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I.

In a note in Vol. xix of the Messenger of Mathematics, " On the
Resultant of Two Finite Displacements of a Rigid Body," I have
shown that a geometrical construction there given is applicable to
non-Euclidean space. The construction, or rather its proof, is
materially simplified in a note with a similar title in Vol. xxnr of
the same journal, but the phraseology used in this second note is
wholly that of ordinary space. It is not, I believe, generally known
how simpiy the kinematics of non-Euclidean space may be treated
by the methods of ordinary synthetic geometry ; and it is my object
in the first part of the present paper, by reproducing in a quite
general form the construction above referred to, and by applying it
to the deduction of certain kinematical theorems, to bring this out
clearly.

The elementally geometry of hyperbolic space has been treated in
detail by Herr J. FriRchauf (Elemente der Absoluten Geometric,
Leipzig, 1876), while the leading theorems in the elementary
geometry of elliptic space have been given by Mr. S. Newcomb
(CreZZe's Journal, Vol. LXXXIII). Reference may also be made to an
address by Prof. Gr. Chrystal to the Royal Society of Edinburgh
(Proc. B.8.E., 1879-80), in which the leading results of Frischauf
and Newcomb are partly summarized and partly treated indepen-
dently. The more elementary of the results obtained by these
authors have been assumed as known in the present paper. The
distinction between the single and double elliptic spaces,* that is,
between spaces in which two straight lines in a plane always meet in
one or in two points respectively, is of course taken account of where
necessary; but most of the results hold equally well for either.
There is, however, a fundamental kinematical distinction between
the two cases, which may be stated here, as it is given by Prof.
Chrystal in the address above referred to. The distinction is that,

• In his recent writings Prof. Klein uses tho terms " elliptic " and " spherical "
space for what are here called " single " and '• double " elliptic spaces.

VOL. XXVI.—NO. 502. D



34 Prof. W. Burnside on the [Nov. 8,

while a translation along a complete straight line in single elliptic
space is equivalent to a rotation through two right angles round the
line, in double elliptic spaco it is equivalent to no displacement at all.

In what follows, one of two finite straight lines A B, A'II' is con-
tinually spoken of as equal to, greater than, or less than the otlior.
It is to bo observed that this does not involve tho assumption of any
snch analytical system of measurement as may bo used in ordinary
space. (It is, in fact, one of tho objects of this paper to show how
the appropriate metrical systems of elliptic and hyperbolic space
may be deduced from purely synthotical considerations.) The test
is ono of congruency; namely, the point A may bo nmdo to coin-
cide with the point A\ and the line All to lie along tho lino A'B\
and it will then bo obvious on inspection whether 4'^ 1S equal
to, greater than, or less than A'B'. In the same way, it is clear that
a test of congruoncy can be applied to .determine whether two inter-
secting lines AB, AO are or are not fit light angles.

The following definitions are introduced to avoid any possible
ambiguity.

A motion is a displacement of the points of spaco such that all
congruent figm-es remain congruent. The word "displacement"
without qualification is, however, gonerally bore used for "motion "
as just deiined.

A rotation is a motion in which all the points of one straight line
are iindisplaced. A rotation through two right angles is for short-
ness called a half-turn.

A translation is a motion, in which a straight lino and the two parts
into which it divides, or appears to divide, any plane passing through
it are respectively clisplacod into themselves.

Lemma I.—At least one straight line can in general bo drawn to
meet any two given lines at right angles ; and in hyperbolic space
there is never more than ono such straight lino.

If tho two straight lines intersect, the line through their point of
intoi'section perpendicular to their piano is a line meeting them both
at right angles. Suppose now that the space is hyperbolic, and that
AB, AO are the two 'straight lines. Then, if BO were a straight lino
meeting AB anil AO at right angles, and if A is a finite! point, ABO
would be a rectiliiusar triangle, the sum of whoso angles is greater
than two right angles; whilo, if A is a point at infinity, then ABO>
would be a rectilinear triangle whose area is not inlinitesimal, while
the sum of its angles is equal to two right angles. Neither of those
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results is possible (cf. Chrystal, he. cit.), and therefore no such line
as BO exists. It is to bo noticed that, if A1J, AO meot at infinity, the
lino meeting them both at right angles cannot actually be drawn.

Suppose next that the two straight lines AB, CD do not intersect.
From every point P of AB draw lines Pp in overy possible direction
perpendicular to AB, and such that each of them can be brought to
congruence with a given finite straight line.

The locus of the extremities of these lines will bo called an equi-
distant surface of AB, and Pp, ... will be called its radii. The equi-
distant surface remains congruent with itself for all translations
along and rotations round its axis AB, and it must therefore bo a
continuous surface with a definite tangent plane at overy point, while
the radius through any point is perpendicular to the tangent plane
at it. If now the radius to the equidistant round AB is sufficiently
small, then, since, by supposition, AB and CD are non-intersecting
lines,'CD must lie entirely outside (i.e., on the opposite side to AB)
of the equidistant. Hence, •when the radius is taken larger and
larger, there Avill be some definite iinite value of the radius for which
CD first meets the equidistant. If the point in which CD first
meets an equidistant is a liuite point,, it necessarily touches it at
this point, and the radius to the equidistant through the point is a
straight lino meeting AB and CD at right angles. If, now, a second
equidistant touch CD, then CD is necessarily a lino returning into
itself, and the space must therefore be elliptic. Hence, again, in this
case, not moro than one line can be drawn in hyperbolic spaco to
meet two given lines at right angles.

Suppose, secondly, if possible, that CD first moots an equidistant
at infinity, so that the space is necessarily hyperbolic. If AB, CD
are not in the same plane, this is clearly impossible. For, if from
points taken further and further along CD perpendiculars be let fall
mi. f.ho plane A !!(!, fheso perpmidiculiirs increase without limit, and,
a fortiori, the samo must bo true of the perpendiculars let fall on AB.
If, on the other hand, AB, C.I) are in the samo plane, and if through
any point 0 of 01) the lines CD', CD" be drawn to meet AB at
infinity, then CD must make with one or the other of these lines an
angle less than any finite angle, or, in. other words, CD must coincide
with either CD' or CD". Hence this second possibility reduces to
the previously considered case in. which the two lines meet at
inlinity.

Lcmvw, IT..—If Ali be any -straight line, .and A.a, Bb two straight
D 2
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lines in the same plane, both of which are at right angles to AB,
then successive half-turns round Aa and Bb are equivalent to a
translation 2AB along AB. Let P be any point in BA produced, and
take P ' and Q in this line, so that PA and AP', and also P'Ba.ndBQ,
can be respectively brought to congruence. Then 2AB is congruent
with PQ. Now the half-turn round Aa brings P to P', and the half-
tura round Bb brings P7 to Q, so that the two half-turns displace
every point of AB through a distance congruent with 2AB along AB,
whilo the two halves of the plane aABb on either side of AB are dis-
placed each into itself. The resultant displacement is therefore a
translation 2AB along AB.

Lemma III.—If Oa, Ob are any two intersecting lines, and if cOc'
is perpendicular to both of them, successive half-turns round Oa and
Ob are equivalent to a rotation 2a0b round cOc.

Let OP be any line through 0 in the plane aOb, and take OP", OQ
such that the angles POa, aOP' and the angles P'Ob, bOQ are re-
spectively equal. The half-turn round Oa changes OP to OP', and
Oc to Oc, and the half-turn round Ob changes OP' to OQ and Od to
Oc. The successive half-turns therefore keep Oc undisplaced and
change OP into OQ, and it is evident that the angle POQ is equal to
2a0b.

Lemma IV.—If A/i, Bb are any two lines, and AB is a line meeting
them both at right angles, successive half-turns round Aa and Bb are
equivalent to a translation 2AB along AB, and a rotation round AB
through twice the angle between the planes aAB and ABb.

Through B draw Bb' in the plane aAB perpendicular to AB. Then
successive half-turns round Aa and Bb are equivalent to successive
half-turns round Aa and Bb' followed by successive half-turns round
Bb' and Bb.

The first displacement is, by Lemma II., the same as a translation
2AB along AB, and the second, by Lemma III., is the same as a rota-
tion through 2b'Bb, i.e., through twice the angle between the planes
aAB and ABb, round .42?.

It is obvious that the resultant of these last two displacements is
independent of their order.

These lemmas lead to a very simple construction for the resultant
of any given finite displacements. Suppose first that two displace-
ments each consisting of a translation along and a rotation round a
given line are to be compounded; and let a'Aa, b'Bb be the axes of



• 1894.] Kinematics of non-Euclidean Space. 87

the given displacements. Take AB* a line meeting both axes at
right angles, and in a'Aa take a such that half the translation along
a'Aa will bring a to A ; then through a draw a'a perpendicular to
a'Aa, such that half the rotation round a'Aa brings the plane aa'A into
the position a'AB. The first displacement is then equivalent to half-
turns round a a and AB, by Lemma IV.; and in the same way 6/3
may be constructed meeting b'Bb at right angles, such that the
second displacement is equivalent to successive half-turns round AB
and 6/3. The resultant displacement is therefore equivalent to
successive half-turns about a'a and 6/3 ; and, if a/3 be a line meeting
these two at right angles, the resultant displacement is the same as a
translation 2a/3 along a/3 and a rotation round a/3 through twice the
angle between the planes a'a/3 and a/36. Any number of successive
displacements may now be compounded in this way, and the axis,
translation, and rotation of the resultant screw-motion so deter-
mined.

As was pointed out in the introduction, these constructions hold
equally well for non-Euclidean as for Euclidean space; but the-nature
of the displacement arising by compounding two given displacements
depends obviously upon the geometrical relations of the lines denoted
by aa, a A, AB, Bb, 6/3, above.

When the two displacements are translations and the space
Euclidean, the resultant displacement is again a translation.
Suppose now that the space is hyperbolic, that is, that the two points
at infinity on every straight line are real and distinct, and that the
axes of the two translations do not lie in the same plane. If the
resulting displacement were a translation, it would be necessary that
a'a and 6/8 should lie in the same plane, but it may be easily shown

. that this is impossible.
Thus, if the planes through A and B perpendicular to AB be

spoken of for a moment as the planes P and Q, a'a, and therefore
every plane passing through it, is at right angles to the plane P, while
6/3 is at right angles to the plane Q. Now, if a'a, 6/3 lie in a plane,
then 6/3, being the line of intersection of the planes a'abft and ABbfi,
both of which are perpendicular to the plane P, is itself perpen-
dicular to the plane P ; and there are therefore two common perpen-
diculars to the lines P and Q. But this is in contradiction to the
fact that in hyperbolic space one line only can be drawn to meet two
given lines at right angles.

• The exceptional case in which the points A and Ji lie at infinity is dealt with
at the beginning of Section III.
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Hence in hyperbolic space the resultant of two translations along
axes that do not lie in the same plane is novor a translation.

If the axes of the two translations lio in a plane and meet, their
resultant is equivalent to two half-tuvns about axes perpendicular to'
tho plane, and is thus always a translation whose axis is in the same
plane as the given axes.

If tho axes lio in a plane and do not meet, the resultant displace-
ment is equivalent to two half-turns about axes lying in the plane,
and will thus be a rotation or a translation according as tho axes of
these half-turns do or do not meet.

In elliptic Rpacc, in which all straight lines are of finito length,
and every two straight lines in a plane meet, the distinction between
a translation and a rotation is lost, for the following reason. The
lines drawn in a plane, perpendicular to a given line, all meet in
either ono common or two common points, according as the space is
single or doublo elliptic space; and tho locus of these points when
tho perpendiculars are drawn in all the different planes through tho
line is a second line, every point of which is at the same distance
from the first line. The rotation between the two lines* is reciprocal,
and it is immediately evident from the above that a rotation about
ono of them is equivalent to a translation along the other. If, now,
in elliptic space, the two translations to be compounded are along
axes not lying in one plane, tho lines a'u and b/3 will both meet AB.

Hence a'ci and b(i will only lio in a plane if AJia'b is a plane; and
this is contrary to the supposition that the axes of the two transla-
tions are non-intersecting lines. Hence the result/ant of two trans-
lations along non-intersecting axes in elliptic spaco is never a
translation (or i^otation). If, on the other hand, the axes lie in ono
plane, the resultant displacement can be represented indifferently as
a translation along some lino in that plane or a l'otation round tho
conjugate lino.

II.

In a general displacement in Euclidean or hyperbolic space one
line only remains unchanged, while in elliptic space two (conjugate)
lines remain fixed. This statement, which is true of the goncral
displacement, is therefore also true of the general infinitesimal dis-
placement nnd of the sot of displacements which l'osult from
repeating an infinitesimal displacement any (finite 01* infinite)

* Two mush lilies will bo called conjugate lines.



1894.]' Kinematics of non-Euclidean Space. 39

number of times. There are, however, in Euclidean space certain
infinitesimal displacements, namely translations, which keep un-
changed each of a doubly-infinite set of straight lines ; and tlio
question therefore arises whether there ai'e, in non-Euclidean space,

• any sets of displacements, arising from the repetition of an infini-
tesimal displacement, for which more than one (or two) lines remain
unchanged.

It is knoAvn from considerations of analysis that in hyporbolic
space there is no such set of displacements ; but that in elliptic space,
when a line is given, there are two distinct sots of displacements,
each of which keeps a distinct doubly-infinite system of straight
lines, of which the given lino forma one, unchanged. The latter
result is proved by Clifford in his. pa,por on " ]3iquaternions " (Proc.
Land. Math. Soc, Vol. IV., p. 390) ; and reference may also be made
to a memoir by Sir R. Ball, " On the Theory of the Content" (Traits.
R.I.A., 1889).

The preceding lemmas and construction may be applied to obtain
and amplify tl.ie.se results by elementary geometrical considerations,
Avhich are in part at least distinct from Clifford's.

If round tho axis of the displacement one of its equidistant
surfaces be described, no lino which cuts this surface can remain
unaltered by an infinitesimal displacement. For, if P, Q be the points
where tho line meets the surface, then, since both the surface and the
line are changed into themselves by the displacement, the points
P, Q must be either unaltered or interchanged; and both tlieso
suppositions are cleai'ly impossible. If then a line remains unaltered
by a displacement, it must lie on one of the equidistant surfaces of
the axis of the displacement. Now in hyperbolic spaco the tangent
plane at any point of an equidistant smrfaco must lie wholly outside
it, since the common perpendicular to two lines is also necessarily
their only shortest distance. The equidistant is therefore, in this
case, not a ruled surface, and no such displacement as that considered
is possible.

That, in elliptic space, the equidistant is a ruled surface, may bo
seen directly as follows.

Let A and B be any two points on a lino and its conjugate respec-
tively, and take points Av yt2, ... on the line, and Bu Bv ... on the
conjugate such that the finite lines AAX, A^A^,..., BBU BxBif ... aro
all equal. Join AB, AtBu A2B3 by linos which will bo all of equal
length, and all at right angles both to AAtA9 ... and BB^B^ ... .
Finally, take G, Cx, O2, ... on AB, AXB» ... such that AO, Ax0lt...
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are all equal. Then G, 0,, Gv ... all lie on an equidistant of AAU

which is evidently at the same time an equidistant of BBX. Join
OCX, G1Ci, C2(7S, . . .by straight lines.

If, now, the figure be rotated through two right angles about
AXCXBX, the points A, B are brought into the positions A31 B2, while,
the lines AAX and BBX are changed into themselves. The points G
and C2 are therefore interchanged, and hence GOxGt is a straight
line. If the points A be kept fixed, and the points B, retaining their
relative positions, be displaced continuously along the conjugate
line, a complete set of generators of one system of the equidis-
tant is obtained; and the other set will be obtained by taking the
points B, Bx, ... in the opposite direction along the conjugate line.

A displacement AAX along the line AAX and a displacement BBX

along the conjugate now clearly displace GGXG% along itself, what-
ever the length AG may be, and wherever B is taken on the conju-
gate line. Hence a translation along a line and an equal translation
along its conjugate leave undisplaced all the generators of one
system of all the equidistants of the two lines. If the second trans-
lation is reversed in direction, the doubly-infinite set of generators of
the other system are undisplaced. To these two displacements, or
rather to the velocity-systems connected with them, Clifford has
given the names right- and left-vectors. The same words may be
used here to denote the corresponding finite displacements, while the
two sets of lines which remain undisplaced by a right- or a left-
vector may be called, with Clifford, a set of right- or left-parallels.
The above reasoning shows that any two of a set of pai^allels, either
right or left, are everywhere at the same distance apart. Moreover,
if in the above construction CGXC2 is a right-parallel of AAxAit then
the lines ACU, AXGXBX, ... are left-parallels, and conversely. A
right-vector is therefore equivalent to successive half-turns about
two left-parallels.

Suppose, now, with the previous notation, that the two displace-
ments, of which a'Aa, b'Bb are axes, are both right-vectors. Then
a'a and AB are left-parallels, as also are AB and bfi. The resultant
displacement, consisting of successive half-turns about a'a and bft,
which are left-parallels, is therefore a right-vector. Right-vectors,
therefore, form a group of displacements, in the sense that the
resultant of any two right-vectors is again a right-vector ; and the
same is, of course, true of left-vectors. The groups of displacements
thus formed are not, however, like the group of translations in
.Euclidean space, composed of permutable operations ; viz., the re-
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sultant of two right- (or left-) vectors depends upon the order in
which they are performed.

Finally, it may be shown that a right-vector and a left-vector are
always permutable. Thus, let a'Aa be the axis of a right-vector, and
b'Bb that of a left-vector, AB being a common perpendicular to these
two lines. Take a'a! and aa perpendicular to a'Aa and such that the
right-vector is equivalent to successive half-turns round a'a' and AH,
and also to successive half-turns round AB and aa; and construct
b'ji' and &/3 similarly for the left-vector. Then a'a and aa are
opposite generators of the same system of an equidistant of AB, so
that any common perpendicular to them meets AB (necessarily
at light angles). So also b'l? and b(5 are opposite generators
of the other system on another equidistant of AB. The five lines
a'a', b'fi', AB, bft, aa therefore have a common perpendicular a'/3'O/3a,
and from the construction of the equidistants it follows that a'(Z
is equal to fi'a, and the angle between the planes a'a'fi and a'fib
is equal to that between b'ft'a and /.3'aa. Hence successive half-turns
round a'a' and 6/3 are equivalent to successive half-turns round b'/3'
and aa; or, in other words, the displacement resulting from the
right-vector followed by the left-vector is identical with that
resulting from the left-vector followed by the right-vector.

Any displacement in elliptic space is the resultant of a right-vector
and a left-vector. For it has been seen that any displacement is
equivalent to a rotation 0 round some line, and a rotation 6 ' round
its conjugate, and, since these two displacements are permutable, they
are equivalent to rotations f ( 9 + 9') round the line and its conju-
gate, followed by rotations | (9 — 9') round the line and — £ (9 — 9')
round its conjugate, that is, to a right-vector | (9 + 9') and a left-
vector j (9—9') with the line for their common axis.*

Now, it has been seen that right-vectors form a group of motions
in the sense that the resultant of any tAvo right-vectors is again a
right-vector, and that the same is true of left-vector's, while every
displacement of the one group is permutable with every displacement
of the other. Hence, to determine completely the nature of the
general group of motions in elliptic space, it is only nccessaiy to con-
sider the laws according to which right- and left-vectors separately
combine.

Through any point of space one, and only one, of a set of right-
parallels will pass. Hence, when two right-vectors are given whose

• Cf. Clifford on " Biquaternions " {Proc. Lond. Math. Soc, Vol. iv., p. 390).
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resultant is required, intersecting lines OA and OB may be taken as
their axes ; these being the two lines drawn through any chosen
point 0 which belong respectively to the two sets of l'iglit-parallels
that are displaced into themselves by tho two right-vectors.

Through OA draw a piano AGO such.that tho right-vector whose
axis is OA. displaces it to AOB; and through OB draw a plane 00B
such that the piano A OB is displaced into it by the second right-
vector. . The angles between tho pairs of planes A00, AOB and
BOA, BOO will then measure tho amplitudes of the two right-vectors.
Now every plane contains one, and only one, of a sot of right- (or
left-) parallels, and therefore tho plane A.00 must contain a line
which is transformed into itself by the resultant displacement; but
tho plane AGO is changed into BOO by tho resultant displacement,
and therefore 00 must be that axis of tho resultant right-vector
which passes through 0. The amplitude of the resultant is the
angle between tho planes AGO and BOO, since it displaces ono of
these planes into the other. Tho axis and amplitude of the resultant
of any two right- (or left-) vectors is thus completely determined.
The result may be stated as follows :—

Right-vectors combine according to the same law as finite rotations
round a point, the amplitudes of the rotations being twice those of
tho corrcsjjonding right-vectors. It is also clear that exactly tho
same statement holds concerning left-vectors.

The group of right-vectors (or left-vectors) is therefore isomorphous
with the group of rotations round a point; and the structure of the
general group* of real motions in elliptic space is thus deduced from

* I t has boon suggested, by one of t.lm referees, to both of -whom I owe my befit
thanks for tho trouble they have taken with this paper, that fiinco there is at proHont
no English treatise on tho subject of continuous groups, it would bo nrlvis.iblc to givo
Ruch definitions and cx.planut.innH of some of the tennfl used in tho present paper as
will Hirflice to nialco Jhi-ir meaning definite, (u Mm render.

I have attempted in tho following note to carry out this suggestion ; purposely
abstaining from any reference to the analytical form in which TTcrr SophiiR Lie, to
whom tho theory of continuous groups owes its origin, has presented it.

A sot of operations 1, ft, S', S", ...,
•which contains every possible combination of tho individual operations, taken
cither directly or inversely, is said to form a group. When tho individual opera-
tions depend upon a finite number, n, of quantities, each of which is capable of
continuous variation through a range which is not infinitely small, tho group w
spoken of as a " finito continuous group." Sinoo each of tho n quantities on which
the determination of u particular operation depends is capable of an infinito number
of values, the group contains in a quite definite ROTISO a>" different operations.
To denote such a group Lie uses the phrase " n-gliedrign enntivuinrlifhn G'rnppr."

Such a group necessarily contains infinitesimal operations, i.e., operations which
produce an infinitesimal change in any possible operand. If S and T aro two infini-
tesimal operations, tho difference of the changes produced by ST and 'IS in any
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purely synthetical considerations. It is, in fact, now seen to arise
from the combination of two permutable and isomorphous groups of
known type. The structure of this group rendors it very simple to
enumerate all types of sub-group contained in i t ; that is, all those
sets of motions in elliptic space which have the group property, and
at the same time do not include all possible motions. Thus any
sub-group must be formed by the combination of the group of right-
vectors or one of its sub-groups with a sub-group of tho group of
left-vectors, or vice versa; and the combination may either be general
or may be such that, an isomorphous correspondence having been
established between the two sub-groups, corresponding operations
are combined together.

Now the group of 'rotations round a point contains no real sub-group
with a doubly-infinite number of operations ; its only sub-groups, in
fact, being rotations round a fixed axis, which form a singly-infinite
set.

Hence the general group of motions in elliptic space which con-

oporand is necessarily infinitesimal in comparison with tho changes producod by 5
or T\ so that, when tho word "infinitesimal" in used in its ordinary sense, two
infinitesimal operations are necessarily permutable ; but this, of course, does not
involve that tho corresponding finite operations, which result from repeating the
infinitesimal operations an infinite numbor of times, ure pennutablo.

Tho group contains n independent infinitesimal operations, in the senso that every
infinitesimal operation of tho group can bo obtained by a finite combination of
them.

Eveiy non-infinitesimal operation of tho group can bo generated by an infinite
number of repetitions of an infinitesimal opox*atiou, suitably choson, and thus tho
group is completely defined by a set of n independent infinitesimal operations.

On the other hand, n arbitrarily grven infinitesimal operations will not in goneral
generato a finite continuous group of eo'» operations, but an infinite continuous
group, i.e., one whose individual operations depend on an infinite number of
continuously varying qtiantities,

The simply-infinite sot of operations obtained by repeating an infinitesimal
oporation (and its inverse) form a group, which is contained within the original
group. It is a group whoso individual operations are dotemiinod by a single con-
tinuously varying parameter ; and is spoken of by Lie as an " ein-glicdriye Unier-
gruppe" of tho original group..
. In addition to such simply-infinite sub-groups, the original group will in gonoral
contain othor sub-groups.

Thus, it may happon that • 1, 2, 2', 2", .,.,

a sot of operations contained in the original group, possess among themselves the
group-property defined in tho first paragraph. If the number of operations in this
sot is finite, tho sub-group forcruxl by thoir totality is necessarily discontinuous ; if
tl\e number is infinite, tho sub-group may bo oithor discontinuous or continuous.
Tho latter will bo tho caso, when tho individual operations of tho sub-group are
determined by a number r (necessarily, less than n) of Cdntiiuumsly varying quanti-
ties. Tliu sub-group may then bo spokon of as a continuous sub-group of
a>'' operations. Lie's phruso is " r-ylivdrige Untergrtcppu." Such a sub-group
again necessarily contains a sot of r independent infinitesimal operations, from
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tains oo° operations has no sub-group containing oo6 operations, while
the only two types of sub-groups which contain oo4 operations are
those arising from the combination of the group of right- (or left-)
vectors with those left- (or right-) vectors which keep a given set of
left- (or right-) parallels unchanged.

These two groups are analogous to, but not isomorphous with,
that group of motions in Euclidean space which consists of all
possible screw-motions about a set of parallel axes. Each of the two
types contains ooa conjugate sub-groups.

Of sub-groups containing oo8 operations, there are three types.
Two of these are the groups of right-vectors and left-vectors which
are self-conjugate in the main group. The third is the group of

which it can be generated, and the n infinitesimal operations of the original group
can always be chosen BO that these r occur among them. It is not, however,
generally the caso that any »• of the n independent infinitesimal operations will
generate a sub-group of w operations; they will, when r>l, generally generate
the original group itself.

If now T is any operation of the group, the operations S and T~x ST are called
conjugate [(Lie) gleichberechtigte] operations, when they are not identical, and T is
said to transform 8 into T~lST.

Similarly, 1, 2, 2', ... .

and 1, T-*2T, T^i'T, ...

are called conjugate sub-groups when they are not identical with each other. If
these two sub-groups are identical, whatever operation of the original group Tmay
be, the sub-group 1 2 2'

is called a self-conjugate sub-group. Lie uses the phrase "invariant Unter- v
gruppe'f to denote a sub-group with this property, while Klein writes " aus-
gezeichnete Untergruppe." Lio uses the. word " ausgezeichnete" only in
connexion with " ein-gliedrige Untergruppe"; an " ausgezcichnete ein-gliedrige
Untergruppe" being, in his phraseology, a simply-infinito continuous sub-group,
each of whose operations is permutuble with all the operations of the group.

If a continuous sub-group / , containing oor operations, is contained as a self-
conjugate sub-group within another more oxtensivo continuous sub-group If,
containing oo» («>»•) operations, tu t is not self-oonjugate within any continuous
sub-group of the original group G that is more extensive than If, then / is trans-
formed into itself by all the »« operations of H.

When / is transformed by all the oo" operations of G, there result oo"-« sub-
groups, ull of them conjugate to / ; and then / i s said to form one of a sot of a>"-«
conjugate sub-groups [(Lie) gleichbercchtigte Untergrtippen"] within G.

When a ono-to-ouo correspondence can be established between the individual
operations of two continuous groups, each of which contains oo" operations, in
such a way that to the product of any two operations of one group in a certain
order corresponds tho product of the two homologous operations of the other group
in tho snme order, tho two groirpH are snid to bo holohedrically isomorphouH [(Lio),
holoedrixch isomorph']. Abstractly considered, i.e., when the laws of combination
of the individual operations only are taken into account, and not the nature of the
operations themselves or of tho operand, two holohedrically isomorphous groups are
identical. Whcro the word " isomorphous " is used in tho present paper without
qualification it is to be regarded us an abbreviation for " holohedrically isomor-
phous."
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rotations round a given point (or the general group of motions in a
plane), which is isomorphous with the preceding, but, unlike them,
forms one of oo8 conjugate sub-groups. It may be regai'ded as arising
from an isomorphous correspondence between the groups of right- and
left-vectors established as follows. Through a given point one of
every set of right-pai'allels and one of every set of left-parallels will
pass. If, then, a right-vector and a left-vector correspond when their
amplitudes are equal and their axes which pass through the given
point are identical, the resultant of two right-vectors will correspond
to the resultant of the corresponding two left-vectors.

When therefore the group of right-vectors is combined with the
group of left-vectors by multiplying together corresponding opera-
tions in the two groups, the new group is isomorphous with either of
the groups from which itis formed, while it keeps the given point fixed.

Of sub-groups containing oo8 operations there is one type, namely,
the group of motions which consist of arbitrary rotations round any
pair of conjugate lines, and this type contains oo4 conjugate sub-groups.
It would appear at first sight that the sub-group arising from com-
bining those right-vectors which keep an arbitrarily chosen set of
right-parallels unchanged with a similar group of left-vectors would
give rise to a new type ; but it is an immediate deduction from the
constructions in the earlier part of this paper that any set of right-
parallels and any set of left-parallels have just two lines in common,
these lines being conjugate.

Of sub-groups containing oo1 operations there are three types. Of
these those right- (or left-) vectors which keep a given set of right-
(or left-) parallels unchanged form two types each containing oo1

conjugate sub-groups, while the third type consists of screw-
motions of given pitch round a given line, and contains oo* conju-
gate sub-groups.

All discontinuous groups of motions of finite order in elliptic
space, corresponding to which there are divisions of the whole of
space into a finite number of congruent portions, may be derived in a
precisely similar manner from the known finite discontinuous groups
of rotations about a point, i.e., from the groups of the regular solids.
Owing to the greater number of types of group involved, there is a
very much greater variety of such discontinuous groups than of the
continuous groups that have just been considered. They need not
here be enumerated, as they have been in effect completely classified,
though from a rather different point of view, by M. Goursat, in a
memoir with the title, " Sur les substitutions orthogonales et les
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raodivisions regulieres de l'espace" (Ann. de VEcole Norm. Sup., 3
serie, tome vi.). Except for the simplest of such discontinuous
groups, it is a matter of considerable difficulty to realize the nature
of the corresponding division of space into congruent parts ; and in
the simplest case of all, that namely in which the group consists of a
rotation through two right angles round a line and idontity, the
solution for simple elliptic space is by no means obvious. Before
dealing with this particular case, take the case of a cyclical group
generated by a right-vector, n repetitions of which lead to identity.

If n planes be drawn through any axis of the right-vector, each of

which makes angles with the planes on either side of it, the

whole of space is divided into n congruent figures which may
be called biangles, the space between any two adjacent
planes being easily seen to be continuous with the vertically
opposite spaco between them.. The right-vector, consisting

of a rotation — round the line, and a translation -through •—tli of
n n

its length, transforms any ono of these biang'les successively into
each of the others, and n repetitions of it, being equivalent to a
rotation TT round the line, and a translation through its whole length,
which is the same as another rotation ir, brings back the original
biangle to coincidence with itself, point for point.

If now n is odd, and the generating operation a rotation -— round
• n

the line, the same construction will give n congruent spaces wliicli
are transformed into each other by the operations of the cyclical
group, though the correspondence of points is not the same as in the
former case. If, however, n is even, the n congruent biangles are
not transformed into each other, but the original biangle is trans-
formed only into — of the biangles, and into each by two opera-

& • .

tions in two different ways ; a different division of space is thorefore
necessary in this case. When n is 2, it might appear sufficient at
iirst sight to draw a single plane through the lino; but in simple
elliptic space the two sides of a plane arc- continuous with each other,
so that this would not effect a division of spaco into two parts.

The requisito division of Kpaeo into two congruent 'parts may,
however, bo obtained as follows. Let A and B be two points taken ono
on each of two conjugate lines u und fr, and bisect thu straightwogmont
AB in 0. VVhun A and B Lake all possible positions on a and b rospoc-
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tively, the locus of 0 is an equidistant of each of these lines, whose
" radius " relative to each line is the same, namely, one quarter of the
complete straight line. • It is easy to verify that on this particular equi-
distant the generators are at right angles ; and, since ifc is impossible
to draw a line from a point on a to a point on b which does not cut the
equidistant once, it must divide the whole of space into two parts.
Consider now the motion which consists of a rotation through two
right angles about one of the generators of this equidistant. Every
such line as AGB, used in the construction just given, which meets
the generator iB brought into the position BOA, so that the rotation
interchanges the two conjugate lines a and b. It must, therefore,
since only one such equidistant can be drawn with two given conju-
gate lines, bring the equidistant again into congruence with itself,
while the two parts into which space is divided by the equidistant
are interchanged. The two parts into which space is divided by this
equidistant are therefore congruent with each other, and can be
interchanged by a rotation through two right angles about any one
of the generators of the equidistant. The construction for the divi-
sion of space into 2n congruent portions, any one of which can be
brought to coincidence with each of the others by successive rotations

through - - round a line, is now almost obvious. With the given

line as a generator, such an equidistant as is under consideration is
described, and from it n—1 more are formed by rotating it through

angles —, —, ... — round the given line. The n equidistants
n n n

so formed divide space into 2n parts Avith the required properties.

III.

Returning IIOAV to the motions of hyperbolic space, it is to be
noticed that the construction that has been given for the resultant of
any two displacements fails in one case to lead to a definite result;
viz., when the axes of the two displacements meet at infinity. This
difficulty may be obviated by introducing between the two displace-
ments whose resultant is required two arbitrarily chosen equal and
opposite displacements ; and combining, to begin with, the first given
displacement with the first of the Wo 'thus introduced, and the
second of these with the second given displacement. The sixes of the
two displacements thus obtained will not, unless the introduced dis-
placements are specially chosen, meet at infinity, and Avith them the
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original construction may bo carried out. The axis of the resultant
displacement will necessarily pass through the samo point at infinity
as the axes of the two given displacements ; for this point, being un-
displaeed by eacli of the given displacements, is undisplaced by thoir
resultant, and must therefore be one of the two points at infinity on
tho axis of their resultant. If the two given displacements are
translations, the resultant is, as has already been seen, since the axes
intersoct, also a translation, and in this case a simple construction
may he given for tho axis and magnitude of the resulting translation.
For this purpose I first recall the construction in the case when tho
axes intersect in a finite point. If AOA', BOB' are the intersecting
axes, and if AO, OB' bo in direction and magnitude half tho transla-
tions, then AB' is the axis of tho resultant translation, and 2A.IV its
magnitude. Now, lot AI, 01 be the axes of the two given translations
meeting in I at infinity. Then, if the translations are equal in
magnitude and opposite in senso as regards I along the two linos, tho
construction just given shows that tho axis of the resultant translation
can have no finite point upon it, and therefoi'e in this case it is useless i o
attempt to construct this axis. In any other case, tho axis is a iinilo
line passing through I, and therefore having a second point at infinity
on it, say / . Draw a lino AO meeting the two given lines, and not
passing through tho point / ; and take B such that AB in half tho
translation along AI. Join BO and produce it to B\ so that BO is
equal to OB', and then join B' to 1) on 01\ whore OB is half tho
translation along 01. Then the translation along AI is equivalent
to translations 2AO and 2OB along AO and OB successively, and the
translation along OD is equivalent to translations 20 W and 21VD
along GBf and B1!) successively.

Henco the two given translations aro equivalent to 2/10 and "JU'D
along these lines, and from the construction it is impossible for these
lines to moot at infinity; for, if they did, the axis of the resultant
translation would pass through the point in which they mot, whilo
neither of the points I and J at infinity on this axis lies on AC
Hence, these two equivalent translations can bo compounded in the
ordinary way.

Returning now to tho case in which the two translations aro equal
in magnitude and opposite in sense, the resultant motion might bo
characterised as a translation whoso axis is at infinity. This is not
intended to imply that in hyperbolic space it is correct to speak
of lines at infinity, but tho phrase is usod to describe shortly a
motion in hyperbolic space which has nothing completely analogous
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to it in Euclidean or elliptic space. Indood this motion may be
equally well described as a rotation whose axis is at infinity. To
verify this statement, and to bring out as clearly as possible the
nature of this motion, I give the following construction. Draw that
lino 01 meeting the axes AI, 01 of the equal and opposite transla-
tions at infinity, with respect to which they are symmetrically
situated. From 0, lot fall perpendiculars OA, 00 on AI, 01, and
take equal lengths AB, OD on AI, 01, equal in magnitude to half the
translations, and measured either both towards or both from J,
according as the translation along AI is in the direction AI or IA.
From li and D di-aw BP, DP in the piano of the figure perpendicu-
lar to A I, 01, and meeting in P, which necessarily lies on 01.
From P di-aw a perpendicular PQ to OA, and produce it to P" so that
QP' is equal to PQ; then join P'O, and through P' draw a line P'K,
such that the angle KIyO is equal to the angle DPB, while equal
rotations which bring P'K to P'O and PD to PB are in the same
sense. Now the two translations are equivalent to successive half-
turns round QA, PB, PD, 00: Successive half-turns round PB, PD
are equivalent to a rotation round Pp, perpendicular to the plane of
the figure, through twice the angle BPD. The half-turn round OA
followed by this rotation is equivalent to an equal rotation in the
opposite sense round P'p, perpendicular to the plane of the figure,
followed by a half-turn round OA. This equal rotation in the oppo-
site sense round P'p' is equivalent to successive half-turns round P'K
and P'O; while, since the angle A00 is equal to the angle P1 OP,
successive half-turns round OA, 00 are equivalent to successive
half-turns round OP', OP. Hence, finally, the two translations are
equivalent to successive half-turns round P'K and OP. Now OP
passes through / , and the resultant displacement leaves I unchanged,
so that P'K must also pass through I. The motion under considera-
tion is therefore equivalent to successive half-turns about two linos in
the same piano with the two original axes, and passing through the
same point at infinity with thorn ; in other words, it may be regarded
as ft rotation about an axis at infinity perpendicular to tho plane of
tho figure. By such a motion ovory point in tho plane AIG is dis-
placed along tho circle of infinite, radius described through it with I
aa centre. This brings out in a striking manner the fact that in
hyporbolic space a circle of infinite radius is not tho sainu as a
Straight line, If through the linos AT, OT, ... passing through the
same point I in tho original plane, pianos be drawn perpendicular to
this plane, tho motion in question displaces each such piano into
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another of the set; and if in these planes lines A'I, O'l, ... be drawn,
so that each pair of lines such as AI, A'I or 01, O'l is congruent with
each other pair, then A'I, O'l, ... lie in a plane, and are displaced
among themselves by the motion. It is also easy to' see that any two
motions which keep the point I unchanged and displace every finite
line passing through I are permutable with each other.

When the two component displacements about axes intersecting at
infinity are rotations, the axis of the resultant rotation may be found
at once by the same construction as that used when the axes intersect
in a finite point.

It is now possible to analyse the general group of real motions in
hyperbolic space, so far as concerns the complete enumeration of all
types of sub-group contained within it. Owing to the fact, which
will be proved immediately, that the group contains no self-conjugate
sub-groups, it does not appear possible to present the structure of the
group itself, without the consideration of imaginary motions, in a
form in any way analogous to that in which the group of motions in
elliptic space has been presented.

It has been proved in the earlier part of this paper that no infini-
tesimal motion in hyperbolic space transforms more than one line
into itself. Now any continuous sub-group must contain some,
infinitesimal displacement, an infinitesimal screw-motion of given
pitch, about some line. If then the sub-group is self-conjugate it
must contain every conjugate operation within the main group, and
therefore must contain a similar infinitesimal screw-motion about
every line in space. But from such a set of motions, infinitesimal
screw-motions of any pitch whatever can be constructed, and there-
fore the group in question must coincide with the main group of
motions.

Again, a continuous sub-group which does not coincide with the
main group, must be such that all of its operations transform either
some one point, some one line, or some one plane into itself. For, if
not, the group must contain infinitesimal motions displacing every
point in three directions which do not all lie in a plane ; and from
these may be compounded infinitesimal motions displacing every point
in all possible directions, and therefore also finite motions which will
displace every point to every other point of space. If, then, the group
contains an infinitesimal operation whose axis passes through some
chosen point, it must contain conjugate operations whose axes pass
through every other point of space, and from this property it may
easily be seen to coincide with the main group.
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Now there are oo8 points at infinity, oo8 finite points, oo8 planes,.
and oo* lines in space. Hence there can be no sub-group containing
ooB operations; for, if there were there would be co1 such conjugate
sub-groups, and therefore the point, line, or plane, which is undis-
placed by the group, would have only oo1 different positions. Also
any sub-group containing oo* operations must keep a point at infinity
fixed. Now it has been seen that any two displacements whose axes
meet at infinity have for their resultant another displacement whose
axis passes also through the same point at infinity. Hence the
totality of displacements whose axes meet in a point at infinity do
actually form a group, and since there are oo9 such axes and oo2 dis-
placements corresponding to each axis, the group contains oo* opera-
tions. There is, then, one type of such sub-group, and the type
contains oo2 conjugate sub-groups.

In any type of sub-group containing oo8 operations, there must be
oo9 or oo8 conjugate sub-groups, and in the former case the sub-group
must be self-conjugate within a sub-group containing oo* operations
Now the sub-group just considered has been seen to contain two
sub-groups with oo8 operations, namely, those sub-groups made up of
all its translations and of all its rotations respectively; and from
their nature these are self-conjugate within the larger sub-group.
Hence arise two types of sub-groups containing oo8 operations, one
consisting entirely of translations, and the other entirely of rotations,
each keeping a point at infinity fixed, and each forming one of a set
of oo8 conjugate sub-groups. The only other possible types of sub-
group containing oo8 operations must contain oo8 conjugate sub-groups,
and must therefore keep either a finite point or a plane unchanged.
Now the group of rotations round a point does actually consist of oo8

operations, as also does the general group of motions in a plane, so
that these two types exist and are completely accounted for.

To simplify the discussion of the remaining sub-groups it may be
pointed out that of the sub-groups containing oo8 operations the last two
types are simple and contain no self-conjugate sub-groups, while the
first two types contain self-conjugate sub-groups of the same type, or
rather identical self-conjugate sub-groups, consisting of those motions,
which, as has been seen, may be indifferently regarded as transla-
tions or rotations, whose axes lie at infinity. These sub-groups,
moreover, are self-conjugate within groups of oo* operations. Thus
arises a single type of sub-group containing oos operations, and con-
sisting of oos conjugate sub-groups. Every other type of sub-group
containing oo8 operations must contain within it .oo* conjugate sub-

E 2
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groups. Henco it must either keep a line unchanged, or else a point
at infinity, and a plane passing through it. Both of these types
actually exist, the first consisting of all possible displacements with
a given lino for axis, and the latter of translations in a plane along
lines passing through the same point at infinity. Lastly, sub-groups
containing oo1 operations must occur in conjugate sets of oo4 at most),
and must therefore be contained self-conjugately in the two pre-
ceding types.

Now displacements with a given lino for axis are all permutable
with each other, so that every sub-group is contained in such a
group self-conjugately. The first of the two preceding types, therefore,
gives rise to an infinite number of types of simply-infinite sub-groups,
each consisting of those screw-motions with a given line for axis
which have a given pitch, and including as limiting cases simply-
infinite sots of translations and rotations respectively. The second
of the two preceding types contains a single self-conjugate sub-group*
namely, the set of motions which have been spoken of as rotations
about an axis at infinity. This forms the one other type of simply-
infinite sub-group.

The only discontinuous groups of motion of finite order in hyper-
bolic space aro the known finito groups of rotations round a point;
for such a group cannot contain any displacement other than a rota-
tion, as otherwise it could not be of finito order, and for the same
reason it cannot contain rotations about non-intersecting axes. On
the other hand, of discontinuous groups of motion, whose orders are
not finito, there is in hyperbolic space nn infinite variety. The truth
of this statement maybe made clear as follows, by considering certain
discontinuous groups of plane motions. If from a point 0 three
equal lines OA, OB, 00 are drawn in a plane and making equal
angles with each other, and through A, II, G linos are drawn porpon-
diuuhir respectively to OA, OB, 00', these lines, wlion 0/1 in infinite-
simal, will form an infinitosimal equilateral triangle, whoso angles aro

infinitesimally loss than '•—. As OA is taken greater and greater

tho angles of the triangle becomo less and less, and for a certain
length of OA each pair of sides will meet at in Unity, and the angles
of the triangles will be zero. Hence, equilateral triangles can be

constructed in hyperbolic space, whoso angles aro —, where n is any
integer greater tlinn '<!.

If, now, such a triangle be drawn in a plane, and on each of its
sides an equal triangle be constructed, and if this process bo continued



1894.] Kinematics of non-Euclidean Space. 53

indefinitely, the whole plane will be divided into an infinite number
of such congruent equilateral triangles without gaps or overlapping,
2n triangles being ranged round every angular point. When planes
are drawn through the sides of the triangles perpendicular to their
plane, the whole of space IB divided into what may be described as
Equilateral prisms, all of which are congruent with each other.'

2JT 2W
Moreover, by rotations —* «•, — about perpendiculars to the plane of

on
the triangles through 0, the raiddle point of a sido and an angular
point respectively* this infinite sei of equilateral prisms is brought to
congruence with itself. Hence, of necessity, these three rotations
generate a discontinuous group of motions.

Another very simple, but interesting, illustration of the division of
space into congruent parts, and of the corresponding, discontinuous
group of motions, arises in connexion with the regular solids. From
a point 0, perpendicular to a line 01, draw n lines 00,, 00^ ... 00n}

equal and equally inclined to each other; and through their extremi-
ties draw lines 0,7, 03I,... to meet 01 at infinity. By taking a section
of the prismatic figure so formed at a sufficiently great distance from
0, the size of the Bection can be made, as small as desired, and, there-
fore, the dihedral angles at the edges must be the same as for an
infinitesimal figure. Each of these dihedral angles is, therefore,

7r, which, for n = 3, 4, 5, gives—, —, ~ . Hence if a regular

solid be described with its vertices at infinity, the internal dihedral

angle between two adjacent faces will be — for a tetrahedron, cube,
o

or dodecahedron, —- for an octohedron, and '-- for an icosaheclron.
2 o

With, the exception of the last, these angles are all submultiples of
four right angles ; and, therefore, in the first four cases, if the original
solid is rotated about its edges, through the dihedral ani>loj the new
figures so formed rotated aboiit. their edges, and BO on indefinitely, the
whole of space will be exactly filled, without gaps, with congruent
figures. It may bo added hero, without proof, as the result depends
only on certain simple inequalities, that there are only four* other ways

* While MIGPO pages arc panning through tlio prcRS, I liavo booomo acquainted
with a papor by Signor L. IHanohi: " Sulld divinioni rcgolari clullo fipazio non
cuoliilon in polyorlri rognlnri" {Krudicnnti, ytccademindci T.ineei, 1893), in which it is
staled Unit there aro only two inodcH of diviiuon of hyperbolic upaco into congruent
regular polylx.-iha. I t appears to ino that Signor J3ianchi has introduced an nn-
noccHRary liniitation into TUB diKCUfinion ; but it is impoHHiblo to dinouKK this poiut
adequately in a footnote, and I shall hope to return to it in a future- paper,
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of dividing hyperbolic space into equal and congruent regular solids.
These are: (i) cubes, there being twenty cubes arranged round each
vertex with icosahedral symmetry; (ii) and (iii) dodecahedra, there
being either eight or twenty dodecahedra arranged round each
vertex with octohedral and icosahedral symmetry respectively;
(iv) icosahedra, there being twelve icosahedra arranged round each
vertex with dodecahedral symmetry.

There is a marked difference, as regards discontinuous groups of
motion, between hyperbolic space, on the one hand, and elliptic and
Euclidean space, on the other. It has been seen above that for elliptic
space there are only a finite number of types of such groups, and in
Euclidean space Herr SchOnflies (Krystallsysteme und Krystallstructur:
Teubner, 1891), among others, has shown that there are just 65 types.

IV.

Returning now again to the motions of elliptic space, it is interest-
ing to point out that it is only necessary to investigate some analytical
form of the group of rotations round a point (a problem of group-
theory) in order to pass on from the foregoing purely synthetical
considerations to the complete metrical system for elliptic space.

The most symmetrical analytical form of the group of rotations
round a point is that in which it is regarded as that group of homo-
geneous projective transformations of three variables qu qti j 8 which
keep the form

unchanged. Hence, if qx, g3, qs, qt, qit qa are six independent variables,
the group of motions in elliptic space can be expressed as that group
of homogeneous projective transformations of these variables which
keep the two forms

ql+q] + q\ and jj+aj+tf
unchanged.

If, now, new variables plt pit p3, pt, p6, p9 are introduced, such that

JPa =

P* = 2i—?« Pi = ft—ft. Pa = ?8—2o>
the group, expressed in terms of the ^'s, is that homogeneous projec-
tive group which keeps unchanged

PxPi+PiPi+PsPt
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The p's may therefore be regarded as homogeneous line-coordinates
in ordinary space, and when they are so regarded the equation

represents a quadric surface which contains no real points. The
group of motions in elliptic space is, therefore, abstractly considered,
identical with that group of protective transformations in ordinary space
which preserves unchanged a purely imaginary quadric; and this is
the starting-point from which the metrical relations of elliptic space
are actually derived.

[Added, December 28th.
Since the group of real motions in hyperbolic space is a simple

group, it is not possible to determine its analytical form by a process
precisely analogous to that employed above for the group of elliptic
motions. On the other hand, the group having been exhaustively
analysed, it becomes a problem of pure group-theory to make this
determination. It will be simplified by the following considerations.
To every motion of hyperbolic space corresponds a transformation of
the points at infinity, and no motion keeps more than two points at
infinity unchanged. Hence between the group of motions in hyper-
bolic space and the group of transformations of the points at infinity,
that they involve, there is a one-to-one correspondence; i.e., the
groups are, abstractly considered, identical. Now, the points at
infinity form a doubly-infinite set, and, therefore, a transformation
group of the points at infinity may be represented as a transformation-
group of points in an ordinary plane. Again, if IJ, I'J' be any two
lines of hyperbolic space, and PK, P'K' any other two lines meeting
the former two respectively at right angles, a single motion can be
found which will bring IJ, PK into the positions I'J', P'K'. Hence the
group of transformations of the points at infinity, or the correspond-
ing transformation-group of points in a plane, is such that it contains
a single transformation which will bring any three arbitrarily chosen
points into any other three arbitrarily chosen positions; or, in the
phraseology of group-theory, the transformation-group is triply-transi-
tive. The group of motions of hyperbolic space is, therefore, capable of
being represented in the form of a triply-transitive group of co8 trans-
formations of points in a plane. Now, it can be shown that of such
groups there is one type, and one only—groups between which a one-
to-one correspondence can be established, being, of course, regarded as
identical (c/. Lie-Scheffers, Vorlesungen uber continuierliche Qruppen,
pp. 355, 356). ,
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The particular form of the group which it is most convenient to
consider here is that group of point-transformations which arises from
an even number of inversions at all real circles of a plane. It is easy
to see that this group contains oo8 transformations, and that it con-
tains one, and just one, transformation which will displace any three
given points into any other three. Moreover, if the equation to any
circle be written in the form

so that the square of its radius is

the group in question, when expressed in terms of the Byxnbols
a> /5j y, ,̂ is easily found to be that homogeneous projective group
which keeps

unchanged, this latter condition corresponding to the fact that, by
invei'sion at real circles, a real circle necessarily remains a real
circle.

If now, finally, a, /3, y, B are regarded as homogeneous point-coor-
dinates in ordinary space, tho group of hyperbolic motions is seen to
be idetitical with that projective group of ordinary space which
transforms a real quadric with imaginary generators into itself. J

Thursday, December l'3th, 1894.

Major MACMAHON, R.A., F.R.S., President, and subsequently
A. E. IT. LOVE, Esq., F.R.S., Vico-Prcsideut, in the Chair.

Tlio following gentlemen were elected members of the Society:—
William Henry Young, M.A., formerly Fellow of Peterhouso, Cam-
bridge ; William Montgomery Coafces, M.A., Fellow and Assistant
Tutor of Queens' College, Cambridge; Philip Herbert Cowell, B.A.,
Fellow of Trinity College, Cambridge; Gilbert Harrison John Hurst,
U.A., Scholar of King's College, Cambridge; Horace J. Harris, B.A.,
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University College, London; Ernest; William Brown, M.A., Fellow
of Christ's College, Cambridge, and Professor of Mathematics in
Haverford College, Pennsylvania.

The Treasurer having read the Auditor's report, the adoption of
the Treasurer's report was moved by Mr. Kempe, seconded by Prof.
Rogers, and carried unanimously. A vote of thanks to the Auditor
for the trouble he had taken was moved by Prof. Hill, seconded by
Mr. Walker, and carried.

The following communications were made:—
On Maxwell's Law of Partition of Energy: Mr. Gk H. Bryan.
The Spherical Catenary; and The Transformation of Elliptic

Functions : Pî of. Grreenhill.
On certain Definite Theta-Function Integrals : Prof. Rogers.
Groups defined by Congruences (second paper): Prof. W.

Burnside.
Vibrations in Condensing Systems : Dr. J. Larmor.
On the Integration of Allegret's Integral: Mr. A. E. Daniels.
On the Complox Number formed by two Quaternary Matrices

Dr. G. G. Morrice.

The Chairmen, Messrs. Bryan, Greenhill, Rogers, Larmor, and
Walker took part in tho discussions on the papers.

The following presents were roceived:—
"The Imporial University of Japan Calendar," 1893-4.
" Bcibliittcr zu den Annaleu dcr Physik nud Chcmio," lid. XVIII., St. 10, 11;

Leipzig, 1891.
"Proceedings of tho Camliridgo Philosophical Society," Vol. vm., Part 3 ; 1894.
" Proceedings of tlio Royal Society," Vol. tvi., NOH. 338-339.
"Memoirs and Proceedings of tho Manchester Litornry and Philosophical

Society," Vol. VIM., No. 3 ; 1893-4.
" Bulletin do l:i KtHiii'ito M;i.lhi'ni:i.tiqii<! do Fiance," Tonvo xxn., No. R; Pnvin.
" IJullutin des Sciences Mn.th6iii!iti<nics," Toino XVIII., Oct., Nov.; 1894. ,
"Archives Nicrlandaisc.s dos Sciences Exactcs et Naturclles," Tome xxvm.,

Livr. 3 and 4 ; Harlem, J894.
" BuUotin of tho American Mathctnatical Society," 2nd Series, Vol. l., No. 2.
" Journal of tho Collego of Science, Japan," Vol. vin., Pt . 1 ; Tokyo, 1894.
"At t i dollii Realo Accadomin dei Lincoi—Rcndiconti," Vol. in. , FafiO. 8-9,

Som. 2" ; Roma, 1894.
" Edncational Tiniow," Denemhor, 1804.
" Rendiconlo dull' Accadcmia dello Scieuzo Fisiclio o Matcmatichc," Sorio 2,

Vol. vm., Paso. 8-10 ; Napoli, 1894.
"Observations mado during 1889 at tho United States Naval Observatory,"

4to; Washington, 1893.
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Balbin, V.—" Tratado de Geometria Analitica," 8vb; Buenos Ayres, 1888.
"Tratado de Estereometria Gene"tica," 8vo; Buenos Ayres, 1894. "Mdtodode
los Cuadrados Mlnimos," 8vo; Buenos Ayres, 1889. "Elementos de Caloulo de
los Cuaterniones," 8vo; BuenosAyres, 1887. " Geometria Plana Moderna," 8vo;
Buenos Ayres, 1894.

D'Ocagne, M.—" M&noire sur les Suites R£currentes," 4to pamphlet.
11 Annales de l'Ecole Polytechnique de Delft," Tome vm., Livr. 1-2; Leido,

1894.
"Annales de la Faculte des Sciences de Toulouse," Tome vm., Faso. 4 ;

Paris, 1894.
"Journal fiir die reine und angewandte Mathematik," Bd. oxiv., Heft 2 ;

Berlin, 1894.
"Transactions of the Royal Irish Academy," Vol. xxx., Parts 13 and 14;

Dublin, 1894.
"Indian Engineering," Vol. xvi., Nos. 16-20; Oct. 20th-Nov. 17th.

On a Class of Groups defined by Congruences. (Second Paper.)

By W. BURNSIDE. Received December 7th, 1894. Bead

December 13th, 1894.

1. Introduction.

In a paper printed in Vol. xxv of the Society's Proceedings, I have
discussed the groups defined by a congruence of the form

where p is prime, and a, /3, y, 5 are rational integral functions of the
roots of an irreducible congruence of the wth degree to the same prime
modulus.

This discussion was greatly facilitated by the fact that the groups
defined by a congruence of the same form in which the coefficients
are ordinary integers had been already exhaustively analysed.

Now the corresponding group in two non-homogeneous variables,
namely, the group defined by the congruences

ax+py+y >=a*+Py+r ( m o d } ,
ax+(3 y+y * a x+(i y+y

has not hitherto been the subject of any similar discussion. If the


