Second Note on a Quaternary Group of 51840 Linear Substitutions. By Dr. G. G. Morrice. Received and Read April 14th, 1892.

In considering complex numbers of the form

$$
a_{0} \rho_{0}+a_{1} \rho_{1}+a_{2} \rho_{2}+\& c .
$$

we may attribute to the symbols $\rho_{0}, \rho_{1}, \rho_{2}, \& c$. any significance we please, provided that they conform to tho proper multiplication-table. They may be steps along lines, rotations, strains, substitutions, or what not.
In the matter now under considuration they are quaternary matrices.
Let us start from a quaternion $d+a i+b j+c k$; to multiply this by a second quaternion $d^{\prime}+a^{\prime} i+b^{\prime} j+c^{\prime} k$ is to subject the parameters c, b, a, d to the matrix

$$
\left(\left.\begin{array}{rrrr}
d^{\prime}, & a^{\prime}, & -b^{\prime}, & c^{\prime} \tag{1}\\
-a^{\prime}, & d^{\prime}, & c^{\prime}, & b^{\prime} \\
b^{\prime}, & -c^{\prime}, & d^{\prime}, & a^{\prime} \\
-c^{\prime}, & -b^{\prime}, & -a^{\prime}, & d^{\prime}
\end{array} \right\rvert\,\right.
$$

viz., we produce the quaternion

$$
d^{\prime \prime}+a^{\prime \prime} i+b^{\prime \prime} j+c^{\prime \prime} k
$$

where

$$
\begin{aligned}
& a^{\prime \prime}=a d^{\prime}+a^{\prime} d-\left(b c^{\prime}-b^{\prime} c\right), \\
& b^{\prime \prime}=t l l^{\prime} \mid l^{\prime} d-\left(r t^{\prime}-r^{\prime} \prime \prime\right), \\
& c^{\prime \prime}=c l^{\prime}+c^{\prime} d-\left(a b^{\prime}-a^{\prime} b\right), \\
& d^{\prime \prime}=-a a^{\prime}-b b^{\prime}-c c^{\prime}+d d^{\prime} .
\end{aligned}
$$

The matrix (1) may be exhibited as a lincar function of the matrices

$$
\left|\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right|, \quad\left(\left.\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array} \right\rvert\,\right.
$$

$$
\left|\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right|, \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right) \quad \ldots \ldots \ldots \ldots(2)
$$

as appears at once if we multiply these severally by the scalar parameters a, b, c, d and add. Moreover these four matrices form a group, and indeed we might regard the symbols $i, j, k, 1$ as being nothing else than symbols for these matrices. That a quaternion is a binary matrix has long been recognised, but it appears to me that its connection with quaternary matrices is even more obvious, and has a better claim to notice, because without it the composition formulæ

$$
a^{\prime \prime}=a d^{\prime}+a^{\prime} d-\left(b c^{\prime}-b^{\prime} c\right), \& c
$$

present no definite idea to our minds.
The process of exhibiting a matrix as a linear function of matrices of special forms occurs in kinematics. A strain is split up into the sum of a uniform dilatation, a skew strain, and a wry shear. The fact that the components form a group is not emphasized.
I now recur to the note on this sabject which I had the honour of reading to this Society on December 12th, 1889.

We have four functions $z_{1}, z_{2}, z_{3}, z_{4}$ connected with the multiplication by 3 of the normal periods of the double theta-functions, viz.,
where

$$
\begin{aligned}
& z_{1}=X_{01}-X_{02}, \\
& z_{2}=X_{10}-X_{20}, \\
& z_{3}=X_{11}-X_{22}, \\
& z_{4}=X_{12}-X_{21},
\end{aligned}
$$

$$
X_{. \beta}\left(v_{1}, v_{9} ; \tau_{11}, \tau_{12}, \tau_{23}\right)
$$

$$
=p_{12}^{\{(k-1)} \cdot e^{\left\langle\tau / k \cdot \phi(0, \rho)+\left(2 v_{1}+2 f v_{2}\right)(\pi\right.} . \vartheta\left(\begin{array}{l}
k v_{1}+a r_{11}+\beta r_{19} \\
k v_{9}+a \tau_{19}+\beta r_{98}
\end{array} k r_{11}, k r_{18}, k r_{99}\right)
$$

$$
\times \frac{e^{k i \pi, \phi\left(v_{1}, v_{0}\right)}}{\vartheta\left(\tau_{11}, r_{12}, \tau_{22}\right)^{k}} .
$$

I found a sulb-group of 4 linear substitutions of the periods ω, all of which were also to be found in the z-group, i.e., the group of 51840 linear substitutions which the functions $z_{1}, z_{2}, z_{3}, z_{4}$ undergo; but I
1892.] Quaternary Group of 51840 Linear Substitutions. 215
did not notice that the simplicity of the group was accounted for by its isomorphism with quaternions. In fact my ω sab-group is exactly (2).

Following Heinrich Burkhardt, "Untersuchungen aus dem Gebiete der Hyperelliptischen Modulfunctionen," Math. Annalen, xxxpin., 2, our matrices (2) are

$$
B^{3} D, \quad(B D)^{2} B^{2}, \quad B D B, \quad 1,
$$

to which we have, as corresponding matrices in the z-group,

$$
\begin{array}{ll}
\left(\left.\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array} \right\rvert\,,\right. & \left(\left.\begin{array}{rrrr}
-1 & 0 & -1 & 1 \\
0 & 1 & 1 & 1 \\
-1 & 1 & 0 & -1 \\
1 & 1 & -1 & 0
\end{array} \right\rvert\,\right. \\
\left(\left.\begin{array}{rrrr}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 \\
1 & 1 & -1 & 0 \\
1 & -1 & 0 & 1
\end{array} \right\rvert\,,\right. & \left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)
\end{array}
$$

If then we multiply by the scalar parametors a, b, c, d, and add, we find that when the periods ω are subjected to the matrix

$$
\left(\left.\begin{array}{rrrr}
d, & a, & -b, & c \\
-a, & d, & c, & b \\
b, & -c, & d, & a \\
-c, & -b, & -a, & d
\end{array} \right\rvert\,\right.
$$

the functions $z_{1}, z_{2}, z_{3}, z_{4}$ are subjected to the matrix

$$
\left\{\left.\begin{array}{rrrr}
d-b, & c-a, & -b+c, & b+c \\
c+a, & d-b, & b+c, & b-c \\
-b+c, & b+c, & d-c, & -b-a \\
b+c, & b-c, & -b+a, & d+c
\end{array} \right\rvert\,\right.
$$

We shonld have expected to arrive at a matrix of the same form, but with the signs of the four elements in the top corner on the right-

216 A Quaternary Group of 51840 Linear Substitutions: [April 14,

 hand side reversed, viz.,$$
\left\{\left.\begin{array}{rrr}
d-b, & c-a, & b-c,-b-c \tag{3}\\
c+a, & d+b, & -b-c,-b+c \\
-b+c, & b+c, & d-c,-b-a \\
b+c, & b-c,-b+a, & d+c
\end{array} \right\rvert\,\right.
$$

for we can easily verify that

$$
\begin{align*}
& =\left(\left.\begin{array}{cccc}
d^{\prime \prime}-b^{\prime \prime}, & \ldots, & \ldots, & . . . \\
\ldots, & \ldots, & \ldots, & \ldots \\
\ldots, & \ldots, & \ldots, & \ldots \\
\ldots, & \ldots, & \ldots, & \ldots
\end{array} \right\rvert\,\right. \tag{4}
\end{align*}
$$

where

$$
d^{\prime \prime}=-a a^{\prime}-b b^{\prime}-c c^{\prime}+d d^{\prime}, \& c . ;
$$

that is: the matrix (3) has the samelaw of composition as quaternions.
We seem to require a notation for expressing the fact that the matrix (4) arises from the matrix (3) in two distinct ways: either by subjecting the letters c, b, a, d in the matrix to the matrix

$$
\left(\left.\begin{array}{rrrr}
d^{\prime}, & a^{\prime}, & -b^{\prime}, & c^{\prime} \\
-a^{\prime}, & d^{\prime}, & c^{\prime}, & b^{\prime} \\
b^{\prime}, & -c^{\prime}, & d^{\prime}, & a^{\prime} \\
-c^{\prime}, & -b^{\prime}, & -a^{\prime}, & d
\end{array} \right\rvert\,\right.
$$

or multiplying (3) in the ordinary way by the matrix

$$
\left(\left.\begin{array}{cccc}
d^{\prime}-b^{\prime}, & \ldots, & \ldots, & \ldots \\
\ldots, & \ldots, & \ldots, & \ldots \\
\ldots, & \ldots, & \ldots, & \ldots \\
\ldots, & \ldots, & \ldots, & \ldots
\end{array} \right\rvert\,\right.
$$

1892.] On Skew Surfaces applicable upon a given Skew Surface. 217

It is only an extension to complex numbers generally of what is familiar in the case of vectors, viz., that the linear and vector function of a vector is a ternary matrix, but there should be a notation independent of the representation of matrices by complex nambers.

An example may be cited for binary matrices. Cayley, Messenger of Mathematics, Vol. xiv., p. 178, gives, for a binary matrix Q such that

$$
q Q-Q q^{\prime}=0
$$

the form

$$
\left(\left.\begin{array}{ll}
-f \xi-g \eta-h \zeta, & b \xi-a \eta+h \omega \\
-c \xi+a \zeta+g \omega, & c \eta-b \zeta+f \omega
\end{array} \right\rvert\,\right.
$$

and we require a notation to show that this is derived by subjecting the elements of the matrix

$$
\left(\left.\begin{array}{ll}
\xi, & \eta \\
\zeta, & \omega
\end{array} \right\rvert\,\right.
$$

to the matrix

$$
\left|\begin{array}{rrrr}
-f, & -g, & -h, & 0 \\
b, & -a, & 0, & h \\
-g, & 0, & a, & g \\
0, & g, & -b, & f
\end{array}\right|
$$

Note on the Slew Surfaces applicable upon a given Sleew Surface. By Prof. Cayley. Received March 26th, 1892. Read April 14th, 1892.

The question was considered by Bonnet-§ 7 of his "Mémoire sur Ia théorie gónérale dos Surfacos," Jour. Ecole Polyt., Cah. 32 (1848); I resume it hero, making a greater use of the line of striction.

