An Extension of Vandermonde's Theorem. By F. H. Jackson. Read March 14th, 1895. Received, in revised form, May 14th, 1895.

1. The function

$$
\begin{equation*}
\underset{k=\infty}{L} \frac{(a-n+1)(a-n+2) \ldots(a-n+\kappa)}{(a+1)(a+2) \ldots(a+\kappa)} \kappa^{n} \equiv \frac{\Gamma(a+1)}{\Gamma(a-n+1)} . \tag{1}
\end{equation*}
$$

If n be a positive integer,
and

$$
\begin{gathered}
\Gamma(a+1)=a(a-1)(a-2) \ldots(a-n+1) \Gamma(a-n+1), \\
\frac{\Gamma(a+1)}{\Gamma(a-n+1)}=a(a-1)(a-2) \ldots(a-n+1) .
\end{gathered}
$$

Similarly, if n be a negative integer $(=-m)$, function (1) reduces to

$$
\frac{1}{(a+m)(a+m-1) \ldots(a+1)} .
$$

2. Let a_{n} denote the product of n related quantities,

$$
a, a-1, a-2, \ldots a-n+1,
$$

then such expressions as $a_{i}, a_{-n}, a_{p / q}$ seem to be without meaning. Exactly the same might have been written concerning $a^{1}, a^{-n}, a^{p / q}$, so long as a^{n} was regarded as the product of n factors each equal to a. As soon as the general law

$$
a^{\prime \prime \prime} \times a^{\prime \prime}=a^{n} \times a^{m}=a^{m+n}
$$

was nssumed in the Thenry of Indices, fractional and negative powers were interpreted, and the Binomial Theorem was shown to be true (with certain restrictions) for negative and fractional values of the index. Vandermonde's 'Theorem is a finite algebraical identity analogous to the Binomial I'heorem for positive integral indices. We shall show that

$$
\begin{align*}
(a+\dot{b})_{n}=a_{n}+n a_{n-1} b_{1} & +\frac{n \cdot n-1}{2!} a_{n-2} b_{8}+\ldots \\
& +\frac{n \cdot n-1 \ldots n-r+1}{r!} a_{n-r} b_{r}+\ldots \tag{2}
\end{align*}
$$

where u is not restricted to being a positive integer, and a_{n} denotes the function (1).
3. Firstly, writing

$$
\begin{aligned}
& a_{n}=a(a-1)(a-2) \ldots(a-n+1) \\
& a_{m}=a(a-1)(a-2) \ldots(a-m+1)
\end{aligned}
$$

(m and n being positive integers), we have

$$
\begin{equation*}
a_{n i} \times(a-m)_{n}=a_{n} \times(a-n)_{n n}=a_{m+n} \tag{A}
\end{equation*}
$$

Let us assume these to be general laws in a manner analogous to the assumption

$$
a^{m} \times a^{n}=a^{n} \times a^{m}=a^{m+n}
$$

in the Theory of Indices, then we must find in general functions a_{m} and a_{n} which satisfy the relation (A), m and n being unrestricted.

Function (1), namely $\frac{\Gamma(a+1)}{\Gamma(a-n+1)}$, is such a function, for, on writing

$$
a_{n}=\frac{\Gamma(a+1)}{\Gamma}
$$

we get $\quad a_{n} \times(a-n)_{m}=\frac{\Gamma(a+1)}{\Gamma(a-n+1)} \frac{\Gamma(a-n+1)}{\Gamma(a-n-m+1)}$

$$
=\frac{\Gamma(a+1)}{\Gamma(a-n-m+1)}=a_{m+n}
$$

In the same way

$$
a_{m} \times(a-m)_{n}=a_{m+n}
$$

Of course the relations (A) would be satisfied if we assumed

$$
a_{n}=\frac{f(a)}{f(a-n)}
$$

$f(a)$ denoting any function of a whatever, but the function a_{n} must be such as will reduce to

$$
a(a-1)(a-2) \ldots(a-n+1)
$$

if n be a positive integer. We therefore take

$$
a_{n}=\frac{1(a+1)}{\Gamma(a-n+1)},
$$

which function, we know, reduces to

$$
a(a-1)(a-2) \ldots(a-n+1)
$$

if n be a positive integer.

An extended form of the relation (A) is

$$
a_{p} \times(a-p)_{q} \times(a-p-q)_{r} \times(a-p-q-r)_{,} \times \ldots=a_{p+q+r+\varepsilon+\ldots} .
$$

Let each of the m quantities p, q, r, s, \ldots be equal to $\frac{n}{m}$, where n and m are both integers; then ($a)_{n / m}$ will be a function such that

$$
\begin{aligned}
(a)_{n / m} \times\left(a-\frac{n}{m}\right)_{n \mid m} \times & \left(a-\frac{2 n}{m}\right)_{n / m} \times \ldots \times\left(a-\frac{m-1 \cdot n}{m}\right)_{n / m} \\
& =a_{n / m+n / m+\ldots \text { to } m \text { termv }} \\
& =a_{u} .
\end{aligned}
$$

The function (1) satisfies this relation.

$$
\begin{array}{cc}
\quad \text { Putting } n=0 \text { in } & a_{n}=\frac{\Gamma(a+1)}{\Gamma(a-n+1)}, \\
\text { we get } & a_{0}=1 .
\end{array}
$$

4. Let $F_{1}(a, \beta, \gamma)$ denote the hypergeometric series in which the element x is equal to unity; then

$$
\begin{equation*}
\left.\Pi_{\Pi}(\gamma-1) \Pi \frac{(\gamma-a-\beta-1)}{(\gamma-a-1)} \frac{(\gamma(\gamma-\beta-1)}{\Pi(}\right) F_{1}^{\prime}(a, \beta, \gamma) \tag{B}
\end{equation*}
$$

where II denotes Gauss's II function. In Gamma Functions this may be written

$$
\begin{align*}
& \begin{array}{l}
\Gamma(\gamma) \Gamma_{-}^{\prime}(\gamma-a-\beta) \\
\Gamma(\gamma-a) \\
\Gamma(\gamma-\beta)
\end{array}=F_{1}(a, \beta, \gamma) . \tag{C}\\
& \text { For a sulstitute }-n \text {, } \\
& \text { " } i \text { " }-b \text {, } \\
& \text { " } \gamma \quad, \quad a-n+1 \text {. }
\end{align*}
$$

Then the equation (C) becomes

$$
\begin{gather*}
\quad \begin{array}{l}
1(a-n+1) \Gamma(a+b+1) \\
1(a+1) \Gamma(n+b-n+1)
\end{array}=F_{1}(-n,-b, a-n+1) \\
=1+\frac{(-n)(-b)}{1!(n-n+1)}+\frac{(-n)(-n+1)(-b)(-b+1)}{2!(a-n+1)(a-n+2)}+\ldots \\
\quad+\frac{(-n)(-n+1) \ldots(-n+r-1)(-b) \ldots(-b+r-1)}{r!(n-n+1)(a-n+2) \ldots(a-n+r)}+\ldots \\
=1+\frac{n_{1} b_{1}}{1!(a-n+1)_{1}}+\frac{n_{2} b_{2}}{2!(a-n+2)_{9}}+\ldots+\frac{n_{r}}{r!(a-n+r)_{r}}+\ldots \tag{D}
\end{gather*}
$$

Now $\frac{a_{n-1}}{a_{n}}=\frac{\Gamma^{\prime}(a+1)}{\Gamma(n-n+2)} \frac{\Gamma(a-n+1)}{\Gamma^{\prime}(a+1)}=\frac{\Gamma(a-n+1)}{\Gamma(a-n+2)}=\frac{1}{(a-n+1)}$,

$$
\begin{aligned}
& u_{n-2}=\frac{1}{(a-n+2)_{2}} \\
& a_{n} \\
& a_{n-r}=\frac{1}{(a-n+r)_{r}} \\
& u_{n}
\end{aligned}
$$

and

$$
\frac{\Gamma(a-n+1)}{\Gamma(a+1)} \frac{\Gamma(a+b+1)}{\Gamma(a+b-n+1)}=\frac{(a+b)_{n}}{a_{n}} ;
$$

therefore we have

$$
\frac{(n+l)_{n}}{a_{n}}=\frac{a_{n}}{a_{n}}+\frac{n_{1}}{1!} \frac{a_{n-1} b_{1}}{a_{n}}+\frac{n_{2}}{2!} \frac{a_{n \cdot 2} b_{2}}{a_{n}}+\ldots+\frac{n_{r}}{r!} \frac{a_{n--} b_{r}}{a_{n}}+\ldots
$$

Multiplying both sides by a_{n}, we have

$$
\begin{align*}
(a+b)_{n}=a_{n}+n_{1} a_{n-1} l_{1}+\frac{n . n-1}{2!} a_{n-2} b_{2}+\ldots & +\frac{n . n-1 \ldots n-r+1}{r!} a_{n-r} b_{r} \\
& +\ldots \quad \ldots \ldots \ldots \ldots \ldots(\mathrm{E}), \tag{E}
\end{align*}
$$

subject to the convergence of the infinite scries on the right side of the above equation.
5. Denoting the gencral term of the series (E) by a_{r}, the ratio

$$
\frac{u_{r}: 1}{u_{r}} \equiv \frac{n-r+1}{r} \underset{a-r+1}{b-r},
$$

which approaches unity when r increases without limit.
Using the general test

$$
\begin{aligned}
\lim _{\cdots \infty}\left[\left\{r\left(\frac{u_{r}}{u_{r+1}}-1\right)-1\right\} \log r\right] & >1 \text { (convergent series) } \\
& <1 \text { (divergent series) }
\end{aligned}
$$

we find the condition of convergence is

$$
a+b+1>0
$$

Major P. A. MACMAHON, R.A., F.R.S., President, in the Chair.

The Rev. T. C. Simmons read a paper on "A New Theorem in Probability." Messrs. Bryan, Cunningham, the President, and Dr. C. V. Burton (a visitor) joined in a discussion on the paper:

The President (Mr. Kempe, Vice-President, in the Chair) communicated a Note on "The Lincar Equations that present themselves in the Method of Least Squares."

The President then read the title of a paper by the Rev. W. R. W. Roberts, viz., "On the Abelian System of Differential Equations, and their Rational and Integral Algebraic Integrals, with a discussion of tho Periodicity of Abelian Functions."

The following presents were received :-
Miller, W. J. C._-" Mathematical Questions and Solutions," Vol. Lxir., 8vo ; London, 1895.
"Smithsonian Report, 1893," 8vo ; Wakhington, 1804.
"Beiblütter zu den Annalon der Physik und Chemie," Bd. xrx., St. 3; Leipzig, 1895.
"Mitheilungen der Mathematisehen Gesellschaft im Hamburg," Ba. min., Heft 5, 1805.
" Jahrbuch über die Fortschritte der Matheunatik," Bd. xxıv;, Hoft 1 ; Jahrgang 1892 ; Berlin, 1805.
"Archives Nécrlandaisos," Tome xxvir., Livr. 5 ; Harlem, 1895.
"Tho Silver Quention: Injury to British Trade and Maunfactures," papers by G. Jamiesou, T. H. Box, and D. O. Croal, 8vo ; London, 1805.
"Bullotin de la Société Mathématique de Frunce," Tomo xxim., No. 1 ; Parin, 1895.
"Rendiconto dell' Accademia delle Scienze Fisiche e Matematiche di Napoli," Scrie inf., Vol. 1., Fasc. 1, 2; 1805.
" Nachrichten von der Königl. Goselluchaft der Wissenschaften zu Güttingen," Heft 1 ; 1805.

Braune, W., and O. Fischer.-"Der Gaug des Menschen," Th. 1, royal 8vo; Leipzig, 1895.

Bruns, H.-"Das Eikunal," R. 8vo ; Leipzig, 189i.
"Atti della Realo Accudemia dei Lincei-Rendiconti," Sem. 1., Vol. iv., Fasc. 5 ; Ruma, 1895.
"Educational Timen," April, 1805.
"Acta Mathematica," xix., I ; Stockholm, 1895.
vol. xxvi. - No. 518.
"Journal für die reine und angewandte Mathematik," Bd. cxiv., Heft 4; Berlin, 1895.
"Annals of Mathematics," Vol. rx., No. 2, January, 1895; University of Virginia.
"Indian Engiueering," Vol. xvir.; Nos. 8, 9, 10.

A New Theorem in Probalility. By Rev. T. C. Simmons, M.A. Read April 4th, 1895. Received, in revised form, June 6th, 1895.

1. "If an event happen on the average once in m times, m being greater than mity, then it is more likely to happen less thatu once in m times than it is to lurppen more than muce in m times." In the present paper I undertake to prove this novel proposition, which may le enunciated more explicitly thus:-"If an event may happen in b ways and fail in a ways, a being greater than b, and all these ways are equally likely to occur, then, μ trials being made, where μ is any multiple of $a+b$, lage or small, or any ratulom number, the event is more likely t.o happen less than $\frac{\mu l}{a+b}$ times than it is to happen more than $\frac{\mu b}{a+b}$ times." Moreover, if the ratio of a to b be greater than $4, ~ I$ shall ventare to assert and prove a wider proposition, viz., that the event is more likely than not to happen less than $\frac{\mu b}{a+b}$ times. 'I his amounts to saying that if a die, for instance, be thrown any number of times, large or small, chosen at random, the number of appearances of the ace is more likely than not to le less than $\frac{1}{6}$ of the number of throws. For reasons which will bo stated in Art. 32, 1 am compelled at present to cualify the foregoing statements by the limitation that $b=1$.
2. The first surgestion of such a proposition arose in this way. At the legriming of the present year J was engrged, for a purpose to te elsewhere recorder, in the collection and examination of upwards of $\mu, 000$ random iligits; and was considerahly surprised to find that, "drorgring the results, cach digit presented itself, with unexpected
