B', C;
then, if a', ft\ y are the perpendiculars from (a, /3, y), or P, upon the
sides of A'B'O',

a = £/a—a = (6/3+cy—aa)/2a, &6.,

so that Z :.m : n = aV : 69/3': csy' (2).

For the conic now considered,

(6cZ+caw+a6n) j

therefore, if JE7 is the area of the conic,

4 {bcl + cam + obn)8

whenco, substituting for 3f its value, and observing that

aa + 6/3' + c y / = # ,

we find i?s = ^Ra'ft'y (3).

3. In a similar way, if the circumscribed conic

2u'yz + 2v'zx+2w'xy = 0

has its centre at (a, ft, y),

u':v':w= aaa : Iftft'-.cyy (4),

and replacing theso proportions by equalities, it will be found, after
a few reductions, that

A = 2a6ca/3ya'/3'y/,

T = 8Sabca'Pye.

Hence, if F be the area of the conic,

4S" a'/3'y'

= 7r2J2«8/3V/a'/5V (5).
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4. Now, let conies with centre at P be inscribed and circumscribed
to the triangle A'B'O', and let A"B"O" be derived from A'B'O' in the
same way as A'B'O' from ABO. Then, if Eu Fx are the areas of the
two new conies

where JB2 = |Jfy

au Pv yi = «'» 0'. r'»

«i, |3[, y; = 1 («-«'), i (P-P), \ (y-yO ;

SO that B\=. VE(a-a')(/3-/3')(y-y') ,

*\* = 4m>Ba*PV/(a-a* )((i-(i')(y-y').

Honce, by multiplication,

E\F\ = 7r4E2a'2/3'3y'2 = ^ i^* ;

and therefore, taking the absolute values of Eu Fv that is, dis-
regarding sign,

E'—^E^ (6).

The process of derivation may of courso bo repeated indefinitely.

But it is to be further obsorved that the conies E, F are such that
an infinity of triangles can bo drawn circumscribed to JE7, and in-
scribed in F. Let XYZ be any one of these, and let X0Y0Z0 be
relatod to it as ABO is to A'B'O'; then, if Ea bo the area of a conio
with centre P inscribed in X0Y0Z0t wo havo

E2
O=4EF,

so that the area of all such conies EQ is constant.

5. Suppose the inscribed conic E is constrained to touch the fixed
line

= 0;

thon ifxv + invX + nX/x = 0 (7),

and therefore, by (2), the loons of P is tlio lino

' = 0 (8).
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Conversely, if the centre of E describes the line

/«'+flf/3'+fty' = 0 ,

B will always touch the fixed line

The triangle of reference and the line

Xx+Hy + vz = 0

form a quadrilateral in which an infinity of conies, as above, can be
inscribed. In order to find the conies of maximum area, we have to
make

a maximum, subject to the conditions

The ordinary process leads to the equation

j y , y'a', a'/3'

= 0

(9),

(10).

(11),

a, b, c

and the centres of the maximum conies are determined as the inter-
sections of the line (9) with the conic (11). The latter conic goes
through A\ &, 0', through the centroid, G, of ABO (or A'&O'), and
through the point for which

that is, by (2), through the centre of

XV+/«y+»«V~" 2/xpyz—2v\zx—2\/Jxy — 0.

This point can be easily found geometrically. Namely, if

= 0

meet the sides of ABC in D, E, F> and the points J7, E\ F' be taken
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so that
(JDOBB') = (OAEE') = (ABFF) = - 1,

then the lines joining A, B, 0 to the middle points of E'F\ F'D\
VE\ respectively, will meet together at the required point 0.

Since five points upon it are known, the conic can be constructed
geometrically; the line represented by (9) is, as is well known, the
line through the middle points of the diagonals of the quadrilateral
BOEF. This being drawn, its intersections with the conic OA'B'G'O
are the centres of the maximum conies.

6. From a geometrical point of view, the construction above indi-
cated is about as simple and satisfactory as could be expected: it is
interesting, however, to verify a remarkable metrical theorem of
Steiner's with reference to the centres, K, K' suppose, of the maxi-
mum conies. The theorem is that, if the line of centres meet the
sides of A'B'Cy in Pv P9, P8, and if M bisect KK\ then M is the mean
centre of P,, P2, P8, and

MK* = MK* = $ (MP\+MPl+MP\) ;

also, M is the centroid of the six vertices of the given circumscribing
quadrilateral.

In order to verify these statements, we may solve the equations
(9), (10), (11). I t will simplify the result if we write p, q, r for the
determinants of the matrix

a, 6, c

X, /u, v

so that p = bv—cfi, q = cX—av, r .= ofi—6X

Further, let us put

Z—

(12).

(13),

an essentially positive quantity.

Then the coordinates of Jt, K\ referred to the triangle AB"0\



24 Prof. G. B. Mathews on Proofs ofSteiner's Theorems [Nov. 13,

are explicitly given by

a = ^L(cr-bq±jZ)
'Saqr

.(14).

The coordinates of M, referred to the same triangle, are therefore

while those of Pl} P,, P8 are respectively

«i» A> 7i = 0. —

«j» P» y% = c\S/aq, 0, —av8/cq
as> /3», y8 = —bXS/ar, apS/or, 0

Hence we find without difficulty

.(16).

that is, M is the mean centre of P,, Ps, P8.

Also, (oj-oO'

= Oj + aj + Og—3a0

_2\i,<?8g_ 3 /2\,9 / y \ »
3a\V ~ 2 t3a37-^ / '



1890.] relating to Circumscribed and Inscribed Oonics. 25

From this, the two similar equations, and (14), it follows that

l = f JET1 = 6ME?.

7. It is possible that the foregoing method, or something like
it, is that by which Steiner obtained his results, and that he re-
frained from publishing a proof of this kind, because he hoped to
obtain one of a more purely geometrical character. If, however, we
try to solve in a similar manner the analogous problem of finding
conies of minimum area which pass through four given points, we
are led to results of great complexity. I t will be found that the
centres of the conies of stationary area are determined as the inter-
sections of a conic and a sextic, so that apparently there are twelve
solutions; it will appear, however, from a less symmetrical, but
more manageable method, to be presently explained, that there are
only three proper solutions, excluding the line-pairs, and the para-
bolas of the system; whence we infer that the set of twelve solutions
is made up by the three proper solutions, the three line-pairs, and
the two parabolas oach reckoned three times, the conic which is the
locus of centres in fact osculating tho sextic where it meets it at
infinity.

8. Even the problem already discussed may be more simply
treated by the unsymmetrical method.

Taking line coordinates £, v, £, the conic

O (17),

where t is a variable parameter, touches the three sides of the tri-
angle of reference, and the fixed line (X, /*, v).

As in Art. 1, it can be shown that the square of the area of the
conic is proportional to

For a stationary value, we have, by logarithmic differentiation,

1 . 1 36o ft

1 r- — *— = 0 or oo.
t t-\-l oqt—cr

It is easily seen that
t — 0, - 1 , oo
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give improper solutions, namely, the point-pairs of the system; while

bqt—cr = 0,

corresponds to the single parabola of the system.

The remaining (proper) solutions are given by

&g*s + 2(6g+cr)* + cr = 0 (18)r

or bqP—2apt+cr = 0.

Eliminating t between (17) and (18), the equation of the maximum
conies is obtained in the form

9. Actually solving (18), we get, in our previous notation,

t = °$±^ (20) ,

and equation (17) becomes

(cr^r </Z) \r,(+bqfia+ (ap± JZ) In = 0.

Now, with the help of the identity

ap + bq+cr = 0,

it can be verified that

(cr+ y/Z)(ap-cr+ */Z) = ap (cr-bq+ y/Z)}
f (21),

(ap- SZ)(ap-cr+ JZ) = or (bq-ap+ s/Z) )

so that the eqnations of the maximum conies are separately obtained
in the symmetrical form

ap (cr—bq± y/Z) Xr/f+bq (ap-crdb </Z) pR

ri = O (22).

It is now easy to obtain the coordinates of their centres, &c., and
thus to verify the results of Art. 6.

10. Proceeding now to the other problem, we have, in point-
coordinates,

(l + f)fyz-gzx-thxy = Q (23),
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representing a conic through the vertices of the triangle of reference,
and through the fixed point (/, g, h). In order that its area may be
a maximum or minimum, the value of

{(af+ch)Hi + 2(aif-bcgh+cahf+abfg)t+(af+bgyy

must be stationary.

Representing the denominator by w, for the moment, we have

- L . ^ = = 0 o r a o .
u dt

As before, < = 0, — 1, oo give the three line-pairs of the system,
while u = 0 corresponds to the two parabolas of the system. Reject-
ing these solutions as irrelevant, we obtain a cubic equation in ty

which, written out in full, is

(a/+ eh)* I? + (a*/9+2<W + begh+Zcahf-abfg) t>

t-(af+bgy = O

Eliminating t between (23) and (24), we obtain the equation of
the three critical conies in the following form, where, for simplicity,
X, Y, Z are written for fyz, gzx, hxy respectively :—

(2Vg%+cih'i+3bcgh-cahf+ abfg) X2Y

tf + Bbegh+cahf-abfg)

-(^h3+2aaf+Bcahf+abfg-bcgh)

- (2a9/8+&y + Sabfg -bcgh+calf) Z*X

- (a4/ + 2&V + 3a6fr + begh - cahf) Z*Y

+4 (a9/2 + 6y + c*h* + hc9h+c°¥+ atf9) XYZ = 0 ... (25).

The separate equations of the conies are to be obtained, either by
solving (24) and substituting in (23), or by applying the theory of
ternary cubics to rosolve the loft-haud side of (25) into three factors,
each linear in X, Y, Z.
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On an Algebraic Integral of Two Differential Equations.

By R. A. ROBBBTS.

{Bead Nov. Uth, 1890.]

1. If u, v denote two quadratic expressions in a variable x, I pro-
pose to show that the differential equations

dxx

+
, <fo8 Q

where ajj, as,, OJ8 are three values of x, and «,, ^ ; u3, va; us, vt the
corresponding values of «, u, necessarily involve an algebraic relation
between the variables aj,, xit xs containing two arbitrary conBtantB.

2. Let

then, if
, « = ZV + m'as+n';

(1),

there are evidently two relations, independent of a, /?, y, 8, connecting
the roots of the quintic

These may be easily found in the form of systems of determinants
involving the cube roots of u, v; for, if xu xv x6, at are four roots of

/ ( * ) = <>,
we have

and three other similar equations, from which we get, eliminating
«» fit V» $1

V

= 0. .(2);

and, in the same way, wo have four other determinants involving
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3. We may also find these relations in other forms, for, substitnting
a, b, the roots of u = 0, and c, d, the roots of v = 0, in the identity (1)
successively, we get

ocy + 3a, •#(&) oc y + Sb)
{• (3) j

oc a+fa W(d) a y + Sd\
from which and the relations

= 0,

&o., we can eliminate a, /3, y, 8 linearly, and so obtain a number
of other determinants. A particular form of the two relations in this
case, when two of the roots of

are supposed to be given, is worth noticing. From

= 0,

= 0,

where xi} x^ are the given roots, we have two linear relations connect-
ing a, /3, y, 8, so that from (3) we obtain

where A,/*, v, X', //, v' are known qnantities, and/(a) , / (6) , / (c)
) are respectively proportional to

(a-!B,)(a-a!a)(a-a>8), (b—x1)(b—x.1)(b'-xs)i

(c-o;,)(c-a5a)(c-a!8), (d

4. I now proceed to show that the relations between the five roots

of . f(x)=0

can be written in a form involving differentials.

Suppose a, /3, y, 5 to bo functions of a variable t; then, if

/ ( « ) = 0

is a relation connecting the variables x and t, we obtain, by
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differentiation,

^ (y'+2'x)v = 0 (5),

where a, /3', y', & are the differential coefficients of a, 3, y, S with
respect to t. Dividing out now by %/(uv*)f (a?), we get

1 dx 3 (a+/3aQ8 (o + /3'aQ
y(uv>)dt + f'(x)

which, since
(a+/3a;)8M=

becomes

1 db 3 ( y + g a ; ) 8 ( " / + W - Q

*/(uv%) at •*" / ' (a?) ""

(6).

Now, let x take successively the values of .the five roots of the

equation / (a?) = 0;

then, summing with regard to these five quantities, we obtain

1/(uv") at / (a?)

where ^ (a;) is an expression of the third degree in x; but the
expression on the right-hand side, namely

vanishes, in accordanco with a well-known theorem. Hence we have

SW) = ° «•
omitting the variable t.

In precisely the same way, by dividing (5) by \/{v?v) f (aj) and
summing, we get

5. If wo supposo now that two of the roots xi} x6 of / (a:) aro con-
stants, theso quantities will bo eliminated in the differential equations,
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as there result

which aro the equations that we proposed tp show were equivalent to
two algebraic conditions connecting as,, xz. These latter may be most
simply written in the forms (4), namely,

= o.

6. The foregoing results are a special application of the general
theorem of Abel concerning tho comparison of transcondents; but
seem worth noticing on account of their simplicity. The algebraical
relations aro thus consistent with the transcendental equations, in
consequence of the integrals belonging to the class called Abelian.
It seems, howover, worth giving some special attention to tho
integrals involved.

Let J denote tho Jacobian quadratic of u, v) then wo have

udv—vdu = Jdx\

,, - f dx [ udv—vdu
therefore TTT"^ ~ rY77~l^ J

but by a known relation, we have

J2 = nit? -f yuv + /3u8,

where a, ft, y are functions of tho coefficients of M, V, and, in fact, a, ft
are proportional to tho discriminants of v, M, respectively.

Henco

J dx f _ udv—vdu

which bocomes
Q

by putting ' v = we3.
In tho same way

zdz
J t/(«8u)
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Now, these integrals in z are apparently of the first class of hyper-
elliptic integrals, but can be reduced to elliptic integrals, which are,
however, not necessarily real, as I proceed to prove.

7. First, suppose that a and (i have the same sign, that is, that the.
discriminants of u, v have the same sign, in which case u, v have their
factors both real or both imaginary; then, writing

a = /?&«,

the foregoing integrals become

f dz f zdz

fc8

Putting now z + — = y,

we have s"+

and 2 Jz =

,, , 2dz _ dy . dy
so that 7 I ±

2/cdg dy dy

Hence
dz _ f da

= 1 f
2ft J

, i zdz
and

- 2 ] X V(y+
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We see thus that (9) and (10) are made to depend upon the
elliptic integrals

I" dy
•I \/{(2/+2A003?/5-

f dy

which are real if, as we have supposed, a, /3 have the same signs ; but
if the latter have not, that .is, if u, say, has real factors, and v
imaginary ones, then k is imaginary, and the elliptic integrals are also,
and cannot be resolved into their real and imaginary parts, except by
means of the more general hyper-elliptic integrals from which they
were derived.

8. Some integrals which come under the preceding forms may be
noticed. If

u = x, v — an? + bx + c,
and wo then put x — z8, we have

f dx — o f
] ¥(uTv) ~ J (o
f dx _ Q [
] y(«v8) ] (a

Thus, from what we have proved, the integrals on the right-hand
side can be expressed by meanB of elliptic integrals.

9. An application of the preceding results may be made, so as to
obtain the differential equations of a certain system of lines in space
satisfying two conditions.

Let a;, y, z, u be quadriplanar coordinates of a point; then, if we
have the system of cubics

/»" - Ml3 4*8 * , 8

a—\ b — \ c—X d—K

the coordinates of any point in space can be expressed in terms of
the parameters X15 Xj, X8 of the three cubics of the system which pass
through the point, as follows :

(b-a)(b-cj(b-d) '

. » =
(c-a)(c~b)(c-dj '

VOL. XXII.—NO. 1 0 1 .



34

so that, if

Mr. Oscher Ber on

d\« , dX

[Nov. 13,

dK = 0,

where w = (a—X)(6—X), v = (c —X)(d—X),

the integrals (4) will give

Ix + my+nz=- 0, Vx + w'y+»'w = 0,

where Z, TO, n, Z', w', »' are quantities involving the two constants
introduced by integration; that is, the differential equations represent
a system of lines in space.

Some Theorems in Elementary Geometry. By Mr. OSCHER BEE.

[Head Nov. \2th, 1890.]

I. To describe a square which is equal to three given equal squares.
Place the squares side by side as in the figure.

A
r"---£-~_

4
D

1
i

'

c

•>

' ^

——it

no'

j K
4'

G H

Take E on OL so that OE = OB,

„ F „ OL „ LF=0£.

'Then cut out the figures

AEOD, UKLF, AEB, HFG, BEL, OFQ.
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The angleB have all been numbered.
The angles 1, 1' are equal; 2, 2' are equal, and so on.
The parts can now be arranged thus:—

35

The angles 3, 10' make up two right angles, and so do 3', 10.
The angles 4, 7, 9,—i.e., ADG, ABE, BEL,—together equal

ADO+ABO+ CBE+ CBE + ECB.

Now CB = OE;

therefore GBE = CEB;

therefore 4, 7, 9 together = ADO+ABC+CBE + OEB+EOB

•=• 4 right angles.

The side 5 7 = side 14.
The side 6 7 = side 8 9.

The angles 6, 8, 2' together = BE A + EBL + LFR

-BEA + EBL+AEO

= BEG+EBL

= CBE + EBL

= GBL = a right angle.

The angles 1, 5 together = 1', 5' together = a right angle.
The sides 1 2 and 5 6 aro equal.
Hence the figure MNOF is a square equal to three given equal

squares.
D2
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2. On an area equal to a given semicircle.

[Nov. 13,

Inscribe a regular hexagon ABCBEF in the circle ABGBEF.
With A as centre, and AG as radius, describe a circular arc OE.
Then the figuro bounded by the straight lines AG, AE, and the

arc GOE is equal to half the whole circle.
For the triangle AEG = half tbe hexagon.
It remains, therefore, to show that the segment GQEG is half the

sum of the six segments of the circle outside the hexagon.
Consider the segments GQEG and the segment of the circle cut off

by BE.
The are of the segment OGEG subtends at the centre .4 of its

circle an angle equal to the angle of an equilateral triangle.
Tho arc of the segment BE subtends at centre 0 of its circle the

same angle.
Honco tho segments are similar.
Hence area of segment OEGO' area of segment out off by BE

:: GE*\BE% :: 3 : 1;

therefore area of segment GEGG

= 3 (area of segment cut off by BE)

= £ sum of G segments outside hexagon ;

huh triangle A EC = h of hexagon ;
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therefore figure bounded by straight lines AE, AO, and a re OOE
= ^ of whole circle.

3. If with E as centre and EO as radius the arc OPF be drawn,

if with B „ „ BO f,, !„ OQA „

and if an equal aro be described on AF:

Then these three circular arcs touch where [they meet, and form a
triangular figure OQABFPO.

Now, each of the segments OQAO, ABFA, OPFO is equal to each
of the segments outside the hexagon.

Therefore their sum is equal to the segment OOEO.
Also triangle AOF = trianglo OED.
Hence tho figure OQABFPO (bounded by three arcs and triangular)

= figure 0DE00 (bounded by two straight lines and one arc).

On the Analytical Rejiresentation of ITeptagrams.

By L. J . EOGERS.

[Read November Wh, 1890.]

CONTENTS.

1. Hermite's Conditions that <px should represent a
Substitution.

2. New Forms of Reducts.
3. Vertex-shifting.
4. Reciprocal Polygrams.
5. Skew-symmetry and Self-reflexion.
6. Line-and-dot Polygrams.
7. Isoscelism and Parallelism.
8. Character.

I. In tho standard works on the Theory of Substitutions—I allude
to Jordan's Traitu des Substitutions, Nctto's Substitutionentheorie, and to
those sections in Serret's Algebra referring to the samo—there is an
extract made from a paper of M. Hermito's, which appeared in the
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Oomptes Bendus, "Vol. LVIL, on the method of analytically expressing
a substitution of a prime number of letters by means of a congruence-
quantic of order two unities less than the prime in question. Since
the subject is dealt with in greatest detail by Serret, it will be best
to make all references to his work in preference to the other works
mentioned above.

To explain this more fully, let us take p symbols, which we may
adequately represent by the numbers 0, 1, 2, 3 ... (p— 1), and
suppose that p is prime. Now, suppose theso symbols subjected to
a substitution so that the arrangement becomes shifted into
°» fit y •••! which are the same symbols in a different ordor. Then
it is proved in Serret's Algebra, § 474, that an algebraic function <px
can always be found, such that

00•= a, mod. jp, <f>l = /3, ^ 2 s y , &c,

for the whole set of symbols, and this function can by Format's
theorem always be reduced to degree (p—2), at the highest.

For instance, if p = 7> and the substitution be that of rearranging
0,1, 2,3, 4, 5, 6 into 2, 4, 1, 5, 6, 3, 0, we shall find that

However, the converso is not always true, that every quantic of order
not greater than (p—2) should represent a substitution. For, since
we must have the final sot of symbols identical with the first, though
not in the same order, it is obvious that the only conditions we
must and need but have, are that $0, <pl, q>2, &c. should be con-
gruent non-respectivcly with 0, 1, 2, 3 ... &c, or, in other words, all
different. Thus, for modulus 7, the function .-B'+JB3 does not repre-
sent a substitution, for its values got by giving x the values 0, 1, 2...
are 0, 2, 5, 1, 3, 3, 0, which are not all different.

Now, in general, it is obvious from this consideration, that if 0»
represents a substitution, so also will fx+lc, where h is independent
of x. Hence, in testing these forms, it is sufficient to test those in

which 00 = 0.

The necessary nnd sufficient conditions have been discovered by M.
Hermite, and put into tho simple and elegant form, that the (p*-3)
coefficients of a'"*1, obtained in calculating tho values of the powers of
<px, viz.:

( ) 2 ( ) » ( ) \
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and reducing by Fermat's theorem all powers greater than the
(p—l)th, should be severally congruent with zero (see § 476).

As I intend to deal in detail with quantics representing substi-
tutions of seven letters, I shall now leave the general case, and take
all congruences according to the modulus 7.

It is also my object to refer especially to the geometrical signifi-
cance of these quantics, and to show how a substitution of seven
letters may be adequately represented by a seven-point polygon or
heptagram, understood in its most general form; either as a complete
heptagon, or as a triangle and a quadrangle, or as a pentagon and a
line, &o. This may be done by arranging seven dots, exactly or
approximately at the vertices of a perfectly regular heptagon, and
numbering them 0, 1, 2, 3,4,5, 6, in order. We will agree, moreover,
to place the zero-vertex vertically highest, so to speak, and arrange
the others symmetrically about the vertical line through the zero-
vertex, ascending in value in the direction of the hands of a clock.

If then 0a = /3

for any particular values o, (3, we shall join the vertex o to the
vertex /3, and when all vertices are thus joined, we shall get a com-
plete seven-point figure. With this convention, it will not always be
necessary to number the vertices.

For instance, if

we shall easily trace the figure from the
values of »̂0, ^1 , &c, given above, namely,
2, 4, 1, 5, 6, 3, 0, to be that given in Fig. 1,
while the arrow-head marks the direction in
which wo draw the lines. This is obviously
necessary for each sub-polygon, except in the
case of a single line or dot. Here we need
only place an arrow-head on one side of the pentagon.

M. Hermite has found that all substitutions of 7 letters may be
represented by the functions

az + fl, or a0(z + /3)+y,

where 6z = z*±3z (1),

U I <6 ZC A* < i >lw/)
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or za+az* + 3a\ where a7— a = 0 (3),

or 2B + a28rfc;s3 + 3a2z, where a 8 = — l (4);

giving in all 5040 forms, as is shown in Serret's Algebra. These
simplified forms he refers to as formes reduites, or reducts.

2. I propose, however, to rearrange these in seven classes, on the
principle that, if 6z be any form, then every reduct of the same form
may be congruent with. \6/xz, where A., fx are constant. This will
necessitate dividing z6+azs+'Sa1z into three new classes, according as

a = 0, a8 = 1,. or a8 = — 1.

If we give 6z the following values—

z4+3m\ 25+2wV, z*, / ' + mV+3m42, z5—mV + 3m4s,

/ ' + 3mV + mV + 6m\

we shall obtain, by generalizing, the same 5040 forms as obtained by
M. Hermite.

Now, these reducts may be replaced by others, equally general, and
of such forms that M. Hermite's conditions may be immediately
verified.

Thus, it can be easily shown that

s8+mV + 3?n4;s == 5m*z (z' + m8)8,

and that z*—mV+3m*z == 4a8 (z*+X*)",

where X1 = 4m*.

Similarly, z* + 3m*z ~ m*z (a8+4m8)1,

and 2B+2mV = 5sB(a8-4m8)1.

M. Hermite's last reduct can be brought to a simpler form. For

z*+3miz9+m*zi + Gm*z = 6m* {(«+2»i)5+4m8}5+m5,

which, without loss of generalization, can be replaced by the rednot

I shall therefore substitute the following seven redncts in place of
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those given by M. Hermite:—

» (1),

»* (2),

x(xi + miy .' (3),

mV(«4+m4)8 (4),

a3(a>8 + 4m8)2 (5),

»B(x9+4m8)9 (6),

(7).

If these be generalized in the manner indicated by M. Hermite, we
shall obtain the same 5040 substitution-functions as can be derived
from his redacts.

It is interesting to notice that all the reducts except (7) can be
written in the form

where r is prime to and less than p—1 (i.e., 1 or 5), and fx' is a
rational integral function of x* which can never become zero, and is
not a perfect power of any function of a;', and where s is a factor
oip—1.

It is, moreover, easy to see that such an expression always satisfies
the required conditions for a substitution-quantic. For, if the reduct
be raised to a power other than the sth, we shall have a set of terms
whose indices are of the form ns+r ; and, since r is prime to s and
p—1, this can never be equal to a multiple of p—1. Again, if it be
raised to the sth power, we get, by Format's theorem, xr', which can-
not = xp~l, since r is prime to p—1.

The seventh reduct is obviously a substitution-function, for it is
the result of the operation of 9 on 6z+mn, where

6z = *\

3. Isomorphism and Vertex-shifting.

It is proved in all works on Substitutions that <px and any function
of the form f~x<f>fa represent similar or isomorphous substitutions, if
fx also represents a substitution. For instance, if <px represent
Fig. 1, § 1, ihenf~l<l>fx will represent some heptagram consisting of
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a pentagon and a line, and moreover / (x) can be chosen to make it'
represent any such heptagram.

The geometrical meaning of f~l<pfx can be very simply demon-
strated.

Let <j>x be represented by Fig. 1. Then the congruence

y ~~ ^f,

shows to what point any vertex x must be drawn.

Fig. 1.

Now, suppose /0, / I , / 2 . . . have the values 3, 5, 0, 2, 1, 4, 6, and
let us re-number the vertices according to this substitution, so that
any vertex formerly marked a is now called fa. Now, draw the
polygram of Fig. 1 exactly as before, as in Fig. 2. The method of
tracing it is now given by the congruence

fy = tfx,

for the same relation now holds between fy and fx as before held
between y and x.

Now rearrange the vertices in their
proper order, and we get Fig. 3, which is
represented by

J J ' TJ 9

i.e., y=f-l(j>fx.

The geometric method of deriving /'ty/a;
from (f>x shows that the two figures are iso-
morphous or like-membered.

With this section, cf. Serret, § 413.

If

we have to shift each vortex back n places without moving the
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figure, which, on restoring 0 to its proper place, means that we shift
on the figure n places.

Thus ^(<B+tt) —» denotes the same figure as $x\ rotated back n
places.

4. Reciprocal Polygrams.

The most important investigation in the theory of polygrams is
that of finding the reciprocal of any quautic, by which is meant that
quantio whose figure is the same as that of the given quantic, with
the arrow-head turned in the opposite direction. Or, analytically
speaking, if

y==<l>x,

where <p is known in form, the problem is to find the form of <f>~1 as.

Let y = Ax*+Bx< + Ox8 + Dx1+Ex,

so that 4>0 = 0,

and suppose » = ay6 -f Py*+yy8 + %*+ny-

Then xy ==A + Bx6+...

Now, by Hermite's conditions for a valid quantio, we know that, if
x s 0| then y, y\ y*t y*, y5 all = 0, so that we get

•° = A (1).

Again, xy* = ay+ft + yy*+...

Putting x = 0 after reducing the last expression by Fermat, we see
that

(Z = coefficient of a? in (0»)3;'

similarly, y = „ „ „ (0a:)!

Thus, if ^0 = 0,

the reciprocal of $x may be directly calculated, though in the general
case the process is laborious.
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If y = $x + b,

it is obvious that x=<f>-l(y —b) (3)i

so that the reciprocal of every substitution-quantic may be deter-
mined. This, by rotation through b points, can be brought into the
form $~ly — b.

I shall now proceed to the calculation of the reciprocals of the
several standard forms given in § 2, but it will be advisable for the
sake of greater generality to multiply each of these reducts by a
constant, say a.

In the first place, the forms (1), (2), (7) present no difficulty,

since, if y = ax,

then x = a6y ;

if y = ua;8,

then x ~ ay6;

and if y = o (aj5+w8)5,

then 2/5 = a6(a58+m6),

BO that x = a8 {if—a8m5)\

The reciprocal forms corresponding to the other reducts have, how-
ever, to be obtained according to the method indicated above.

Thus, if

then

BO that

BO that

y == aa>(x9+ms)8,

y* = uV,

. -"v".+ •
y = a'.3m';

so that »/ = <

while the coefficient of as8 in xy is a . 3m4.

These results give x = a8y (t/' + aW)8,

as may be easily verified.
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Similarly, if y = omV (a*+m*)8,

then a = am%y* (y*+a*m4)8.

In form (5), we have y = ax (ie8+4?»8)9,

so that y* = a V (3 +aj8m8)a = o V (aj8-4m8)*,

and y* = a8a>8;

and finally, applying the method explained above,

x = a6y (y8 —4a8mB)8.

Similarly, from form (6), where

we get as = a?/5 (r/8+4a8m8)8,

as may be obtained from the last by changing x into x6.

Collecting the above resnlts, we get the following seven pairs of
reciprocal equations:—

y = ax,

y = ax6,

y = ooj.(a?+m8)',

y^amV^+m4)8,

?/ = aa;(a:8 + 4m8)8,

y = cue5 (a:8+4m8)8,

A . i / _js 1 ,fcMfi\2

® = o6y,

x = oy8,

a; = a5y (y' + a'm2)8,

a5 = amV(y 4 +a 4 m 4 ) 8 ,

a? = asy (y8-4a8m8)'J ,

a; = ay6 (y8 + 4a8m8)a,

X = a6 («6—a5m6)°,

/i8 = «4,

/ * 2 = «*,

fi* = a\

H = - o 8

/** = a*.

/x, = — a8

One remarkable fact is to be noticed concerning these reciprocal
qnantics. If

y sfBi

where <px is a reduct, then in every case <p~*x can be reduced to the
form u^fix, where p is a constant. In other words, if

V = **•

then a; =

that is, if z =



.46

then

so that
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which shows that <Pf*x is a self-reciprocal quantic, a specieB which
will be treated of further on. The congruences giving the values of
H for each form are to be found in the third column above, each
placed on the same line as the form to which it refers.

More generally, if y = \j/x = <j> (x—a) + 6,

where <px is a reduct, then evidently

\j/~1x = <j>~1 (x —

N o w <p~lx

therefore <p~x (x — b) = fupp (x—b).

But <px+b =. \p (x+a), by hypothesis ;

therefore <p (fix— /x6) + & = ^(fix—ftb + a).

Hence ^"'as =/ i^ (f*x—fib + a)— fib+a,

a congruence giving a general connexion between a qnantio and its
reciprocal.

If fib—a = fic,

then \l/~lx = iupfi(x—c)—/xc.

Let if/fi (x—c) = z,

so that the above congruence gives us

•/'"'as = /x (z—c).

Then a: = ^ft(a—c),

so that x, z are connected by a self-reciprocal relation.

Hence, if tf/x represent any heptagram, two constants /i, c can
always be found, such that if/ft (x—c) is a self-reciprocal quantic.

5. Skew-symmetry and Self-reflexion.

A polygon is called skew-symmetric when its geometric form is its
own reflexion in some line, but the direction-airows are reversed. If
the nuniber of vertices is odd, tho axis of symmetry must pass through
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one of the vertices. The polygon is then said to be symmetric about
that vertex.

A polygon is called self-reflective when both its geometric form and
the direction-arrows are reflected in some line.

The condition for self-reflexion about the zero-vertex is obviously
that

<px=-</>(-x) (1),

that is, that <j>x should only contain odd powers of x, as is the case in
the first four reducts found in .§2.

The test for skew-symmetry depends upon the form of the
reciprocal quantic, the general law being that the reciprocal figure
should be the exact reflexion of the original figure in some line
through a vertex. If the axis pass through the zero-vertex, we get

(2)-

The reciprocating constant, therefore (§ 4), is congruent with — 1 .
We can, moreover, deduce the very important fact that, if the reduct
<px gives a -skew-symmetric figure, so also will Qx+b. For the
reciprocal of the latter is <{>~x(x — b), which, rotated back through 6
vertices, becomes <p~lx--b. But this is —0(—x) — b, which is the
reflexion of <px+b, the original figure.

Now the vertex of symmetry for the reduct $x is zero, while, for
<px + by we must shift back the reciprocal b places before we get the
reflexion of the origiual. A little consideration will show that the
vertex of symmetry is that whose number is congruent with |6 ,
i.e., 46.

The skew-symmetric reducts are the following :—

±as, ux6, ±a)(aja + m3)8, ± « i V (»*+m4)3,

+ as(a:8+4»i8)3, a»
5 (a;8+4m8)3 where a » = - l ,

and (a:6+m6)\

Except for —«, we get seven different figures from each of these
forms by adding a constant b, so that the totality of skew-symmetric
heptagrams* is

1 + 7 + 42+42+42+14+42+42 = 232.

* It is interesting to note that all pentagrams can be represented by the two
congruences

y~ax + b, y — ax3 + b, mod. 6
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6. Self-reciprocal or Line-and-Dot Polygrams.

If a polygon is its own reciprocal, it is evidently made up of lines
and dots.

Now, if $~xx = $xt

the reciprocating constant ft is = 1 , and the self-reciprocal forms are
as follows:—

±®, CUB5, ±x(xl+miy, ±msa5(aJ*+TO4)8, —OJ(O;8+4WI8)8,

a»5(a>8+4m8)8 where o8 = l, and —(a'+m5)6.

Their totality is
2 + 6+6 + 6+2 + 6+6 = 34.

It may be noticed, as is geometrically obvious, that, if <px be skew-
symmetrical about the zero-axis, then —<px is self-reciprocal. More*
over, if <px be both eelf-reflective and skew-symmetric, it must be also
Belf-reciprocal.

7. Metrical Properties, Sets.

The seven figures corresponding to the qnantic <px + bt where <px is
a reduct, and b has the seven values 0, 1, 2 . . . , I shall call a set of
figures, or the figures belonging to the same set. It will be found in
general that figures of the same set apparently differ very much in
their geometric properties. There arc, however, properties possessed
by each member of a set, which it is my object now to point out, and
which will give us a method of detecting, by mere inspection of the
geometric figure, the reduct to which the figure belongs. It is, of
course, always possible to find the quantic of the given figure, and
reduce it by so rotating that its second term vanishes ; but this
method is tedious, and furnishes no clue as to the connexion between
geometric and analytic similarity.

(see SERRET'S Algebra, § 486). Moreover, if a be not s 1,
y = ax+b

' may be rotated into y = ax,

which ia self-reflective ; also y = x + b

is regular, while the reciprocal of

y=ax* + b is i s a (y - i ) ! ,

which can bo rotatod into x s ay* — b,

which shows that nil -figures bolonging to this congruence are skew-symmetrical.
Combining thrsts results, wo Bee that—All pentagrams fowned by joining the angular
points of a regular pentagon are symmetrical.
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The most important property possessed by all members (or none) of
a set is skew-symmetry, as we saw in § 5.

However, siuce each kind of reduct was found to include skew-
symmetric forms, this property will not servo to distinguish
different kinds, though it will differentiate sub-species, such as are
marked by the coefficient of the leading term being a residue or a
non-residue.

Wo may, in fact, subdivide the species already found into twenty-
four in all, and we may geometrically distinguish these (1) by observing
tho number of equal sides, and (2) by the number of parallel sides in
any figure. Now, the analytical condition for equality of two or more
sides is that (f>x—x should have the same value for two or more values
of x, while the condition for parallelism is that <{>x+x should have the
same value for two or more values of x. The first fact is easy to seo,
and the second is obvious when we consider that •§• (<px-\-x) is tho
number of the vertex halfway between x and §x ; for these two sides
have the same midway vortex, that is, aro parallel.

Wo have to. notice one or two special cases :—
(1) Isolated dots must be looked upon as sides of equal length.
(2) An isolated line must be treated as a pair of parallel lines.
(3) An isolated dot midway between the extremities of a side

must be considered as a side panillol to that side.
It is very easy to seo that every member of a set has the same

equality of sides and parallelism of sides. For, if (j»xx ± x , and
<f>x2 ± xt have equal values, so also have âjj + crfca:, and <{>xi + c db x%.
This may be expressed by saying that the isoscclism or parallelism
of a set is q, r, a ... if we wish to state that the figures have each a
group of q equal or parallel sides, and another group of r equal or
parallel sides, not equul or parallel to tho last, &c.

It may be worth noticing that there is a kind of reciprocal relation
connecting equality of sides and parallelism in the figures represented
by fx and — $x, or, as wo may say, in any figure and its negative.
For groups of parallel sides depend upon the groups of congruent
values in (j>x + x, that is, upon groups of congruent values in — <f>x—x,
which shows that they are equivalent to the groups of equal sides in
—<px. For instance, x*+2x* + 5x+b has five equal sides for all values
of I, and, consequently, .6 (a,*+2a;8+5x4-6) has five sides parallel.

8. Descriptive Properties of sets of Polygrams.

Besides symmetry, we have hitherto only considered tho metrical
properties possessed by every member of a set, i.e., those properties,

VOL. xxu.—NO. 402. E
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such as isoscelism and parallelism, which depend on geometric
lengths and directions. We have now to consider a property which
refers simply to tho number of lesser polygons into which a polygon
may split up, and which we may call a descriptive property.

The fundamental theorem is as follows :—
If <px consist of in members, and fx consist of n members, then f<j>x

or <j>fx will consist of r members, where

r = «i-f n—1, mod. 2.

As this is a theorem known to those who have studied the proper-
ties of substitutions, I need only refer to Mr. Asquith's paper in the
Quarterly Journal for October, 1889, p. 114, in which tho proposition
stands in the form: A cycle is always added to or subtracted from
substitution by a transformation. Now, every substitution can be
mado up of a certain number of transformations, Avhich are repre-
sented by figures consisting of one line and p—2 dots, whero^? is the
number of sides (prime) of tho polygram. It therefore consists of
an even number of sub-figures or members, so that we shall call it an
even polygram.

Now, it is easy to infer that an odd polygram will bo mado up of
an even number of transpositions, and vice versa.

Honco the theorem, as ro-worded above, follows easily.
For instance, if

fx=x + \,
then fx is a complcto or one-membored polygram, so that $x and
f(px—i.e., <px + \—aro both even or both odd, or, as wo muy say, of like
character. Hence all members of a set arc of like character.

This may bo readily verified, o.y., in the case of, say, ilxr\ which
has four mombeiR, and is thorcforo oven. It will bo found that
'Sx* + 1 has two, 3;i:5-f 2 lms four, 3xr>-f-3 has six, &c.

Wo may further notice that <j>x and — <j>x have unlike charactci's, if

P = 7,

since, in this case, /(a))== —x,

which consists of a dot and three- lines, and is therefore even.
It is in many cases easy from analytical considerations to discover

the form and character of tho roducts given in § 2.
Jiet. us first draw hoptagiams corresponding to

ax + X (whero a is a primitive root), and — ax + \. .
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It will be found that x-\-\ gives a complete heptagon; —a:4-A
gives three lines and a dot; twj + A gives a hexagon and a dot;
—ax + X gives two triangles and a dot.

Now, let us consider the seventh form

or, as we may write it,

If fx = x\

we may write this

which, by § 3, is isomorphous with

It is easy to see then that

a (
will represent a complete heptngon, three lines and a dot, a dot and a
hexagon, or two trinngles and a dot, according as a = l, = — 1 ,
= a primitive root, or = 2 or 4.

Again, lot <J>x = ax (a?8 + m2)8 ;

then fx ~c?x (a)2+m3)8 (« V + m2)8 = x, if a9 = I,

so that ± x (#2+ m3)8,

gives self-reciprocal heptngrams. Moreover

fx = a*x (a;2 -»-m2)9 (aV + m2)8(aV + m2)8

= -x, if a 8 = - l .

Now, 03£c consists of threo lines and a dot, so that it is easy to see
that qx must either consist of a dot and a hexagon, or must be self-
reciprocal. The latter cannot be true unless a 2 = 1; therefore, if « be
a primitive root, <px must consist of a dot and a hexagon, and is
therefore even in character.

In similar ways we may establish the fact that if n8 = — 1 in any
reduet, then the character of the corresponding heptagram is even ;
but it is scarcely necessary to prove the statement in tho case of
every reduet. It is interesting to notice that if

^ = awV(;i;4 + «i4)8,

then <p*x in all cases ==;»!, so that <j>x must, if not self-reciprocal, con-
sist partly of a quadrilateral figure.

2
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The following Table represents twenty-four subdivisions in the
different spccicaof hepfagrams, arranged according to their analytical
forms, and with the geometric properties appended which are common
to every member of the corresponding sets. The descriptive properties
of symmetry and character have been, or can be, found directly by
analysis. The metrical properties of isoRcelism and parallelism have
been found by inspection.

It has been found convenient to use the symbol y i for a quad-
ratic residue, and — \/\ for a non-residue ; a for a primitive root.

Form
1

x...

— ax
ax

Form f V1 • *8

2 \ _ •/!.*»

Form
3

Form
4

Form .

r (.>" y in-):t

—r. (x" + IM8)3

— ax (r- + «i-)3

ax (.T5 + «»4)3

-x1' (r* + HI*)3

— anti

a»i".tA (.T4 + H I 4 ) 3

— n.r. (i*+ 4M*3)2

«u? (a.l3+4H»3)2

Form
6

Form
7

a (r' + »»••)'

METRICAL PRorEHTiEfl.

Isoscolism.

7
0

0

0

3 . 2 . 2

2 . 2

3
5

2 . 2

2 . 2

. 2 . 2

3 . 3

2 . 2

3

2 . 2 . 2

0

4

2 . 2 . 2

3

3 . 2

4 . 2

2 . 2

2 . 2

3 . 2

Parallelism.

0

7
o
0

2 . 2

3 . 2 . 2

5
3

2 . 2
2 . 2

3 . 3

3 . 2 . 2

3

2 . 2

0

2 . 2 . 2

2 . 2 . 2

4

3 . 2

3

2 . 2

4 . 2

3 . 2

2 . 2

DESCRIPTIVE PROPERTIES.

Character.

odd

oven
odd

oven

odd
even

odd

even

odd

even

odd

even

odd
even

odd
even
odd

oven

odd

even

odd
oven

odd
even

Symmetry.

symmetrical

sym.
(self-reflective)
(solf-reflective)

sym.
sym.

sym.

sym.

unsym.

unsym.

sym.
sym.

unsym.
unsym.

sym.
unsym.
unsym.
unsym.

unsym.
sym.

sym.
unsym.
unsym.
unsym.
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December 11th, 1890.

Prof. GREENHILL, F.R.S., President, in the Chaifr.

The following gentlemen were elected members :—F. S. Carey,
M.A., late Fellow of Trinity College, Cambridge, Professor ot Mathe-
matics, University College, Liverpool; M. W. J. Fry, M.A., Fellow
of Trinity College, Dublin; H. S. Romer, M.A., late Scholar of
Trinity Hall, Cambridge ; and Hari Das Sastri, M.A., Director of
Public Instruction, Jay pur State, Rajputana.

The Auditor made his Report. Upon the motion of Sir J. Cockle,
seconded by Mr. S. Roberts, the Treasurer's Report was then
adopted. A vote of thanks was unanimously accorded to Mr. Heppel
for the trouble he had taken in auditing the accounts.

The following communications were made :—
On the Stability of a Plane Plato under Thrusts in its own

Plane, with applications to the " Buckling" of the Sides of a
Ship: Mr. G. H. Bryan (communicated by Mr. Love).

On the Extension to Matrices of any Order oE the Quaternion
Symbols 8 and V: Dr. Taber.

On the Reversion of Partial Differential Expressions with two
Independent and two Dependent Variables: Mr. E. B. Elliott.

Newton's Classification of Cubic Curves: Mr. W. W. R. Ball.
Stoiner's Poristic Systems of Spheres : Prof. G. B. Mathews.
On the g-series derived from the Elliptic and Zeta Functions of

-}Jc and }h: Dr. Glaisher.

The following presents wore received:—
" Educational Times," for December.
" Proceedings of the Physical Society of London," Vol. x., Part iv.; Nov., 1890.
'•Proceedings of tho Cambridge Philosophical Society," Vol. vn. , Part n .
" Nautical Almanack," for 1894.
" Bulletin des ScienccB Mathcmaticjues," Tomo xiv., Nov., 1890.
" Nieuw Archief voor Wiskunde," Dcol xvn., Stuk 1 and 2.
"At t i della Itoalo Accademia dci Lincoi—Rondiconti," Vol. vi., Fasc. 4, 6,

and 7 ; Roma, 1BH0.
" Bollettino dollo Pubblicazioni Italiano, ricevute per Diritto di Stampa," NOB.

116, 117, and 118.
' ' Sitzungsbcrichto dcr Koniglich-Preussischon Akadomje der Wissenschaften zu

Berlin," xx.-xi..
" Acta Malhema.tica," xm., 1 and 2.
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"Memorias do la Sociedad Oientifica—Antonio Alzate," Tomo in., Nos. 11
and 12.

" Jornal do Scioncias Mathomaticas e Astronomicas," Vol. ix., No. 6.
Pamphlot8 by A. Voss:—" Ucbcr dio mit einor bilincaren Form vertausehbaren

bilincaren Formon," 8vo; "Uobor die conjiigirto Transformation oiner bilinearon
Form in sich solbst," 8vo; " Uebor einon Satz aua dor Thoorie der Detormi-
nanton,"8vo; " Uobor dlo cogrcdionten Transformationon oinor bilincaren Form
in 8ich selbst," 4to.

On the Stability of a Plane Plata under Thrusts in its own Plane,

with Applications to the "Buckling " of the Sides of a Ship.

ByQ. H. BRYAN.

[Read Dec. 11///., 1890.]

Introduction..

1. The problems discussed in this paper aro the analogues for a
plane rectangular or circular plato of the well-known investigations
of the stability of a thin wiro or shaft, due in tho first place to
Euler, and since developed by Groonhill. I have employed the
energy criterion of stability, tho uso of which I have already illus-
trated in this connexion in two papers published in the Proceedings
of the Cambridge Philosophical Society.*

The caso of a plate supported on equidistant parallel ribs will be
considered moro fully, on account of the practical use of such struc-
turos in the construction of ships.

Suppose a piano elastic plate is submitted to edgo tractions in its
own plane which produce compression of its middle surface, and let
every point of that surface receive a displacement normal to the
plane, such displacements being chosen in accordance with the pre-
scribed boundaiy conditions. If this displacement bo everywhere of
the first order of small quantities, the surface of tho plato will
thereby become extended by small quantities of the second order,

* (Jamb. P/iil. r,vc, Vol. vi., pp. 1D9, 28C.


