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THE theory of those improper double integrals in which the domain of
integration is limited has been developed on the basis of two distinct
definitions : that of Jordan and that of de la Valle'e-Poussin. In the first
part of the present paper these two definitions are compared, and are
shown to be completely equivalent to one another. These definitions only
admit of the existence of such improper double integrals as are absolutely
convergent. A definition of a less stringent character is required in order
to admit of the existence of non-absolutely convergent improper double
integrals, but in the present communication those double integrals only
will be taken into account which exist in accordance with either of the two
definitions above cited. A wider definition due to Lebesgue has also been
considered. The second part of the paper is concerned with the condi-
tions under which the double integrals can be replaced by repeated
integrals. This matter has been elaborately treated by de la Valle'e-Poussin,
who has obtained, in the case of a function which is never negative, a
necessary and sufficient condition for the equivalence in question. His
theorem has, however, only been hitherto established under certain
restrictive conditions, which impair the generality of the result. In the
present communication, the theorem is established without any such
restrictive assumption. The recent development of the theory of the
measure of sets of points, by Borel and Lebesgue, has made this more
general treatment of the question possible. A more general definition of
regular convergence than that of de la Valle'e-Poussin is here introduced,
including the latter as a special case.

The definition here introduced is of a very general character, and is
applicable to cases in which the functions of a sequence, and also the
limiting function defined by the sequence, are not restricted to be limited
functions, or to have definite values for every value of the variable, but
may be indefinite between limits of indeterminacy, either of which may
be finite or infinite. It is shown that Arzela's " convergenza uniforme a
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tratti in generale " is equivalent to that particular case of regular con-
vergence except at the points of a set of zero measure, which arises when
all the functions of the sequence are limited functions, and have definite
values for each value of the variable.

A short discussion is given of the view, which has been maintained by
Schonflies, that every improper double integral can be replaced by the
corresponding repeated integrals, and it is shown that this view is
untenable.

As regards notation, the double integral of fix, y) is denoted by
\f{x, y)(dxdy), in recognition of the fact that a proper double integral is
defined as a single limit: the word " double " must be taken to refer to
the two dimensions of the domain for which the integral is defined. On
the other hand, a repeated integral \dx\f{x,y)dy, or \\f{x, y)dxdy is
properly represented by a double use of the sign of integration, since it is
defined as a repeated limit.

The Definition of Improper Double Integrals.

1. Let G be a finite plane domain, that is a set of points (x, y) such
that | x |, | y | have definite upper limits when all the points of G are
taken into account. Let it further be assumed that the domain G has a
frontier which is of plane content zero, the term frontier being used in
the sense employed by Jordan, as consisting of the set of points each of
which is either a point of G which is also a limiting point of a sequence
of points not belonging to G, or else a point not belonging to G which is
also a limiting point of a sequence of points belonging to G. Let fix, y)
be a function defined for all points of the domain G ; this function may be
replaced by a function defined for all points in a fundamental rectangle
with sides parallel to the coordinate axes, and containing G. The function
is defined to have the same value as / (x, y) at all points of G, and to be
zero at all points of the fundamental rectangle that do not belong to G.
We may denote the function so extended by fix, y), as before. If the
function fix, y) is such that at each point of a certain closed set KM the
function has an infinite discontinuity, the integral of / ix, y) taken over
the fundamental rectangle is said to be an improper double integral.

The following definition of an improper double integral is substantially
that given by Jordan :—

Let Dx, D2, ..., Dn, ... denote a sequence of domains contained in the
fundamental rectangle, each one of which consists of a finite number of
connex closed portions with its frontier of zero plane content, and in
which the number of portions may increase indefinitely with n. Let it be
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assumed that the function/(x, y) is such that the closed set of points K^
of infinite discontinuity of the function has zero content, and that none of
the domains Dn contain, in their interiors or on their boundaries, any point
of K^. Let the sequence \Dn\ be such that the content of Dn converges
to that of the fundamental rectangle. Then, if f(x, y) is integrable in
every domain such as Dn, and the integrals

f{x,y)(dxdtj), f(x,y)(dxdy), ..., f{x,y)(dxdy), ...
JD| JDa JD,,

converge to a definite limit independent of the particular sequence {Dn\
chosen, subject to the conditions stated, this limit is said to define the
improper double integral \f{x, y){dxdy) of/(#, y) in the domain G.

It has been shown by Jordan that whenever I f(x,y)(dxdy) exists,

in accordance with the above definition, then I \f(x, y)\ (dxdy) also
JG

exists, so that every improper double integral, so defined, is absolutely
convergent.

The following definition, different from that of Jordan, has been given
by de la Valle'e-Poussin :—

Let/„(x,y) be that function which is such that fn(x,y) =f(x,y) at
every point (x, y) at which Mn ^f{x,y)^.— Nn, where Mn, Nn are two
positive numbers, and that fn (x, y) = Mn at every point where
f (x, y) > Mn; and also fn(x} y) = — Nn at every point where
f(x,yX — Nn- If f{x,y) be such that the proper integral
jfn(x,y){dxdy) over the fundamental rectangle exists whatever positive
values Mn, Nn may have, then, if the sequence

\fi(x,y)(dxdy), \/2{x,y){dxdy), ..., \fn{x,y)(dxdy), ...

has a definite limit, provided the sequences \Mn}f \Nn\ have no upper
limits, and if this limit is independent of the particular sequences \Mn\,
{Nn} chosen, subject to the condition stated, then this limit defines the
improper double integral \f{x, y){dxdy) over the fundamental rectangle.

It has been shown by Schonflies that when the integral exists, in
accordance with this definition, the set of points Km must have zero
content.

It is easily seen that every improper integral so defined is absolutely
convergent.

The theory of absolutely convergent improper integrals has been
developed on two independent lines from the two definitions given above
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as starting points. It will here be shown that the two definitions are
completely equivalent to one another.*

2. In accordance with either of the definitions the existence of the
absolutely convergent improper integral of f{x, y) implies that of each of
the two functions / + (x,y), f~ (x,y), where f+(x, ij) is defined by the
conditions that f+ (x,y) =f {x,y), at any point at which f(x,y) is
positive, and everywhere else / + (x, y) = 0 ; and similarly

/-(»» y) = —/(*, y),

where f(x, y) is negative, and everywhere else f~ (x, y) = 0 . It is con-
sequently clear that, in order to show the complete equivalence of the two
definitions, it is sufficient to consider the case in which / {x, y) is every-
where either positive or zero. Let us then assume that the function
/(£> y)> which is never negative, has an improper integral in accordance
with Jordan's definition.

Let the set of points Km be enclosed in a finite set of rectangles -[of,
and let the remaining part of the fundamental rectangle consist of a set
of non-overlapping rectangles {>/}. The sum So can be chosen so small
that the integral of f(x,y) through the rectangles {»/} is less than the
improper integral by less than an arbitrarily chosen positive number p.

Let N be a positive number not less than the upper limit of / (x, y) in
all the rectangles {»/}, and let fn{x,y) be the function, corresponding to
N, employed in de la Vallee-Poussin's definition. Let another set of non-
overlapping rectangles \S'} interior to the set {8} also enclose all the
points of Km, and let {y'} be the finite set of rectangles complementary
to {&'}. The integral of f(x, y) over |>/| lies between the value of the
integral over {^\ and that of Jordan's improper integral, and therefore
differs from the latter by less than p. It follows that the integral of
f(x, y) through the area obtained by removing the set \6'} from the set
\S\ is also < p; and, since fn(x,y)^f(x,y), we see that the integral
of fn{x,y) over the same area is < p. From this we deduce that
\fn{x,y){dxdy) taken through the rectangles \8\ is < p-\-N2,S'; and,
since this holds for an arbitrarily small value of US', N being fixed, we
see that \fn(x, y) (dxdy) taken over the rectangles \S\ is ^ p.

It now follows that the difference of the integrals of fn (x, y) taken
over the fundamental rectangle and over the rectangles {>/} is <: p; and,
since p is arbitrarily small, N being sufficiently increased, it follows that

* Stolz seems to imply that the definition of de la Vallee-Poussin is in some sense more
general than that of Jordan, which Stolz has himself adopted as the basis of his own treatment.
See the Grundziige, Vol. m., p. 124.
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the integral oifn(x, y) over the fundamental rectangle has a definite limit
when n is indefinitely increased, and that this limit is Jordan's improper
integral. It has thus been shewn that a function which has an improper
integral in accordance with Jordan's definition has one also in accordance
with the definition of de la Vall6e-Poussin ; the integrals having the same
value in the two cases.

To prove the converse, we assume that

/» (*. y) (dx dy)+\ f (x, y) (dx dy)

has a definite limit as n is indefinitely increased and 25 is indefinitely
diminished, the value of N being fixed, as before, for each set {>;}. Since

both the integrals are positive, it follows that f{x, y)(dxdy), which in-

creases as 25 is diminished, is less than a fixed finite number, and there-
fore has a definite upper limit. It has thus been shewn that there exists

a special class of domains \Dn\ such that I f(x, y)(dxdy) has a definite

upper limit as the content of Dn converges, with increasing n, to the con-
tent of the fundamental rectangle. These domains Dn are complementary
to a finite set of rectangles enclosing the points Km. It remains to be
shewn, in order to establish the existence of Jordan's improper integral,
that, if any other set of domains \D'n\ be chosen such that the content of
JD'n converges to that of the fundamental rectangle, but such that D'n is
not restricted to be complementary to a finite set of rectangles |5f, then

\r-f(
x>y)(dxdy) converges to the same limit as I f(x,y)(dxdy) does.

Denoting the content of D'n by m(D'n), and that of the fundamental rect-
angle by A, let D'n be such that A — m(D'n) = e«. The domain Dn can be
so chosen as to contain D'n in its interior. For, since D'n does not contain,
in its interior or on its boundary, any points of K^, it follows* that for
each point of Km the distance from all the points of Dn has a minimum
greater than zero. Hence each point of K^ can be enclosed in a rect-
angle which contains no points of D'n in its interior or on its sides. The
set K.r being closed, a finite set of these rectangles can, in accordance
with a known extension of the Heine-Borel theorem, be chosen so as to
enclose the whole set of points Km ; and the complement of this finite set

* This is a consequence of the connexity of the domains Dn, Dn- Jordan, in his definition
(Cours d1 Analyse, Vol. n., p. 76), does not explicitly state that -D,» is made up of a finite number
of connex portions. He describes it as " mesurable et parfait."
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of rectangles may be taken as Dn. This may be done for each value of n.
If m{D'n) converges to A, it is clear that ra(Dn), which as just chosen is
> m (D'n), also converges to A. Also a number n' > n can be determined
such that D'n> encloses Dn in its interior; we have then

fix, y)(dxdy) > , f(x, y)(dxdy) > f(x, y) (dxdy)
J-L/n' J Z/,,» JD„

, f{x,y){dxdy).

If then I f(x, y)(dxdy) converges to a definite limit I f(x,y)(dxdy),

n may be taken so great that

/ {x, y) {dx dy) — f(x, y) {dx dy) < n,
JA J-Ai

where rj is an arbitrarily chosen positive number; then also

f{x,y){dxdy)—\ , f{x,y){dxdy)<v,
JA JDw

and it thus follows that 1 , f{x, y){dxdy) also converges to the limit

) J Dn>

f{x,y){dxdy). It has now been shewn that the existence of Jordan's
A

improper double integral is a necessary consequence of the existence of
that of de la Valle"e-Poussin ; and the two definitions have thus been
shewn to be completely equivalent.

Lebesgue's Definition of an Improper Integral.

3. A limited function f{x, y) which is everywhere positive or zero in
the fundamental rectangle being defined, the integral \f{x,y){dxdy) has
been defined by Lebesgue* as follows :—

Denoting by U the upper limit of f{x, y) in its domain, let
u0, ulf u2, .., un, where u0 = 0, un = U, be a set of numbers such that
%-~w0, u2—ult ..., un—un-i are all positive, the greatest of them being
rj. Let er denote the set of points {x, y) for which f(x, y) = ur, and er

the set of points for which ur <Cf{x, y) < wr+1, and let m{er), m{er) denote

• See his memoir " Integral, Longueur, Aire," Annali di Matematica, Ser. 3A, Vol. vin., 1902.
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the plane measure of er and er respectively. Consider the two sums
r=n r=n—1 _

a = 2 urm(er)-\- 2 w,.??i(er),
r=0 r=0
r=n r=n—\ —

<T' = 2 ztr??t(er)H- 2 «,.+1 m-(er).
r=0 r=0

It can be shewn that, if the number n be increased indefinitely, whilst at
the same time r\ converges to zero, then a and a-' converge to one and the
same number; and that this number is independent of the mode in which
the interval (0, U) is divided by the set of numbers uv u2, ..., un-i, and is
independent of the mode in which the successive further sub-division of
the interval (0, U) proceeds, subject to the condition that >;, the greatest
of the differences ur—u,.-\, converges to zero as the sub-division is con-
tinued indefinitely. The common limit of <r and <x' is defined to be the
double integral jf{x,y)(dxdy), and it is shewn that the integral so defined
always exists provided only that f(x, y) is a summable function, i.e., a
function such that the set of points {x, y) for which A < f(x, y) < B is a
measurable set, for every pair of values of A and B.

The integral of a limited function which is not necessarily positive is
then defined by

j f(x, ij){dxdy) = \f+(x, y){dxdy)—\f-{x, y)(dxdy),

where / + (x, y) is equal to f(x, y) or 0 according as f(x, y) ^ 0 or < 0,
and f~{x,y) is equal to —fix, y) or 0 according as f{x, y) is negative
or not. This definition being applicable to every summable function, it is
wider than the ordinary Riemann definition of a double integral, and
includes all the functions defined by ordinary processes. The condition
that the plane measure of all the points of discontinuity of the function
shall be zero, which is necessary for the existence of the Riemann integral,
is not necessarily satisfied by a function which possesses a Lebesgue
integral. It is not definitely known whether every limited function is
summable or not. Lebesgue has shewn that, when the Riemann integral
exists, the integral in accordance with his own definition also exists, and
that the two are identical in value. When the Riemann integral does not
exist, Lebesgue's integral lies between the upper and lower integrals of
the function as defined by Darboux.

Lebesgue has extended his definition so as to afford a definition of an
absolutely convergent improper integral. It is clearly sufficient to take
the case of an unlimited function fix, y) which is nowhere negative in the
fundamental rectangle. The definition is substantially as follows :—

Let u0, ulf u2, ..., tin, ••• be a sequence of increasing numbers, such
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that u0 — 0, and that un has no upper limit as the index n is indefinitely
increased; also let the differences ux—u0, u2—Vi, ..., un+i—un, ... be
limited, having rj as their upper limit. Consider the two series

co x> _

v — 2 urm{er)-\- 2 urm(er),

a-' = 2 wrm(er)+ 2
r=0 r=0

Since the difference of the two series is
0 0 • _

2 (wr+i—ur)m(er),
r=0

00 —

which is less than >? 2 m(er), it is clear that the two series are either
r=0

both convergent or are both divergent. Let us suppose that the series
are both convergent; it can then be shewn that they are still convergent
when further numbers are interpolated between each consecutive pair of
the numbers u0, uv u2, ..., and the corresponding new series are formed.
It can then be further shewn that, as the process of successive sub-
division of the interval (0, oo) proceeds in any manner consistent with the
continual diminution of »/ to the limit zero, the sums cr, cr' both converge
to a single number, for lim r\ = 0 ; in fact cr constantly increases, and cr'
constantly decreases. The value to which cr, cr' converge can be shewn to
be independent of the original mode of sub-division of the interval (0, oo),
and of the precise mode in which the further sub-division proceeds. The
common limit of cr, a', when it exists, is then defined to be the value of
the improper integral \f{x, y)(dxdy).

In order that an improper integral may exist, it is necessary, though
not sufficient, that f(x, y) be a summable function, and also that the
measure of those points (x, y) at which fix, y) is greater than or equal to
an arbitrarily great number N shall be arbitrarily small for a sufficiently
great value of N. For it is a necessary consequence of the convergence
of the above series that 2 {m(e,.)+w(er)f, which is the plane measure

of the set of points at which f(x, y) ;> ua, should have a value which
converges to zero, as n and un are indefinitely increased. It is, however,
not necessary that the content of the set KM of all the points of infinite
discontinuity should be zero; in fact it is even possible that the improper
integral may exist whilst every point of the fundamental rectangle is a
point of infinite discontinuity.

It will now be shewn that Lebesgue's definition of an improper integral
can be replaced by one which differs from that of de la Vall6e-Ponssin,
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only in the one respect that the convergent sequence of proper integrals
1 fn(x,y)(dxdy) consists of Lebesgue integrals, which are not necessarily
Riemann integrals.

From the condition of convergence of the second series, corresponding
to an arbitrarily chosen positive number e, we may determine s so that

?-=s s-i _

o-' = 2 urm(er)-\- 2 wr+1?7i(er)+JB,
v=0 r=0

where B < e, whilst at the same time rj is so small that o-' differs from
I f(x> y){dxdy) by less than e. Now let us = N, and let fn(x, y) be that
function which = f(x,y), for f{x, y) < N, and = N, for/(x, y) > JV.

The Lebesgue proper integral \fn{x,y){dxdy) is then the limit when
t] converges to zero of the sum

r=s s—1 _ co eo _

r=0 r=0 )'=-*+l r=s

and this sum is equal to
T=S S—1 _

S UTMl (fir)-f- 2 Wr+iW(6r)"TO,
r=0 r=0

where S < R < e. Keeping ur = JV" fixed, we may now, if necessary,
diminish i; by interpolating further numbers between the pairs of numbers
u0, UV U2, ..., ur, ..., until we have the new sum which corresponds to

r=s s—1 _

2 urm(er)-{- 2 m(er)-\-S
r=0 r=0

differing from jfn(x,y)(dxdy) by less than e, the part 5 not having been
increased by any diminution of rj. We thus find that </ differs from
\fn(x,y)(dxdy) by less than e, when N is sufficiently great and n
sufficiently small; also <r' has been taken to differ from \f{x,y){dxdy) by
less than e, y having been chosen sufficiently small. Since e is arbitrarily
small, it is clear that \fn{x,y){dxdy) converges to \f(x,y){dxdy) as JV is
increased indefinitely.

It has therefore been shewn that de la Vall6e-Poussin's definition of
an improper double integral may be extended to the case in which the
integrals \f,i(x,y)(dxdy) exist only in the sense defined by Lebesgue.
This definition is then equivalent to that of Lebesgue. It is clear that
Jordan's definition is only capable of extension, in the case in which Km

has zero content; for otherwise the measures of the domains Dn do not
converge to that of the fundamental rectangle; and, in fact, in case Em

contains every point of the fundamental rectangle, no such domains as
the Dn exist.
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If the condition that K.M have zero content be satisfied, the whole of
the reasoning in § 2 is applicable without essential change, and in that
case Jordan's definition of an improper integral can be extended to the

case in which the proper integrals 1 f(x,y)(dxdy) exist only in the
J-Z?n

sense defined by Lebesgue. Thus in this case all three definitions, are
equivalent to one another.*

The Begular Convergence of a Sequence of Functions.

Let <j>i(x), (j>2(x), ..., <f>n(x), ... be a sequence of functions defined for
the interval (a, b). We shall suppose that, for each value of x, any one
of these functions <pn(%) has either a definite value or is multiple-valued,
and is then regarded as indeterminate, between limits of indeterminacy, t
of which the upper limit may be denoted by <f>n(x), and the lower limit by
<t>n(x). For any value of x for which <pn(x) is determinate, we have

(pn(x) = <pn{x). When either <{>n{x) or (f>n(x) is to be taken indifferently,
we may use the notation <pn{x). The consideration of a function (f>n{x)
which, for a particular set of values of x, is indeterminate between limits
of indeterminacy, as a single function, involves an extension of Dirichlet's
definition of a function, which is justified by its convenience for use in
investigations such as the present one. This extension is convenient
when the functional value of <f>n{x) at a point x is defined by means of
a limit, say (<f>nx) = Hm \Un(x, ra), such that, for a particular value oix,

lim yfrn(x,m) has no single value, but may be multiple-valued between
m = oo

finite or infinite limits <f>n(%), <Pn(%)- The function <pn(x), for such a value
of x, may be capable of having a finite number of values, or an infinite
number, and possibly all values between <}>n(x), <pn(%) • but in the appli-
cation of the theory we need only attend to these upper and lower limits
of indeterminacy, it being indifferent whether <p(x) has all values between
these limits or some values only. The fluctuation of <pnix) in any
interval (a, /3) is the excess of the upper limit of the numbers <f>n{x) for
all points of (a, /3) over the lower limit of the numbers <j>n(x) in the
same interval. The saltus {Sprung) of <pn(x) at the point x is the limit
of the fluctuation in an interval (x—S, x-\-S), when S is indefinitely

• In the remainder of the paper, it will be assumed that all proper integrals exist in accord-
ance with Riemann's definition.

t In the application of this definition made in this paper, all the functions <pn{x) are limited
functions. This is, however, not necessary for the validity of the definition. In general <p,, (x)
may be unlimited, and the values of q>tl [z), 0,, (.r) for particular values of x may have the
improper values oo or — oo .

SER. 2. VOL. 4. NO. 921. L
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diminished, and this saltus is ^ <}>*.(%) —<t>n(x). Riemann's theory of
integration is applicable to such a function <pn(x), in case it is limited in
(a, 6), just as in the case of a single-valued function.

For any fixed value of x, the numbers

, <p2(x), ..., <f>n(x), ... ; faftfu 0 2 ( a ? ) , ..., <f>n{x), ...

form a set which we may denote by G.
Let us consider the derivative G' of G; then, if G' is limited, since

it is a closed set, it has a greatest value A and a least value B, and these
numbers A and B are such that, for a given e, there are an infinite number
of values of n such that \<pn(x) —A\ < e, and also an infinite number of
values of n such that \cf>n(x)—B | < e. If G' is unlimited in one direction
or in both directions, either A or B or both may be regarded as having
one of the improper values <x>, — oo .

We now define a function <f>(x) for the interval (a, b) in the following
manner:—When, for a particular value of x, the numbers A and B are
equal and finite, their value i3 taken to be that of <j>{x). If A and B are
unequal and finite, we regard ${x) as multiple-valued, with <f>{x) = A,
<f>(x) = B. If either A or B has one of the improper values + °o , — oo,
the point x is taken to be a point of infinite discontinuity of <f>{x). The
function <p(x) is regarded as a single function, not necessarily limited,
and it may have an improper integral in (a, b) in accordance with Har-
nack's definition of the improper integral of an unlimited function. This
function <p(x) is said to be the limiting function defined by the sequence
{<f>n(x)\, and the functions <pn(x) may be said to converge, in an extended
sense of the term, to the function <b(x); and thus <b{x) = lim d>n(x).

' ' n=oo '

In case the sequence j 0n(#)} is monotone and non-diminishing, so that,
for every value of x and n, the condition <f>n(x) ^ <f>n+i(%) is satisfied, the
sequence \<pn(x)} has, for each particular value of x, either a definite
upper limit A or the improper limit +°° - If <f>*.{%) >> 0«,+i(a;), for every
value of x and n, the sequence {<f>n(x)\ has, for each particular value of
x, either a definite lower limit B or the improper lower limit — GO .

Let a positive number e and a positive integer nx be arbitrarily chosen,
and let E be a set of points in (a, b) of which the measure is zero. Let
us suppose that, for each point xx in (a, b) which does not belong to
a certain component Ee of E, this component depending on e, an integer
m > nl5 and also a neighbourhood (xx—8, x^S'), can be determined, such
that the four inequalities \<p(x) — <pn(x)\ < e are all satisfied at every point
in the interval (x1—o, x^S') which is in (a, b).
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Then, provided this condition is satisfied for every value of e, and also
E is such that each point of it belongs to Ee for some sufficiently small
value of c, the convergence of the sequence \<f>n{x)\ to <f>(x) is said to be
regular in (a, b) except for the set E of zero measure*

If will be observed that, for a given e, the integer n ( > ?ix) depends in
general upon the particular point xx which does not belong to Et. More-
over, since n^ is arbitrary, there exists for a particular point xx an infinite
number of values of n ; the neighbourhood (xl—S} x^S') depending,
however, in general upon the value of n chosen.

In case the sequence {<f>n(x)\ is monotone and increasing, so that

<pn(%) < 0n+i(z), and also <f>n(x) < £*+M, when the conditions

\<j>(x)-<f>n(x)\<e

are satisfied for a particular value of n, they are also satisfied for
every greater value of n. In the general case, however, this is no longer
true.

It is easily seen that the set Ee must, for each value of e, be a non-
dense closed set, although the set E is not necessarily non-dense, and
may be everywhere dense in {a, b). For, if £ be a limiting point of Ee,
then every neighbourhood of £ contains points of Et, and it is impossible
that the conditions 1 <f> (x) — <j>n {x) | < e can be satisfied for every point
of such a neighbourhood. Therefore i must itself belong to Et, which
must consequently be a closed set; and, since Ee has the measure zero,
it cannot contain all the points of any interval (a, /3), and is therefore
non-dense in (a, b).

The set E, which consists of the points which belong to any of the sets
Eev Et2, ..., Etn, ..., where ev e2, ..., en, ... is a sequence of descending
values of e converging to zero, is a set of the first category.

The set E contains every point at which <p{x) has not a definite finite
value; for, since <p{x) — <j>n(x), £0*0 — </>n(x) are both numerically less than
e, at a point which does not belong to E, for some value of n, it follows
that ~<j>'(x) — <ji(p) is less than 2e ; and, since e is arbitrarily small, it
follows that <p(xj = <£(£)• It is clear that the points of infinite dis-
continuity of <f>(x) belong to the set Et, whatever be the value of e.

Let the numbers e and nx be fixed ; then, since Ee is closed and has
its content zero, all its points may be enclosed in the interiors of a finite
set of intervals of which the sum is >/> an arbitrarily small number ; let

* Tho term measure of a set is throughout used in the sense employed by Borel and Lebesgue.
The term content is used in the sense employed by Cantor and Hitrnuuk. The measure and the
content of a closed set are identical, but this is not in general true of an unclosed set.

L 2
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these intervals be excluded from (a, b). There remains a finite set of
intervals such that, for each point xx in any of them, a neighbourhood
(xx—8, #!+($') can be found, for the whole of which the conditions
I ^ M ~ ^ M l < € a r e satisfied for some value of n (>%) dependent on
xv Let us consider these intervals {xx—S, x^S') for every point of the
finite set of intervals which remain in (a, b). Each point of this finite set
is in the interior of some of the intervals (xx—8, x^S'); and therefore,
by employing the Heine-Borel theorem, we see that a finite number of the
intervals (xx—S, x^S') can be selected so that every point of (a, b) not
interior to the excluded intervals is interior to one at least of these
selected intervals. It follows that the conditions \<f>\x)—<£j;z)|<e are
satisfied at every point x of {a, b) not interior to the excluded intervals
whose sum is TJ, when n has one of a finite number of values

The particular number n^p which must be taken for a point x depends
upon the position of that point, but the same number nx-\-p is applicable
to all the points of one or more continuous intervals.*

In the particular case in which <f>y(x), ..., <f>n(x), ... are all definite
in value for each value of x, and for which <pn(x) ^ <pn+\(%) for every value
of x and n, the condition <f>(x) — <j)n(x) < e is satisfied for every point not
interior to the intervals enclosing Et, the value of n being everywhere the
same. For we may take as the value of n the greatest of the numbers
nx-\-p. In this case the definition is equivalent to the definition of regular
convergence given t by de la Valle'e-Poussin for the case he considered.
The definition given above is much more general than that of de la Valle'e-
Poussin, but is requisite for the purpose of a complete treatment of the
conditions under which an absolutely convergent improper integral can
be replaced by a repeated integral.

The Repeated Improper Integrals.
5. The function f(x, y) being defined, as explained in § 1, for the

fundamental rectangle bounded by x = a, x = b, y = c, y = d, and it
being assumed that the absolutely convergent improper integral

\f(x, y) (dx, dy),
taken over the fundamental rectangle, exists, necessary and also sufficient

* I t thus appears that regular convergence, except for a set E of zero measure, is closely
related to Arzela's " convergunza uniforme a tratti in generale," Avhich I have considered in
Proceedings, Ser. 2, Vol. 1, p. 380. In fact, in the case in which the functions are all single-
valued at every point there is precise equivalence between the two definitions.

t Lioiwillts's Journal, .Ser. 4, Vol. vui, , 1S92, pp. 435, 436.
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conditions will now be investigated that the repeated integral

dx fix, y) dy
Ja Jc

may exist and have the same value as the double integral.
We shall consider a sequence fx(x, y), f2(x, y), ..., fn{x, y), ... of

functions obtained from f(x, y) as in de la Vall6e-Poussin's definition
given in § 1.

Cd

The integral \ fn{x,y)dy will be denoted by <j>n{%), where <f>n{x) may
Jc

either have a determinate value or may have as limits of indeterminacy
. Cd

<j>n(x), <f>ni%)> the upper and lower values of the integral fn(x,y)dy, in
Jc

accordance with Darboux's definition of the upper and lower integral of

a limited function. The existence of \fn(%, y)(dxdy) does not ensure
[d

the determinacy of (f>n{x) for all values of x. The integral f(x, y)dy will
Jc

be denoted by <f>(x); a similar remark applies to the determinacy of <p{x),
as in the case of <f>n(x). Moreover, <f>(x) may have the improper value
ao or — GO , or may have one of these as a limit of indeterminacy; for

fix, y) does not necessarily, for each value of x, possess either a proper or
an improper integral in the interval (c, d). In de la Vall^e-Poussin's
investigation the restrictive assumptions are made that the functions <pniz)
are everywhere definite and that <f>ix) is everywhere finite or definite.
Moreover, in part of his work it is assumed that the functions <pnix) are all
essentially positive or zero.

It will first be shewn on the assumption of the existence of the

double integral fix, y) idx, dy) to be necessary, in order that
n Cd

dx fix,y)dy
Ja Jc

may exist, that the sequence {<pni%)\ should converge regularly to the
limit <f>ix), except for a set of points E of the first category and of zero
measure.

When, for a fixed x, the function fix, y) has points of infinite dis-
continuity with respect to the variable y, in the interval (c, d), the value

Td . Id
0* I f(x>y)dy or $ix) is the upper limit of I fnix,y)dy, that is of

Jc Jc
[d

<pnix), when all values of n are taken into account, and \fix,y)dy,
rd *

<pjx), is the limit of I fnix,y)dy, or (pnjy). In case the <f>ni%) have

or

no
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upper limit, <f>(x) has the improper value oo, and a similar remark applies
t o <j>(x).

Since f(x, y) is integrable in the fundamental rectangle, all the
functions fn(x,y) have proper integrals in that domain. The proper

integral fn(x, y).(dx, dy) is, by a known theorem, replaceable by the

repeated integral I dx fn(x,y)dy, and thus <j>n(%) is integrable in the
Ja Jc

linear interval (a, b). It follows that the points of discontinuity of 0n(aO
form a set of linear measure zero. The set of all points of discontinuity
of any of the functions faix), <p2(x), ..., <pn(x), ••• is consequently, in
accordance with the theory of measurable sets, also a set of zero measure.
If <p(x) be integrable in the interval (a, b), its points of discontinuity
must form a set of zero measure. Let us suppose that <p(x) is integrable

in (a, b), and thus that I dx \ f(x, y)dy exists ; and let us assume, if
Ja Jc

possible, that the set Ee, referred to in the definition of regular con-
vergence in § 4, has its measure greater than zero. Remove from Et those
points at which one or more of the functions faix), <f>%(x), ..., <j>n(%), •••
is discontinuous, and also remove all those points at which <f>(x) is dis-
continuous ; we have then left a set Ft of measure equal to that of
Et, and therefore, by hypothesis, greater than zero. At every point of
jPe all the functions <pn{x) are definite and continuous, and 0(x) is also
definite and continuous. If $ be a point of Fe, the number n ( > nx) can
be so chosen that

also 8 can then be so chosen that, for every point x in the interval
)» the four inequalities

are all satisfied. From these inequalities we deduce that the four
inequalities | </>{x)—<j>n{x) \ < e are all satisfied for all points x in the
interval {£—$, £+$). But this is contrary to the hypothesis that $ is
a point belonging to J?e. It therefore follows that, on the assumption that
f(x, y) has an improper integral in the fundamental rectangle, the repeated

!

b rd
dx \ f{x,y)dy cannot exist unless Et has the measure zero.

a Jc

Since this holds for every value of e, we have obtained the following
theorem :—

If f(x, y) has an improper (absolutely convergent) integral in the
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fundamental rectangle, a necessary condition for the existence of the

repeated integral dx f(x, y)dy is that the convergence of fn{x, y)dy

)
Ja Jc J c

a
f(x, y)dy should be regular except for a set of points E of the first

c

category and of zero measure.
The special case of this theorem which arises when f(x, y) is restricted

to be everywhere positive or zero has been established by de la Vall6e-
Poussin* under certain restrictive hypotheses. He assumed that

Cd Cd

\f(x,y)dy and \fn(x,y)dy
Jc Jc

both have definite finite values at all points x which do not belong to
a set of points of zero content; this is equivalent to the assumption that
all those points x, such that the -set of points on the ordinate through
x at which the saltus of f(x, y) is ^ a, where a is an arbitrarily chosen
positive number, have content zero, form a set of linear content zero.
It is true that the set of such points x forms a set of zero measure, but,
as it is not necessarily non-dense in {a, b), the content is not necessarily
zero. In a later memoir,t de la Valle'e-Poussin states that he has not
been able to remove the restrictive hypothesis made in the first
memoir. He then proves that, when f(x, y) ^ 0, the double integral

cb rd
can be replaced by \ cZtc I mf{x,y)dy, where mf(x,y) denotes the rnini-

Ja Jc
mum of the function f{x, y) at the point (x, y); but he gives no general
investigation of the conditions that the equality

n ra n rd

dx mf{x,y)dy = \ dx \ f(x,y)dy
Ja Jc Ja Jc

may hold.
6. Let it now be assumed that at every point {x, y) the function

f(x, y) is either positive or zero, but never negative. It will be shewn
that in this case the condition of regular convergence of the sequence
\<pn{x)\ to <p{x), at all points except a set of the first category and of zero

n rd
measure, is sufficient to ensure that I dx \ f(x, y)dy exists and is equal

i ja Jc
f(x, y) {dx, dy); it being assumed that the double integral exists.
In this case the four inequalities \<f>(x) — <j>n{x)\ < e are equivalent to

the one <f>(x) — <pn{x) < e; and, if at any point x this is satisfied for a
value of n, then it is also satisfied for all greater values of n. Including

* Loc. cit., pp. 448-450. t Ziouville's Journal, Ser. 5, Vol. v., 1899.



152 DR. E. W. HOBSON [March 21,

all the points of E, in the interior of intervals of a finite set, such that
the sum of these intervals is the arbitrarily small number y, we see that
the condition 0(.r)— <£„(£) < f is satisfied for one and the same value
of n (> %) at all points x not interior to the intervals whose sum is rj.
For we have only to take for n the greatest of the numbers

defined in § 4.
The number e being fixed, we can choose the number r\ so small that

the double integral \f(x,y)(dxdy) over those rectangles of which the

height is d—c and the sum of the breadths rj is less than an arbitrarily
fixed positive number £; this follows from Jordan's definition of an
improper double integral. The number rj being fixed, a number m exists,
such that, for n^m, we have <j>{x)—<j>n(x) < e, except in the intervals
which enclose Ee. We have therefore

I <p(x)dx—j <t>n{x)dx <e(&—a—rj) < e(b—a),

the integration being taken along the parts of (a, b) which remain when
the enclosing intervals are removed. Hence we have

J <}>{x)dx—\fn{x, y){dxdy) < e(6—a),

where the double integral is taken over the fundamental rectangle with
the exception of those parts of which the breadths are the enclosing
intervals. Also, if £' is an arbitrarily chosen number, we can choose n
so great that , .

J f{x, y) (dx dy)—\ fn {x, y) {dx dy) < £',

where both the double integrals are taken over the same region as
before. We now see that

\]_<p(x)dx-\f(x,y)(dxdy)

and from this we see that

| \f(x, y){dxdy)-~\ </>(x)dx |

where the double integral is taken over the fundamental rectangle, and
the single integral over the points of {a, b) which remain when the in-
tervals enclosing Et are removed. Now £' is arbitrarily small, and £, rj

rb
converge together to zero. It follows that <p(x)dx, whether definite or

, Ja

not, lies between \f{x,y)(dxdy) ± e(b—a); and, since e is arbitrarily
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small, it follows that 1 <p(x)dx exists as a definite proper or improper
Jo

integral, and is equal to \f(x, y){dxdy).

The following theorem has now been established:—

If f(x, y) is never negative, and has an improper double integral
in the fundamental rectangle, then the condition that the integrals
ra , rd
\ K.{x,y)dy converge to \ f(x,y)dy regularly, except for a set of points
Jc Jc

of the first category and zero measure, is a sufficient condition that

I dx I fn(x,y)dy exists and is equal to \f(x, y)(dxdy).

The sufficiency of the same condition, for the case in which f(x, y) is
not restricted to have one sign only, does not appear to be capable of
establishment, because it is in this case impossible to shew that the con-
ditions | <f>{x) — <f>n{x) | < e are satisfied at all points except in the enclosing
intervals, for one and the same value of n ; it having been only established
that it holds when n has one of a finite number of values.

Combining the present results with that of § 5, we see that—

Iff(x, y) is never negative, and has an absolutely convergent improper
integral in the fundamental rectangle, the necessary and sufficient condition

that I dx \ f(x,y)dy exists and is equal to \f(x,y){dxdy) is that the

I d rd

fn(x,y)dy {?i= 1, 2, 3, ...) converges regularly to \ f(x,y)dy,
o Jc

except for a set E of the first category and of zero measure.
It has also been shewn that when \ f (x, y) {dx dy) exists then, if

( b rd J

dx \ fix, y)dy have a definite meaning, it is equal to the double
a Jc

integral.
For it has been shewn that the repeated integral cannot have a definite

meaning, (j)(x) being integrable in (a, b), unless the convergence is of the
kind specified.

7. Returning to the case in which f(x, y) is not restricted to be of one

sign, the following theorem will be established:—

If f (x, y) have an absolutely convergent improper integral in the
rb rd

fundamental rectangle, a sufficient condition that dx\ f(x,y)dy may
Ja Jc
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exist and have the same value as the double integral \f{x,y){dxdy) is
rd rd

that \fn{z, y) \dy should converge regularly to \ \f{x,y)\dy, except

for a set of the first category and of zero measure.

Using fix, y) = / + (a;, y) —f~ {x, y),

n (x, y) = ft (x, y) —fn ix, y),

[d + fd - + -
as in § 2, and denoting fn {x, y)dy, fn (x,y)dy by <pn (x), <pn (x) re-

Jc Jc

spectively, we see that the condition stated in the theorem is that
<f>t (x)-\-<f>n {%) should converge regularly to <f>+ (a;)+0~ (x). In order that
this condition may be satisfied, we must have

<f>+ (x) + 0 - (a) - 0+ (x) - fa (x) < e,

for a sufficiently great value of n, at every point not interior to a finite set
of intervals of arbitrarily small sum rj enclosing the points of Ee, a set of
zero content. From this condition we deduce that

(j>r [x)—<pn(x) < e and <p~(x) — <pn (x) < e,

at every point not in the interior of the intervals ; and hence <j>n (x) con-
verges regularly to <p+(x), and also <pn (x) converges regularly to 0~(#), at
all points except a set E of zero measure. It follows that

\ dx /+ (x, y) dy
Ja Jc

rb Cd

exists and is equal to f+ (x,y)(dxdy)} and also that \ dx \ f (x,y)dy
Jo Jc

exists and is equal to / {x, y) {dx dy); and therefore I dx 1 f{x, y) dy
Ja Jc

exists and is equal to 1 / (x, y) {dx dy).

The condition stated in the theorem, though sufficient, is not necessary;
n

for the integral 1 \<p+{x) — <f>~{x)\ dx may exist only as a non-absolutely
Ja

convergent improper integral, in which case I \<p+{x)-\-<f>~{x)} dx does
Ja

Cb Cd

not exist. In this case, \ dx \ \f{x, y)\dy not existing, the convergence
Ja Jc

rd rd

of \ \fn{x,y)\dy to 1 | f{x, y) \ dy cannot be regular. An example will
Jc Jc

be given below in which this case actually arises.
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8. Whether the double integral \f(x,y) (dxdy) exist or not, the proof

in § 5 suffices to shew that, if all the double integrals \fn{x,y){dxdy)

exist, then it is a necessary condition for the existence of the repeated
n rd rd

integral dx f(x,y)dy that the integrals fn(x,y)dy should converge
Ja Jc Jc

Cd

regularly to I f(x,y)(dy), except for a set of points x, of the first
Jc

category and of zero measure.
rd

Moreover, if it be known that I f(x, y)dy is a function of x which is
Jc

limited in the interval (a, b), we can infer the existence of the double

integral \f(x,y)(dxdy). For, since

Unix, y){dxdy) = dx\ fn{x,y)dy,

we have fn(x, y)(dxdy) < (b—a) XJn,

where Un is the upper limit of I fn(x, y)dy in the interval (a, b). It is
r I Jc

thus seen that \fn(x,y)(dxdy) cannot increase indefinitely in numerical
value as n is indefinitely increased, since Un does not increase in-
definitely.

The following theorem has therefore been established:—

If all the functions fn(x, y) have double integrals in the fundamental
rd rd

rectangle, and fn(x,y)dy converges to \ f(x,y)dy regularly, except for a
Jc Jc

set of points x of zero measure and of the first category, then, if

( d
f(x,y)dy be a limited function of x in the interval (a,b), the double

e

integral \f(x,y)(dxdy) exists a,nd is equal to I dx \ f{x,y)dy.

Combining this theorem with that of § 7, we have the following
theorem :—

If all the functions f%{x,y) have double integrals in the fundamental

rectangle, and either 1 f(x,y)dy is limited in the interval {a, b) of x, or
Jc

)b •

fix, y) dx is limited, in the interval (c, d) of y, and if the conditions are
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satisfied that each of the sequences

( d rb

\fn(x,y)\dy, \fa(x,ij)\dx
c Ja

converges to the limits

\A\f{x,y)\dy, \b\f(x,y)\dx
Jc Ja

in each case regularly, except for a set of points of zero measure and of
the first category, then the double integral exists, and

f P [d fd P
\f(x,y)(dxdy) = \ dx\ f(x,y)dy = \ dy \ f{x,y)dx.
J Ja Jc Jc Ja

9. It has been maintained* by Schonflies that an absolutely con-
vergent improper double integral can always be replaced by eitber of the
corresponding repeated integrals; no condition beyond that of the
existence of the double integral in accordance with the definition of de la
Valle"e-Poussin being required for the validity of this equivalence. In the
case in which the integrand is essentially positive or zero, this view could
only be correct in case the regular convergence of the functions (f>n{x) to
the limiting function <f>(x) followed as a necessary consequence of the
existence of the double integral. That Schonflies' view is incorrect can
be shewn by means of an example.

Let the fundamental rectangle be bounded by x = 0, x = 1, y = 0,
y = 1; and let the function \fs{x) be definedt by the rule that, for every

rational value of x of the form — ^ — i 7 1 ^ 0)> V^) == ~nn> &n& *hat, f°r

every other value of x, yjr{x) = 0. Let

f(x, y) = . — sin — \fr(x) ;

then it is easily seen that the improper integral

\fs(;x)(dxdy),

taken over the rectangle, exists and has the value zero. The integral

il 1 . 1— sin —
y y

* See the Bericht iiber die MengenUhre, pp. 198-202.
t This function »j/ (x) was first given by Du Bois Reymond, Crelle's Journal, Vol. xcn.,

p. 278. See also Stolz's Grundziige, Vol. m . , p . 149, where the above method of constructing a
double integral which cannot be replaced by the repeated integral is indicated.J
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yfr(x)dx exists and has the value zero. The repeated integral

J dx \}s(x)
o Jo

1 . 1
— sin —
y y

dy

does not exist; for 1 . 1— sin —
y y

dy

diverges for each value of x of the form —•—- , and is zero for other

Values of x. In this case the function <f> (x) is infinite for the everywhere

dense set of values x = —r^—; and therefore <f>(x) is not integrable in
A

l
the interval (0, 1); therefore <j>(x)dx has no meaning. In this case,

o
the other repeated integral

dy yfr
Jo Jo

exists, and is equal to zero. The integral

1 . 1— sin —
y y

dx

[ (JLsin 1.) yb-(x){dxdy)
)\y y'

can be replaced by the repeated integral

f1 f1 / 1 1 \
\ dx \ I — sin — )yls (x) dy;
Jo Jo \y yi

f1 l • l
for I — sin — dy exists as a non-absolutely convergent single integraland has a value A ; hence in this case

and therefore the repeated integral has the value zero, the same as that
of the double integral. This is an instance in which the repeated integral
exists and is equal to the double integral, although the sufficient condition
given in § 5 is not satisfied.

Schonflies has given an example {loc. cit., pp. 201, 202) intended to
illustrate his theorem that the condition of. regular convergence is un-
necessary for the equality of the double integral and repeated integral of
a function which is never negative. It will, however, be seen that the
example does not bear out' his contention. He defines the function f{x, y)
as follows:—The rectangle for which the function is defined is bounded

by x = 0, 3 = 1, y = 0, y — 1, and in all points x = —^—, y < — ,
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f(x,y) has the improper value* + 00, and everywhere else f(x, y) = 0.
In this case the function fn (x, y) will be given by the conditions

fniXy y) = Nn,

at all points x = m!T , y^-z?, and fn{x,y) = 0, everywhere else.

It can be shewn that | / w (x, y) (dx dy) = 0,

for every value of Nny and thus \f(x,y)(dxdy) exists and = 0. The con-
dition . .

j f(x, y) dy—\fn (x, y)dy<e

is not satisfied for any of the everywhere dense set of values x = — ^ — ;

and therefore the convergence of \fn(x, y)dy to f/(as, y)dy is not regular.

Schonflies maintains that, notwithstanding this, the repeated integral

dx \f(x, y)dy exists, and is also equal to zero; it will be shewn that

this is not the case.

It is true that dx fn(x, y)dy is equal to zero, for every value of n,
Jo Jo

and thus that lim dx fn(x, y)dy is zero. But dx \ f(x, y)dy is not71=00 Jo Jo Jo Jo

equivalent to lim dx \ fn(x,y)dy, but to dx lim fn{x,y)dy, since78=50 Jo Jo' Jo *•=«> Jo
f f
1 f(x,y)dy is defined to be lim fn{x,y)dy, in accordance with de la
Jo n = o ° Jo
Valle"e-Poussin's definition of an improper single integral. Now
I fn(x, y) dy is zero, unless x = m

(~[ , in which case it is -^, and, for
Jo L 2i

such values of x, lim 1 fn(x,y)dy or <f>{x) is oo, and thus 1 </>{x)dx does»=» j 0 j 0

not exist, because <f>(x) is oo at the everywhere-dense set of points
2 ? % - I - 1

x = — ^ ~ , in the interval (0, 1). It has thus been shewn that the

repeated integral has no existence, and, since the condition of regular con-
vergence is not satisfied, this is in accordance with the theorem of § 6.

* It may be objected to this definition that the function is not properly defined at the points
of the specified set, since the functional values are there regarded as having the improper
values oo. The extension of Dirichlet's definition of a function involved in the admission of
improper functional values oo or — <* , as distinct from functional limits, leads, however, to no
difficulty in relation to the theory of integration, and may therefore be admitted without modify-
ing the theory.
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This example throws light on the error in Schonflies' proof (loc. cit,
pp. 199, 200) of the theorem that the existence of the double integral
necessarily entails that of the repeated integral, and the equality of the
two. He replaces the function fn(x,y) by the most nearly continuous

function (J>n{x, y) and then also f $n(x, y)dy by the most nearly continuous
function $n(x), and argues that

form a sequence which defines <& (x) dx, in accordance with de la Valle*e-

Poussin's definition of an improper single integral. To establish this, he
relies upon the insufficient fact that $>n+i{x) ^ $n(x), for every value of x,
whereas $>n(x) in general differs from $n+i(x), not merely for such values
as are greater than some fixed number. In the above example

are all zero, but ${x)dx is infinite. The error in the proof appears to
depend essentially on an illegitimate identification of

lim f dx \fn{x, y)dy
W = CO J J

with dx lim fn(x, y)dy ;
J 1 1 = 0 0 J

the former of these limits is always equal to \f(x, y)(dxdy), but the latter,

which is the interpretation of j dx \f(x, y)dy, is not unconditionally equal
to the former limit.


