
Brillouin Optomechanics in Nanophotonic Structures

Simulation structure

COMSOL dependencies

All the examples provided in this tutorial relies on two modules that are separately sold by COMSOL:

- Electromagnetic Waves
- Structural Mechanics

It is assumed that the user has some experience in using COMSOL Multiphysics. Tutorials on this software are widely available at the vendor website. **Comsol version 5.3a is required. The accompanying simulation files were not tested on other versions.**

COMSOL file structure (waveguide)

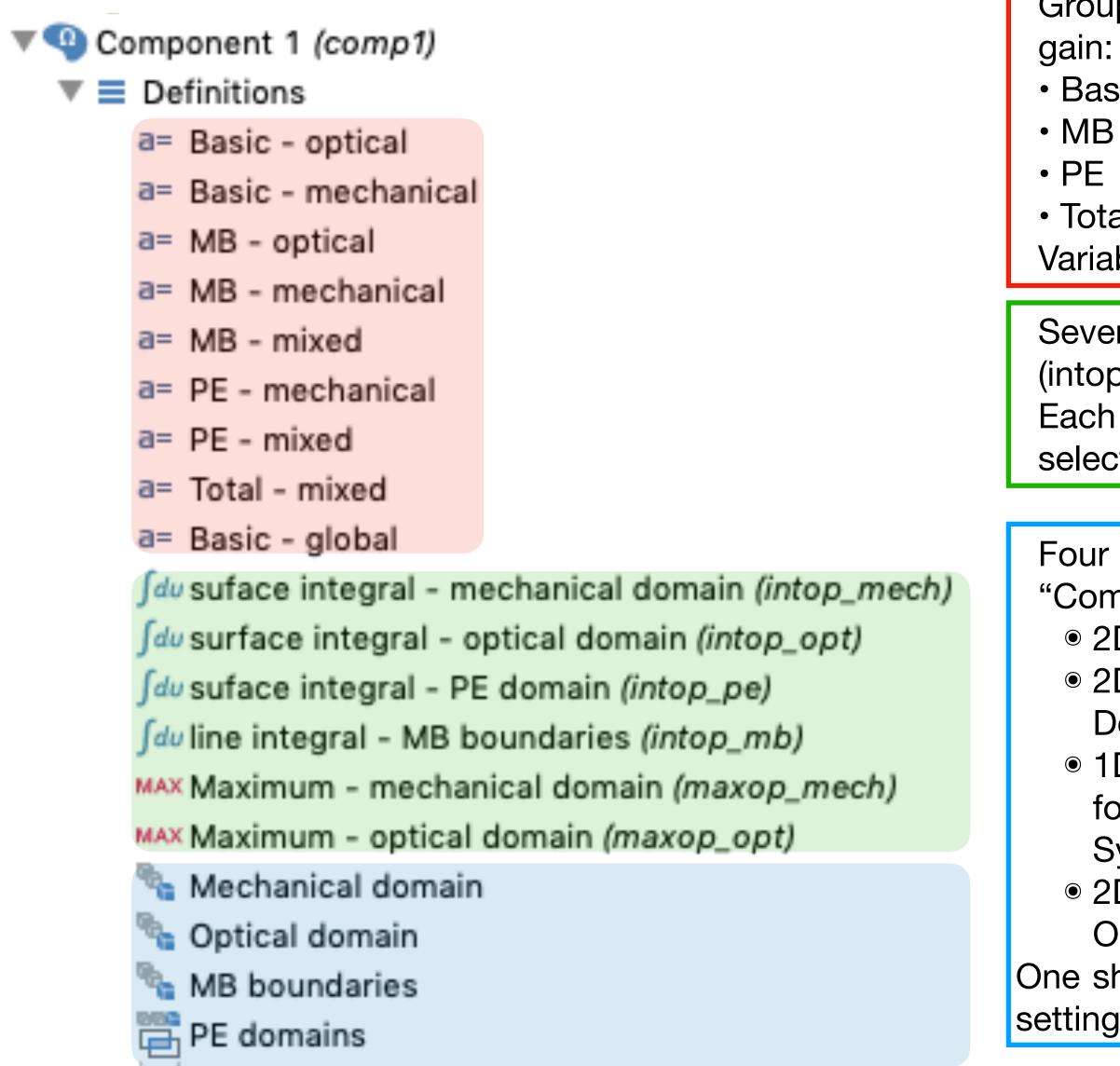
- Comsol_simulation_file_fig1a_taper_example_tutorial_quarter_domain.mph (root)
 - Global Definitions
 - P_i Parameters
 - Materials
 - Component 1 (comp1)
 - Definitions
 - Geometry 1
 - Materials
 - Electromagnetic Waves, Frequency Domain (emw_p)
 - Electromagnetic Waves, Frequency Domain 2 (emw_s)
 - Solid Mechanics (solid)
 - Mesh 1
 - Study 1
 - Step 1: Mode Analysis (p)
 - Step 2: Mode Analysis (s)
 - **Int** Step 3: Eigenfrequency
 - Solver Configurations
 - Job Configurations
 - Results

4

Parameters

Parameters

Name	Expression	Value	Description
domain_radius	15e-6 [m]	1.5E-5 m	domain height
radius	300e-9[m]	3E-7 m	waveguide radius
lambda0	1550e-9 [m]	1.55E-6 m	Vacuum wavelength
mass_factor	4	4	Mass factor: 2 for half o
Lwg	2*pi*10e-6 [m]	6.2832E-5 m	corresponding cavity le
sol_opt_p	'sol2'		solver label for pump so
sol_opt_s	'sol3'		solver label for stokes s
sol_mech	'sol1'		solver label for mechan
signBS	-1	-1	sign of Stokes z-compo
Qmech	1	1	Mechanical quality facto
i_opt_p	1	1	eigenvalue index for pu
i_opt_s	1	1	eigenvalue index for sto


- domain symmetry
- ength (for g0 calculation)
- solution (emw_p)
- solution (emw_s)
- nical solution (emw_p)
- onent of E-field (BSBS: -1, FSBS: 1)
- tor only matters for gain calculation
- ump solution mode
- tokes solution mode

- The variables sol_opt_p, sol_opt_s, sol_mech, are strings and must match the outputs from each solver. The ordering on their labels is the standard one COMSOL creates when they are sought in the order (sol_opt_p, sol_opt_s, sol_mech).
- Tip: One should not need to change these.
- i_opt_p and i_opt_s are the indexes of the
 (p) and (s) optical solvers when more the one solution solution is sought for each.
- Tip: The optical modes are ordered in increasing effective refractive index.
- signBS: This will set whether the mechanical wave vector will be set as beta_p-beta_s (signBS=1, forward) or beta_p+beta_s (signBS=-1, backward)
- mass_factor: When domain symmetry is employed, the effective mass must be corrected by an integer factor; for instance, if only half of the domain is used, mass_factor=2, if only quarter is used mass_factor=4, and so forth.

Custom variable definitions

Groups of variables are defined to enable a simpler calculation of the Brillouin

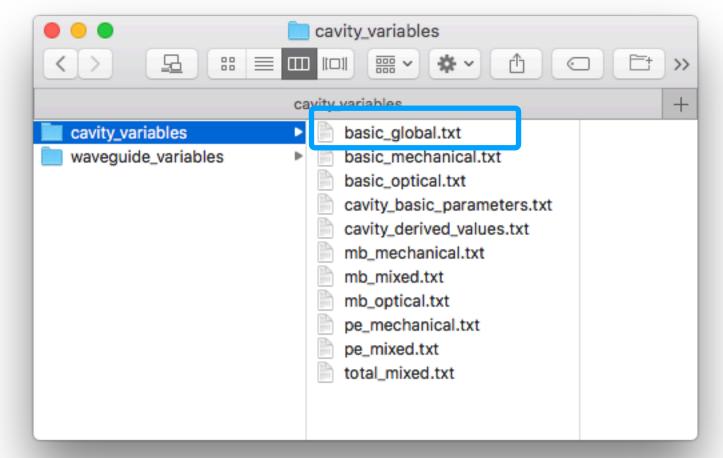
- Basic
- Total

Variables are defined over "Entire Model" under "Geometric entity level"

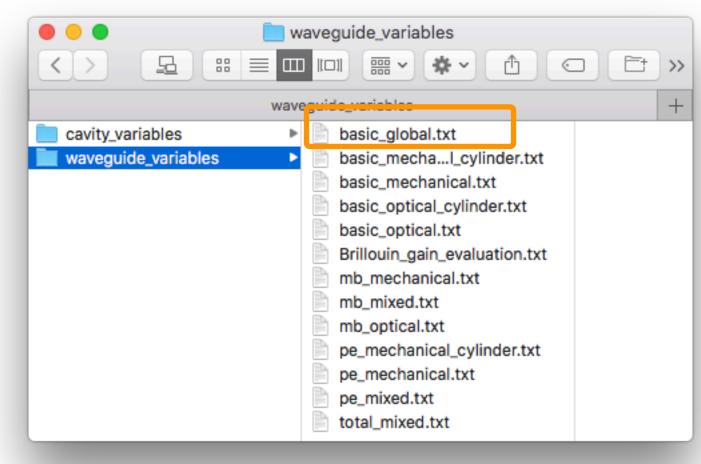
Several "Component Coupling" operators are defined to enable easy integration (intop_XX) or normalization (maxop_YY) of the optical and mechanical fields. Each of these operators must be defined in their proper spatial domains using selection groups.

Four selection groups are defined to simplify the evaluation of each of the "Component coupling" operators above. These group domain are:

- 2D domain that belongs to the mechanical parts (Mechanical domain)
- 2D domains that belongs to the optical parts (may overlap with Mechanical Domain)
- ID domains defining the boundaries between materials: this is very important for proper evaluation of the Moving boundary (radiation pressure) force. Symmetry boundary should not be selected for MB calculations
- 2D domain automatically defined as the intersect between Mechanical and Optical domains for Photo-Elastic effect.
- One should avoid changing the selections directly in the "Components coupling" settings and always use these "Selection" for defining them.


Custom variable definitions: Loading Cavity and Waveguide Variables

. 🕘 😑 🔵


A list of variables is provided in the

cavity_variables.zip and waveguide_variables.zip files.

Cavity Variables

Waveguide Variables

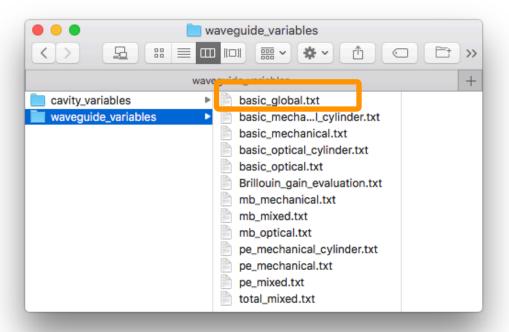
omeg beta beta beta

Each folder have multiple .txt files that allows for creating the custom variables at COMSOL

basic_global.txt ~

omega0 withsol(sol_opt_p,2*pi*emw_p.freq,setind(lambda,i_opt_p)) "Pump frequency" m_p withsol(sol_opt_p,abs(emw_p,beta),setind(lambda,i_opt_p)) "Pump mode azimuthal number" m_s withsol(sol_opt_s,abs(emw_s,beta),setind(lambda,i_opt_s)) "Stokes mode azimuthal number" m_ac (m_p-signBS*m_s) "Phase-matched Mechanical mode azimuthal number"

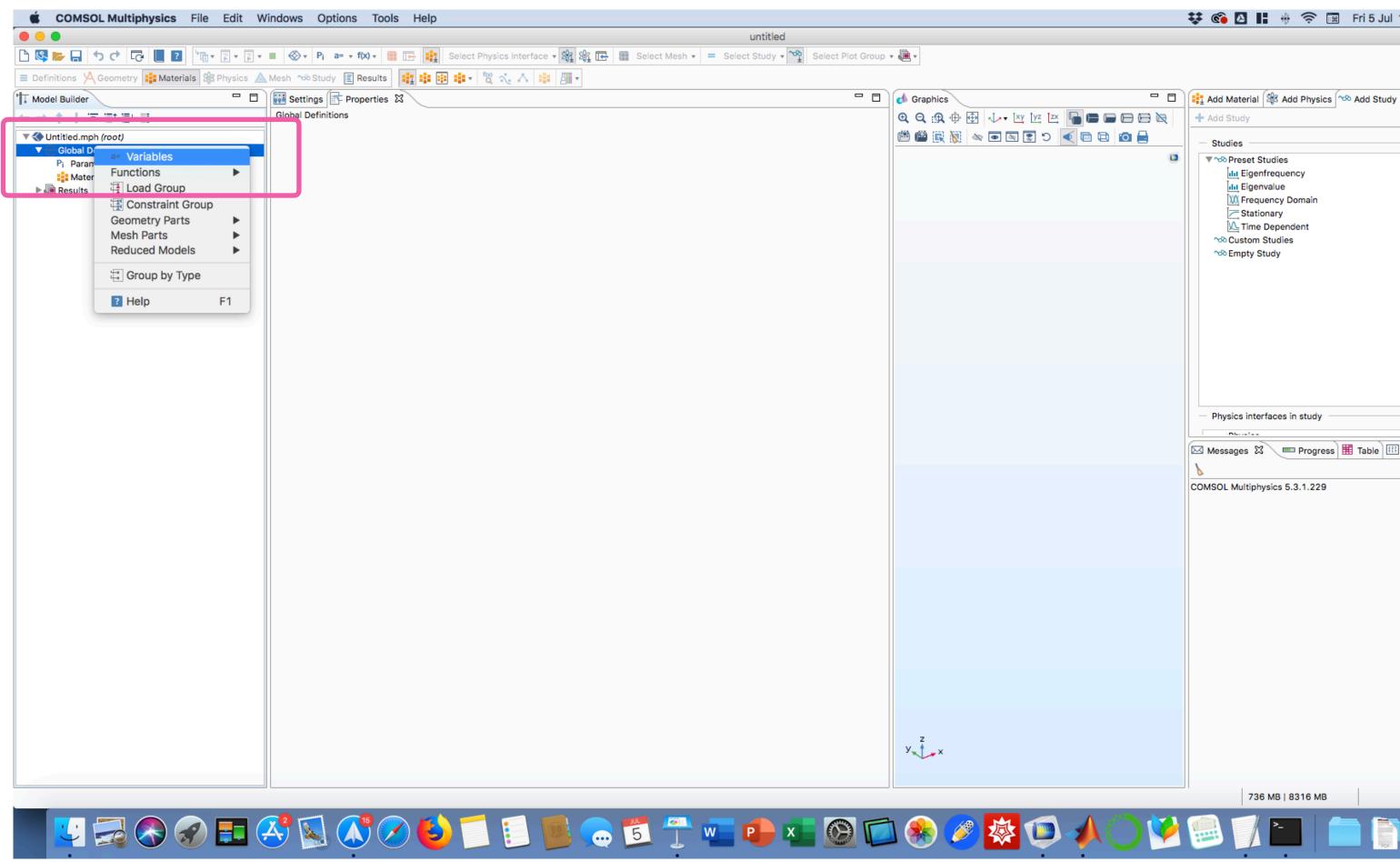
basic_global.txt ~
thsol(sol_opt_p,2*pi*emw_p.freq.setind(lambda,i_opt_p)) "Pump frequency" thsol(sol_opt_p,abs(emw_p.beta),setind(lambda,i_opt_p)) "Pump mode wavenumber"
<u>thsol(sol_opt_s,abs(emw_s.beta</u>), <u>setind</u> (lambda,i_opt_s)) "Stokes mode wavenumber" beta_p-signBS∗beta_s) "Phase-matched Mechanical mode wavenumber"

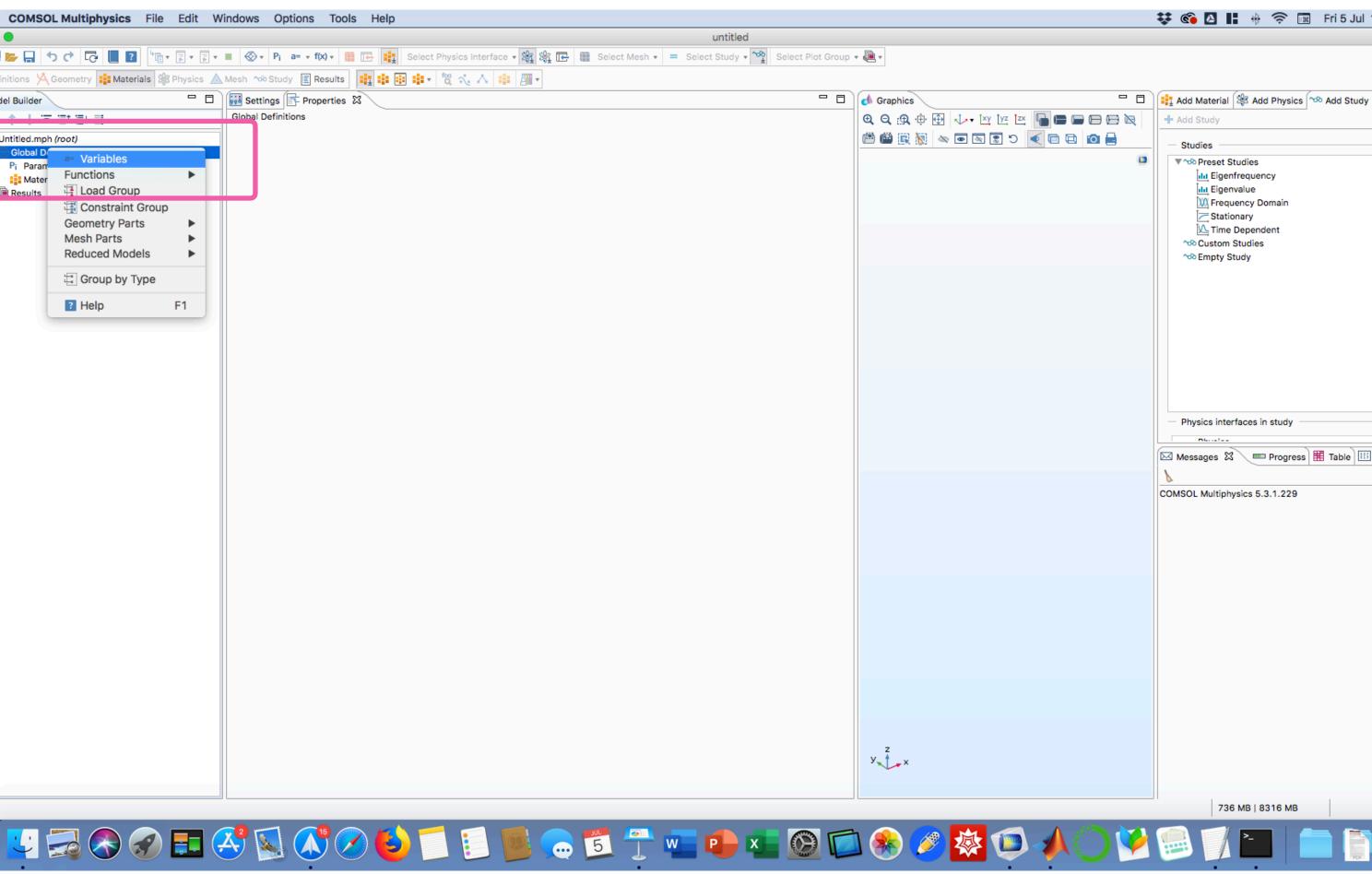


7

Custom variable definitions: Loading Cavity and Waveguide Variab

A list of variables is provided in the cavity_variables.zip and waveguide_variables.zip files.


Waveguide Variables

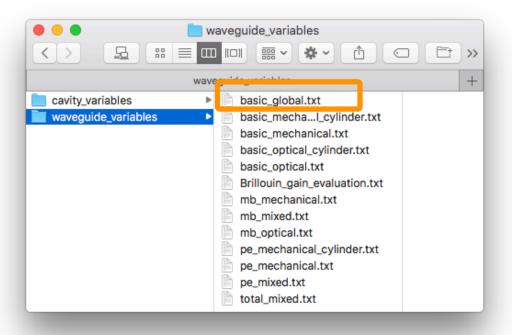


• • • basic_global.txt ~ omega0 withsol(sol_opt_p,2*pi*emw_p.freq.setind(lambda,i_opt_p)) "Pump frequency" beta_p withsol(sol_opt_p,abs(emw_p,beta),setind(lambda,i_opt_p)) "Pump mode wavenumber" beta_s withsol(sol_opt_s,abs(emw_s.beta),setind(lambda,i_opt_s)) "Stokes mode wavenumber" beta_ac (beta_p-signBS*beta_s) "Phase-matched Mechanical mode wavenumber"

1) Open COMSOL 3) Click on Load from file

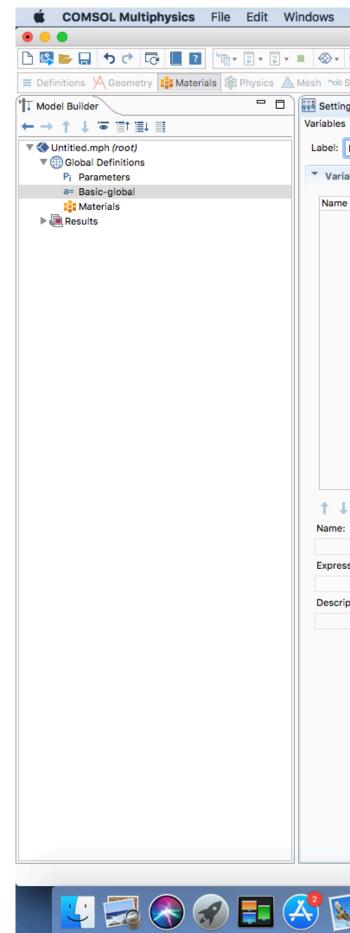
4) All variables, equations and description will be loaded on COMSOL.

2) click on "Global Definitions" -> "Variables"


0	les

17:00	0	•		_
17:20	Q	8	:=	-
×				
		- 1		
Log				
	1			

Custom variable definitions: Loading Cavity and Waveguide Variab


A list of variables is provided in the cavity_variables.zip and waveguide_variables.zip files.

Waveguide Variables

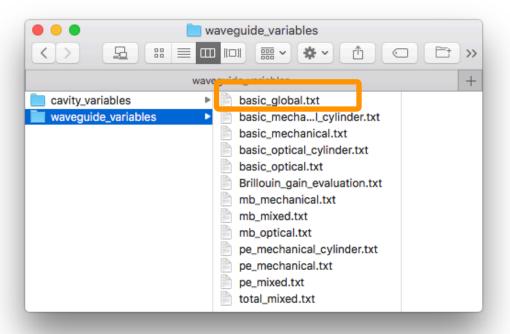
• • • basic_global.txt ~ omega0 withsol(sol_opt_p,2*pi*emw_p.freq.setind(lambda,i_opt_p)) "Pump frequency" beta_p withsol(sol_opt_p,abs(emw_p,beta),setind(lambda,i_opt_p)) "Pump mode wavenumber" beta_s withsol(sol_opt_s,abs(emw_s,beta),setind(lambda,i_opt_s)) "Stokes mode wavenumber" beta_ac (beta_p-signBS*beta_s) "Phase-matched Mechanical mode wavenumber"

1) Open COMSOL 3) Click on Load from file

2) click on "Global Definitions" -> "Variables"

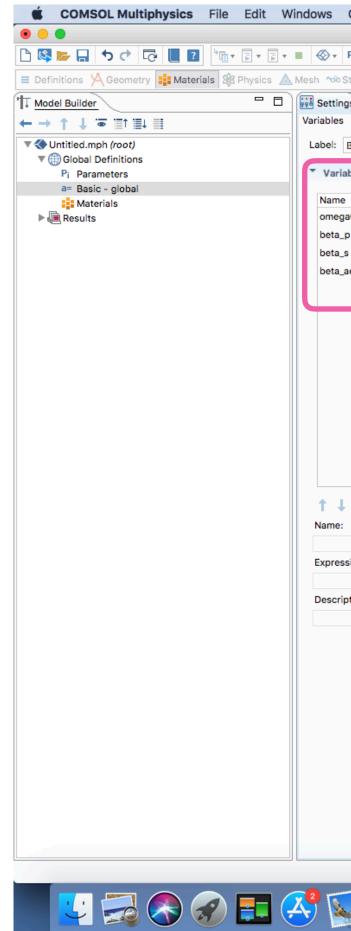
4) All variables, equations and description will be loaded on COMSOL.

Options Tools Help untitled Pi a = + f(X) + III - IIII - IIIII - IIIIIIIIIIIIIII	 Eri 5 Jul 4
Pr a = + f(X) + B Select Physics Interface + B Select Mesh + = Select Study + S Select Plot Group + E Study E Results Basic - global ables Expression Unit Description Interface + B Select Plot Group + E Select Plot Group + E Select Plot Group + E Study E Results Select Plot Group + E Study E Results Basic - global Studies St	j ribjuli
Study I Results gs ables e Expression Unit Description Image: Description <	
gs Properties gs Properties Basic - global ables bit Mit Description Unit Description Unit Description Image: Expression Im	
Basic - global ables Expression Unit Description Expression Dial destription Dial destription Expression Dial destription Dial de	Corth Add Chudu
Basic - global	- Add Study
ables Unit Description Unit Description Image: Contract of the section of t	
Expression Unit Description Image: Comparison of the second o	
Expression Unit Description Unit Descrip	
Physics Interfaces in study → ONSOL Multiphysics 5.3.1.229	Table III
757 MB 8359 MB	
s 📣 🖉 🍯 🗊 😼 🧓 🚏 🔤 🌗 💶 🚱 🖾 🛞 🕼 🌌 🌢 💭 🎽 😒 📝 💷	


)	les

17:2	0	Q	8	≡	
ß				_	
					_
)		- 1		
Log)	-	- 1		
Log)		- !		
Log)		- 1		
Log)		- I		
Log)		- 1		
Log)		= l		
Log)		- 1		
Log					
Log)		_ 1		
Log)		-b		
Log]	0	-h		
Log)		= h - =		
Log					
Log			= h -=		
Log					
Log			= h - =		
Log					

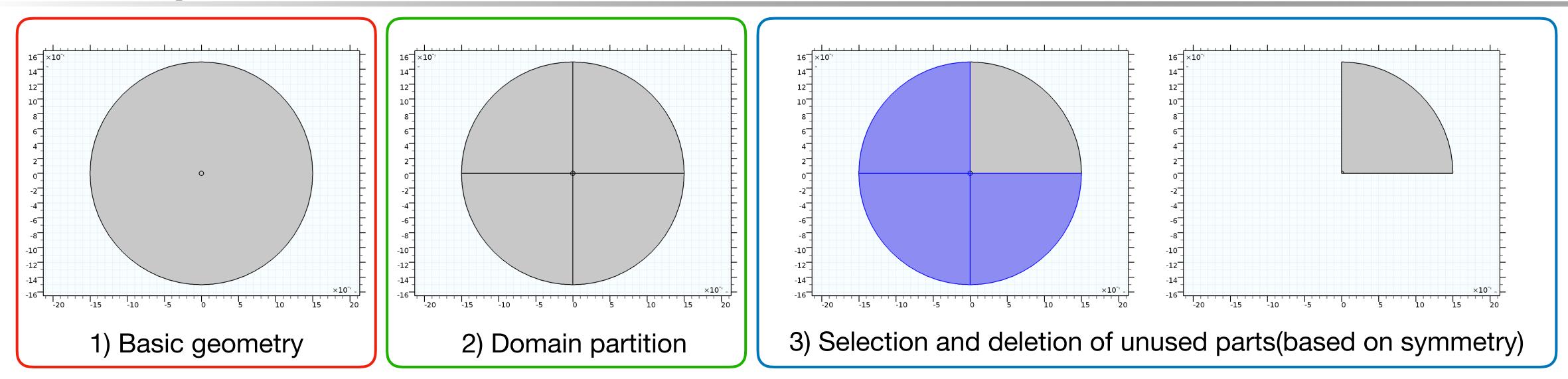
Custom variable definitions: Loading Cavity and Waveguide Variab

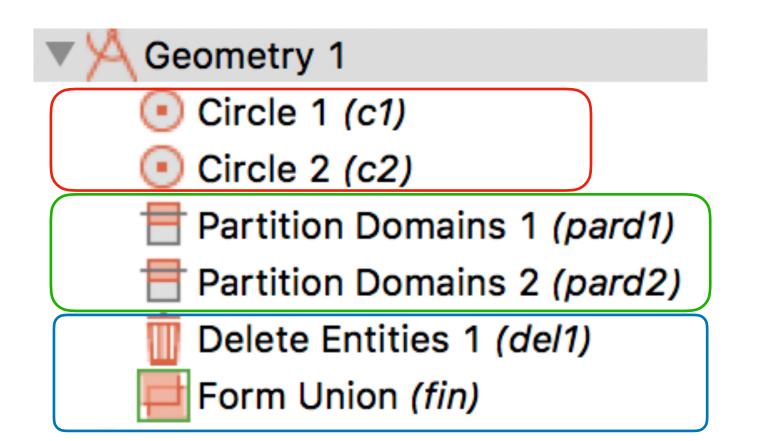

A list of variables is provided in the cavity_variables.zip and waveguide_variables.zip files.

Waveguide Variables

• • • basic_global.txt ~ omega0 withsol(sol_opt_p,2*pi*emw_p.freq.setind(lambda,i_opt_p)) "Pump frequency" beta_p withsol(sol_opt_p,abs(emw_p,beta),setind(lambda,i_opt_p)) "Pump mode wavenumber" beta_s withsol(sol_opt_s,abs(emw_s,beta),setind(lambda,i_opt_s)) "Stokes mode wavenumber" beta_ac (beta_p-signBS*beta_s) "Phase-matched Mechanical mode wavenumber"

1) Open COMSOL 3) Click on Load from file


2) click on "Global Definitions" -> "Variables"


4) All variables, equations and description will be loaded on COMSOL and ready to us

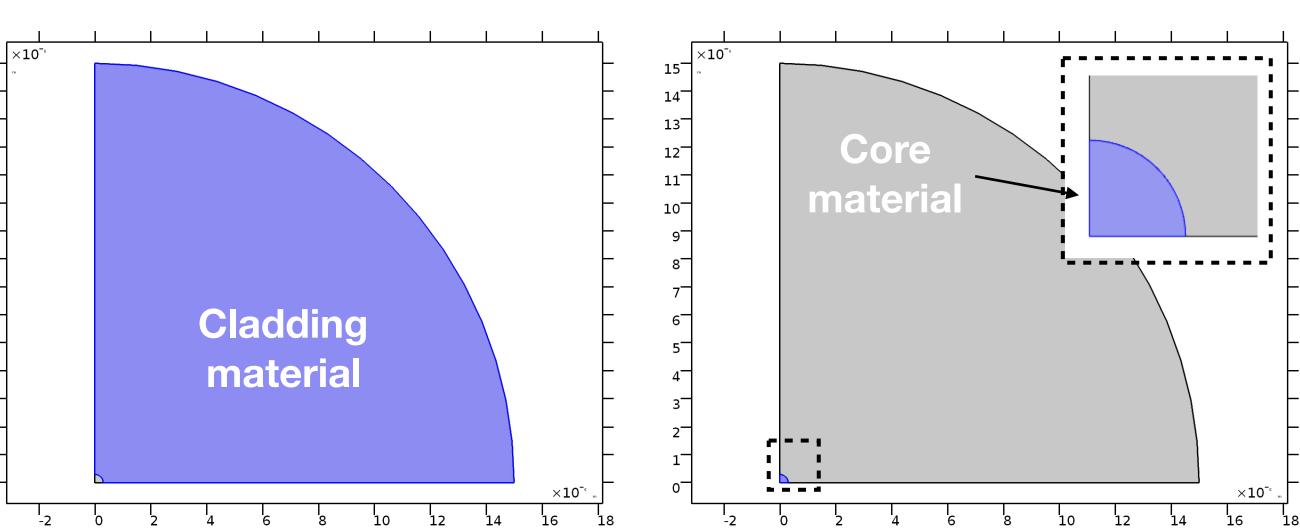
Ontic	ons Tools Help				👯 🚳 🖸 🔢 🚸 奈 📰 🛛 Fri 5 Jul 1
optic			untitled		
P _i a=	🝷 🕅 🖛 📰 💽 🔢 Select Physics Interface 🔻 🎉 🎎 💽 💷 Select Mesh 🔹	= Sele	ct Study 🔻 🖓 Select Plot Group	▼	
Study	🗉 Results 📑 🟥 💀 🛱 🔨 🔨 🔺 🟥 🌆 🕇				
-	Properties			🔥 Graphics 🗧 🗖	Add Material 🛞 Add Physics 🗠 Add Study
					+ Add Study
Basic -	global				Otudian
					Studies Treset Studies
ables					
•	Expression	Unit	Description		Lini Eigenvalue
	withsol(sol_opt_p,2*pi*emw_p.freq,setind(lambda,i_opt_p))		Pump frequency Pump mode wavenumber		Tequency bonan
p s	withsol(sol_opt_p,abs(emw_p.beta),setind(lambda,i_opt_p)) withsol(sol_opt_s,abs(emw_s.beta),setind(lambda,i_opt_s))		Stokes mode wavenumber		K Time Dependent
ac	(beta_p-signBS*beta_s)		Phase-matched Mechani		∿ Custom Studies ∿ Empty Study
	(So Empty Study
		_			
					Physics interfaces in study
					Diserte-
					Messages 🕱 📼 Progress 🏢 Table 🛄
i i i i i i i i i i i i i i i i i i i	🖌 📂 🔚 🖷				
					COMSOL Multiphysics 5.3.1.229
sion:					
ption:					
				y z x	
					700 1/0 10100 1/0
		_			793 MB 8499 MB
	💦 🖉 💪 🧂 📒 📓 🤜 📆 😷	w	📭 🚺 🛞 🚺	l 😣 🧭 🔯 🔟 📣 🔿 🖗	1 🔜 🚺 🎦 🛑 🛐

D	e	2	S	
ISE	; .)			
17:21	Q	3	E	
×				
Log	10-	-1		
				10

Geometry

• If symmetries are not necessary, steps 2 and 3 above can be avoided. • Although it is not necessary to explore symmetries, it may lead not only to substantial computational time reduction but also easier selection of pump and scattered modes for intra-modal scattering.

• For instance, say one wants to investigate forward Brillouin scattering between the two polarization states (HE11x, HE11y) fundamental modes of a tapered fiber. Breaking up the domain as illustrated above will allow to impose boundary condition on the symmetry walls (PEC or PMC) to provide either the vertically or horizontally polarized optical modes for each of the optical solvers.

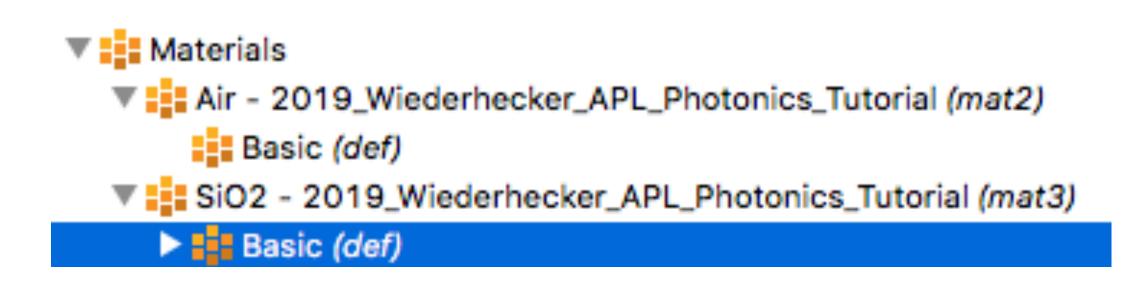

 This is specially important during parameter sweeps that would lead to random sorting of the eigenvalues order of the two modes.

11

Materials

	15
	14
	13
Materials	12
	11
Air - 2019_Wiederhecker_APL_Photonics_Tutorial (mat2)	10
	9
Basic (def)	8
SiO2 - 2019_Wiederhecker_APL_Photonics_Tutorial (mat3)	7 ⁻
SIO2 - 2015_Wiedernecker_APL_Photomics_futorial (mats)	6
Basic (def)	5
	4
	3
	2
	1
	0

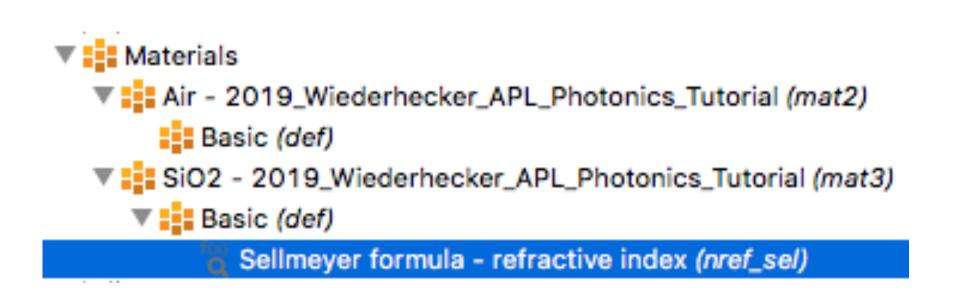
- The material properties that must be defined for the COMSOL solvers to work properly are automatically highlighted by the verified sign, as shown in the screenshot aside.
- The photo elastic constants must also be defined in order for enable Brillouin gain calculation. As shown in the next slide, these are defined as "Local Properties".
- In this particular example, the permitivitty is calculated according to Sellmeyer's formula, as defined by the function (nref_sel) evaluated at the vacuum wavelength (nref_sel(lambda0)). This could be avoided by simply feeding a constant value for the relative permitivitty.


Material Contents

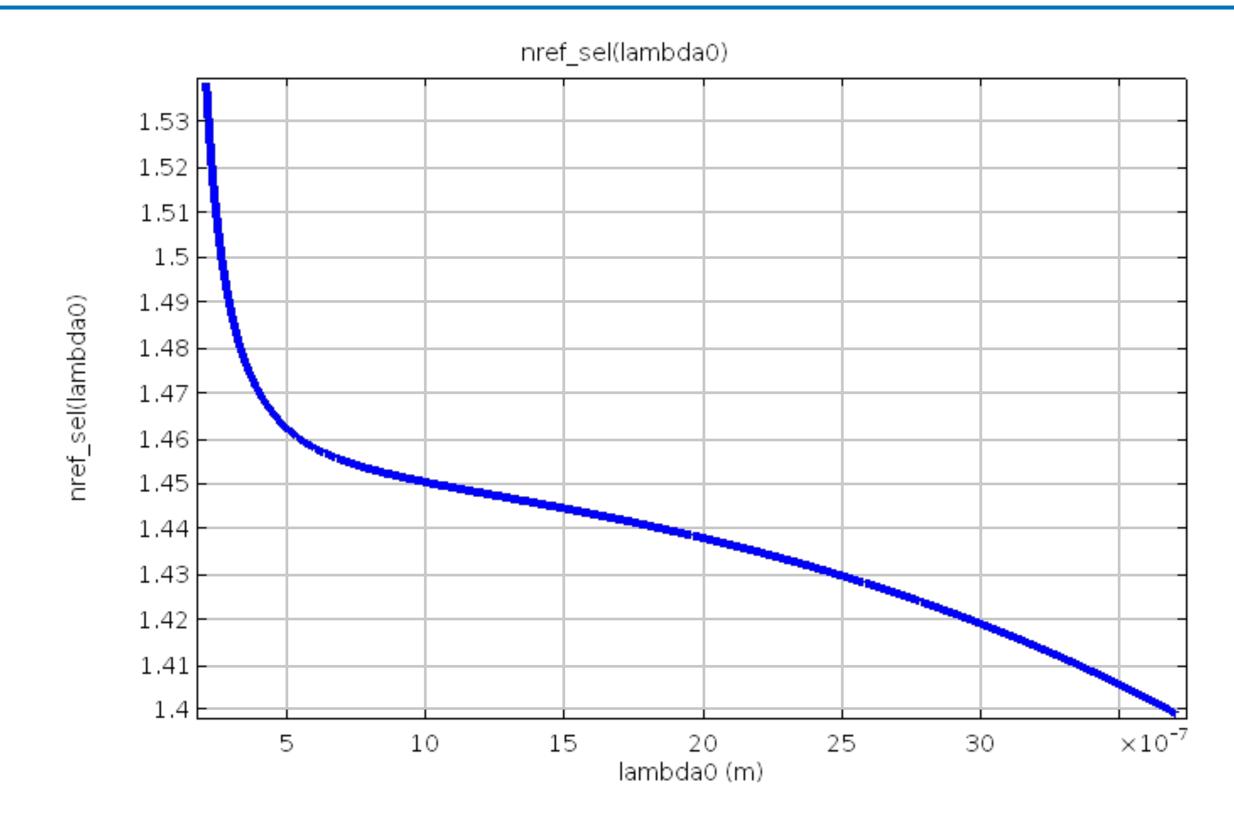
	Property	Variable	Value	Unit	Property group
$\mathbf{\underline{N}}$	Density	rho	2203	kg/m³	Basic
$\mathbf{\underline{\mathbf{N}}}$	Young's modulus	E	73e9	Ра	Basic
$\mathbf{\underline{\mathbf{N}}}$	Poisson's ratio	nu	0.17	1	Basic
$\mathbf{\underline{\mathbf{N}}}$	Relative permeability	mur_iso ; m	1	1	Basic
$\mathbf{\underline{\mathbf{N}}}$	Relative permittivity	epsilonr_is	nref_sel(lambd	1	Basic
$\mathbf{\underline{\mathbf{N}}}$	Electrical conductivity	sigma_iso ;	0	S/m	Basic
	p11, photo-elastic tensor component	p11	0.121		Basic
	p12, photo-elastic tensor component	p12	0.27		Basic
	p44, photo-elastic tensor component	p44	-0.0745		Basic
	Thermal conductivity	k iso : kii =	1.38	W/(m·K)	Basic

Materials: photo elastic properties

Photoelastic parameters must be defined for each material in order to calculate the Brillouin gain.


- In our simulation files, this is done by defining "Local Properties" for each material. For instance, in the "SiO2-2019-Wiederhecker_APL_Photonics_Tutorial", the photo elastic tensor components p11, p12 and p44 are shown in the upper screenshot.
- For air, these parameters are set to a null value for convenience. Since we never solve the "air" domain in the mechanical solver, these values are never actually used in our calculations.
- Other properties, such as stiffness tensor may be defined just for convenience. In the examples shown here, the solid mechanics model uses Young modulus, Poison ratio and density for mechanical mode calculations.

Settings 🛛 📑 Pr	operties 🗟 🗟 Physics Builder Manage	21		
operty Group				
abel: Basic				
Output Properti	es and Model Inputs			
Local Properties	5			
Name	Expression	Unit	Description	
p11	0.121		p11, photo-elastic tensor component	
p12	0.27		p12, photo-elastic tensor component	
p44	-0.0745	De	p44, photo-elastic tensor component	
↑↓≣				
Name:				
p11				
Expression:				
0.121				
Description:				
Description: p11, photo-elastic	tensor component			
[tensor component			
[tensor component			
p11, photo-elastic	roperties 💽 Physics Builder Manag	er		
p11, photo-elastic		er		
p11, photo-elastic		er		
p11, photo-elastic Settings Property Group Label: Basic	roperties	er		
p11, photo-elastic Settings Property Group Label: Basic Output Propert	roperties	er		
p11, photo-elastic Settings Property Group Label: Basic	roperties	er		
p11, photo-elastic Settings Property Group Label: Basic Output Propert	roperties	er	Description	
p11, photo-elastic Settings Property Group Label: Basic Output Propert Local Properties	roperties		Description p11	
p11, photo-elastic Settings Property Group Label: Basic Output Propert Local Properties Name	roperties Ruilder Manag			
p11, photo-elastic Settings Property Group Label: Basic Output Propert Local Properties Name p11	roperties		p11	
p11, photo-elastic Settings roperty Group Label: Basic Output Properties Name p11 p12 p44	roperties Physics Builder Manag ies and Model Inputs s Expression 0 0 0		p11 p12	
 p11, photo-elastic Settings Property Group Label: Basic Output Properties Local Properties Name p11 p12 p44 I I III 	roperties Physics Builder Manag ies and Model Inputs s Expression 0 0 0		p11 p12	
p11, photo-elastic Settings roperty Group Label: Basic Output Properties Name p11 p12 p44	roperties Physics Builder Manag ies and Model Inputs s Expression 0 0 0		p11 p12	
 p11, photo-elastic Settings Property Group Label: Basic Output Properties Local Properties Name p11 p12 p44 1 ↓ = Name: 	roperties Physics Builder Manag ies and Model Inputs s Expression 0 0 0		p11 p12	
 p11, photo-elastic Settings Property Group Label: Basic Output Properties Local Properties Name p11 p12 p44 I I III 	roperties Physics Builder Manag ies and Model Inputs s Expression 0 0 0		p11 p12	



Materials: Using Sellmeier formula

📊 Settings 🛛 📑	Properties 🔋 🗟 Physics Builder	Manager			
Analytic		· · · · · ·			
💽 Plot 🛛 🛃 Create	e Plot				
Label:	Label: Sellmeyer formula - refractive index				
Function name:	nref_sel				
Definition					
Expression: (1	1 + ((0.899007e12 * (lambda0^(2	?) * ((-0.980727e2) + (1000000000000 * lamb	da0^(2)))^(-1))) + ((0.440648e12 * (lambda0^(2)		
Arguments: la	mbda0				
Derivatives:	Automatic		\$		
Periodic External	ncion				
Periodic Exte	insion				
▼ Units					
Arguments: m					
Function:					
Advanced					
Plot Paramet	orc				
FIOT Far affect	GIÐ				
Argument		Lower limit	Upper limit		
lambda0		0.21[um]	3.71[um]		
↑ I ≔					

- It is not necessary to introduce the Sellmeier formula, however, a simple way to do it in COMSOL is by defining an "Analytic" function within the Basic (def) material properties.
- By doing so, you may also easily plot the Sellmeier expression.
- Notice that if this approach is used, the value of **lambda0** (within the **Global Parameters**) will be used for defining the material refractive index used for the optical mode calculations.

Optical mode physics

- Electromagnetic Waves, Frequency Domain (emw_p)
 - Wave Equation, Electric 1
 - Perfect Electric Conductor 1
 - Initial Values 1
 - Perfect Magnetic Conductor 1
 - #f Equation View
- Electromagnetic Waves, Frequency Domain 2 (emw_s)
 - Wave Equation, Electric 1
 - Perfect Electric Conductor 1
 - Initial Values 1
 - Perfect Magnetic Conductor 1
 - ∰ f Equation View
- In order to be able to compute both intra and intermodal Brillouin gain we must add twice the *Electromagnetic waves, Frequency Domain (EWFD)* physics. In order to be compatible with our custom variables definitions, they must be labelled emw_p (for the pump mode) and emw_s (for the scattered mode).
- Notice that the "Selection:" tab is chosen as "Optical domain". This selection is the label assigned to one the selection groups in the "variables" definition.

🔛 Settings 🛛 📑 Properties 🔋 Physics Builder Manager 🛛 🗖 🗖	🔢 Settings 🛛 📑 Properties 🔋 Physics Builder Manager
Electromagnetic Waves, Frequency Domain	Electromagnetic Waves, Frequency Domain
Label: Electromagnetic Waves, Frequency Domain	Label: Electromagnetic Waves, Frequency Domain 2
Name: emw_p	Name: emw_s
Domain Selection	Domain Selection
Selection: Optical domain	Selection: Optical domain
1 2 Active 1 2 4 2 4 5 4 5 4 5 5 5 5 5 5 6 5 6 5 5 5 <td>Active</td>	Active
Equation	
Equation form:	Equation
Study controlled	Equation form:
Show equation assuming:	Study controlled
Study 1, Mode Analysis (p)	Show equation assuming:
$\nabla \times \mu_r^{-1} (\nabla \times \mathbf{E}) - k_0^2 (\epsilon_r - \frac{j\sigma}{\omega \epsilon_0}) \mathbf{E} = 0$ $\lambda = -j\beta - \delta_z$	Study 1, Mode Analysis (p) $\nabla \times \mu_r^{-1}(\nabla \times \mathbf{E}) - k_0^2(\epsilon_r - \frac{j\sigma}{\omega\epsilon_0})\mathbf{E} = 0$
$\mathbf{E}(x,y,z) = \mathbf{\bar{E}}(x,y)e^{ik_{z}z}$	$\mathbf{E}(x,y,z) = \mathbf{\tilde{E}}(x,y)e^{-ik_z z}$

Optical mode physics

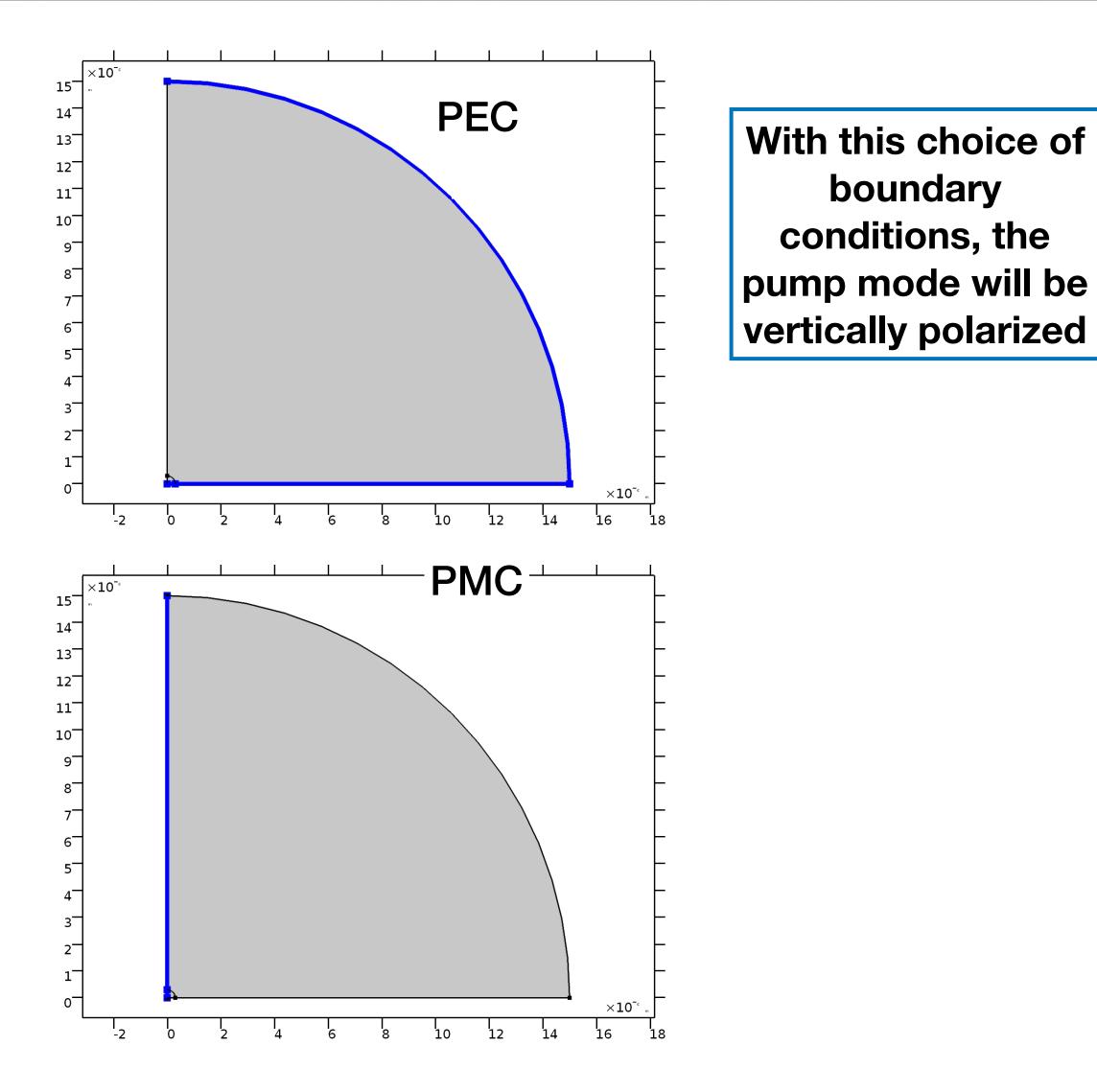
Electromagnetic Waves, Frequency Domain (emw_p)

- Wave Equation, Electric 1
- Perfect Electric Conductor 1
- Initial Values 1
- Perfect Magnetic Conductor 1
- # Equation View
- Electromagnetic Waves, Frequency Domain 2 (emw_s)
 - Wave Equation, Electric 1
 - Perfect Electric Conductor 1
 - Initial Values 1
 - Perfect Magnetic Conductor 1
 - [#]f Equation View
- One point that might be confusing throughout the options of the EWFD physics is the "outof-plane wave number" tab. This option may be ignored when we choose the optical wavenumber (beta) or the effective index as an eigenvalue — which is what is done here. This option is only meaningful if the optical frequency is sought from an eigenfrequency solver configuration.
- Show equa Study 1, $\nabla \times \mu_{r}^{1}(\nabla$ $\lambda = -j\beta$ -E(x,y,z): Compor Electric fie Three-co Setting Formulatio Full field Port Sw Out-of-l Out-of-pla k_z 0 Analysis Methodolo Fast Physics. 🗸 Enable Maximum From stu Resolve

Equation for

Equation	
quation form:	
Study controlled	\diamond
how equation assuming:	
Study 1, Mode Analysis (p)	\$
$\nabla \times \mu_{r}^{-1}(\nabla \times \mathbf{E}) \cdot k_{0}^{2}(\epsilon_{r} \cdot \frac{j\sigma}{\omega\epsilon_{0}})\mathbf{E} = 0$	
$\lambda = -j\beta - \delta_z$	
$E(x,y,z) = \bar{E}(x,y)e^{-ik_{z}z}$	
Components	
lectric field components solved for:	
Three-component vector	\diamond
Settings	
ormulation:	
Full field	\$
Port Sweep Settings	
Out-of-Plane Wave Number	
Out-of-plane wave number:	
0	rad/m
Analysis Methodology	
lethodology options:	
Fast	\$
Physics-Controlled Mesh	
Z Enable	
laximum mesh element size control parameter:	
From study	\$
Resolve wave in lossy media	

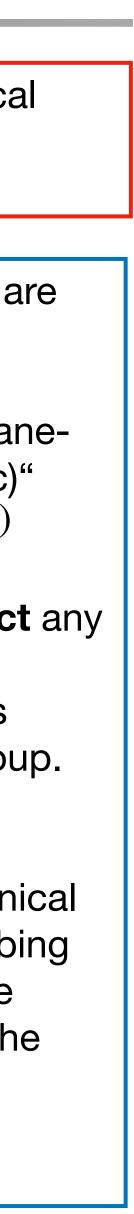
Out-of-Plane Wave Number	
Out-of-plane wave number:	
k _z 0	rad/
Analysis Methodology	
Methodology options:	
Fast	<



Optical mode physics: boundary conditions

- Electromagnetic Waves, Frequency Domain (emw_p)
 - Wave Equation, Electric 1
 - Perfect Electric Conductor 1
 - Initial Values 1
 - Perfect Magnetic Conductor 1
 - # Equation View

- By choosing between a PEC or a PMC along the symmetry boundaries will lead to modes with either symmetric or antisymmetric reflection for planes.
- If the intra-modal scattering is of interest, the same boundary conditions should be applied for both the pump (emw_p) and scattered (emw_s) mode physics.


Mechanical mode physics

▼ 🐳 Solid Mechanics (solid)

- 🕘 Linear Elastic Material 1
- Free 1
- Initial Values 1
- [#]f Equation View

행 Settings	📴 Properties 🗟 Physics Builder Manage	r) 🗖 E
Solid Mechanic	cs	
Label: Solid	Mechanics	
Name: solid		
Domain Set	election	
Selection:	Mechanical domain	\Diamond
Active	1	 № + □ □ 0 0
• Equation		
Physics S	ymbols	
🗌 Enable p	hysics symbols	
— Show or I	hide all physics symbols	
Select /	All Clear All	
- 2D Appro	ximation	
Plane strai	in	\$
🗸 Out-of-p	lane mode extension (time-harmonic)	
Out-of-plan	e wave number:	
kz abs(bet	a_ac)	rad/m
Thickness	6	
d 1		m

- Notice that the "Selection:" tab is chosen as "Mechanical domain". This selection is the label assigned to one the selection groups in the "variables" definition.
- In the mechanical mode physics, only the solid regions are considered — air is treated as vacuum and the airneighboring boundaries are treated as free-boundaries
- Although in the 2D approximation, the choice will be Planestrain, once the "Out-of-plane extension (time harmonic)" option is tagged, COMSOL will use the $exp(-i\beta_m z + i\omega t)$ ansatz.
- The thickness parameter is arbitrary and does not affect any of the Brillouin calculations.
- The mechanical wavenumber is beta_ac and its value is defined within the "Basic - global" custom variables group. Within COMSOL, this variable is internally labelled as "solid.kz".
- We use "abs(beta_ac)" here to avoid forcing the mechanical solver to use complex arithmetic. For instance, if absorbing boundary conditions are used in the optical physics, the optical wavenumber could be complex. Also, since all the mechanical waveguides treated here are bidirectional, positive or negative beta_ac would not change the mechanical eigenfrequencies.

18

Mechanical material options

▼ 学 Solid Mechanics (solid)

- 🕨 🕘 Linear Elastic Material 1
- Free 1
- Initial Values 1
- ∰f Equation View

Linear Elastic Material 1 Linear Elastic Material 1 Domain Selection Selection: All domains Linear Elastic Material Override and Contribution Coordinate System Selection Coordinate System Selection Coordinate system Linear Elastic Material Nearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Young's modulus: E From material Poisson's ratio: From material Coentric Nonlinearity Force linear strains Coentric Nonlinearity Force linear strains Coentric Nonlinearity Coentric Nonlinearity Coentric Nonlinearit	행 Settings	📑 Properties 🔋 Physics Builder Man	ager 🗖 🗖			
Image: Active Active 1 2 (not applicable) Active 1 2 (not applicable) Active 1 2 (not applicable) Active 1 2 (not applicable) Active 1 2 (not applicable) 4 4 0 Verride and Contribution Equation Model Input Image: Coordinate System Selection Coordinate system: Global coordinate system © Image: Linear Elastic Material © Coordinate system © Image: Linear Elastic Material © Solid model: Isotropic Solid modulus: E From material © Young's modulus and Poisson's ratio Young's modulus: E From material © Poisson's ratio: Y From material	Linear Elastic N	Material				
Selection: All domains I 1 Active 1 2 (not applicable) Image: Image	Label: Linear Elastic Material 1					
Selection: All domains Image: Construct on the system Image: Coordinate System Selection Coordinate System Selection Coordinate system: Global coordinate system Image: Coordinate system	Domain Set	election				
Image: Second state is a state is						
Active 2 (not applicable) Active Image: Construction Override and Contribution Equation Model Input Image: Coordinate System Selection Coordinate System Selection Coordinate System: Global coordinate system: Image: Coordinate System Global coordinate system: Image: Coordinate System Voung's modulus and Poisson's ratio Image: Coordinate System Voung's modulus: Image: Coordinate System Image: Coordinate System Image: Coordinate System Voung's modulus and Poisson's ratio Image: Coordinate System Voung's modulus: Image: Coordinate System Image: Coordinate System Image: Coordinate System	Selection:		⇒			
Active Image: Contribution ▶ Override and Contribution ▶ Equation ▶ Model Input ▶ Model Input ♥ Coordinate System Selection Coordinate System © Coordinate system: © Global coordinate system © Image: Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Ø Poisson's ratio: 𝒱 From material Ø Poisson's ratio: 𝔅 Poisson's ratio: 𝔅 From material Image: Solid model Image: Sol			% +			
 Override and Contribution Equation Equation Model Input Coordinate System Selection Coordinate system: Global coordinate system © 1 inear Elastic Material Okearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Young's modulus: E From material Poisson's ratio: V From material Oensity: P From material C Geometric Nonlinearity Force linear strains 	Active					
 > Override and Contribution > Equation > Model Input > Coordinate System Selection Coordinate system: Global coordinate system ○ Image: Selection Coordinate system ○ Image: Selection > Vearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio > Young's modulus: E From material ○ Poisson's ratio: > From material ○ ○ > Geometric Nonlinearity Force linear strains 						
 ▶ Equation ▶ Model Input ▶ Coordinate System Selection Coordinate system: Global coordinate system ♥ Inear Elastic Material Nearly incompressible material Solid model: Isotropic ♥ Specify: Young's modulus and Poisson's ratio ♥ Young's modulus: E From material ♥ From material 			ıt.			
 ▶ Equation ▶ Model Input ▶ Coordinate System Selection Coordinate system: Global coordinate system ♥ Inear Elastic Material Nearly incompressible material Solid model: Isotropic ♥ Specify: Young's modulus and Poisson's ratio ♥ Young's modulus: E From material ♥ From material 						
 ▶ Equation ▶ Model Input ▶ Coordinate System Selection Coordinate system: Global coordinate system ♥ Inear Elastic Material Nearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Young's modulus: <i>E</i> From material ♥ From material ♥ From material ♥ 	• Override a	and Contribution				
Model Input [] Coordinate System Selection Coordinate system: Global coordinate system © [] Value [] Solid model: [] Isotropic [] Specify: [] Young's modulus and Poisson's ratio [] Young's modulus: [] E From material Poisson's ratio: [] V From material Oensity: [] P From material Image: Second						
 Coordinate System Selection Coordinate system: Global coordinate system Global coordinate system Image: Selection Image: Selection Vearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Specify: Young's modulus and Poisson's ratio Young's modulus: <i>E</i> From material Poisson's ratio: <i>y</i> From material Density: <i>ρ</i> From material <i>Q</i> <i>P</i> <i>P</i> From material <i>Q</i> <i>Q</i><td>Equation</td><td></td><td></td>	Equation					
Coordinate system: Global coordinate system ♥ Linear Elastic Material Nearly incompressible material Solid model: Isotropic ♥ Young's modulus and Poisson's ratio ♥ Young's modulus: E From material ♥ From material	Model Inp	out				
Global coordinate system ♥ Inear Elastic Material Nearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Young's modulus: E From material Poisson's ratio: Y From material Poisson's ratio: Y From material O Pensity: P From material Image: Force linear strains	Coordinat	e System Selection				
 ✓ Linear Elastic Material Nearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Young's modulus: <i>E</i> From material Poisson's ratio: <i>v</i> From material Ponisty: <i>p</i> From material ✓ Solid model: Isotropic Specify: Young's modulus and Poisson's ratio ✓ 	Coordinate s	system:				
 Nearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Young's modulus: <i>E</i> From material Poisson's ratio: <i>v</i> From material <i>v</i> From material Poisson's ratio: <i>v</i> From material <i>v</i> From material <i>v</i> From material 	Global coo	ordinate system				
 Nearly incompressible material Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Young's modulus: <i>E</i> From material Poisson's ratio: <i>v</i> From material <i>c</i> From material 						
Solid model: Isotropic Specify: Young's modulus and Poisson's ratio Young's modulus: E From material Poisson's ratio: ↓ From material Density: P From material C From material C Force linear strains	Linear Ela	stic Material				
Isotropic ◊ Specify: Young's modulus and Poisson's ratio ◊ Young's modulus: ◊ 𝔅 From material ◊ Poisson's ratio: ◊ 𝔅 From material ◊ Density: ◊ 𝔅 From material ◊ ✓ From material ◊ ✓ From material ◊						
Specify: Young's modulus and Poisson's ratio Young's modulus: 𝔅 From material 𝔅 Poisson's ratio: 𝝾 From material 𝔅 Density: 𝔅 Geometric Nonlinearity Force linear strains						
Young's modulus and Poisson's ratio Young's modulus: E From material Poisson's ratio: v From material v From material Obensity: P From material Image: Second Secon			\bigcirc			
Young's modulus: E From material Poisson's ratio: v From material Density: P From material ♥ From balance From From From From From From From From						
 <i>E</i> From material Poisson's ratio: <i>ν</i> From material Oensity: <i>ρ</i> From material <i>φ</i> From material<td></td><td></td><td>\sim</td>			\sim			
Poisson's ratio: ✓ From material ○ Density: <						
 <i>ν</i> From material Density: <i>ρ</i> From material <i>φ</i> Geometric Nonlinearity Force linear strains 	E From m	เลเษาได้เ				
Density: From material Geometric Nonlinearity Force linear strains						
 From material Geometric Nonlinearity Force linear strains 	ν From m	naterial	\$			
 Geometric Nonlinearity Force linear strains 	Density:					
Force linear strains	P From m	naterial	\$			
Force linear strains	Geometri	c Nonlinearity				
Additive strain decomposition	Additive	strain decomposition				

- All the isotropic materials being used in this tutorial are defined based on their Young modulus, poisson ratio, and density.
- Using other definitions, pre-defined by COMSOL, should not affect any of the results. The only mechanical property that is directly used in the Brillouin gain calculations is the density, which is necessary in any of the solid mode choices.

19

Study

▼ndb Study 1

Step 1: Mode Analysis (p)

Step 2: Mode Analysis (s)

Lep 3: Eigenfrequency

- Solver Configurations
 - Job Configurations

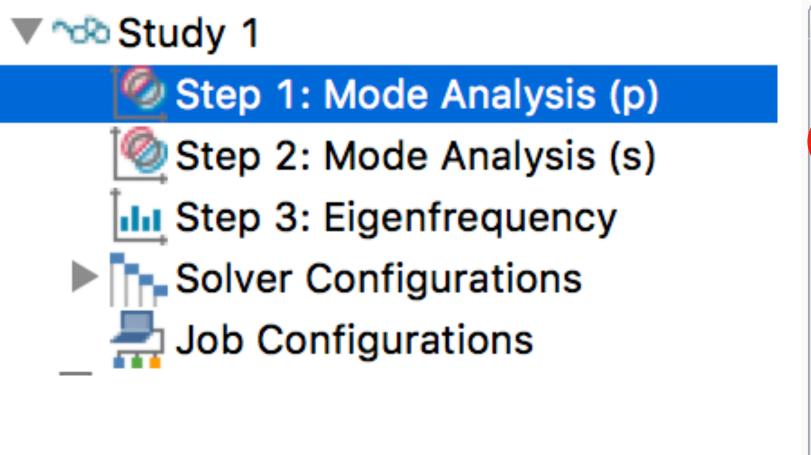
• Three study steps are defined, one for each mode:

Step1: pump wave mode

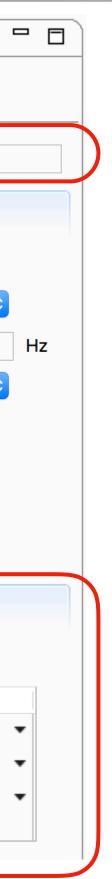
 Mode Analysis : Given optical frequency, optical wavenumber (beta) is sought as as eigenvalue;

Step2: scattered wave mode

 Mode Analysis : Given optical frequency, optical wavenumber (beta) is sought as as eigenvalue;


Step3: mechanical mode

 Eigenfrequency: given mechanical wavenumber (solid.kz), mechanical frequency is sought as eigenvalue.



Study options


👪 Settings 🛛 📑 Properties 🔋 Physics Builder Manager 🛛 🖓 🗖					🔛 Settings 🛛 📑 Properties 🔋 Physics Builder Manager				
Mode Analysis					Mode Analysis				
= Compute C Update Solution	= Compute C Update Solution								
				_					
Label: Mode Analysis (p))	Label: Mode Analysis (s)				
Study Settings					Study Settings				
Include geometric nonlinearity					Include geometric nonlinearity				
Transform:	Effective mode	index	\$		Transform:	Effe	ective mode	index	
Mada analysis fraguency					Mode analysis frequency:	с со	nst/lambda0		
Mode analysis frequency:	c_const/lambda0		Hz				nual		
Mode search method:	Manual		\diamond		Mode search method:	IVId	ludi		
Desired number of modes:	✓ 1				Desired number of modes:	\checkmark	1		
Unit:		×			Unit:				2
					Search for modes around:		1.45		
Search for modes around:	✓ 1.45							at a scalar a	
Mode search method around shift:	Closest in abso	ute value ᅌ			Mode search method around shift:	Cio	sest in absol		2
					Physics and Variables Selection				
Physics and Variables Selection									
Modify model configuration for s	study step				Modify model configuration for a second s	study	step		
Dhusias interfess	Colus for	Discretization			Physics interface		Solve for	Discretization	
Physics interface	Solve for	Discretization			Electromagnetic Waves, Fre	que		Physics settings	
Electromagnetic Waves, Fre		Physics settings	•		Electromagnetic Waves, Fre	que	\checkmark	Physics settings	
Electromagnetic Waves, Fre	que	Physics settings	•		Solid Mechanics			Physics settings	
Solid Mechanics		Physics settings	•						
			/		·				

 It is important to restrict the variables sought for in each study step.

Study options

Step 1: Mode Analysis (p)

Step 2: Mode Analysis (s)

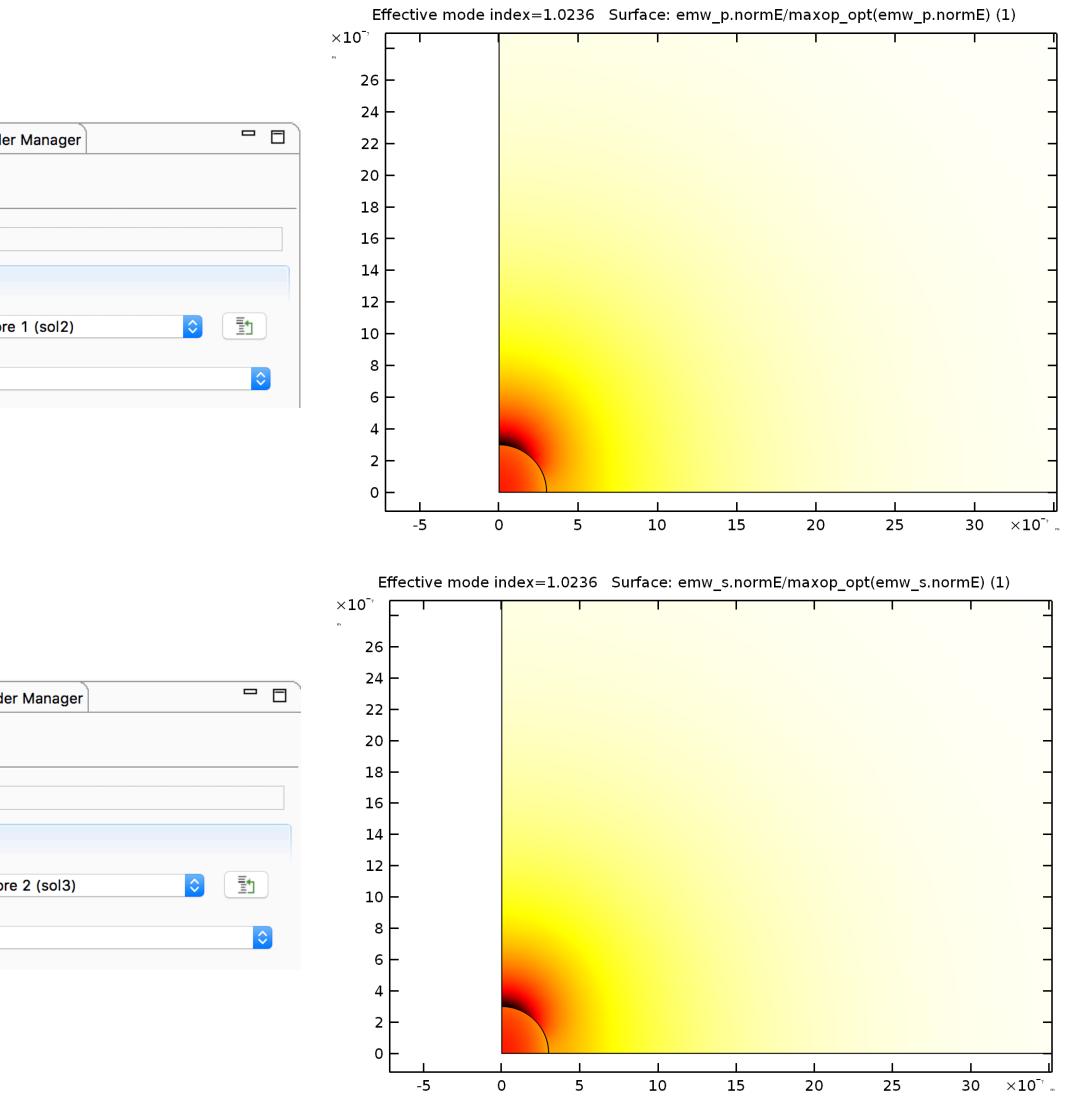
Step 3: Eigenfrequency

🔛 Settings 🛛 📑 Properties 🗟 Physics Bu	ilder Mana	ager					
Eigenfrequency							
= Compute C Update Solution							
Label: Eigenfrequency	Label: Eigenfrequency						
Study Settings							
Eigenfrequency search method:	Manu	al					
Desired number of eigenfrequencies:	2	0					
Unit:	Hz						
Search for eigenfrequencies around:	☑ 5	.36e9	Hz				
Eigenfrequency search method around shift	t: Close	st in absolute value	٥				
Include geometric nonlinearity							
Physics and variables Selection							
Modify model configuration for study ster	ер						
Physics interface	Solve for	Discretization					
Electromagnetic Waves, Frequen		Physics settings	•				
Electromagnetic Waves, Frequen		Physics settings	•				
Solid Mechanics Mysics settings							

for in each study step.

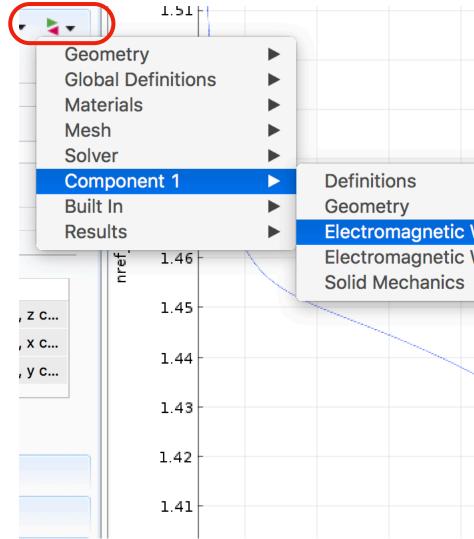
It is important to restrict the variables sought

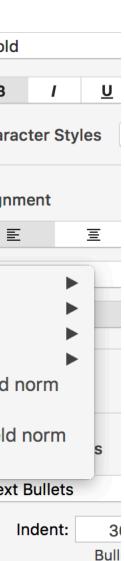
- For the mechanical solver, it is often necessary to include many modes to capture a full range of mechanical frequencies.
- The "search for eigenfrequencies around" option is also important



Optical post-processing I: visualization of solutions

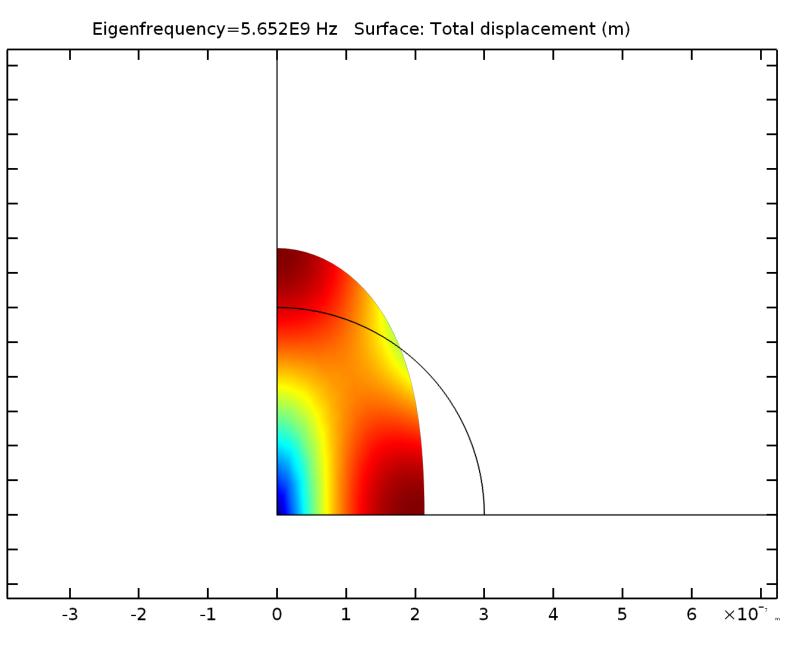
👬 Settings 🛛 📴 Properties 🗟 Physics Builder Manager			
Surface			
🛐 Plot			
		📊 Settings 🛛 📑 Prope	rties Physics Builde
Label: Surface		2D Plot Group	
Data		OI Plot	
Data and From normal		Label: Electric Field (er	mw_p)
Data set: From parent		▼ Data	
			Chudu 1/Colution Stor
Expression	≣]• ≒•	Data set:	Study 1/Solution Stor
Expression:		Effective mode index:	1.0236
emw_p.normE/maxop_opt(emw_p.normE)			
Unit:			
1	v		
👪 Settings 🔪 📴 Properties 🗟 Physics Builder Manager Surface			
Plot			
Label: Surface		Settings Frope	rties Physics Builde
Data		2D Plot Group	
Data		FIOT	
Data set: From parent		Label: Electric Field (e	mw_s)
		▼ Data	
Expression	≣ ĭ• \ -	Data set:	Study 1/Solution Stor
Expression:		Effective mode index:	1.0236
emw_s.normE/maxop_opt(emw_s.normE)			
Unit:			
1			


Decorintion

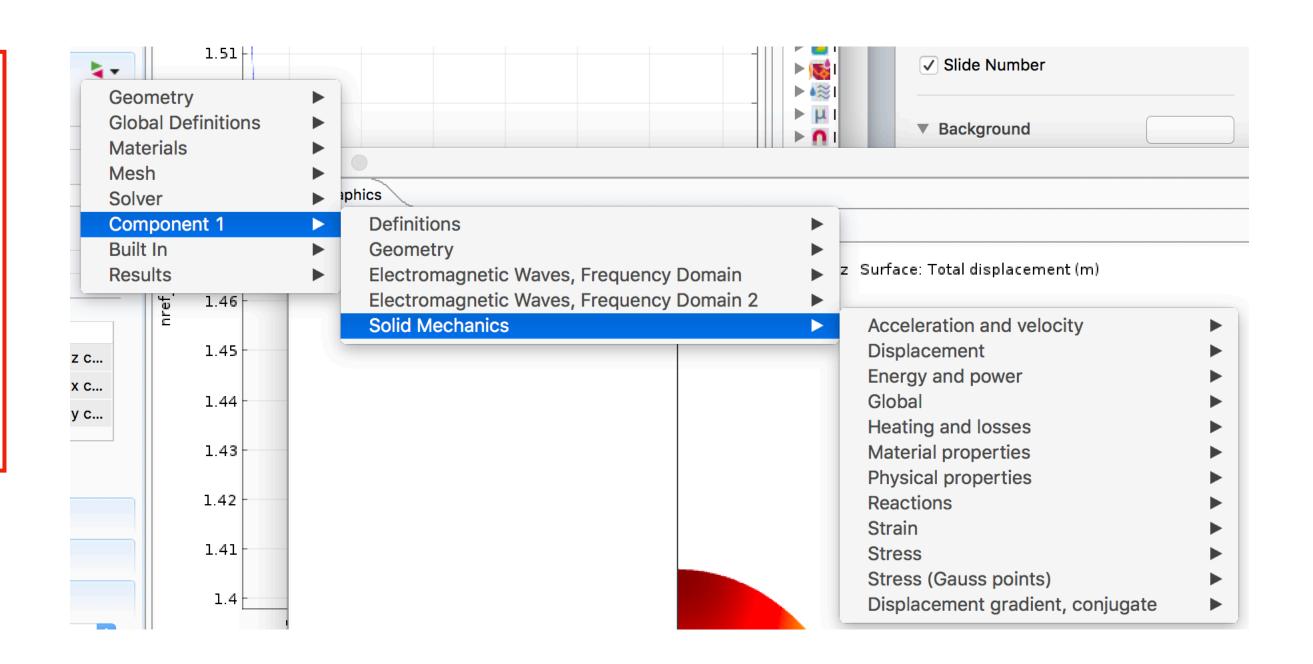


Optical post-processing I: visualization of solutions

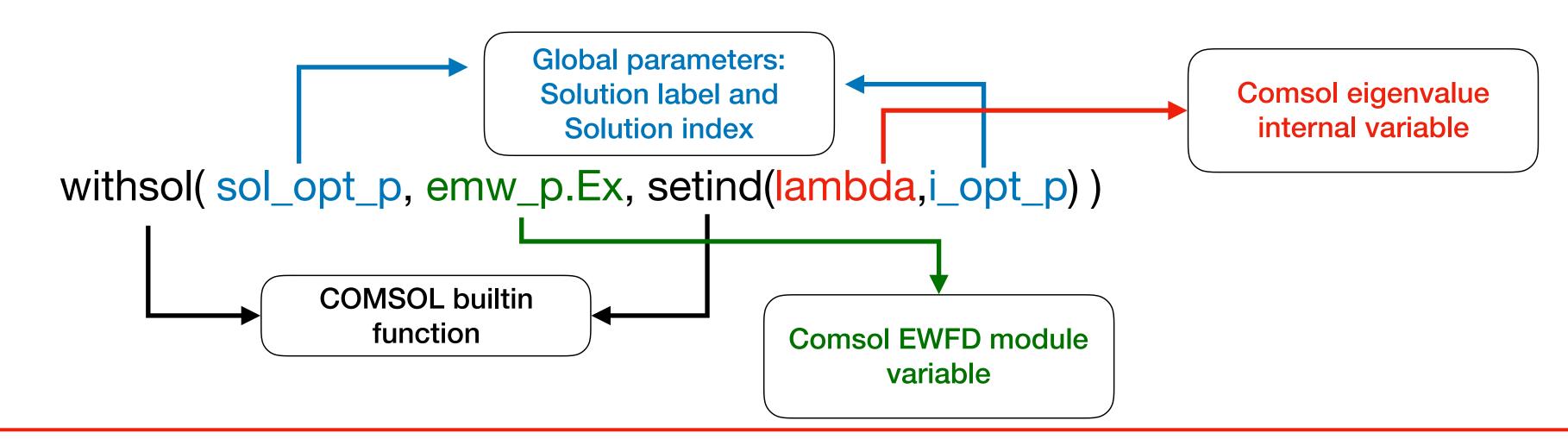
 All the electromagnetic variables that are defined within COMSOL's module are directly accessible using emw_p.var_name, where var_name is the COMSOL variable name. A full list of those is at reach.


	24 - 22 - 20 - 18 - 16 - 14 - 12 -			Bo B Cha Alig
Waves, Frequency Domain > Waves, Frequency Domain 2 >	¹⁰ - Currents and charge Electric Energy and power		Electric displacement field (spatial fram Background electric field (spatial fram	me)
	Global Heating and losses Magnetic Material properties emw_p.alphaport - Complex propagation constar emw_p.freq - Frequency emw_p.iomega - Complex angular frequency emw_p.kz - Out-of-plane wave number emw_p.omega - Angular frequency	nt	Electric field (spatial frame) Polarization (spatial frame) emw_p.normD - Electric displacement emw_p.normE - Electric field norm emw_p.normEi - Instantaneous electric emw_p.normP - Polarization norm	field

Mechanical post-processing I: visualization of solutions


Settings Froperties	s 🔋 Physics Builder Manager		
2D Plot Group		I	
💽 Plot 🕪 🔶 并			×10 ⁻ °
Label: Mode Shape (solid)			· 60
Label: Mode Shape (solid)			55
- Data			50
			45
Data set: S	tudy 1/Solution 1 (sol1)		40
			35
Eigenfrequency (Hz): 5	.652E9	\$	30
			25
Settings Froperties	s Physics Builder Manager		20 15
Surface			10
💽 Plot 🕪 🔶 并			5
			0
Label: Surface 1			-5
Data			-10
Data set: From parent			
Expression		≣ ĭ - \ -	
Expression:			
solid.disp			
Unit:			
m		<u>~</u>	
Description:			

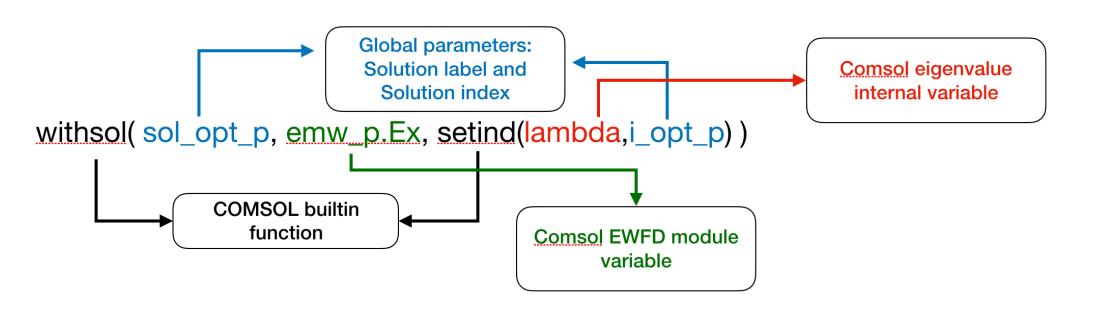
Mechanical post-processing I: visualization of solutions


 All the solid mechanics variables that are defined within COMSOL's module are directly accessible using solid.var_name, where var_name is the COMSOL variable name. A full list of those is at reach.

Optical post-processing II: visualization of solutions - Ep and Es variables

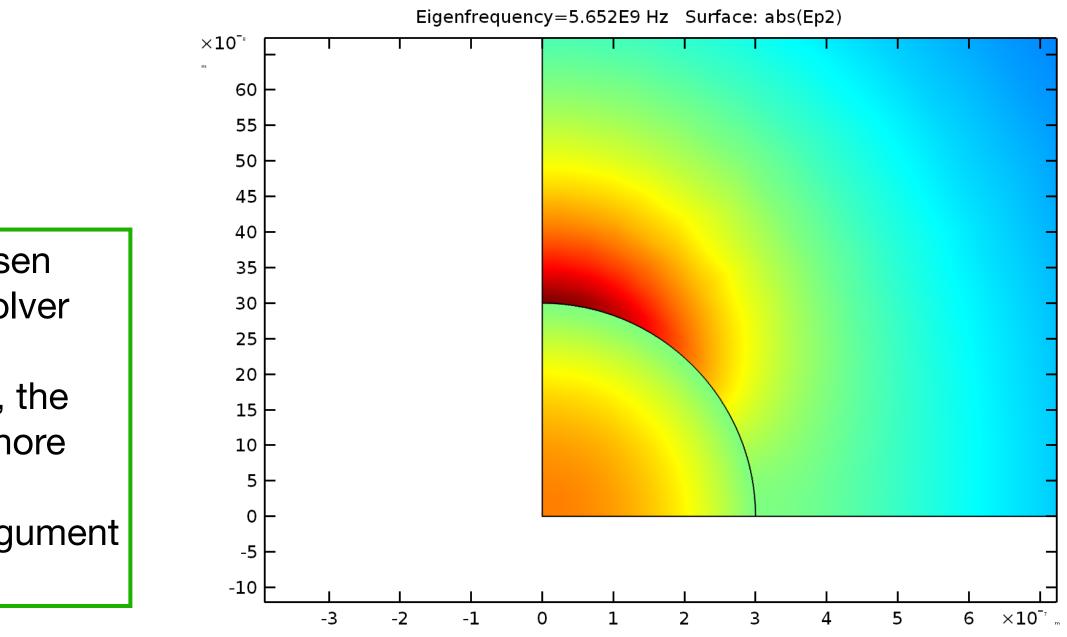
- the optical fields for the pump and scattered field used in the gain calculation are defined as:
- Ep:
- Ep1: Ex-component for the pump mode
- Ep2: Ey-component for the pump mode
- Ep3: Ez-component for the pump mode
- Es:
- Es1: Ex-component for the scattered mode
- Es2: Ey-component for the scattered mode
- Es3: Ez-component for the scattered mode

The output of the withsol() function is always the emw_p.Ex field stored in 'i_opt_p' index of solution 'sol_opt_p'. This function will override, any selection of dataset during a plot or evaluation of this function.


• These COMSOL variables are not directly used in the Brillouin gain calculations. Instead, within the "custom variables" defined earlier,

To define these variables we explore the built-in COMSOL function withsol(). For instance, the Ep1 variable is given by:

Optical post-processing II: visualization of solutions - Ep and Es variables

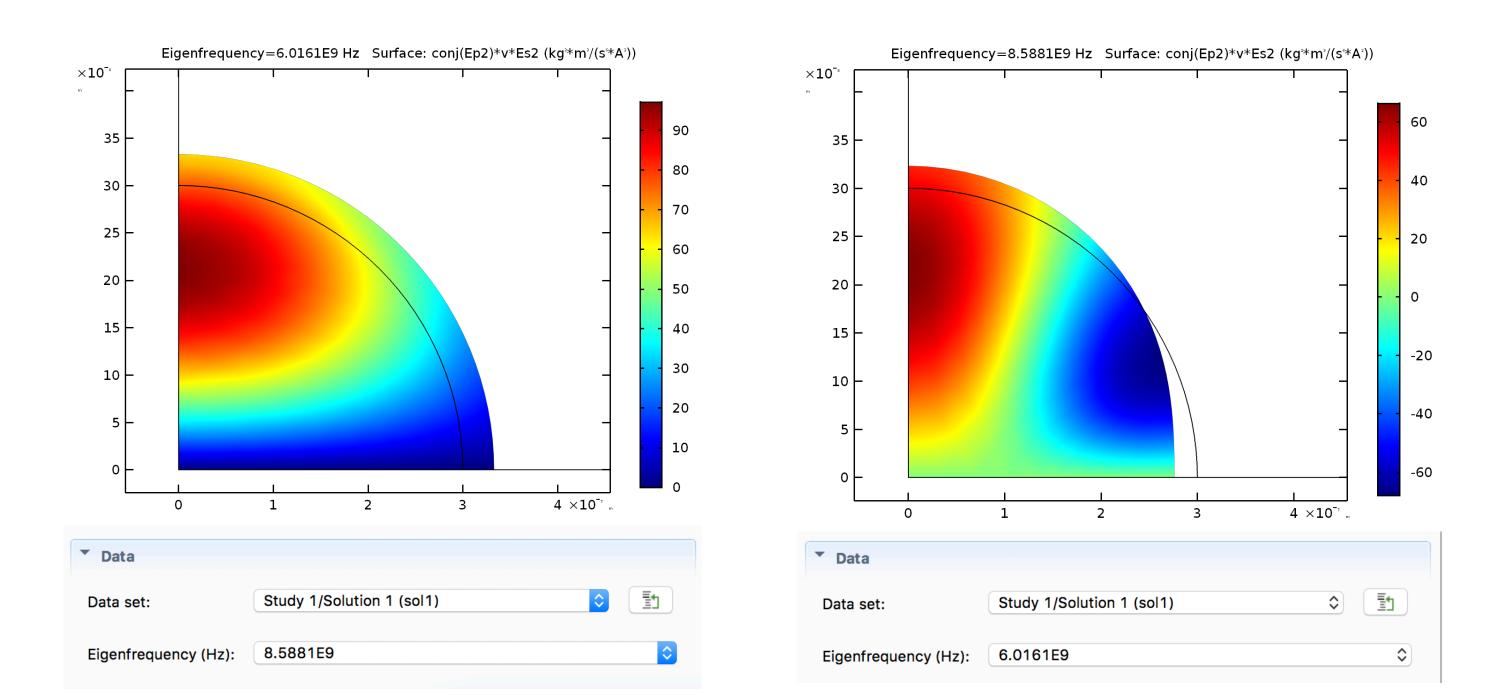


This function will override, any selection of dataset during a plot or evaluation of this function.

For example, during a plot — even if one selects the mechanical mode dataset — the resulting plot will be the one defined by the output of withsol():

🕶 Settings 📑 Prope	rties 🗟 Physics Builder Manager	
Surface		
on Plot ⊯ ← → →		
Label: Surface 1		
▼ Data		
Data set:	Study 1/Solution 1 (sol1)	
Eigenfrequency (Hz):	5.652E9	\$
Expression		≣_ ▼ 👌 ▼
Expression:		
abs(Ep2)		
Unit:		
V/m		<u>~</u>
Description		

Even though "sol 1" is chosen (which is the mechanical solver solution) and a mechanical eigenfrequency is selected, the expression abs(Ep2) will ignore these settings and use it definitions based on the argument of withsol()

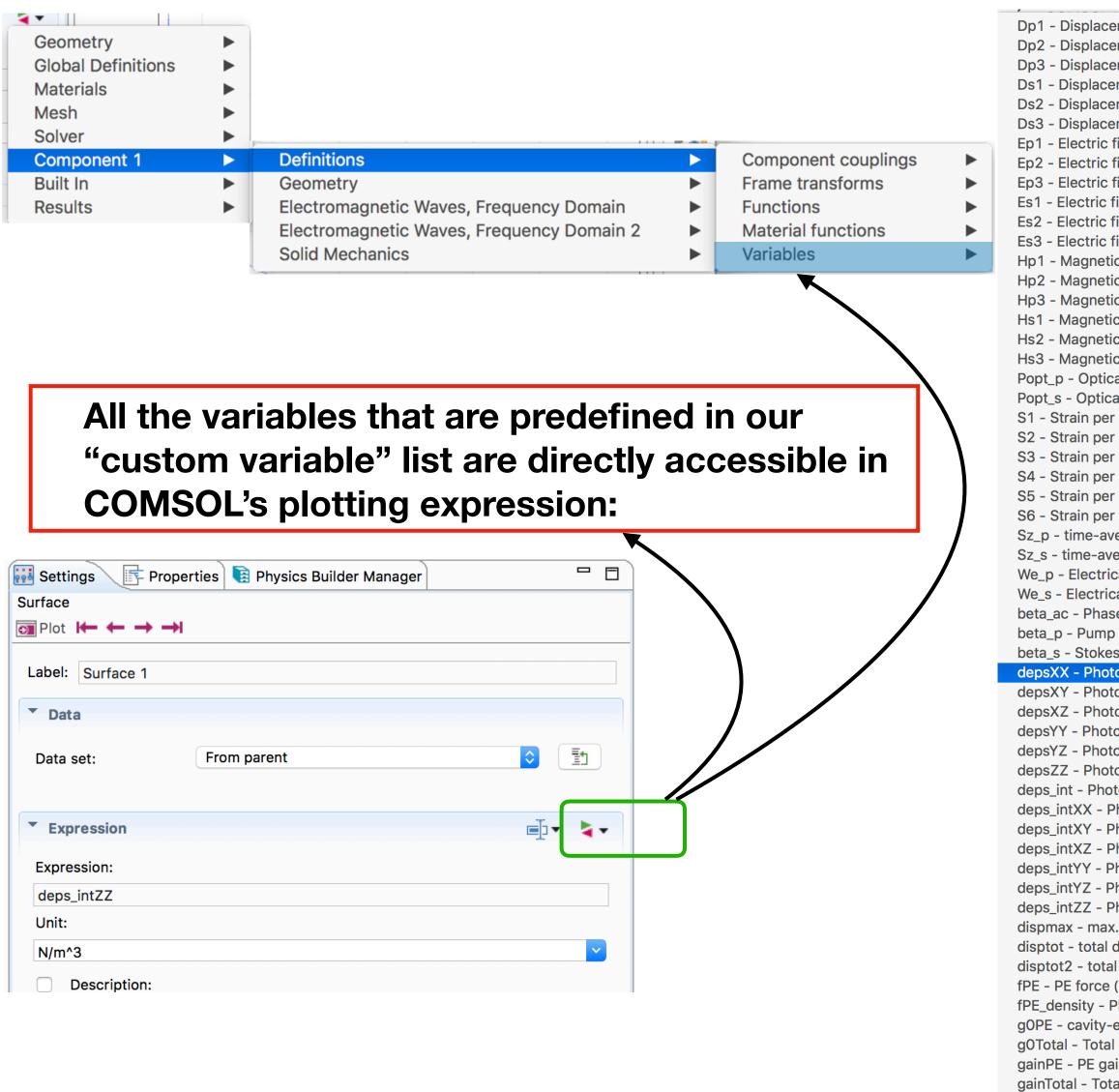


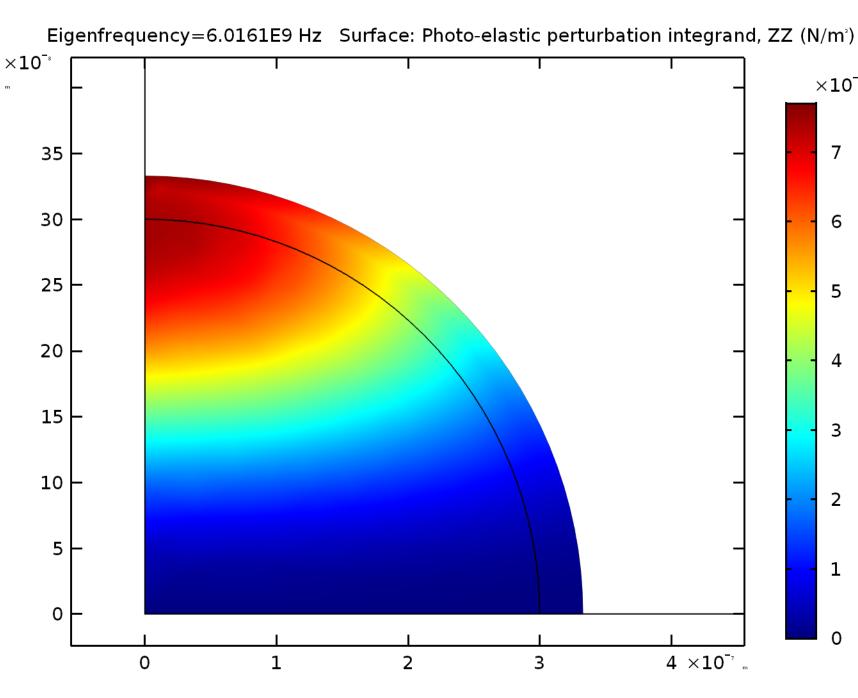
Optomechanical post-processing I: visualization of mixed variables

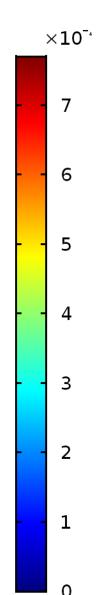
The great advantage of defining the pump and scattered wave mode variables (Ep,Es) arises when one want to visualize a given optomechanical product. Let's take the example of the quantity:

$E_{py}^*u_y E_{s_v}$: conj(Ep2)*v*Es2

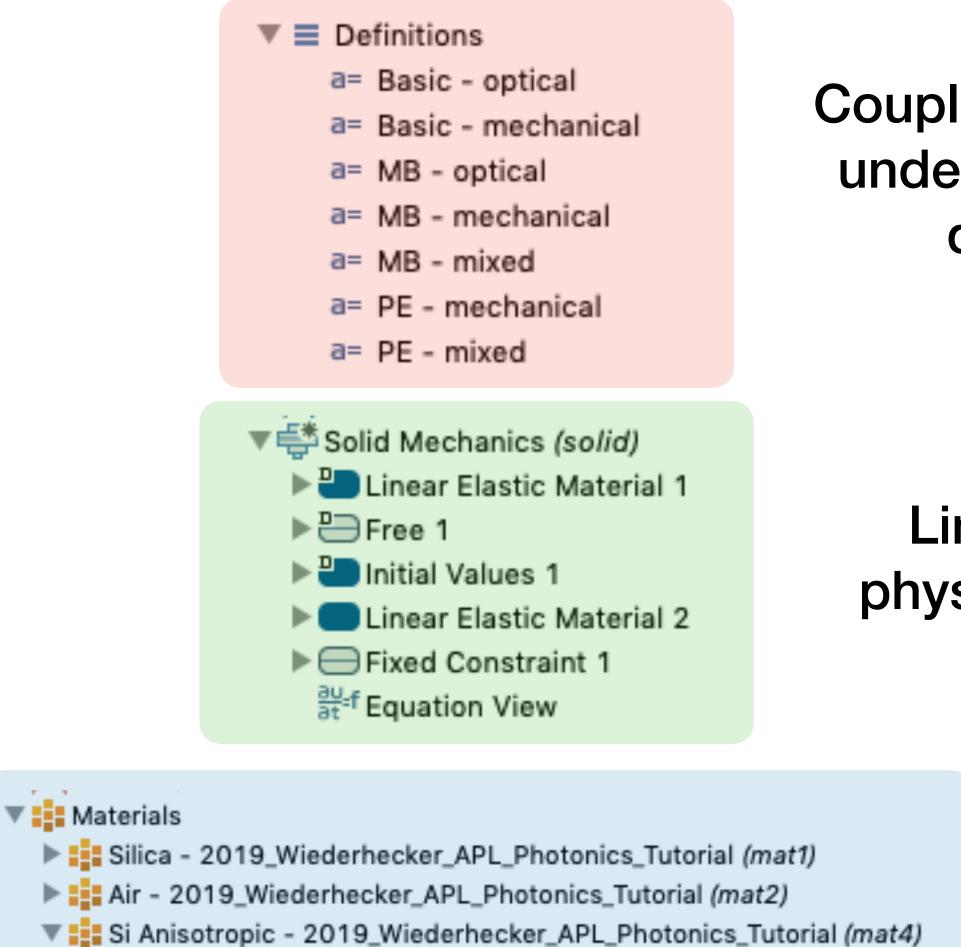
- u_v : mechanical displacement y-component: v in comsol
- E_{pv} : pump electric field y-component: Ep2 in comsol
- *E_{sv}* : scattered electric field y-component: Es2 in comsol


To be able to quickly skip through the several sought mechanical modes, the withsol() operator is **not used** in the mechanical solutions. This allows one to quickly choose the desired mechanical dataset (sol1) and the desired eigenfrequency to visualize the quantity of interest.



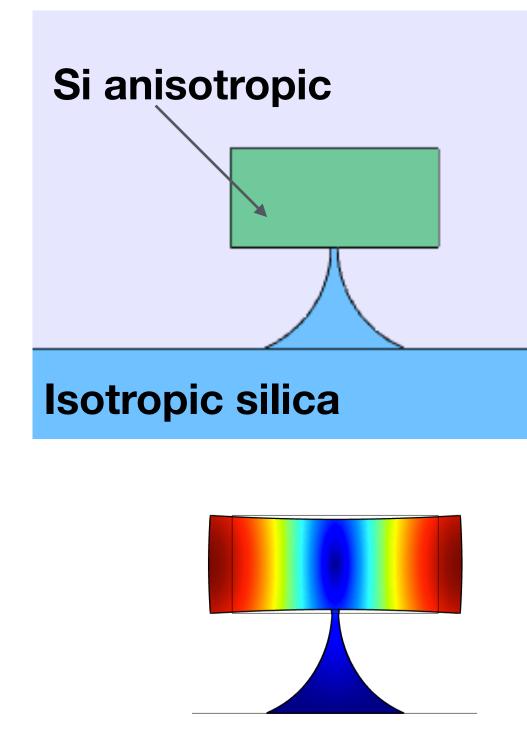

Optomechanical post-processing II: visualization of mixed, pre-defined, variables - photoelastic

Dp1 - Displacement field (p) - comp. 1 Dp2 - Displacement field (p) - comp. 2 Dp3 - Displacement field (p) - comp. 3 Ds1 - Displacement field (s) - comp. 1 Ds2 - Displacement field (s) - comp. 2 Ds3 - Displacement field (s) - comp. 3 Ep1 - Electric field (p) - comp. 1 Ep2 - Electric field (p) - comp. 2 Ep3 - Electric field (p) - comp. 3 Es1 - Electric field (s) - comp. 1 Es2 - Electric field (s) - comp. 2 Es3 - Electric field (s) - comp. 3 Hp1 - Magnetic field (p) - comp. 1 Hp2 - Magnetic field (p) - comp. 2 Hp3 - Magnetic field (p) - comp. 3 Hs1 - Magnetic field (s) - comp. 1 Hs2 - Magnetic field (s) - comp. 2 Hs3 - Magnetic field (s) - comp. 3 Popt p - Optical power integrated (p) Popt_s - Optical power integrated (s) S1 - Strain per unit length tensor 1, Voigt notation S2 - Strain per unit length tensor 2, Voigt notation S3 - Strain per unit length tensor 3, Voigt notation S4 - Strain per unit length tensor 4, Voigt notation S5 - Strain per unit length tensor 5, Voigt notation S6 - Strain per unit length tensor 6, Voigt notation Sz_p - time-average Poynting vector (p) - z-component Sz_s - time-average Poynting vector (s) - z-component We_p - Electrical energy (p) We_s - Electrical energy (s) beta_ac - Phase-matched Mechanical mode wavenumber beta_p - Pump mode wavenumber beta_s - Stokes mode wavenumber depsXX - Photo-elastic perturbation, XX depsXY - Photo-elastic perturbation, XY depsXZ - Photo-elastic perturbation, XZ depsYY - Photo-elastic perturbation, YY depsYZ - Photo-elastic perturbation, YZ depsZZ - Photo-elastic perturbation, ZZ deps_int - Photo-elastic perturbation integrand, total deps_intXX - Photo-elastic perturbation integrand, XX deps_intXY - Photo-elastic perturbation integrand, ZZ deps_intXZ - Photo-elastic perturbation integrand, XZ deps_intYY - Photo-elastic perturbation integrand, YY deps_intYZ - Photo-elastic perturbation integrand, YZ deps intZZ - Photo-elastic perturbation integrand, ZZ dispmax - max. displaceent disptot - total displacement disptot2 - total displacement square fPE - PE force (N/W/m) per unit length fPE_density - PE force density (N/W/m^3) gOPE - cavity-equivalent PE coupling rate [Hz] gOTotal - Total gO[rad/s] gainPE - PE gain[1/W/m] gainTotal - Total gain[W^-1*m^-1] int_norm_energy_p - Electric energy normalization integrand (s) int_norm_energy_s - Electric energy normalization integrand (p) keff - effective stiffness per unit length meff - effective mass per unit length



Anisotropic Silicon

There are three main changes needed to enable the use of anisotropic materials


Anisotropic, Voigt notation (AnisotropicVoGrp)

Basic (def)

Coupling coefficients under "PE - mixed" definitions

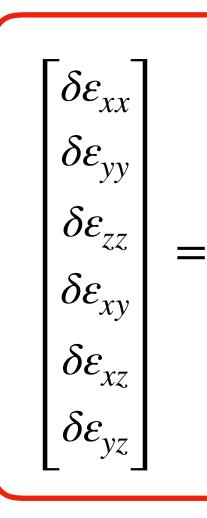
Linear Elastic physics definition

Silicon undercut waveguide were chose as an example of the use of Anisotropic materials

Mechanical mode calculated using anisotropic Si

Material properties

Anisotropic Silicon: Coupling coefficients

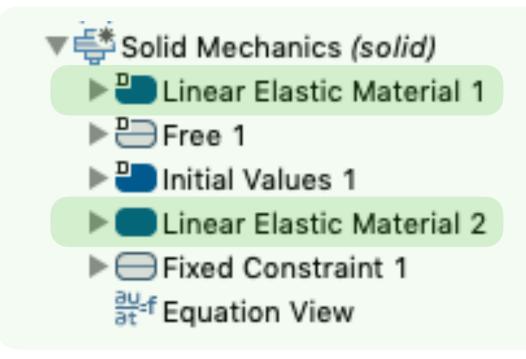

Coupling coefficients under "PE - mixed" definitions

- Definitions
 a= Basic optical
 a= Basic mechanical
 a= MB optical
 a= MB mechanical
 a= MB mixed
 a= PE mechanical
 - a= PE mixed

Notice that we chose to use symmetric materials in the Voigt notation which is also the reason for the factor of two in the mixed strain components (S₄, S₅ e S₆).

Photo-elastic perturbation has now to include all therms

Ŧ	Variables			
	Name	Expression	Unit	Description
	depsXX	-epsilon0_const * material.def.epsilonr_iso^(2) * (F/m²	Photo-elastic perturbatio
	depsYY	-epsilon0_const * material.def.epsilonr_iso^(2) * (F/m ²	Photo-elastic perturbatio
	depsZZ	-epsilon0_const * material.def.epsilonr_iso^(2) * (F/m²	Photo-elastic perturbatio
	depsXY	-epsilon0_const * material.def.epsilonr_iso^(2) * (F/m²	Photo-elastic perturbatio
	depsXZ	-epsilon0_const * material.def.epsilonr_iso^(2) * (F/m²	Photo-elastic perturbatio
	depsYZ	-epsilon0_const * material.def.epsilonr_iso^(2) * (F/m²	Photo-elastic perturbatio

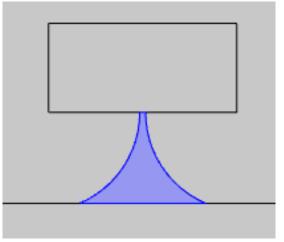


$$-\varepsilon_{0}n^{4}\begin{bmatrix}p_{11} & p_{12} & p_{13} & p_{14} & p_{15} & p_{16}\\p_{12} & p_{22} & p_{23} & p_{24} & p_{25} & p_{26}\\p_{13} & p_{23} & p_{33} & p_{34} & p_{35} & p_{36}\\p_{14} & p_{24} & p_{34} & p_{44} & p_{45} & p_{46}\\p_{15} & p_{25} & p_{35} & p_{45} & p_{55} & p_{56}\\p_{16} & p_{26} & p_{36} & p_{46} & p_{56} & p_{66}\end{bmatrix}\begin{bmatrix}S_{1}\\S_{2}\\S_{3}\\2S_{4}\\2S_{5}\\2S_{6}\end{bmatrix}$$

Anisotropic Silicon: Solid Mechanics Physics

Linear Elastic physics definition

Linear Elastic Materi
only for the waveguide
assigned as Anisotro


Linear Elastic Material	
Nearly incompressible material	
Solid model:	
Anisotropic	٥
Material data ordering:	
Voigt (XX, YY, ZZ, YZ, XZ, XY)	0
Elasticity matrix, Voigt notation:	
D From material	٥
Density:	
ρ From material	۵

Very important: Since Voigt notation was used for defining the coupling coefficients, it must also be used in the linear elastic settings

ial 1 was set le (silicon) and opic material

Linear Elastic Material 2 was set only for the pedestal (silica) and remained as an Isotropic Material with elastic properties given by the Young's modulus and Poisson's ratio

Nearly incompressible material	
Solid model:	
Isotropic	\$
Specify:	
Young's modulus and Poisson's ratio	0
Young's modulus:	
E From material	\$
Poisson's ratio:	
ν From material	0
Density:	
ρ From material	0

Anisotropic Silicon: Material Properties

Material properties: Elasticity Matrix

Silica - 2019_Wiederhecker_APL_Photonics_Tutorial (mat1)

- Air 2019_Wiederhecker_APL_Photonics_Tutorial (mat2)
- Si Anisotropic 2019_Wiederhecker_APL_Photonics_Tutorial (mat4)
 - Basic (def)
 - Anisotropic, Voigt notation (AnisotropicVoGrp)

					Property Electrical conductivity		Variable		Unit S/m	Prop Basi
	Property Electrical conductivity		Va si¢		Relative permeal		sigma mur_is		1	Basi
					Relative permitti	-	epsilo		1	Basi
	Relative permeability				Density	•	rho	2329[kg	kg/m³	Basi
					Elasticity matrix,	Voigt n	Edit	{C11, C		Anis
✓	Relative permittivity		ер	Yo	Young's modulus		E	165.26e9	Pa	Basi
	Density			Poisson's ratio nu		nu	0.046	1	Basi	
_			rh	p11 - ph	p11 - photoelast		-	-0.094		Basi
			{D	p12 - photoelastic tensor com p p44 - photoelastic tensor com p		-	0.017		Basi Basi	
			E			D44	-0.051	-		
			nu		0.046	1	Basi			
					0.017		Basi Basi Basi			
	p44 - photoelastic tensor com			1						
	0	Elasticity m	atrix,	Voig	t notation					
Syn	nmetric								•	
C11	C12	C13		C14	c	:15	C16			
C12	C22	C23		C24 C2	25 C	C26	6			
C13	C23	C33		C34	34 C3		C36			
C14	C24	C34		C44	c		C46			
C15	C25 C35 C26 C36			C45	C	:55	C56			
C16				C46	C	56	C66			

Elasticity matrix can be edit using right-click over it which pops-up a window for inserting each of the elasticity matrix components.

• Symmetric elasticity matriz were used;

 Each component component (Cij - capital "C") is defined under "Local Properties" of material's "Anisotropic" tab.

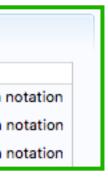
Si Anisotropic - 2019_Wiederhecker_APL_Photonics_Tutorial (mat4)	Name
Basic (def)	C11
Anisotropic, Voigt notation (AnisotropicVoGrp)	C12
	C13

Name	Expression	Unit	Description
C11	c11-((c11-c12)	Pa	c11 - elasticity matrix rota
C12	c12+((c11-c12)	Pa	c12 - elasticity matrix rota
C13	c12	Pa	c13 - elasticity matrix rota
C14	0[0:0]	Da	c14 - electicity matrix rota

• To allow for crystalline rotations of the material properties along the z-axis, we have written every elasticity matrix components (Cij) as a function of its principal axis components (cij) and the rotation angle (theta).

The principal axis components (c11, c12 and c44) are also defined under "Local Properties" of material's "Anisotropic" tab.

Basic (def)	s	Si Anisotropic - 2019_Wiederhecker_APL_Photonics_Tutorial (mat4)
		Basic (def)
Anisotropic, Voigt notation (AnisotropicVoGrp)	ł	Anisotropic, Voigt notation (AnisotropicVoGrp)


▼ 5

* Loca	l Properties		
Name	Expression	Unit	Description
c11	166e9[Pa]	Pa	xx-elasticity matrix for silicon - Voigth
c12	64e9[Pa]	Pa	yy-elasticity matrix for silicon - Voigth
c44	79e9[Pa]	Pa	xy-elasticity matrix for silicon - Voigth

The rotation angle (theta) is defined as a "Parameters" under the "Global Definitions" tab

Paramet	ers		
Name	Expression	Value	Description
theta	45 [degree]	0.7854 rad	rotation angle over z-axis

Anisotropic Silicon: Material Properties

Material properties: Photoelasticity Matrix

- Air 2019_Wiederhecker_APL_Photonics_Tutorial (mat2)
- Si Anisotropic 2019_Wiederhecker_APL_Photonics_Tutorial (mat4)

Basic (def)

Anisotropic, Voigt notation (AnisotropicVoGrp)

Local Pro	perties		
Name	Expression	Unit	Description
P11	p11-((p11-p12)/2-p		p11 - photoelastic component r
P12	p12+((p11-p12)/2		p12 - photoelastic component r
P13	p12		p13 - photoelastic component r

As in the isotropic case, each photoelastic tensor components (Pij - capital "P") are defined under the "Local Properties" tab into material's "Basic (def)"

• To allow for crystalline rotations of the photo elastic tensor along the z-axis, we have written every photoelastic tensor components (Pij) as a function of its principal axis components (pij - lowercase "p") and the rotation angle (theta).

• The principal axis components (p11, p12 and p44) are also defined under "Local Properties" tab into material's "Basic (def)"

Local Prop	perties		
Name	Expression	Unit	Description
p11	-0.094		p11 - photoelastic tensor compo
p12	0.017		p12 - photoelastic tensor compo
p44	-0.051		p44 - photoelastic tensor compo
044	-44 11-44 -4010 -		

• The rotation angle (theta) is defined as a "Parameters" under the "Global Definitions" tab

Parameters									
Name Expression		Value	Description						
theta	45 [degree]	0.7854 rad	rotation angle over z-axis						

Anisotropic Silicon: z-axis Tensor Rotation

For both the elasticity matrix (C) and the photoelastic tensor (P) we have allowed for rotation of the crystalline axis with respect to the geometry. Our choice was to explicitly write each of the rotated tensor componentes (Cij or Pij) following Auld's book^[1]. Bellow we show the example for the elasticity matrix in the Voigt notation, but the same approach can be used for the photoelastic tensor since it holds the same symmetry of the elasticity matrix:

C =	C 11	<i>C</i> 12	<i>C</i> 13	0	0	C16
	<i>C</i> 12	<i>C</i> 11	<i>C</i> 13	0	0	-C16
	<i>C</i> 13	<i>C</i> 13	<i>C</i> 33	0	0	0
	0	0	0	<i>C</i> 44	0	0
	0	0	0	0	<i>C</i> 44	0
	<i>C</i> 16	<i>-C</i> 16	0	0	0	$ \begin{array}{c} C16 \\ -C16 \\ 0 \\ 0 \\ 0 \\ 0 \\ C66 \\ \end{array} $

Notice that for materials with cubic symmetry and without any anisotropy:

$$c_{44} = \left(\frac{c_{11} - c_{12}}{2}\right)$$

and the **C** matrix is reduced back to the isotropic matrix

[1] B. A. Auld, Acoustic fields and waves in solids, 2nd ed., no. v. 2. Wiley, 1992.

$$C11 = c_{11} - \left(\frac{c_{11} - c_{12}}{2} - c_{44}\right)\sin^2(2\theta)$$

$$C12 = c_{12} + \left(\frac{c_{11} - c_{12}}{2} - c_{44}\right)\sin^2(2\theta)$$

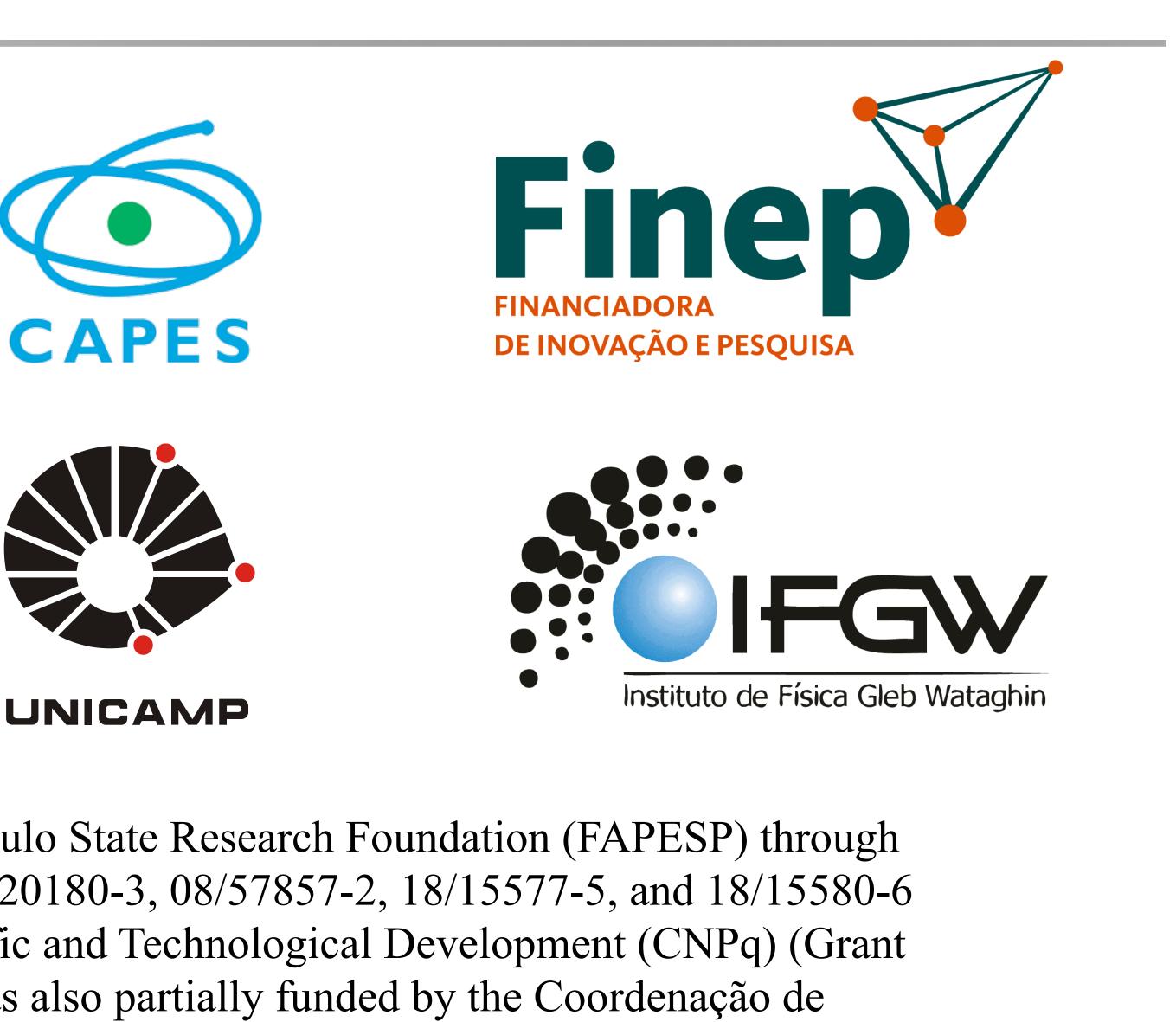
$$C13 = c_{12}$$

$$C16 = -\left(\frac{c_{11} - c_{12}}{2} - c_{44}\right)\sin(2\theta)\cos(2\theta)$$

$$C33 = c_{11}$$

$$C44 = c_{44}$$

$$C66 = c_{44} + \left(\frac{c_{11} - c_{12}}{2} - c_{44}\right)\sin^2(2\theta)$$



Financial support

This research was funded by the São Paulo State Research Foundation (FAPESP) through Grant Nos. 12/17765-7, 12/17610-3, 13/20180-3, 08/57857-2, 18/15577-5, and 18/15580-6 and by the National Council for Scientific and Technological Development (CNPq) (Grant No. 574017/2008-9). This study was also partially funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) (Finance Code 001).

