
Scanning Containers for
Vulnerabilities on Kubernetes

Clusters

AUGUST 2018

AUTHOR:
Roberto
Soares

CERN IT-CM

SUPERVISORS(S):

Ricardo Brito da
Rocha

CERN openlab Report 2018

Project Specification

The interest in using containers to package applications is constantly growing in the software
development community, especially with new technologies such as Kubernetes being adopted
more frequently as well [1] [2]. At the same time, there is not an easy way for developers to
check if a container image contains security vulnerabilities, this means that they could be running
containers in their infrastructures that are vulnerable to serious cybersecurity attacks.

The idea of this project is to develop a tool that will find common security vulnerabilities such
as CVE (Common Vulnerabilities and Exposures) in container images and report the findings
back to the people using such images. To help with that, there are a few tools that try to do
that by using static analysis of the layers that make up the container image. The first one is an
open-source tool called Clair developed by CoreOS [3], and the other is Atomic Scan developed
by Red Hat [4].

The aim of this project is to use one of these tools in Kubernetes clusters to scan running
containers and report the results back to the cluster owner. Ideally, this functionality would also
be implemented on the OpenStack Magnum project so that all OpenStack clouds can provide this
to their users.

Scanning Containers for Vulnerabilities on Kubernetes Clusters ii

CERN openlab Report 2018

Abstract

On this project, we chose to work with Clair, the tool developed by CoreOS, which uses static
analysis to find vulnerabilities in container images. To use Clair, we had to build a Python client,
called ClairScanner, that communicates with the Clair v1 API. We also had to build a tool called
KubeScanner, which runs on Kubernetes clusters and uses the ClairScanner in order to analyse
containers that are running on Kubernetes pods. After receiving the results of the analysis from
the ClairScanner, the KubeScanner then communicates with the Kubernetes API in order to report
the results back to the cluster owner by labeling the pods that were analysed with the findings.

After deploying this solution on the CERN cloud, this project also had the goal of pushing this
to the OpenStack Magnum project upstream, which is the OpenStack component responsible for
creating clusters for OpenStack clouds.

Scanning Containers for Vulnerabilities on Kubernetes Clusters iii

CERN openlab Report 2018

Contents

Contents iv

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1
1.3 Solution . 1

2 Background 2
2.1 Docker . 2
2.2 Kubernetes . 2
2.3 OpenStack & Magnum . 3
2.4 CoreOS Clair . 4

3 Implementation 5

4 Results 7

5 Conclusions & Future Work 8

List of Figures 9

Bibliography 10

Scanning Containers for Vulnerabilities on Kubernetes Clusters iv

CERN openlab Report 2018

1. Introduction

1.1 Context

There is a rapidly growing interest in the software development community to move from mono-
lithic applications to microservices, and in the heart of this change is the idea of packaging appli-
cations in containers.

A container is a standardized unit of software. They are like a package where developers put
everything they need to run their applications: code, runtime, system tools, libraries, settings,
etc. This means that a container is very portable. Containers are also very lightweight, especially
compared to virtual machines, so it is quite fast to start a container that runs your application.
This performance combined with the portability is what makes it perfect to treat containers as
disposable units by using orchestration engines such as Kubernetes.

Kubernetes is a container orchestration engine that is used to manage containers automat-
ically across a cluster of machines. Kubernetes deletes and creates new containers by itself
by obeying some configuration constraints (e.g. the number of replicas of a container needs to
always be three).

With this scenario in mind, it is easy to see that it is very trivial and fast to have various
containers running in an infrastructure. One just needs to go to public repositories of container
images, download images found there and run them with an engine of choice.

1.2 Problem

The problem we are facing right now is that, although it is very fast and easy to have multiple
containers running in your cluster, there is not an easy way for developers to check if a container
image is vulnerable to cybersecurity attacks. This means that we could be running containers in
our clusters that are compromised.

1.3 Solution

The idea that we had for this project was to somehow detect vulnerabilities affecting a con-
tainer and alert the people that are using that container image in order for them to take action and
try to mitigate the problem. In order to do that, we used a tool called Clair, developed by CoreOS,
that uses static analysis to detect vulnerabilities in containers. We implemented a client for Clair,
called ClairScanner, and a tool called KubeScanner that uses the ClairScanner to analyse all
the containers running in a Kubernetes cluster. Finally, this solution will be available in future
versions of OpenStack Magnum, the OpenStack component responsible for creating clusters in
OpenStack.

Scanning Containers for Vulnerabilities on Kubernetes Clusters 1

CERN openlab Report 2018

2. Background

2.1 Docker

Docker is one the most popular and used container engines currently [5]. It is an open-source tool
that wraps your application code, libraries, runtime, etc, in a package that is known as a container
[6]. In a way, a container is similar to a virtual machine, but it is much more lightweight because
there is no virtualization involved. Using Docker, it is very easy to make portable applications
and ship them to different environments where they are able to run without having to re-configure
everything in the new environment.

Unlike virtual machines, containers share the operating system with the host where they are
running on. See figure 2.1 for a comparison between the two.

Figure 2.1: Difference between virtual machines and containers [7].

2.2 Kubernetes

Kubernetes is an open-source tool for managing containerized workloads and services. Ku-
bernetes provides a container-centric management environment. It orchestrates computing, net-
working, and storage infrastructure on behalf of the user [8].

The way it does that is by having this concept referred to as the desired state of users’ work-
loads. This means that users can tell Kubernetes how they want their workloads to behave and
Kubernetes will always try to stick to that configuration automatically (e.g. auto scaling when

Scanning Containers for Vulnerabilities on Kubernetes Clusters 2

CERN openlab Report 2018

needed, rescheduling broken containers, etc). See figure 2.2 for an overview of Kubernetes’
architecture.

Figure 2.2: An overview of Kubernetes [9].

The master node is where Kubernetes stores the configuration files for the workloads, and the
worker nodes are where the containers actually run.

2.3 OpenStack & Magnum

OpenStack is an open-source platform used to manage cloud resources (both public and
private). OpenStack has a very large community behind it and it is also backed by some big IT
companies [10]. The main idea is that by using OpenStack we can offer cloud resources on-
demand to users; for instance, they can create virtual machines, volumes, clusters, networking
rules, etc, by using the OpenStack API.

We can think of OpenStack as the open-source equivalent of the software that is running
Amazon Web Services, Microsoft Azure or Google Cloud Platform.

Being such a big project, OpenStack is divided in several components, each one being re-
sponsible for one aspect of the infrastructure. For example, Keystone deals with identity and au-
thentication; Nova deals with virtual machine creation; Neutron deals with networking, etc. The
one interesting to us is Magnum, the component responsible for creating clusters (Kubernetes,
Docker Swarm, Apache Mesos) when requested by a user.

Users can use the Magnum API to create, for example, a Kubernetes cluster. When attending
this request, Magnum will then talk to the other components in order to create and connect all the
nodes of a Kubernetes cluster for the users.

Scanning Containers for Vulnerabilities on Kubernetes Clusters 3

CERN openlab Report 2018

2.4 CoreOS Clair

Clair is an open-source tool created by CoreOS used for static analysis of vulnerabilities in
containers. Clair has its own database used to store vulnerability metadata (e.g. CVE, RHSA,
etc) from various data sources, like Ubuntu CVE Tracker, Red Hat Security Data, and a few others
[11]. This way, Clair ensures that it is always up to date with new vulnerability findings.

Clair works by receiving container images from clients through its API, storing the images in
its database and analysing them. The clients can then query Clair to receive the results of the
analysis. Clair can also send notifications to configurable endpoints to alert clients that a change
has occurred to vulnerability metadata. See figure 2.3 for an overview of Clair’s architecture.

Figure 2.3: An overview of CoreOS Clair [12].

The container registry in figure 2.3 is representing the client that sends the container images
to Clair. It can either talk directly to a container image registry or it can be another kind of client
that consumes the Clair API.

As you might have noticed, Clair itself is just a server waiting for a client to use its API, so there
are a lot of different approaches on how to use it and this allows the community to get creative
when implementing clients. The most common use case is integrating Clair into a CI/CD pipeline
where it watches the images that are pushed to a container image registry and analyses them to
make sure new changes do not introduce vulnerabilities.

Scanning Containers for Vulnerabilities on Kubernetes Clusters 4

CERN openlab Report 2018

3. Implementation

The solution we implemented to solve the problem detailed in section 1.2 is briefly discussed in
section 1.3. Here we are going to give a more detailed view on the development of the solution
and how we tackled the problem. See figure 3.1 for an overview of the solution.

Figure 3.1: Overview of the vulnerability scanner.

The vulnerability scanner is the tool we developed the solve our problem. It basically uses two
main libraries developed by us as well, the KubeScanner and the ClairScanner.

The KubeScanner is responsible for interacting with the Kubernetes API to do a few things:
first, it will get all the containers that are running in the node where the vulnerability scanner is
deployed and pass the names of the images of the containers to the ClairScanner.

The ClairScanner is a client for the CoreOS Clair API, so it receives the container images
from the KubeScanner and sends them to Clair for analysis. When it gets the results, it will return
them to the KubeScanner.

Scanning Containers for Vulnerabilities on Kubernetes Clusters 5

CERN openlab Report 2018

The second thing KubeScanner does is process the results received from the ClairScanner.
It will interact with the Kubernetes API again to add labels and annotations on the pods that were
analysed.

The label that the KubeScanner adds is called security level and it has either the value of safe
or vulnerable. This makes it easy for the cluster owner to select only the pods that are safe or
vulnerable.

For the annotations, KubeScanner adds two of them. The first one is called
unapproved vulnerabilities amount and it indicates the amount of vulnerabilities that were found in the
pod (counting all the containers running there). The second one is called unapproved vulnerabilities
and it contains a JSON formatted string with which key being the name of the image analysed,
and the corresponding value being an array with the IDs of the vulnerabilities (CVE, RHSA, etc)
that were found. With this, the cluster owner can check what are the vulnerabilities affecting the
containers and how to mitigate the problem.

When passing the container images for Clair to analyse, the ClairScanner tries to detect the
URL of the registry based on the image name and currently it only works with public registries
that do not require authentication to pull images.

For the deployment of this solution, we created Kubernetes Helm charts [13] to make the
process easier and faster. For clusters without Helm, we created Kubernetes manifests. With
either of those options, the vulnerability scanner runs every twelve hours (twice a day) to search
for vulnerabilities.

Scanning Containers for Vulnerabilities on Kubernetes Clusters 6

CERN openlab Report 2018

4. Results

The vulnerability scanner has been deployed in a Kubernetes cluster on the CERN cloud and it is
properly marking the pods with the appropriate labels and annotations according to the analysis
made by Clair. See figure 4.1 for a glimpse of the scanner in action.

Figure 4.1: Vulnerability scanner running in a Kubernetes cluster.

Another great result from this project is the fact that there does not exist a Python client for
the Clair API, so the ClairScanner implemented during this project will be a good contribution to
the open-source community, along with the KubeScanner, which integrates the ClairScanner into
Kubernetes clusters.

Other contributions to the open-source community that came from this project: an update that
was made to the Helm charts of the Clair project upstream [14], and also a contribution to the
OpenStack Magnum project upstream [15].

Scanning Containers for Vulnerabilities on Kubernetes Clusters 7

CERN openlab Report 2018

5. Conclusions & Future Work

This project was a success in achieving its goals. We now have a tool that we can deploy on
Kubernetes clusters that will automatically scan the containers that are running there in order to
search for vulnerabilities and report them back to the cluster owner.

There is still some work to be done on the vulnerability scanner. For example, it still needs to
be integrated into the OpenStack Magnum project upstream, and also there are some features
that could be added to it to make it more powerful, such as:

• A feature where the users can provide a blacklist containing vulnerabilities they wish to
ignore. This can be useful for users that are aware of vulnerabilities found by Clair where
the attack vectors are not relevant for their infrastructures.

• Some vulnerabilities detected by Clair already contain a fix available, so the idea is to have
a kind of self-healing mechanism which would detect that a vulnerability that was found
already has a fix and then would try to fix it automatically.

Finally, it is important to note that the Clair project is going through big changes at the moment
and a new API will be available in the near future which will reduce the complexity of Clair clients
significantly, so it is a good idea to reduce the complexity of the vulnerability scanner by making
it compatible with future changes of Clair.

Scanning Containers for Vulnerabilities on Kubernetes Clusters 8

CERN openlab Report 2018

List of Figures

2.1 Difference between virtual machines and containers [7]. 2
2.2 An overview of Kubernetes [9]. 3
2.3 An overview of CoreOS Clair [12]. 4

3.1 Overview of the vulnerability scanner. 5

4.1 Vulnerability scanner running in a Kubernetes cluster. 7

Scanning Containers for Vulnerabilities on Kubernetes Clusters 9

CERN openlab Report 2018

Bibliography

[1] Increase of container usage rate. https://www.dailyhostnews.com/

software-container-adoption-increased-by-50-in-one-year/. ii

[2] Increase usage of Docker containers and Kubernetes. https://www.datadoghq.com/

docker-adoption/. ii

[3] CoreOS Clair. https://github.com/coreos/clair. ii

[4] Atomic Scan. https://developers.redhat.com/blog/2016/05/02/

introducing-atomic-scan-container-vulnerability-detection/. ii

[5] Docker popularity. https://electric-cloud.com/blog/2017/05/

docker-numbers-dockercon-shines-light-containers-enterprise/. 2

[6] What is Docker. https://opensource.com/resources/what-docker. 2

[7] Difference between virtual machines and containers. https://blog.netapp.com/blogs/

containers-vs-vms/. 2, 9

[8] What is Kubernetes. https://kubernetes.io/docs/concepts/overview/

what-is-kubernetes/. 2

[9] An overview of Kubernetes. https://thenewstack.io/kubernetes-an-overview/. 3, 9

[10] What is OpenStack. https://opensource.com/resources/what-is-openstack. 3

[11] CoreOS Clair data sources. https://github.com/coreos/clair/blob/master/

Documentation/drivers-and-data-sources.md. 4

[12] An overview of CoreOS Clair. https://github.com/coreos/clair/blob/master/

Documentation/running-clair.md. 4, 9

[13] What is Kubernetes Helm. https://helm.sh/. 6

[14] Contribution to CoreOS Clair project upstream. https://github.com/coreos/clair/pull/
586. 7

[15] OpenStack Magnum storyboard entry for the project. https://storyboard.openstack.

org/#!/story/2003505. 7

Scanning Containers for Vulnerabilities on Kubernetes Clusters 10

https://www.dailyhostnews.com/software-container-adoption-increased-by-50-in-one-year/
https://www.dailyhostnews.com/software-container-adoption-increased-by-50-in-one-year/
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://github.com/coreos/clair
https://developers.redhat.com/blog/2016/05/02/introducing-atomic-scan-container-vulnerability-detection/
https://developers.redhat.com/blog/2016/05/02/introducing-atomic-scan-container-vulnerability-detection/
https://electric-cloud.com/blog/2017/05/docker-numbers-dockercon-shines-light-containers-enterprise/
https://electric-cloud.com/blog/2017/05/docker-numbers-dockercon-shines-light-containers-enterprise/
https://opensource.com/resources/what-docker
https://blog.netapp.com/blogs/containers-vs-vms/
https://blog.netapp.com/blogs/containers-vs-vms/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://thenewstack.io/kubernetes-an-overview/
https://opensource.com/resources/what-is-openstack
https://github.com/coreos/clair/blob/master/Documentation/drivers-and-data-sources.md
https://github.com/coreos/clair/blob/master/Documentation/drivers-and-data-sources.md
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md
https://github.com/coreos/clair/blob/master/Documentation/running-clair.md
https://helm.sh/
https://github.com/coreos/clair/pull/586
https://github.com/coreos/clair/pull/586
https://storyboard.openstack.org/##!/story/2003505
https://storyboard.openstack.org/##!/story/2003505

	Contents
	Introduction
	Context
	Problem
	Solution

	Background
	Docker
	Kubernetes
	OpenStack & Magnum
	CoreOS Clair

	Implementation
	Results
	Conclusions & Future Work
	List of Figures
	Bibliography

