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I

In a note in Vol. x1x of the Messenger of Mathematics, *“ On the
Resultant of Two Finite Displacements of a Rigid Body,” I have
shown that a geometrical construction there given is applicable to
non-Euclidean space. The construction, or rather its proof, is
materially simplified in a note with a similar title in Vol. xxur of
the same journal, but the phraseology used in this second note is
wholly that of ordinary space. It is not, I believe, generally known
how simply the kinematics of non-Euclidean space may be treated
by the methods of ordinary synthetic geometry; and it is my object
in the first part of the present paper, by reproducing in a quite
general form the construction above referred to, and by applying it
to the deduction of certain kinematical theorems, to bring this out
clearly. : '

The elementary geometry of hyperbolic space has been treated in
detail by Herr J. Frischauf (Elemente der Absoluten Geometrie,
Leipzig, 1876), while the leading theorems in the elementary
geometry of elliptic space have been given by Mr. S. Newcomb
(Crelle’s Journal, Vol. Lxxxir). Reference. may also be made to an
address by Prof. G. Chrystal to the Royal Society of Edinburgh
(Proc. R.S.E., 1879-80), in which the leading results of Frischauf
and Newcomb are partly summarized and partly treated indepen-
‘dently. The more elementary of the results obtained by these
authors have been assumed as known in the present paper. The
distinction between the single and double elliptic spaces,* that is,
between spaces in which two straight lines in a plane always meet in
one or in two points respectively, is of course taken account of where
necessary; but most of the results hold equally well for either.
There is, however, a fundamental kinematical distinction between
the two cases, which may be stated here, as it is given by Prof.
Chrystal in the address above referred to.” The distinction is that,

* In his recent writings Prof. Klein uscs tho terms ¢ elliptic *’ and ‘¢ spherical **
space for what are here called ¢¢ single *’ and ‘¢ double’’ elliptic spaces.
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while a translation along a complete straight line in single elliptic
space is equivalent to a rotation through two right angles round the
line, in donble clliptic spaco it is equivalent to no displacement at all.

In what follows, one of two finite steaight lines AB, A1 is con-
tinually spoken of as equal to, greater than, ov less than the other.
Tt is to be obscrved that this does not involve the assamption of any
snch analytical system of measurement as may be used in ordinary
space. (It is, in fuct, one of the objects of this paper to show how
the appropriate metrical systems of elliptic and hyperbolic spaco
may be deduced from purely synthetical considerations.) The test
is ono of congruency; namely, the point 4 may he nuule to coin-
cide with the point A’, and tlio line AB to lie along the line A’
and it will then be obvmm on mspcctmn whether AB is u]n.ﬂ
to, greater than, or less than A5, Tu the same wuy, it is clear that
o test of congruency can be applied to determine whether two inter-
secting lines AB, A0 ave or are not at right angles.

The following definitions ave introduced to avoid any possible
ambiguity. .

A motion is & displacement of the poiuts of space such that all
congruent fignres remnin congruent. The word *“displacement”
without qualification is, however, gencrally hore nsed for. “motion ”
ag just defined.

A rotation is a motion in which all the points of one steaight line
are undisplaced. A rotation through two right” n,nglus is for short-
ness called o half-turn.

A translation is a motion in which a straight line and the two parts
into which it divides, or- appoars to. divide, any plmne passing through
it are respectively displuced into themselves.

Lemma I—At lenst one straight line can-in general be drawn to
meet any two given lines at right angles ; and in hyperbolic space
there is never more than ono snch straight lino.

If tho two straight lines intersect, the ]me throngh their point ot
intorsection perpendienlar to their pluo is o Hne meeting them hoth
at right angles. Suppose now that the space is hyperbolic, and that
AB, AOQ are the two stinight Hues. Then, if BO were w straight line
meeting AR and ACQ ab rvight angles, and if 4 s a finite point, ADO
would be a rectilinenr brinngle, the sum of whose angles is greator
than two vight angles; while, if A4 is a point at infinity, then ADB(!
‘would be w rectilineny trinngle whose aren is not infinitesimal, whilo
the sum of its angles is cqual to two right angles. Noither of these
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results is possible (¢f. Chrystal, loc. cit.), and therefore no such line
as BO exists. Itisto be noticed that, if 4D, A0 mect at infinity, the
line meeting them hoth at right angles cannot actuelly be drawn.

Suppose next that the two straight lines AB, OD do not intersect.
T'rom every point P of AB draw lines I’p in overy possible direction
perpondicular to AB, and such that ench of them can be brought to
congruence with a given finite straight Jine.

The locus of the cxtremitics of these lines will ho called an equi-
distant surface of AB, and Ip, ... will be called its radii. The equi-
distant surface remains congruent with itsclf for all translations
alonig and votations ronnd its axis AB, and it must therefore be a
contimious surface with a definite tangent p].me at every point, while
the rading through any point is perpendicular to the tangent plane
at it. If now the radius to the cquidistant round AT is sufliciently
small, then, since, by supposltlon, AB and €D are non- intersecting
lines, CD must lic entively outside (Z.c., on the opposite side to AD)
of the equidistaut.  Hence, when the radius is taken larger and
larger, theie will be some definite finite value of the radius for which
CD first meets the cquidistant.  If the point in which OD first,
meets an equidistant. is o finite point,. it necessarily touches it at '
this point, and the radius to the equidistant throngh the point is a
straight line meeting AB and U ab vight angles.. If, now, a scecond
equidistant touch D, then CD is necessarily a line returning into
itself, and the space must thevefore ho clli ptiu Heuee, again, in this
case, nob 1ore- than one line can be drawn in h) perbolic space to
.meek two given lines at vight angles.

Suppose, secondly, if posmblc, that CD ficst’ m(,ots an cquidistant
at infinity, so that the space is nccessavily -hypevbolic. If AB, 0D
are not in the same plane, this is clearly impossible. For, if from
points taken further and further along. OD perpendiculars be let fall
on the plane A B, these perpendientars inerease withont Timit, and,
a fortiori, the saaue nst be trne of the perpendiculavs leb fall on AB.
Tf, on the other hand, AD, €D are in the same p]:uio, and if throngh
any point € of 0D the lines C1F, CD” he drawn to meet AB at
infinity, thenw D) must make with one or the other of these lines an
angle Tess Bhan any finite angle, or, in other words, 1) mmst coincide
with cither (1) or ¢D”. llence this sccond possibility reduces to
the. previously considered case in which ‘the two lines meet at
infinity.

Lemma, TT—1f A he any sbraight Jine, and da, Bb two straight
D 2



36 Prof. W. Burnside on the [Nov. 8,

lines in the same plane, both of which are at right angles to AB,
then successive half-turns round Ae and Bb are equivalent to &
translation 2413 along AB. Let P be any point in BA produced, and
take P’ and @ in this line, so that PA and AP, and also P’Band BQ,
can be respectively brought to congruence. Then 24B is congruent
with PQ. Now the half-turn round Aa brings P to P’, and the half-
turn round Bb brings P’ to @, so that the two half-turns displace
every point of AD throngh a distance congruent with 24 B along AB,
while the two halves of the plane a4 Bb on either side of AB are dis-
placed each into itsclf. The resultant displacement is therefore @
translation 24 B along AB.

Lemma IIL—If Oa, Ob are any two intersecting lines, and if ¢Oc¢’
is perpendicular to both of them, successive half-turns round Oa and
O are equivalent to & rotation 2a0b round ¢Oc'. '

Lot OP be any line through O in the plane a0b, and take OF, 0Q
such that the angles POa, cOP’ and the angles P'Ob, b0Q are re-
spectively equal. The half-turn round Oa changes OP to OF’, and
Oc to Oc, and the half-turn round Ob changes OP to OQ and Oc¢ to
Oc. The successive half-turns thevefore keep Oc undisplaced and
change OP into O(@), and it is evident that the angle POQ is equal to
2a0b.

" Lemma IV.—If An, Bb are any two lines, and AB is a line meeting
them both at right angles, successive half-turns round Aae and Bb are
equivalent to a translation 24 B along AB, and a rotation round AB
through twice the angle between the planes aAB and ABb.

Through B draw Bb in the plane a4 B perpendicular to 4B. Then
successive half-turns round Aa and Bb are equivalent to successive
half-turns round Aa and Bb’ followed by successive half-turns round
Bb and Bb.

The first displacement is, by Lemma II., the same as a translation
24D along AB, and the second, by Lemma IIL., is the same as & rota-
tion through 2b'Bb, i.c., through twice the angle between the planes
aAB and ABb, round AD.

Tt is obvious that the resultant of these last two displacements is
independent of their order.

These lemmas lead to a very simple construction for the resultant
of any given finite displacements. Suppose first that two displace-
ments each consisting of a translation along and a rotation round a
given line are to be compounded ; and let a’da, ’Bb be the axes of
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the given displacements. - Take AB* a line meeting both axes at
right angles, and in a’4a take a’ such that half the translation along
@’Aa will bring o’ to A; then through o’ draw a'a perpendicular to
@ Aa, such that half the rotation round a’4e brings the plane aa’4 into
the position a’AB. The first displacement is then equivalent to half-
turns round a'a and 4B, by Lemma IV.; and in the same way b3
may be constructed meeting ¥’Bb at right angles, such that the
second displacement is equivalent to successive half-turns round AB
and bB8. The resultant displacement is therefore equivalent to
successive half-turns about a’a and b8 ; and, if af be & line meeting
these two at right angles, the resultant displacement is the same as a
translation 2af3 along a3 and & rotation round a8 through twice the
angle between the planes a¢'aB and afb. Any number of successive
displacements may now be compounded in this way, and the axis,
translation, and rotation of the resultant screw-motion so deter-
mined. :

As was pointed out in the introduction, these constructions hold
equally well for non-Euclidean as for Euclidean space; but the nature
of the displacement arising by compounding two given displacements
depends obviously upon the geometrical relations of the lines denoted
by ad’, @’A, AB, Bb, bj, above. ‘

When the two displacements are translations and the space
Euclidean, the resultant displacement is again a translation.
Suppose now that the space is hyperbolic, that is, that the two points
at infinity on every straight line are real and distinct, and that the
axes of the two translations do not lie in the same plane. If the
resulting displacement were & translation, it would be necessary that
a’a and b8 should lie in the same plane, but it may be easily shown

. that this is impossible.

Thus, if the planes through 4 and B perpendicular to AB be
spoken of for a moment as the planes P and @, a’a, and therefore
every plane passing through it, is at right angles to the plane P, while
bB is at right angles to the plane . Now, if a’a, b3 lie in a plane,
then bf3, being the line of intersection of the planes a’abf3 and ABbS,
both of which are perpendicular to the plane P, is itself perpen-
dicular to the plane P; and there are thervefore two common perpen-
diculars to the lines P and . DBut this is in contradiction to the
fact that in hyperbolic space one line only can be drawn to meet two
given lines at right angles.

* The excoptional cnse in which the points 4 and J lie at infinity is dealt with
at the beginning of Section I1I,
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Hence in hyperbolic space tho resultant of two translations along
axes that do not lie in the snmo plane is never a translation.

If the axes of the two translations lic in a plane and meet, their
resultant iy equivalent to two half-turns about axes perpendicular to:
the plane, and is thus always a translation whose axis is in the same
plane as the given axes. .

If the axes lio in a planc and do not meet, the resnltant displace-
ment is equivalent to two half-turns ahout axes lying in the plane,
and will thas be a rotation or n translation according as tho axes of
these half-turns do or do not mect. ‘

In elliptic space, in which all straight lines are of finito length,
and every two straight lines in a plane mect, the istinction between
a translation and a rotation is lost, for the following reason. The
lines drawn in a plane, perpendicular to a given line, all meet in
either ono common or two common points, according as the space is
single or double elliptic space; and the loens of these points when
the perpendiculars ave dvawn in all the different planes through the
line is a sccond line, every point of which is at the same distance
from the first Hine. T'he velation hetween the two lines* is reciprocal,
and it is immediately evident from the above that a rotation about
one of them is equivalent to n teanslation along the other. If, now,
in elliptic space, the two teanslations to be compounded are along
axes not lying in one plane, tho lines a'a and &3 will both-mect AB.

Hence a'a and b3 will only liec ina plane if ABa’d is a plane; and
this is contrary to the supposition that the axes of the two transla-
tions nre non-intersceting lines. Hence the resnltant of two trans-
lations along non-intersecting axes in elliptic space is never a
translation (or rotation). If, on the other hand, the axes lie in one
planc, the resultant displacement can be represented indifferently as
a translation along some line in that plane or a votation ronnd the
conjugate line.

IL

In a general displacement in Jucelidean or hyperholic space one
line only remains unchanged, while in elliptic space two (conjugate)
lines remain fixed. This statement, which is true of the goneral
digplacement, is therefore also trme of the genceal infinitesimal (lig-
placement and of the set of displacements which vesnlt from
repeating  an infinitesimal displacement  any (finite: o infinite)

# Two such lines will be called conjugate lines,
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number of times. There are, however, in FEuclidean space certain
infinitesimal displacements, namely tvanslations, which keep un-
changed each of a doubly-infinite set of straight lines; and the
question therefore arises whether there are, in non-Kuclidean space,
any sets of displacements, arising from the repetition of an infini-
tesimal displacement, for which more than one (or two) lines remain
unchanged.

It is known from considerations of analysis that in hyperbolic
space there is no such set of displncements ; but that in clliptic space,
‘when a line is given, there ave two distinet scts of displacements,
each of which keeps a distinct doubly-infinite system of straight
lines, of which the given linoc forms one, unchanged. The latter
result is proved by Clifford in his. papor on * Biquaternions ” (Proc.
Lond. Math. Soc., Vol. 1v., p."390) ; and reference mny also be made
to a memoir by Sir R. Ball, “ On the Theory of the Content” (T'rans.
R.IA., 1889). ‘

The preceding lemmas and construction may be applied to obtain
and amplify theso vesults by elementavy geometrical considerations,
which are in part at least distinet from Clifford’s.

1f round tho axis of the displacement one of its equidistant
surfaces be described, no line which cuts this surface cnn remain
unaltered by an infinitesimal displacement.  For, if P, @ be the points
where the line meets the surface, then, since both the surface and the
line are changed into themsclves by the displacement, the points
P, ¢) must be cither unaltered or interchanged; and both theso
suppositions are clearly impossible. If then a line remains unaltered
by a displacement, it must lie on one of the equidistant surfaces of
the axis of the displaccment. Now in hyperbolic spaco the tangent
plane at any point of an equidistant surfaco must lie wholly outside
it, since the common perpendicnlar to two lines is also nccessarily
their only shortest distance. I'he cquidistant is therefore, in thig
case, nob arnled surface, and no such displacement as that considored
i8 ‘possible.

That, in elliptic space, tlic equidistant is a ruled surface, may be
secn directly as follows.

Let 4 and B be any two points on a line and its conjugnte respec-
tively, and take points A,, Ay, ... on the line, and By, B, ... on the
conjugate such that the finite lines Ad,, A, 4,, ..., By, BB, ... ave
all equal.  Join ADB, A, B,, 4,1, by lines which will be all of equal
length, and all at right anglcé both to AAd,4, ... and BB B, ....
Finally, .ta,ko. C, 0y, Oy ... on ADB, A,D, ... such that AC, 4,0, ...
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are all equal. Then C, C,, C,, ... all lie on an equidistant of A4,
which i8 evidently at the same time an equidistant of BB,. Join
0c,, C,C,, C,0,, ... by straight lines.

If, now, the figure be rotated through two right angles about
4,C, B, the points 4, B are brought into the positions 4,, B,, while.
the lines A4, and BB, are changed into themselves. The points C
and C; are therefore interchanged, and hence CO,C; is a straight
line. If the points 4 be kept fixed, and the points B, retaining their
relative positions, be displaced continuously along the conjugate
line, a complete set of generators of ome system of the equidis-
tant is obtained; and the other set will be obtained by taking the
points B, By, ... in the opposite direction along the conjugate line.

A displacement A4, along the line A4, and a displacement BB,
along the conjugate now clearly displace CC,C, along itself, what-
ever the length AC may be, and wherever B is taken on the conju-
gate line. Hence a translation along a line and an equal translation
along its conjugate leave undisplaced all the generators of omne
system of all the equidistants of the two lines. If the second trans-
lation is reversed in direction, the doubly-infinite set of generators of
the other system are undisplaced. To these two displacements, or
rather to the velocity-systems connected with them, Clifford has
given the names right- and left-vectors. The same words may be
used here to denote the corresponding finite displacemients, while the
two sets of lines which remain undisplaced by a right- or a left-
vector may be called, with Clifford, a set of right- or left-parallels.
The above reasoning shows that any two of a set of parallels, either
right or left, are everywhere at the same distance apart. Moreover,
if in the above construction CC,C, is a right-parallel of 44,4,, then
the lines ACB, 4,C,B,, ... are left-parallels, and "conversely. A
right-vector is therefore equivalent to successive half-turns about
two left-parallels.

Suppose, now, with the previous notation, that the two displace-
ments, of which a’da, b’Bb are axes, are both right-vectors. Then
a'a and AB are left-parallels, as also are AB and b3. The resultant
displacement, consisting of successive half-turns about a’a and b3,
which ave left-parallels, is therefore a right-vector. Right-vectors,
therefore, form a group of displacements, in the sense that the
resultant of any two right-vectors is again a vight-vector; and the
same is, of course, true of left-vectors. The groups of displacements
thus formed are not, however, like the group of translations in
Euclidean space, composed of permutable operations; viz., the re-
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sultant of two right- (or left-) vectors depends upon the order in
which they are performed.

Finally, it may be shown that a right-vector and a left-vector are
always permutable. Thus, let a’Aa be the axis of a right-vector, and
b"Bb that of a left-vector, 4B being a common perpendicular to these
two lines. Take a’a’ and aa perpendicular to a’4a and such that the
right-vector is equivalent to successive half-turns round a’a” and 41,
and also to successive half-turns round 4B and aa; and construct
b3 and b3 similarly for the left-vector. Then a’a’ and aa are
opposite generators of the same system of an equidistant of AB, so
that any common perpendicular to them meets AB (necessarily
at right angles). So also 43" and }8 are opposite generators
of the other system on another equidistant of AB. The five lines
a'd, V', AB, bf3, au therefore have a common perpendicular a’3°0fa,
and from the construction of the equidistants it follows that a'f
is equal to B'a, and the angle between the planes a’a’3 and a'B8b
is equal to that between b’’a and 5’aa. Hence successive half-turns
round a’a’ and bf are equivalent to successive half-turns round 3’
and aa; or, in other words, the displacement resulting from the
right-vector followed by the left-vector is identical with that
resulting from the left-vector followed by the right-vector.

Any displacement in elliptic space is the resultant of a right-vector
and a left-vector. For it has been seen that any displacement is
equivalent to a rotation © round some line, and a rotation " round
its conjugate, and, since these two displacements are permutable, they
are equivalent to rotations § (0+6") round the line and its conju-
gate, followed by rotations £ (6—~0") round the line and —§ (6-9)
round its conjugate, that is, to a right-vector  (6+0") and a left-
vector 3 (6—0") with the line for their common axis.*

Now, it has been seen that right-vectors form a group of motions
in the sense that the resultant of any two right-vectors is again a
right-vector, and that the same is true of left-vectors, while every
displacement of the one group is permutable with every displacement
of the other. Hence, to determine completely the naturve of the
general group of motions in elliptic space, it is only necessary to con-
sider the laws according to which right- and left-vectors separately
combine.

Through any point of space one, and only one, of & set of right-
parallels will pass. Hence, when two right-vectors are given whose

* ¢f. Clifford on *‘ Biquaternions " (Proc. Lond. Math. Soc., Vol. 1v., p. 390).
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resultant is required, intersecting lines 04 and OB may be taken as
their axes; these being the two lines drawn throngh any chosen
point O which belong vespectively to the two sets of right-parallels
that are displaced into themselves by the two right-vectors.

Through 04 dvaw a plane AOC such. that the right-vector whose
axis is OA displaces it to AOB; and through OB draw a plane 0OB
such that the plano AOB is displaced into it by the sccond right-
vector. . The angles between the pairs of planes 400, AOB and
BOA, BOO will then mensuave the amplitudes of the two right-vectors.
Now every plane contning one, and only one, of a set of right- (or
left-) pavaliels, and thevefore the plane AOQ must contain a line
which is transformed into itself by the resultant displacement; bnt
tho plane 400 is changed into BOO by the resultant displacement,
and therefore OC must be that axis of the resultant right-vector
which passes through 0. The amplitude of the resultant is the
angle between the planes AOC and BOO, since it displaces onc of
these planes into the other. The axis and amplitude of the resultant
of any two right- (or left-) vectors is thus completely determined.
The result may be stated as follows :—

Right-vectors combinoe necording to tho same law as finite rotations
round & point, the amplitudes of the rotations being twice those of
the corvesponding vight-vectors. 1t is also clear that exactly the
same statement holds concerning left-vectors.

The gronp of vight-vectors (ov left-vectors) is therefore isomorphous
with the group of rotations ronnd o point ; and the structure of the
general group* of real motions in elliptic space is thus dednced from

* Tt has been anggested by one of the referces, to both of whom I owe my best
thanks for tho trimble they have taken with this paper, that sinco there isat present
no English treatise on the subject of continuons groups, it would be advisable to give
such definitions and explanations of some of the terms used in the present paper as
will kuflice to make their meaning definite fo the reader.

I have attemptoed in tho following note to carry out this snggestion ; purporely
abstaining from any reference to the analytical form in which TTerr Sophns Lic, to
whom the theory of contimous groups owes its origin, has presented it.

A ret of aperations 1, 8§, 88 ..,

which contains every possible combination of tho individual operationr, taken
cither directly or inverscly, is rnid to form a gronp. When the individual opera-
tiona depend upon a finite numher, », of quantiticr, each of which is eapable of
continnous variation throngh a ramge which: is not infinitoly small, the group is
spoken of as a ** finito continnons group.’’  Sinco each of the 2 quantitics on which
the determination of u particnlar operation depends i capable of an infinito number
of valucs, the gronp contains in a quite definito senre oo different operations.
"To denote such a group Lic nses tho phvase ¢ n-gliedrige continuierliche Gruppe.”’
Such a group necewsirily contains infiniterimal operations, i.c., operations which
prodncee an infinitesimal change in any possible operand.  If S and 7'aro two infini-
tesimal operations, tho difference of the changes produced by 7' and 7 in any
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pwely synthetical considerations. It is, in fact, now seen to arise
from the combination of two permutable and isomorphous groups of
known type. The structure of this group renders it very simple to
enumerate all types of sub-group contained in it; that is, all those
sets of motions in elliptic space which have the group property, and
at the same time do not include all possible motions. 'Thus any
sub-group must be formed by the combination of the group of riglht-
vectors or one of its sub-groups with a sub-gronp of the group of
left-vectors, or vice versi ; and the combination may cither be general
or may be such that, an isomorplhous correspondoence having been
established between the two sub-groups, corresponding operations
are combined together.

Now the group of rotations round a point contains no real sub-group
with a doubly-infinite number of operations; its only sub-groups, in
fact, being rotations round o fixed axis, which form a singly-infinite
set.

Hence the general gronp of motions in elliptic space which con-

oporand is necessurily infinitesimal in comparison with the changes produced by §
or 7'; so that, when the word ‘¢ infinitosimal '’ is usod in its ordinary sense, two
infinitosinul operations aro nocessarily permutable; but this, of course, does not
involve that the corresponding finite operations, which result fromn repenting the
infinitoximal operations un infinite munber of times, are permutable.

The grouf contuins 2 independont infinitesimal operations, in the senso that every
i?ﬁnitouium operation of the group can bé obtained by u finite combination of
them. .
~ Every non-infinitesimal oporation of the ‘group can be gencrated by an infinito
number of ropetitions of an infinitesimal operation, suitably chosen, and thus tho
group is complotely defined by a set of # independent infinitesimal operations.

‘On the other hand, n urbitrarily given infinitesimal operations will not in general
gencrato o finite continuous group of o oporations, but an infinite continuous
group, i.e., ono whose individunl operations depend on an infinite number of
continuously varying quantities, = .

The simply-infinite set of operations obtained by ropenting un infinitesimal
operation (and its inverse) form a group, which is contuined within the original
group. It is a group whose individual operations are determined by a singlo con-
tinuously varying purameter ; and is spo][c)en of by Lio us an ¢ ein-gliedrige Unter-
grupps’’ of tho original group..

In addition to such simply-infinite sub-groups, the original group will in gonoral
contain othor sub-groups. ’

Thus, it may happen that - 1, 3, ¥, 3, ...,

a sot of oporations contained in the original group, possess among themselves the
gronp-property defined in the first puragraph. If the number of operations in this
sut is finito, tho sub-group formed'by their totality is necessavily discontinuous ; if
the number is infinite, the sub-group may be ecithor discontinuous or continuous.
The lutter will Be the casc, when the individual operations of the sub-group are
dotermined by a number » {(necessnrily less than %) of continnously varyiug quanti-
tion. The sub-group may then ho spoken of as a continuous sub-group of
w! operations.  Lic’s phruse is ‘¢ y-glicdrige Untergrippe.”’  Such u sub-group
again nccossurily contains o sot of 7 independent infinitesimul operations, from



44 Prof. W. Burnside on the [Nov. 8,

taing oo’ operations has no sub-group containing o® operations, while
the only two types of sub-groups which contain o* operations are
those arising from the combination of the group of right- (or left-)
vectors with those left- (or right-) vectors which keep a given set of
left- (or right-) parallels unchanged.

These two groups are analogous to, but not isomorphous with,
that group of motions in Euclidean space which consists of all
possible screw-motions about a set of parallel axes. Each of the two
types contains oo’ conjugate sub-groups.

Of sub-groups containing o operations, there are three types.
Two of these are the groups of right-vectors and left-vectors which
are self-conjugate in the main group. The third is the group of

which it can be generated, and the » infinitesimal operations of the original group
can always be chosen so that these » occur among them. It is not, however,
generally the case that any » of the n independent infinitesimal operations will
gonerato a sub-group of oo operations; they will, when #>1, generally generato
the original group itself.

If now 7 is any operation of the group, the operations S and 7'-! 87 are called
conjugate [(Lic) gleichberechtigtc] operations, when they are not identical, and 7' is
said to transform § into 7-187.

Similarly, 1, %, %, ..
and 1, I-137, T-12'T, ...

are called conjugate sub-groups when they are not identical with each other. If
these two sub-groups are identical, whatever operation of the original group 7" may
be, the sub-group 1, 3, 5, ...

is called a self-conjugate sub-group. Lie uses the phrase ‘‘ invariants Unter-
gruppe’’ to denote a sub-group with this property, while Klein writes ‘¢ aus-
gezeichnete  Untergruppe.’’ ~ Lio uses the word ¢ aqusgezeichnets’’ only in
connexion with *‘ein-gliedrige Untergruppe; an ‘¢ ausgezcichnste ein-gliedrige
Untergruppe’® being, in his phraseology, a simply-infinite continuous sub-group,
each of whose operations is permutuble with all the operations of the group.

If a continuous sub-group I, containing oor operations, is contained as a self-
conjugate sub-group within another more extcnsive continuous sub-group H,
containing oo’ (s > ) operations, tut is not self-conjugate within any continuous
sub-group of the original group G that is more extensive than H, then I is trans-
formed into itself by all the oo* operations of H.

When I is transformed by all the oo" operations of &, thero result co®-* gub-
groups, all of them conjugate to I; and then I is said to form one of a set of oo"-¢
conjugate sub-groups [ (Lie) gleiciberechtigte Uutergruppm] within G.

Vhen a one-to-one correspondence can be estublished between the individual
operations of two continuous groups, each of which contuins " operations, in
such a way that to the product of any two operations of one group in a certain
order corresponds the product of the two homologous operations of the other group
in tho same order, tho two groups are said to be holohedrically isomorphous [(Lie)
holoedrisch isomorph]. Abstractly considered, .e., when the laws of combination
of the individual operations only are taken into account, aud not the nature of the
operations themselves or of the operand, two holohedrically isomorphous groups are
identical. Whero the word ¢ isomorphous ”* is used in the present paper without
q}tlmliﬁ'c’utiou it is to be regarded as an abbreviation for ‘¢ holohedrically isomor-
phous. .
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rotations round a given point (or the general group of motions in a
plane), which is isomorphous with the preceding, but, unlike them,
forms one of o® conjugate sub-groups. It may be regarded as arising
from an isomorphous correspondence between the groups of right- and
left-vectors established as follows. Through a given point one of
every set of right-parallels and one of every set of left-parallels will
pass. If, then, a right-vector and a left-vector correspond when their
amplitudes are equal and their axes which pass through the given
point are identical, the resultant of two right-vectors will correspond
to the resultant of the corresponding two left-vectors.

‘When therefore the group of right-vectors is combined with the
group of left-vectors by multiplying together corresponding opera-
tions in the two groups, the new group is isomorphous with either of
the groups from which it'is formed, while it keeps the given point fixed.

Of sub-groups containing o operations there is one type, namely,
the group of motions which consist of arbitrary rotations round any
pair of conjugate lines, and this type contains * conjugate sub-groups.
It would appear at first sight that the sub-group arising from com-
bining those right-vectors which keep an arbitrarily chosen set of
right-parallels unchanged with a similar group of left-vectors would
give rise to a new type; but it is an immediate deduction from the
constructions in the earlier part of this paper that any set of right-
parallels and any set of left-parallels have just two lines in common,
these lines being conjugate. A

Of sub-groups containing oo' operations there are three types. Of
these. those right- (or left-) vectors which keep a given set of right-
(or left-) parallels unchanged form two types each containing oo?
conjugate sub-groups, while the third type consists of screw-
motions of given pitch round a given line, and contains «* conju-
gate sub-groups.

All discontinuous groups of motions of finite order in elliptic
space, corresponding to which there are divisions of the whole of
space into a finite number of congruent portions, may be derived in a
precisely similar manner from the known finite discontinuous groups
of rotations about a point, 7.e., from the groups of the regular solids.
Owing to the greater number of types of group involved, there is a
very much greater variety of such discontinuous groups than of the
continuous groups that have just been considered. They need not
here be enumerated, as they have been in effect completely classified,
though from a rather different point of view, by M. Goursat, in a
memoir with the title, ** Sur les substitutions orthogonales et les
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divisions réguliéres de l'espace” "(Ann. de I'Ecole Norm. Sup., 3™
série, tome vi.). Excopt for the simplest of such discontimious
groups, it is n mattor of considerable difficulty to realize the nature
of the corresponding division of space into congruent purts; and in
the simplest case of all, that namely in which the group consists of a
rotation through two right nngles round a line and idontity, the
solution for simple elliptic space is by no means obvious. Before
dealing with this particalar case, take the case of a cyclical group
generated by a vight-vector, » repetitions of which lead to identity.
If » planes be drawn through any axis of the right-vector, each of

which makes angles :r with the planes on either side of it, the
. !

whole of space is divided into % congruent figures which may
be called biangles, the space between any two adjacent
planes being casily seen to be continuous with the vertically
opposite space botween them, The right-vector, consisting

of a rotation ; round the line, and a translation through ~}~th. of
X : -

its length, transforms any ono of these biangles succossively into
each of the others, and n repetitions of it, being equivalent to a
rotation = round the line, and a translation through its whole length,
which is the same as another rotation =, brings back the original
biangle to coincidence with itself, point for point.

If now = is odd, and the generating operation a rotation —2;:5 round

the line, the same construction will give n congruent spaces which
aro transformed into each other by the operations of -the cyclical
group, though the correspondence of points is not the same as in the
formor case. If, however, n is even, the u congruent biangles are
not transformed into each other, but the original biangle .is trans-

formed only into ..;l. of the biangles, and into each by two opera-

tions in two different ways; o different division of space is therefore
necessary in this cnse.  Whon % is 2, it might uppear sufficient at
ficgt sight to diaw a singlo plune tlough the line ; but in simple
elliptic space the two sides of u plane are continuous with each other,
so that this would not elfect a division of space into two parts.

The requisite division of space into two congriacnt parls may,
however, be obtuined as follows, TLet A4 and B be two points taken one
on cach of two conjugite lines @ and b, and bigect tho straight segmont
ABin 0. When dand B ke all pussible positions on ¢ wnd b respoe-
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tively, the locus of O is an equidistant of each of these lines, whose
“ padius ” relative to each line is the same, namely, one quarter of the
complete straight line. -Itis easy toverify that on this particular equi-
distant the generators are at right angles; and, since it is impossible
to draw a line from a point on a to a point on b which does not cut the
equidistant once, it must divide the whole of space into two parts.
Consider now the motion which consists of a rotation through two
right angles about one of the generators of this equidistant. Hvery
such line as ACB, used in the construction just given, which meets
the generator is brought into the position BCA, so that the rotation
interchanges the two conjugate lines @ and b. It must, thercfore,
since only one such equidistant can be drawn with two given conju-
gate lines, bring the equidistant again into congruence with itself,
while the two parts into which space is divided by the equidistant
are interchanged. The two parts into which space is divided by this
equidistant arve therefore congruent with each other, and can be
interchanged by a rotation through two right angles about any one
of the generators of the equidistant. The construction for the divi-
gion of space into 2n congruent portions, any one of which can be
brought to coincidence with each of the others by successive rotations

: or . . . . .
through o round a line, is now almost obvious. With the given
n

line as a generator, such an equidistant as is under consideration is

described, and from it #—1 more are formed by votating it through

‘angles —, 2—", W=D und the given line. Then equidistants
n’ n n i

8o formed divide space into 2n parts with the required properties.

I1I.

Returning now to the motions of hyperbolic space, it is to be
noticed that the construction that has been given for the resultant of
any two displacements fails in one case to lead to a definite result;
viz., when the axes of the two displatements meet at infinity. This
difficalty may be obviated by introdacing between the two displace-
ments whose resultant is required two avbitravily chosen equal and
opposite displacements ; and combining, to begin with, the first given
displacement with the first of the two ‘thus introduced, and the
second of these with the second given displacement. The axes of the
two displacements thus obtained will not, unless the introduced dis-
placements ave specially chosen, meet at infinity, and with them the
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originul construction may be carried out. The axis of the resultaut
displacement will necessarily pass throngh the same point at infinity
us the axes of the two given displacements ; for this point, being un-

displaced by cach of the given displacements, is undisplaced by their
‘vesultant, and must thercfore be one of the two points at infinity on

the axis of their resultant. If the two given displacements are
translations, the resultant is, as has alveady been seen, since the axos

intersoct, also o tenuslation, and in this case a simple construction

may be given for the axis und magnitude of the resulting transhition.

For this pmpose [ fivst recall the construction in “the case when the

axes intersect in a finite point. If A0A’, BOB' are the intersccting

axes, and if A0, OF be in direction and magnitude half the trwnsla-

tions, then AL is the axis of the resultant translation, and 2451 ity

maguitnde. Now, let AT, OT be the axes of the two given trnuslations
meeting in I at infinity. Thoen, if the translutions arve oqual in

magnitnde and opposite in senso as rogards I along the two lines, the

construction just giveu' shows that the axis of the resultant translation _
* cun’'have no finite point upon it, and thevefore in this cuse it in nscless {o

attempt to construct thig axis. . In any other case, tho axis is u finite

line passing through I, and therefore having a second point at inflinity
on it, say J.  Draw a line A0 meeting the two given lines, and not
passing through the point J; and take B such that AD is half the

translation along AL Join BO and produce it to B, so that I3(} is

eqn_;.i,l to CB', and theu join B’ to D on OI, where OD is half the

translation along O Then the translation along AI is equivalent
to translutions 240 and 208 along A0 and OB successively, und the

translation along 0D is cquivalent to trunslitions 208 and 24°D

wlong OB and B'D succossively.

Hence the two given translations are equivalont to 24 and 25°D
along these lines, and from the constraction it is impossible for these
lines to meot-ut infinity ; for, if they did, the axis of the resultant
translation would pass through the point in which they met, while
noither of the points I and Jyat infinity on this axis lies on AC
Hence. these two equivalent translations can be compounded in the
ordinary way.

Returning now to the case in which the two translations aro equal
in magnitude and opposite in sense, the vesultant motion might ho
characterized as a translation whose axis is at infinity. This is not
intended to imply that in hyperbolic spaco it is correct to spoenk
of lins at infinity,- but the phrase is used to describo shortly a
motion in hyperbolic space which has nothing completely analogous
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to it in Euclidean or elliptic space. Indoed this motion may be
equally well described as a rotation whose axis is at infinity. To
verify this statement, and to bring out as clearly as possible the
nature of this motion, I give the following construction. Draw that
lino OI meeting the axes AI, OI of the equal and opposite transla-
tions at infinity, with respect to which they are symmetrically
situnted. From O, lot fall perpendiculars 04, 00 on A1, CI, and
tuke equal lengths AB, OD on AI, C1, equal in magnitude to half the
translations, and measured either both towards or both from I,
according as the translation along AI is in the direction AT or I4.
From B and D draw BP, DP in the plane of the figure perpendicu-
lar to AI, OI, and meeting in P, which necessarily lies on OI
From P dvaw o perpendicular PQ to 04, and produce it to P’ so that
QP isequal to PQ; then join 'O, and through P’ draw a line P'K,
such that tho angle KFO is equal to the angle DPB, while equal
rotations which bring P'K to ’O and PD to PB are in the same
sonse. Now the two translations are equivalent to successive half-
turns round OA, PB, PD, 00. Successive half-tmens round PB, PD
aro equivalent to o rotation round Pp, perpendicular to tho plane of
the figure, through twice the angle BPD. The half-turn round 04
followed by this rotation is equivalent to an equal rotation in the
opposite sense round P/, perpendicular to the plane of the figuro,
followed by o half-turn round 04. This equal rotation in the oppo-
site senso round P’ is equivalent to successive half-turns round PK
and P’O; while, since the angle 400 is equal to the angle POP,
successive half-tarns round 0OA, OO0 are equivalent to successive
Lalf-turns round O, OP. Hence, finally, the two translations are
equivalent to successive half-turns round P'K and OP. Now OP
passes through I, and the resultant displacement leaves I unchanged,
so that I’IC must also pass throngh 1. 'I'he motion under considern-
tion i thorefore equivalent to successive half-turns about two lines in
the same plane with the two original axes, and passing through the
sume point at infinity with them ; in other words, it may be regmrded
a8 u rotation aboub an axis at infinity perpendicular to tho plune of
the ligure. By such & motion every point in the plane AIC is dis-
placed along the circlo of infinite radius described through it with I
as centro.  This Dbrings out in o striking mannor the fact that in
hyperbolic spuce n circlo of infinite ¥adius is' not tho same as o
straight line, It through the lines AL, CI, ... passing throngh the
samo point I in the eriginal plane, plunes bo dvawn perpondicular to
this plane, the notion iu question displaces ench such plane into
VOL. XXVL—N0. 50:. B
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another of the set; and if in these planes lines A'I, ('], ... be drawn,
so that each pair of lines such as A1, AT or OI, O'I is congruent with
each other pair, then A'I, C'I, ... lie in a plane, and are displaced
among themselves by the motion. It is also easy to'see that any two
motions which keep the point I unchanged and displace every finite
line passing through I are permutable with each other.

When the two component displacements about axes intersecting at
infinity are rotations, the axis of the resultant rotation may be found
at once by the same construction as that used when the axes intersect
in a finite point.

It is now possible to analyse the general group of real motions in
hyperbolic space, so far as concerns the complete enumeration of all
types of sub-group contained within it. Owing to the fact, which
will be proved immediately, that the group contains no self-conjugate
sub-groups, it does not appear possible to present the structure of the
group itself, without the consideration of imaginary motions, in a
form in any way analogous to that in which the group of motions in
elliptic space has been presented.

It has been proved in the earlier part of this paper that no infini-
tesimal motion in hyperbolic space transforms more than ome line
into itself. Now any continuous sub-group must contain some.
infinitesimal displacement, an infinitesimal screw-motion of given
pitch, about some line. If then the sub-group is self-conjugate it
must contain every conjugate operation within the main group, and
therefore must contain & similar infinitesimal screw-motion about
every line in space. But from such a set of motions, infinitesimal
screw-motions of any pitch whatever can be constructed, and there-
fore the group in question must coincide with ¢the main group of
motions. : .

Again, a continuous sub-group which does not coincide with the
main group, must be such that all of its operations transform either
some one point, some one line, or some one plane into itself. For, if
not, the group must contain infinitesimal motions displacing every
point in three directions which do not all lie in a plane; and from
these may be compounded infinitesimal motions displacing every point
in all possible directions, and therefore also finite motions which will
displace every point to every other point of space. If, then, the group
contains an infinitesimal operation whose axis passes through some
chosen point, it must contain conjugate operations whose axes pass
through every other point of space, and from this property it may
easily be seen to coincide with the main group.
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Now there are o* points at infinity, c® finite points, «® planes,
and oo* lines in space. Hence there can be no sub-group containing
0o® operations ; for, if there were there would be oo' such conjugate
sub-groups, and therefore the point, line, or plane, which is undis-
placed by the group, would have only oo' different positions. Also
any sub-group containing oo operations must keep a point at infinity
fixed. Now it has been seen that any two displacements whose axes
meet at infinity have for their resultant another displacement whose
axis passes also through the same point at infinity. Hence the
totality of displacements whose axes meet in & point at infinity do
actually form a group, and since there are o such axes and oo dis-
placements corresponding to each axis, the group contains oo* opera-
tions. There is, then, one type of such sub-group, and the type
contains oo® conjugate sub-groups.

In any type of sub-group containing «® operations, there must be
o? or o® conjugate sub-groups, and in the former case the sub-group
must be self-conjugate within a sub-group containing oo* operations
Now the sub-group just considered has been seen to contain two
sub-groups with oo® operations, namely, those sub-groups made up of
all its translations and of all its rotations respectively; and from
their nature these are self-conjugate within the larger sub-group.
Hence arise two types of sub-groups containing o® operations, one
consisting entirely of translations, and the other entirely of rotations,
each keeping a point at infinity fixed, and each forming one of a set
of o® conjugate sub-groups. The only other possible types of sub-
group containing o’ operations must contain o® conjugate sub-groups,
and must therefore keep either a finite point or a plane unchanged.
Now the group of rotations round a point does actually consist of oo®
operations, as also does the general group of motions in a plane, so
that these two types exist and are completely accounted for.

To simplify the discussion of the remaining sub-groups it may be
pointed out that of the sub-groups containing oo® operations the last two
types are simple and contain no self-conjugate sub-groups, while the
first two types contain self-conjugate sub-groups of the same type, or
rather identical self-conjugate sub-groups, consisting of those motions,
which, as has been seen, may be indifferently regarded as transla-
tions or rotations, whose axes lie at infinity. These sub-groups,
moreover, are self-conjugate within groups of o* operations. Thus
arises a single type of sub-group containing o® operations, and cou-
sigting of w® conjugate sub-groups. Every other type of sub-group
containing oo? operations must contain within it oo* conjugate sub-

E2
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groups. Henco it must either keep a line unchanged, or else a point
at infinity, and a plane passing through it. Both of these types
actually exist, the first consisting of all possible displacements with
o given line for axis, and the latter of translations in a plane along
lines passing through the same point at infinity. Lnstly, sub-groups
containing oo! operations must ocenr in conjugate sets.of oo at most,
and must therefore be contained self-conjugately in the two pre-
ceding types.

Now displacemonts with a given line for nxis are all permutable
with ench other, so that every sub-group is contained in such &
group self-conjugately. The first of the two preceding types, therefore,
gives rise to an infinite number of types of simply-infinite sub-groups,
ench consisting of those screw-motions with a given line for axis
which have a given pitch, and including as limiting cases simply-
infinite sets of translations and rotations respectively. The second
of the two preceding types contains a single self-conjugate sub-group,
namely, the set of motions which have been spoken of as rotations
about an axis at infinity. This forms the one other type of si ply-
infinite sub-group.

. The only discontinuous groups of motion of finite order in hyper-
bolic space are the known finite groups of rotations round a point;
for such a group cannot contain any displacement other than a rota-
tion, as otherwiso it could not be of finite order, and for the same
reagon it cannot contain rotations about non-intersecting axes. On
the other hand, of discontinuons groups of motion, whose orders nre
not finite, there is in hyperbolic space an infinite variety. The truth

" of this statement may he made clear as follows, by considering certain
discontinuous groups of plane motions. If from a point O three
cqual lines OA, OB, 00 are drawn in & plane and making equal
angles with each other, and thvongh A4, B, C lines ave drawn perpon-
dienlar respectively to 04, OB, OC, these lines, when Od is infinite-
gimal, will form an infinitesimal equilateral triangle, whose angles arve

infinitesimally less than % As OA is taken greater and greater

tho angles of the triangle hecomo less and less, and for a certain
length of OA each pairv of sides will mcet ab infinity, and the angles
of the triangles will be zero. Hence, cquilateral tl'inngles can be
constructed in hyperbolic space, whose angles are —, where « is any
integer greater than 3. »

If, now, snch o triangle: be drawn in a plane, and on each of its
sides an equal triangle be constructed, and if this process be continued
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indefinitely, the whole plane will be divided into an infinite number
of such congruent equilateral triangles without gaps or overlapping,
2n triangles being ranged round every angular point. When planes
are drawn through the sides of the triangles perpendicular to their
-plane, the whole of space is divided into what may be described ns
equilateral prisms, all of whicli are congruent with cach other.

Moreover, by rotations g‘f, , -2—" about perpéndiculars to the plane of
n :

the triangles through O, the middle point of a sido and an angular
point respectively, this infinite sel of equilateral prisms is brought to
congruence with itself, Hence, of necessity, these three rotations
-genernte a discontinuous group of motions. ; ’
Another very simple, but interesting, illustration of the division of
space into congruent parts, and of the corresponding. discontinuous
group of motions, arises in connexion with the regular solids. TFrom
a point O, perpendicular to a line OI, draw = lines 00,, 00,, ... 00,,
equal and equally inclined to each other; and through their extremi-
ties draw lines 0,1, Oy, ... to meet OI atinfinity. By taking a section
of the prismatic fignre so formed at a sufficiently great distance from
0, the size of the section can be made as small as desired, and, there-
fore, the dihedral angles at the edges must be the same as for an
infinitesimal fignre. Each of these dihedral angles is, therefore,
3 - .
’1‘7}% v, which, for n =3, 4,5, gives T, 7, f”{

solid be described with its vertices at infinity, the internal dihedral

Hence if o regular

anglo between two adjacent faces will be %— for a tetrahedron, cube,

11
mw - . 0'31!' y . -
or dodecahedron, ) for an octohedron, and ~~ for an icosphedron.
<

With tho exception of the last, these angles are all submultiples of
four right angles ; and, therefore, in the first four cases, if the original
solid is rotated about its edges, through the dihedval angle, the new
figures o formed rotated about, their edges, and so on indefinitely, the
whole of space will be exnctly filled, without gaps, with congruent
fignres. It may bo added heve, withont proof, as the result depends
ounly on certain simple inequalities, that there are only four* other ways

* While these pages are passing through tho press, I have bovome ncquainted
with o paper by Signor L. Bianchi: “Sulle divisioni regolari dello spazio non
cucliden in polyedri regolari” (Rendiconti, Aeccademiadei Lincei, 1893), in which it is
staded thet there aro only two modes of division of hyperbolic spaco into congruent
regular polybedrva, Tt n.p)]‘mum to me that Signor Bianchi has introdiced an un-
necesrary limitation into his discussion ; but it is impossible to disouss this point
adequately ina footnote, and I shall hope to roturn to it in a future paper, :
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of dividing hyperbolic space into equal and congruent regular solids.
These are: (i) cubes, there being twenty cubes arranged round each
vertex with icosahedral symmetry ; (ii) and (iii) dodecahedra, there
being either eight or twenty dodecahedra arranged round each
vertex with octohedral and icosahedral symmetry respectively ;
(iv) icosahedra, there being twelve icosahedra arranged round each
vertex with dodecahedral symmetry.

There is a marked difference, as regards discontinuous groups of
motion, between hyperbolic space, on the one hand, and elliptic and
Euclidean space, on the other. It has been seen above that for elliptic
space theve are only a finite number of types of such groups, and in
Euclidean space Herr Schonflies (Krystallsysteme und Krystallstructur :
Teubner, 1891), among others, has shown that there are just 65 types.

1V,

Returning now again to the motions of elliptic space, it is interes.-
ing to point out that it is only necessary to investigate some analytical
form of the group of rotations round a point (a problem of group-
theory) in order to pass on from the foregoing purely-synthetical
considerations to the complete metrical system for elliptic space.

The most symmetrical analytical form -of the group of rotations
round a point is that in which it is regarded as that group of homo-
geneous projective transformations of three variables g, ¢y, g; Which
keep the form

at+g+e
unchanged. Hence, if gy, g5, 95 g4, g5y g5 are six independent variables,
the group of motions in elliptic space can be expressed as that group
of homogeneous projective transformations of these variables which
keep the two forms
gi+qtg, and gi+qtg
unchanged.
If, now, new variables p,, py, Ps, Ps, Py, Py are introduced, such that

=0+ =0t P = Gt an
Pe=h—9% Ps=B"9% DPs= 9

the group, expressed in terms of the p's, is that homogeneous projec-
tive group which keeps unchanged

D1 a3 Pyt 0y
and P+, +7i+ 5+ 0+ 0]
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The p’s may therefore be regarded as homogeneous line-coordinates
in ordinary space, and when they are so regarded the equation

B+pi+pi+p+p o =0

represents a quadric surface which contains no real points. The
group of motions in elliptic space is, therefore, abstractly considered,
identical with that group of projective transformationsin ordinaryspace
which preserves unchanged a purely imaginary quadric; and this is
the starting-point from which the metrical relations of elliptic space
are actually derived.

[ Added, December 28th.

Since the group of real motions in hyperbolic space is a simple
group, it is not possible to determine its analytical form by a process
precisely analogous to that employed above for the group of elliptic
motions. On the other hand, the group having been exhaustively
analysed, it becomes & problem of pure group-theory to make this
determination. It will be simplified by the following considerations.
To every motion of hyperbolic space corresponds a transformation of

* the points at infinity, and no motion keeps more than two points at
infinity unchanged. Hence between the group of motions in hyper-
bolic space and the group of transformations of the points at infinity,
that they involve, there is a one-to-nne correspondence; t.e., the
groups are, abstractly considered, identical. Now, the points at
infinity form a doubly-infinite set, and, therefore, a transformation
group of the points atinfinity may be represented as a transformation-
group of points in an ordinary plane. Again, if IJ, I'J’ be any two
lines of hyperbolic space, and PK, P'K’ any other two lines meeting
the former two respectively at right angles, & single motion can be
found which will bring IJ, PK into the positions I'J’, PKX’. Hence the
group of transformations of the points at infinity, or the correspond-
ing transformation-group of points in a plane, is such that it contains
a single transformation which will bring any three arbitrarily chosen
points into any other three arbitrarily chosen positions; or, in the
phraseology of group-theory, the transformation-group is triply-transi-
tive. The group of motions of hyperbolic space is, therefore, capable of
being represented in the form of a triply-transitive group of o trans-
formations of points in & plane. Now, it can be shown that of such
groups there is one type, and one only—groups between which a one-
to-one correspondence can be established, being, of course, regarded as
identical (¢f. Lie-Scheffers, Vorlesungen tiber continuierliche Gruppen,
Pp. 355, 356).
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The particular form of the gronp which it is most convenient to
consider here is that group of point-transformations which arises from
an even number of inversions at all real circles of a plane. It is easy
to see that this group contains oo® transformations, and that it con-
taing one, and just one, transformation which will displace any three
given points into eny other three. Moreover, if the equation to any
circle be written in the form

a (@441 + 1) + 202+ 2yy+ 8 (@ 4+4'=1) =0,

so that the square of its radius is

ai+ﬂl+yl_3£
@+

the group in gquestion, when expressed in terms of the symbols
a, 3, y, 8, is ensily found to be that homogeneous projective group
which keeps

aﬂ + ﬁ’ +,y$___89
unchanged, this latter condition corresponding to the fact that, by
inversion at real circles, a real circle necessarily remains a real
circle.

If now, finnlly, a, B, v, & are regarded as homogeneous point-coor-
dinates in ordinary space, tho group of hyperholic motions is seen to
be identical with that projective group of ordinary space which
transforms o real quadric with imaginary generators into ibse]f.:]

Thursday, December 13th, 1894.

Mujor MACMAHON, R.A., F.R.S., President, and subsequently
A. B. H. LOVE, Esq., I.R.8., Vice-President, in the Chair,

The following gentlemen were elected mombers of the Society :—
Willinm Henry Young, M.A., formerly Fellow of Peterhouse, Cam-
bridge ; Willism Montgomery Coates, M.A., Fellow and Assistant
Tutor of Queens’ College, Cambridge; Philip Herbert Cowell, B.A.,
Fellow of Trinity College, Cambridge; Gilbert Harrison John Hurst,
B.A., Scholar of King’s College, Cambridge ; Horace J. Harris, B.A.,
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University College, London; Ernest William Brown, M.A., Fellow
of Christ's College, Cambridge, and Professor of Mathematics in
Haverford College, Pennsylvanin.

The Treasurer having read the Auditor’s report, the adoption of
the Treasurer’s report was moved by Mr. Kempe, seconded by Prof.
Rogers, and carried unanimously. A vote of thanks to the Auditor
for the trouble he had taken was moved by Prof. Hill, seconded by
Mr. Walker, and carried.

The following communications were made :—

On Maxwell’s Law of Partition of Energy: Mr. G. H. Bryan.

The Spherical  Catenary ; and The Transformation of Elliptic
Tunctions : Prof. Greenhill.

On certain Definite Theta-Function Integrals: Prof. Rogers.

Groups defined by Congruences (second paper): Prof W.
Burnside.

Vibrations in Condensing Systems: Dr. J. Larmor.

On the Integration of Allégret’s Integral: Mr. A. E. Daniels.

On the Complox Number formed by two Quaternary Matrices
Dr. G. G. Morrice.

The Chairmen, Messrs. Bryan, Greenhill, Rogers, Larmor, and
‘Walker took part in the discussions on the papers.

The following presents were roceived :—

“The Imperinl University of Japan Calendar,”” 1893—4.

¢ Beibliitter zu den Annalen der Thysik wed Chemie,”” Bd. xvmr., 8t. 10, 11;
Leiprig, 1894.

4 Proceedings of the Cnmbridge Philosophical Socicty,’” Vol. v, Part 3; 1894,

¢ Procecdings of the Royal Society,’” Vol. vi., Nos. 338-339.

“Memoirs and Proccedings of the Manchester Literary and Philosophical
Socicty,’’ Vol. virt., No. 3; 1893-4.

“Pulletin de e Hoeidté Mathématique de Franee,”' Tome xxi., No. 8 Paris.

¢ Bullotin der Seiences Mathématiques,’ "Tomo xvir, Oct., Nov.; 1894,

“ Archives Néerlandnises des Sciences Exactes et Naturelles,” Tome xxvmr,
Livr. 3 and 4 ; Harlem, 1894,

¢t Bullotin of tho American Mathematicnl Secicty,” 2nd Series, Vol. 1., No. 2.

¢« Journal of the Collego of Science, Japan,’ Vol, vin., Tt. 1; Tokyo, 1894.

“Att dolln Realo Aceademin dei Lincci—Rendiconti,” Vol. 1., Faso. 8-9,
S8om. 2" ; Roma, 1894.

“ Eduncational Times," December, 1894, .

“ Rewdiconto dell’  Acendemia dello Scienzo Fisiche ¢ Matematiche,”” Sorio 2,
Vol. vitr., Fase. 8-10; Napoli, 1894.

“ Obrervations made during 1889 at the United States Naval Obscrvatory,”
4to; Washington, 1893.
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Balbin, V.—* Tratado de Geometria Analitica,”” 8vo; Buemos Ayres, 1888.
““Tratado de Estcreometria Genética,’’ 8vo; Buenos Ayres, 1894. ** Método de
los Cuadrados Minimos,’’ 8vo; Buenos Ayres, 1889. ¢ Elementos de Caloulo de
los Cuaterniones,’’ 8vo; Buenos Ayres, 1887. ¢ Geometria Plana Moderna,’’ 8vo ;
Buenos Ayres, 1894. .

D’Ocagne, M.—** Mémoire sur les Suites Récurrentes,’” 4to pamphlet.

‘¢ Annales de 'Ecole Polytechnigue de Delft,’”” Tome vix., Livr. 1-2; Leide,
1894, ,

‘“ Annales de la Faculté des Sciences de Toulouse,’”” Tome vix., Faso. 4
Paris, 1894.

¢ Journal fiir die reine und angewandte Mathematik,” Bd. oxiv., Heft 2;
Berlin, 1894.

‘‘Transactions of the Royal Irish Academy,’’ Vol. xxx., Parts 13 and 14;
Dublin, 1894.

¢ Indian Engineering,’’ Vol, 2v1., Nos. 16-20; Oot. 20th-Nov. 17th.

On a Olass of Groups defined by Oongruences. (Second Paper.)
By W. Burnsipe. Received December 7th, 1894. Read
December 13th, 1894.

1. Introduction.

In a p‘&per printed in Vol. xxv of the Society’s Proceedings, I have
discussed the groups defined by a congruence of the form

,_az+f3
=
vz+0
where p is prime, and a, 8, v, & are rational integral functions -of the
roots of an irreducible congruence of the »* degree to the same prime
modulus, . ’

This discussion was greatly facilitated by the fact that the groups
defined by a congruence of the same form in which the coefficients
ere ordinary integers had been already exhaustively analysed.

Now the corresponding group in two non-homogeneous variables,
namely, the group defined by the congruences -

‘= a+PByty . dz+Py+y d
® T2+ By +'Y”’ Yy —W’ (mo ),

has not hitherto been the subject of any similar discussion. If the

(mod p),



