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we must have a distribution of electricity at some of the surfaces,
whether we have any in the space included in the dzdyds integra-
tion or not. Analytically, it means that we are no longer to make
)
4_¢ +4 _¢ Z’g 0
throughout the entire space of the integration, but only up to am
infinitesimal distance from the boundaries where there is electricity,
just as in the case of the straight line, we are not to make
dy/da® =0
everywhere throughout the integration, but only up to an infini-
tesimal distance from the limiting points P and Q.

‘What occurs in the potential problem is probably typical of what
happens in multiple integrals generally. For instance, given two
continuous closed curves, the solution of the problem to join them by
the surface of least area is analytically as well as physically con-
tinuous. But, if we replace the two curves by two lines with any
number of angular points, we shall evidently have a physically con-
tinuous surface giving a solution which has analytical discontinuities
at the boundaries. In general, we may expect that the effect of &
superabundant number of limiting conditions is merely to introduce
discontinuities of some kind at the boundary, and to leave the solution
continuous within the general extent of the integration, and not by"
any means to render the function incapable of a maximum or a
minimum value.

On those Orthogonal Substitutions that can be Generated by the
Repetition of an Infinitesimal Orthogonal Substitution. By
Hengy Taser. Received May 1st, 1895. Read May Oth,
1895.

§1.

In the following I show what are the conditions necessary and
sufficient that a given orthogonal substitution of » variables may be
generated by the repetition of an infinitesimal orthogonal substitution
of the same number of variables (that is, by the repetition of an
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corthogonal substitution of » variables infinitely near to the identical
-substitution).

An orthogonal substitution may be designated as of the first or
second kind according as it is or is not the second power of an
orthogonal substitution. Improper orthogonal substitutions are then
of the second kind. All real proper orthogonal substitutions, and
all imaginary proper orthogonal substitutions of two or three
variables, are of the first kind; but there are imaginary proper
-orthogonal substitutions of # variables of the second kind for
any value of » = 4. Thus the imaginary proper orthogonal substi-
tution of four variables given on p. 255 of the Bulletin of the New
York Mathematical Society, for July, 1894, is not the second power of
any orthogonal substitution whatever; and, from the existence for
four variables of an orthogonal substitution of the second kind, it
follows that, for any number of variables greater than four, there are
proper orthogonal substitutions of the second kind. In the number
-of the Bulletin referred to above, I have shown that any orthogonal
substitution of the first kind can be generated by the repetition of an
-orthogonal substitution infinitely near to the identical substitution;
but that no orthogonal substitution of the second kind can be
generated thus. (See §3.) The conditions necessary and sufficient
that a given orthogonal substitution may be generated by the repeti-
tion of an orthogonal substitution infinitely near to the identical
substitution are, then, the same as the conditions necessary and

" sufficient that a given orthogonal substitution shall be the second
power of an orthogonal substitution, that is, that an orthogonal
substitution shall be of the first kind.

In Vol. xv1., p. 180, of the American Journal of Mathematics, I have
shown that certain conditions, presently to be named, are satisfied by
every orthogonal substitution of the first kind, that is, by every
orthogonal substitution which is the second power of an orthogonal
substitution. I now find that these conditions are sufficient as well
a8 necessary. ' : :

That these conditions are sufficient may be most readily shown, if,
in accordance with Cayley’s “ Memoir on the Theory of Matrices,”
Philosophical Transactions, 1858, we regard the operations of addition
and subtraction as capable of extension to linear substitutions or their
matrices, that is, the square array of their coefficients.®* Multiplication

* Denoting by (¢),s the coefficient of the linear substitution ¢ of n variables in
the sth row and sth column of its matrix, the sum or difference of two linear substi-
tutions ¢ and ¢ of # variables is defined as follows :—

(V) = (¢)n:h(¢)n (rye=1,2,,.n).
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is, of course, taken as equivalent to the composition of linear substi--
tutions, and is associative and distributive. Multiplication is not in.
general commutative; but, if f(¢) and F (¢) are two polynomials in
the linear substitution ¢, we have

F(9).F(9)=F(9).5(9).

In what follows the identical substitution will be denoted by J; the
linear substitution which, multiplied by or into ¢, gives the identical
substitution will be denoted by ¢-'; and the linear substitution
transverse or conjugate to ¢ will be denoted by ¢.* Wae then have

N—’ -~ -’ i~
) '=yle, ¢ty =9+y, (pY) =y4,
and (67 = ()

The linear substitution ¢ is symmetric, if 9 =¢; is skew symmetric, if
¢ =—o¢; and is orthogonal, if ¢ = ¢-'. Finally, the determinant of
the linear substitution ¢ will be denoted by | ¢ | . The characteristic
equation of ¢ is then

| p—28 | = 0.

Further, following Sylvester, I shall employ the term nullity to
denote the complement relative to », the number of variables, of the
order of the non-evanescent minor formed from the rows and columuns
of the determinant or matrix of a linear substitution. Thus, the
nullity of the linear substitution ¢ of » variables is m, if the (m—1)"
minors of | ¢ | (the minors of order »~—m+1) all vanish, but not all
the m* minors (the minors of order n~m). In particular, if

l¢]+#0,

the nullity of ¢ is zero. If g is a root of multiplicity m of the
characteristic equation of ¢, the nullity of ¢—gé is at least 1, and
the nullity of successive integer powers of ¢—gd increases until a
power of index u < m is attained, whose nullity is . The nullity

¢ With the notation of the preceding note, we have r and ¢ taking all integer
values from 1 to n,
@B)r=1, (Brn=0 (’:lé 8),

@) = (@r,
and if, as in what follows, we denote the determinant of ¢ by | ¢ |,

), t_dlel,
(=) Jo) d(@h
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of tho (u+1)% and higher powers of ¢—yé is then also m. And if’
we designate respectively by

Wy Mgy eer My D, = M,
the nullities of (p—g¢9), (¢—gd)?, ... (p—y0)*!, (p—gd)*,

we have Mmy—my ; Ny—1my ; ; m,—n, _Z_ 1.

The numbers m,, ne, &c., may be termed the numbers belonging to the
root g of the characteristic equation of ¢. If ¢ is not a root of the.
characteristic equation of ¢, that ig, if the multiplicity of g is zero,
the nallity of ¢—g8 [and of (p —¢d)?, &c.] is zero, and we may say
that the number belonging to ¢ i zero. Again, by the “corollary of
the law of nullity,” if g, and ¢, are distinet roots of the characteristic
equation of ¢, the nullity of (¢p—g,)" (¢—g,)" is the sum of the
nullities of the two factors.

Let, now, ¢ be an orthogonal substitution which is the second
power of an orthogonal substitution ¢ ; that is, let ¢ = ¢*, ¢ being
orthogonal. .The roots of the characteristic equation of ¢ are the
squares of the roots of the characteristic equation of Y. Thervefore, if
—1is a root of the charactoristic equation of ¢, v —1 is a root of the-
characteristic equation of ¢ ; that is, the determinant of y—+/—1 &
is zero. But tlien the determinant of the transverse of y— v/ —1 8,
namely, §—+v/ —1 3, obtained from y—+/=18 by interchanging the-
rows and columns of its matrix, is also zero ; and, since

J—v=18=y'=vV=1ld= = V=1 (Y+v=10),
therefore, because . [ ¢t #0,
|y+v 18] =0, °
that is, —v/—1 is also a root of the characteristic equation of y.
If the nullity of y—+/'—13 is m,, the nullity of its transverse,.
namely; V=V 1=y =V 18 =— =1y (y+ vV —13)

is also m,; and, since the nullity of ¢! is zero, the nullity of
v+ ~/:—1.a is m,. Therefore, the nullity of

(9+8) = (y—v =18 (y+v—13)

i8 2m,.
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Similarly, if the nullity of (y—+/ —1)* is m,, the nullity of its
transverse '

W=V =18 = (7' =V =1y = (=v/ =1y (p+v~=13)
is also m,. Therefore, the nullity of

(p+3) = (y— v =1 (y+v=1)
is 2m,,
§ 2.

Conversely, if ¢ is orthogonal, and if for any positive integer p the
nullity of (¢+6)”is even, ¢ is the second power of an orthogonal
-gubstitution. ‘

In Vol. nxxxiv. of Crelle’s Jowrnal, Frobenius has given sub-
stantially the following theorem, namely, that an orthogonal
substitution ¥ can always be formed of whose characteristic equation
any given quantities (other than zero) are roots of any given
.multiplicities, provided that, if ¢ = & 1 is a root of the characteristic
equation, g7' is also a root of the same multiplicity as g; moreover,
that wo may take any set of numbers my, my, ... m,, subject to the
conditions

Mg —my, i M=y ; __>= m,=m,1 2 1,
as the numbers belonging to the root g # 1, provided that the
-same set of numbers belougs to g~'. Further, ¢ may have +1 as a
root of its characteristic equation, and the numbers belonging to +1
may be taken tho sume as the numbers belonging to the root +1 of
the characteristic equation of any other orthogonal substitution.

Let, now, the roots of the characteristic equation of ¢ be +1 of
multiplicity m, —1 of multiplicity 2m, and ¢, g each of multi-
plicity m", » taking all integer values from 1 to ».  Let tho numbers
belonging respectively to +1 and —1 be

(my, my, ... m0) (Cory, 2oty ... 2m,),
und the numbers belonging to ¢, ¢, forr =1, 2, ..., », be
(", mP, ... mf"r’).
Let us now form an orthogonal substitntion ¢ whose characteristic

‘equation shall have as roots +1 of multiplicity m, ++v/—1 each of
multiplicity m, and for

r =‘1, 2, e ¥y h, =,\/§—" R = l_,
. g

TV
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each of multiplicity m”. TFurther, lot the numbers belonging to +1be
(my, my, o M) ;
let the numbers belonging to ++v=Tand to —v/ 1 be

(ml, Mgy ooe m») ’
and, for r =1, 2, ... v, let the numbers belonging to &, and k! be

S o)
(!, md", ... 711,:').

‘The roots of the characteristic equation of ¢* are then +1 of
multiplicity m, —1 of multiplicity 2m, and (for r =1, 2, ... ») ¢, and
g, ! each of multiplicity m". Turther, sinco —1 is not a root of the
-characteristic equation of 'y, the nullity of Y44 is zero; therofore,

the nullity of
(' =0)" = (Y +0) (y—o)

is equal to the nullity of (¢ —d)*. Consequently, the numbers belong-
ing to the root +1 of the ¢haracteristic equation of ¢* are
(mh my, ... m,.o
" Again, the nullity of
W+ = (y—v =13y (p+ v =13y
" is equal to the sum of the nullities of

(Y= =18 and Y+ =10,

since both ++/—1 are roots of the characteristic equation of y.
Therefore, the numbers belonging to the root —1 of the characteristic

-equation of ¢? are
(&m,, 2m,, ... 2m,).

Finally, the nullity of
W53 = (Y +h3) (Y—h3)"

is equal to the nullity of (y—h,8)", sinco —%, is not a root of the
«characteristic equation of  ; and, therefore, tho nullity of (Y +h,8)®
ig zero. Similarly, the nullity

(W —g;1 8y = (Y +h ) (p—h" 8)
is equal to the nullity of (y—4'8)?, sinco —h ' is not a root of theo

characteristic equation of . Whence it follows that, for r=1,2, ... v
YOL. XXVL.—NK0. 523. 20
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the numbers belonging to the root g,, g-! of the characteristic equa-
tion of Y are
(mf?, m@, ... mf.”’).

Since ¢ and y* are similar, that is, the roots of the characteristio
equations of ¢ and ¢ and the numbers belonging to these roots are
the same, a linear substitution @ of non-zero determinant can be
found such that

p=wiol

Since both ¢ and ¢ are orthogonal, we can always so choose w that
it shall be orthogonal. For we have

d=¢¢=u"'Puopc
That is, denoting @ w by , .
Voy =o;

or, since Y is orthogonal, wy’'= Jw.

The linear substitution w is of non-zero determinant; there are,
therefore, one or more polynomials in w whose second power is equal
to w. Let w! denote any one of these polynomials. Then, since w is
symmetric, w! is also symmetric; and, moreover, since §* is commu-
tative with o, it is also-commutative with i, that is,

o P = Yol
Any linear substitution = satisfying the equation

T =W

is given by the expression wly, in which x is an orthogonal substitu-
tion. For the last equation may be written

(w')";'ur (W) r=2d;
and, if we put X = o (o)}
it becomes xx =28
Conversely, if x is orthogonal, and
o = yol,

- -
we have - me=uiyxol=ow
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We therefore have
¢=woylo = xotyloty = xy'yt
And, if we put Y=xy¢yx, 4
¥ is orthogonal, since both ¢ and yx are orthogonal ; and
p=xPx =V,

that is, ¢ is the second power of an orthogonal substitution.

§ 3.

We may show as follows that any orthogonal substitution of the
first kind cap be generated by the repetition of an orthogonal substi-
tution infinitely near to the identical substitution, but that no
orthogonal substitution of the second kind can be generated thus.
Let e? denote the infinite series

1 1 1
o+ 34+ Q‘!SI‘F g‘!y+.-.+ pooy

Sl N
convergent for any lincar substitution 9. We then have
(@) =o,
() =¥
and, if m is any positive integer,
(%)™ = em9,
Moreover, if 3 and ¥ are commutative,
ed ¥ = g¥t+¥,

Finally, for any lincar substitution ¢ of non-zero determinant,jwe can
always find u polynomial in ¢,

3= f (),

such that ¢ =cd.
If, now, ¢ is orthogonal, we have
S=50) =f@™,

that is, ¥ is also a polynomial in ¢;* and, consequently, J is com-
mutative with 3.

* The reciprocal of a linear substitution ¢ is expressible as a polynomial in ¢.
282
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Therefore, I+ = oI ¢d = M =4
Let 20,=9+9, 20=3-5.

Since $ and 3 are commutative, 6, and 6, their half sum and differ-
ence, are commutative ; and, consequently,

¢ = ¢% = c0t0 = ¢l = ¢f .
Thercfore, ¢F = (%) (c?)® = 200 0% == ¢,
since Mo = ¢+ =3,
Let m be any positive integer, and let
W = g,
then, since 8 is skew symmetric,
‘J y= CRIMT Em) e — o= (2m)e p2Um)e — o= (Um)e+2Im)s — 3;
moreover, Y= (eFM) = ¥ = ¢t
By taking m sufficicntly great, we can make the coeflicients of
-?%—0 a8 small as we please, and, consequently, we can make
P = elUme

as nearly as we please equal to the identical substitution. But,
however great m may be, we have

gy =20 and V=gt

Mherolore, any orthogonal substitntion, as ¢!, which is the second
power of an orthogonal substitution can be generated by the repeti-
tion of an infinitesimal orthogonal substitution.
Iivery orthogonal substitntion given by Cayley’s expression is of
the first kind. For, if
¢ = (0=Y)(@+Y)",

in which Y is skew symmetric, and such that

|o4+Y | #0,
we can find & polynomial in Y,
3 =7(Y),
such that (3+Y) =ed.

Equating the transverse of either side, we have

3—Y =¢J,
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And, since 3=f) =f(-Y)

is also a polynomial in Y, & and ¥ are commutative. Therefore, if
we pub '

6=9-F=f(-X)—f(Y),

6 is skew symmetric, as it is a polynomial in odd powers of the skew
symmetric matrix Y, and

¢ = (5"Y)(5+Y) =¢de-% = ¢f,
If, now, b= v,
since 0 is skew symmetric,
E‘,’ = cﬁ'clu L I I UL Ly
moreover, #,ﬁ = (els)a =¢ =¢.

That is, ¢ is an orthogonal substitution of the first kind.

If we take the orthogonal substitution ¢ sufficiently near to the -
identical substitution, —1 cannot be a root of the charactervistic equa-
tion of ¢; and ¢ is thercfore given by Cayley's expression, and is
consequently of the fiest kind,  Buat tho rcpetition of an orthogonal
substitution of the first kind gives an orthogonal substitution of that
kind. Whenee it follows that no orthogonal substitution of the
sccond kind can he gencrated by the repetition of an infinitesimal
orthogonal substitution. Nevertheless, we can approximate as near
as we please to any proper orthogonal substitution of the second
kind by the repetition of an infinitesimal orthogonal substitution
properly chosen. For we can obtain an orthogonal snhstitution of
. the first kind which shall be as nearly as we please equal to any
proper orthogonal substitution of the sccond kind,* and the former

* In particular, if ¢ is any proper orthogonal substitution of the second kind, we
can find an orthogonal substitution ¢, of the fivst kind whose cocflicicnts are rational
functions of a parameter p such that, by taking p sufliciently small, the several
oocflicients of ¢, can bo made as nearly a8 wo please cqual to the corresponding
cocflicients of ¢. Consequently, if tho rational functions are properly chosen, we
shall have (¢,),.0 = ¢. Solong as p 5= 0, thero exints an orthogonal substitu-
tion ¢, whose cocflicients are algebraic functions of p such that y2 = ¢,; and
thus, by taking p sufliciently small, wo may make ¢, a8 nearly ns we plenso equal
to . Wo thus havo ¢ = lim,.a (¢%). Dut, for p = 0, ¢, becomes illusory, as its
cocfficients aro then infinite. (Sco Dullctin of the New York Mathematical Socioty,
for July, 1894, p. 255.)
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can be gencrated by the repetition of an infinitesimal orthogonal
substitution.

Since an orthogonal substitution of the first kind, and only an
orthogonal substitution of the first kind, can be generated by the
repetition of an orthogonal substitution infinitely near to the identical
substitution, we have, by § 1 and §2, the following theorem:

The necessary and sufficicnt condition that a given orthogonal substitu-
tion may be generated by the repetition of an infinitesimal orthogonal
substitution is that either —1 shall not be a root of the characteristic
equation of the substitution, or, if —1 is a root of this equation, that the
numbers belonging to —1 shall all be even.

§ 4.

The preceding division of the substitutions of the orthogonal group
gives, of course, 8 corresponding division of the group of linear sub-
stitutions which transform automorphically a symmetric bilinear
form with cogredient variables. Thus we may designate a substitu-
tion of this group as of the first or second kind according as it is or
i8 not the second power of a substitution of the group; aund then any
substitution of the first kind may be generated by the repetition of
an infinitesimal substitution of the group, but no substitution of the
second kind can be generated thus.

For let the variables of the symmetric bilinear form
(2, 25 oo 2 QY1 Yo e Yu)

be cogredient. Tho necessary and sufficient condition that the linear
substitution ¢ shall trausform the form automorphically is that ¢
shall satisfy the equation

;Q ¢ =,
It is assumed that the determinant of the form is not. zero, that is,

that
1|0,

There are therefore one or move polynomials in £ whose second
power is equal to 2. Let @ denote any such polynomial in . We
may then write the preceding equation as

Q)19 Q. Qg () = &5
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and, if =0 (),

it becomes yy=3,

since ! is symmetric, as it is a polynomial in the symmetric

matrix Q. Whence it follows that the most general expression for
the linear substitution ¢ is

() e

in which Q! is a symmetric square root of , and { is an arbitrary
orthogonal linear substitution or matrix.

If, now, ¢ is an orthogonal substitution of the first kind, ¢ is also
of the first kind, and conversely. For, if y, is orthogonal, and

V=1,
then, if ¢ = (2" ¢ @,
we have EOQ ¢ =9,
and ¢ = ()12 O = (2) 1y @ =,
‘Conversely, if 9 =9,
and %09, = 0,
then, if Y, = Do, (),
we have Yoo = &,
and ' "’: =y.

As stated above, the orthogonal substitutions of the second kind
are all imaginary. DBut the linear substitutions of the second kind
which transform automorphically certain real symmetric bilinear
forms are not all imaginary. Thus the bilinear form

& = az,y, +2b2,y,—2b (2,9, + 24y5) +b (ZaYe+24Ys)s
is transformed automorphically, if we put

= —b, 2y=—5+& x=—5+E, ==,

N=—my B=—Tatmy Y= =Mt Y=

and this substitution, which is real, is of the second kind.
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If o and b are both positive, three of the roots of the equation
I'(zx)=|a—z 0O, 0, 0 |=0
0, -3 0, -2
0, 0, 2b—z2 b
0, -2, b —3z
arc positive and one negative. If a and b are of different sign, two. .
of the roots of this equation are positive and two negative. If both

e and b are negative, all but one of the roots of this equation are:
negative. But any real symmetric bilinear form

(QZI:I:,, g, Ty a’tnyn Y3y Yo ?/4)

with cogredient variables can be transformed into the form & by a real
linear substitution =, if the number of positive roots of the equation

| @—28| =0
is equal to the number of positive roots of the equation
'()=0.
If this condition is satisfied, and if ¢ denotes the linear substitution
given above, the real linear substitution ¢ o~ transforms
(G2, 20 T 2 Y1s Yor Yoo Ya)
automorphically, and is of the second kind. Whence it follows that
any real symmetric bilinear form

(sz“’n Qyy Ty, m&yn Yar Ysr Ya)s

with two sets of four cogredient variables the roots of whose:
h teristi ti

characteristic equation | Q=25 =0

are not all of the same sign, is transformed automorphically by a real
inear substitution of the sccond kind.
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Thursday, June 13th, 1895.
Major P. A. MACMAHON, R.A,, F.R.S., President, in the Chair.

Mr. Gilbert Thomas Walker, M.A., Fellow of Trinity College,.
Cambridge, was elected a member.

Mr. Bryan communicated a note *“ On an Iixtension of Boltzmann’s
Minimum Theorem,” by Mr. S. H. Burbury, F.R.S.

Dr. Larmor gave a sketch of a paper by Mr. J. Brill, entitled * On
the Form of the Energy Integral in the Varying Mofion of a Viscous
Incompressible Fluid for the case in which the Motion is Two-
Dimensional, and the case in which the Motion is Symmetrical about.
- an Axig.” :

A paper by Dr. Routh, “ Ou an Expansion of the Potential Func-
tion 1/R*~' in Legendre's Functions,” was taken as read.

Mr. Macaulay read o paper entitled ‘ Groups of Points on Curves
treated by the Method of Residuation.”

The President informed the meeting of the death of Prof. A. M.
Nash, of the Presidency College, Calcutta, which took place on the
voyuage home, for a two years’ furlough, after twenty years’ service
in India. ’

The following presents were made to the Library :—

‘‘ Beibliitter zu den Annalen der Physik und Chemie,”” Bd. xix., 8t. 5 ; Leipzig,
1895.

¢ Proceedings of the Royal Society,”” Vol. Lvir., No. 345.

‘ Journal of the Institute of Actnavies,”” Vol. xxxir., Pt. 1; April, 1895.

¢ Berichto iibor die Verhandlungen der Konigl. Sachsischen Gesells. der Wissen-
schaften zu Loipzig,’” 1895, 1.

‘ Wiskundige Opgaven met de Oplossingen door de Leden van het Wiskundig
Genootschap,’’ Deel 6, St. 5; Amsterdam, 1895,

Mantel, W.—* Gowone Lineaire Differentiaalvergelijkongen,” pamphlet, 8vo,.
1894.

D’Ocagne, M.—¢‘Sur la Composition des Lois de Probabilité des Errours de
Situation d’un Point sur un Plan,’’ pamphlet.

D’Ocagne, M.—*¢ Abaque en Points Isoplithos de I'Equation de Képler,”"
pamphlet.

““Proceedings of the Physical Society of London,” Vol. xmm., Pt. 7, No. 5§7;
June, 1895,

Nyt Tidsskrift for Mathematik,”” Aargang Sjette, A., Nr.1,2; B, Nr.1;.
Copenhagen, 1895,
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¢t Nieuw Archief voor Wiskunde,”’ Reeks 2, Deel 1, 2 ; Amsterdam, 1895.

Schouten, Dr. G.—*¢ Theorie der Functies naar Weierstrass,”” pamphlet, 8vo;
1895.

¢ Bulletin of the American Mathematical Society,’” Series 2, Vol. 1., No. 8;
May, 1895.

 Bulletin de la Société Mathématique de France,’’ Tome xxm1., Nos. 2 and 3 ;
Paris, 1895.

¢t Bulletin dos Sciences Mathématiques,’’ Tome x1%., mai et juin, 1895 ; Paris.

Lamb, H.—¢ Hydrodynamics,” 8vo; Cambridge, 1895. From the Author.

Schwarz, |\H. A.—¢Uber die annlytische Darstellung elliptischer Functionen
mittelst rationaler Functionen einer Exponentialfunction,’” pamphlet.

Schwarz, H. A.—‘ Zur Thcorie der Minimalfliichen, deren Begrenzung aus
geradlinigon Strecken besteht,” pamphlet.

¢ Rendiconto dcll’ Accademia delle Scienze Fisiche ¢ Matematiche di Napoli,”
‘Serie 3, Vol. 1., Fasc. 4 ; 1895.

¢ Journal of the Japan College of Science,”” Vol. vir., Pt. 4 ; Tokyo, 1896.

¢t Sitzungsberichte dor K. Preuss. Akademie der Wissenschaften zu Berlin,”
1895, 1-25. ’

‘¢ Atti della Reale Accademia dei Lincei—Rendiconti,’” Sem. 1, Vol. 1v., Fasc.
‘8, 9, 10 ; Roma, 1895.

¢ Annali di Matematica,’” Ser. 2, Tomo xxmt., Fase. 2; Milano, 1895,

‘¢ Educational Times,”” June, 1895.

D’Ocagne, M.—‘“Sur une Application de la Théorie de la Probabilité des
Errcurs aux Nivellements de Haute Précision,”” pamphlet,

Weierstrass, K.—‘Formeln und Lehrsitze zum Gebrauche der elliptischen
Functioncn,”” herausgegeben von H. A. Schwartz, Zweite Ausgabe, Abt. 1, 8vo;
Berlin, 1893.

¢ Annales de la Faculté des Sciences de Toulouse,’”’ Tome 1x., Fasc. 2; Paris,
1895.

¢ Journal fiir die reine und angewandte Mathematik,”” Bd. oxv., Heft 1;
Berlin, 1895. ’

¢¢ Indinn Engineering,’’ Vol. xvir,, Nos. 16-20.

¢ Application de la Géométrie d la Résolution d’une Classe de Problémes rclntlfﬂ
au Calcul des Probabilités,’”” by Rev. T. C. Simmons. (Offprint of the Association
Frangaise, Congres de Caen, 1894.) From the Author.



