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1. Writers on uniform and non-uni orm convergence have for the
most part contented themselves hitherto with determining the mode of
dis ;ribution of the points of uniform and non-uniform convergence,
wit bout occupying themselves with the various types of non-uniform con-
vergence at a point that may occur, and how far such types are to be
regarded as normal or exceptional. In particular, the question whether
the character of the non-uniform convergence may be different on the
lefi and on the right has been barely mooted, and the distribution of
poiats at which this is the case has not been discussed at all. For
some time the idea of a point of uniform convergence itself was only
imperfectly grasped, uniform, convergence being thought of as something
per jaining to an interval alone; it was not realised that a series could
be uniformly convergent at a point, without being uniformly convergent
in iny interval containing the point; in other words, that a point of
uniform convergence may be a limiting point on both, sides of points
of ion-uniform convergence, and this even though all the functions con-
cer led are continuous. Still less was it realised that, when the functions
whose sum is considered are discontinuous functions, a point of uniform
convergence may be absolutely isolated.!

In the present paper I take as fundamental the definition! of uniform
con pergence at a point I have already employed in. previous papers, one
which is now coming into general use.§

* A brief account of the results of this paper was communicated to the British Association
at L aicester on Monday, August 5th.

\- W. H. Young, " Points of Uniform Convergence . . . ," Froc. London Math. Soe., Ser. 2,
Vol. l ,pp. 358-360.

I W. H. Young, " On non-Uniform Convergence . . . ," Proc. London Math. Soe., Ser. 2,
Vol. 1, p. 90.

j I am not sure who was the first to actually formulate the definition. In Osgood's original
paper in the American Journal, Vol. xix., and in Schoenflies's account of it in his Bericht, I can
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Inevitable as this definition appears, it has several disadvantages:—

(1) It involves the remainder function Bn(x), and therefore the
possibly unknown sum, or limiting function f(x), which may be discon-
tinuous even when the functions fn{x) are all continuous.

(2) It is an " e-definition."

(3) It affords us no means of classifying points of non-uniform con-
vergence.

The close connection, or analogy, between the uniform convergence of
a series and the continuity of a function is well known. As regards the
continuity of a function we may avoid the e-method by introducing*
the associated upper and lower right-hand and left-hand limiting

find no such formulation. In Townsend's dissertation, " Doppellimes," Giittingen, 190u, I find
the following statements:—"Also gleichmassige Convergenz bezieht sich auf das ganze Iutervall,
dagegen hat der einfache Limes

Lt f(xuy) =/(«b,yo)f
2/=J/o

nur mit einem einzelnen Punkte des Intervals zu thun," (p. 29); again, on p. 65, " So weit ist
diese Bedingung ganz dasselbe wie obige Bedingung fiir die Stetigkeit von /(*). Sie unter-
scheidet sich aber davon, indem bei gleichmassiger Convergenz das fiir jedes n definierte Iutervall
eine untere Grenze grosser als Null haben muss, wenn n iiber alle Grenzen wiichst. Dagegen
braucht bei der Stetigkeitsbedingung . . . , dieses Intervall keine untere Grenze grosser als Null zu
haben." These statements suggest that even in 1900 in Giittingen a precise formulation of uni-
form convergence at a point had not been made. Of course points of uniform convergence play
an important part, none the less, in Townsend's dissertation, and Arzela's paper, which
preceded it (" Sulle Serie di Funzioni," Parte 1, Mem. di Bologna, Serie 5, Vol. vin., pp. 131—1S6,
1899). The phraseology adopted for these points by Townsend is " points at which the series
converges regularly," regular convergence being expressed in terms of, and thought of in con-
nection with, the behaviour of the allied functions of two variables introduced by Du Bois
Reymond (" Ueber die Integration der Reihen," Sitzungsbericht d. Berliner Akademie, 1886,
pp. 359-371), and used also by Arzela. This definition only applies in the case considered by
Townsend, which is also that considered in the present paper, when the functions to be summed
are continuous.

In Osgood's paper, although the statement is made that " Uniform and non-uniform con-
vergence are conceptions that relate to the behaviour of the variable function throughout an
interval," p. 166, the points in question are used, and called ^-points ; their definition as given
by Osgood is clear and precise though somewhat complicated (pp. 163-165).

In Hobson's paper ("On Non-Uniform Convergence . . . ," Proc. London Math. Soc,
Vol. xxxiv., pp. 254 et seq., Jan., 1902), uniform convergence is defined only for an interral.
In his recent book Functions of a Real Variable (1907), the definition for a point is implicitly given.

Van Vleck, in a recent paper, ' ' A Proof of some Theorems on Pointwise Discontinuous
Functions," Trans. Amer. Math. Soc, Vol. vm., April, 1907, p. 204, footnote, giveB the defini-
tion in the form adopted by myself ; and I understand that Hilbert has now done the same for
some time in his lectures.

* W. H. Young, " On the Distinction of Right and Left at Points of Discontinuity," Aug.,
1907, Quarterly Journal of Math., Vol. xxxrx., pp. 67-83.
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functions </>n, (pL, \fsR, \}SL. We are thus naturally led to devise similar
funciaons in the case of convergence of series.

This idea is in embryo in Osgood's paper, above cited, in which he
introduces the word " peak " and the term " indices at a point." Osgood
deals, however, only with those series of continuous functions whose sum
is a continuous function, and his indices have relation to the remainder
function; in the case when the sum is zero, his indices are closely con-
nected with the x a n d """ oi the present paper. The case which usually
arises in practice is that where the functions of which the sum is considered
are continuous, but it is an unnecessary and an undesirable restriction to
suppose that their sum is continuous. In what follows I begin by denning
foui: functions irL, TTR, XL, XR> which I call peak and chasm functions, and
which are strictly analogous to the associated functions <pr., <f>R, i^L, i^n,
above referred to, and I shew that, in the case considered, the equality of
theie functions at a point is the necessary and sufficient condition for
uniform convergence at the point, so that we may, if we please, give this
equality as a new definition of uniform convergence at a point. This
definition is precisely analogous to that referred to of continuity at a
point; it is not, however, intended to replace the other, which is indeed
fundamental in character, and cannot easily be dispensed with when
the functions to be summed are not continuous. It has, however, the
advantage of being free from the objections pointed out as inherent in
the other. I take occasion to shew how this second definition may be
used directly to obtain the well known distribution of the points of non-
uniform convergence, viz., that they form an ordinary outer limiting set
of t ie first category.*

The main use, however, that I make of the new definition is to
examine the character of the types of non-uniform convergence that may
arise, more especially with respect to the distinction of right and left. I
shew that only at a countable number of points, which may, however, be
den&e everywhere, can the behaviour of a series, as regards non-uniform
convergence, be different on the right and on the left of a point. In
particular the points at which the series is uniformly convergent on one
side and non-uniformly convergent on the other side of a point, can be, at
mosb, countably infinite.

This discussion would appear to complete the qualitative study of

* Proofs of this result have been given by Townsend and Hobson, loc. cit. Both of these
authors deduce it from considerations connected with the theory of functions of two variables.
I ray* elf have given a proof of a more general result, including this as a special case, by a
method more on the lines of Osgood's classical paper. The proof in the text thus constitutes a
fourth proof of the result.
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points of non-uniform convergence, in the case when the functions to be
summed are all continuous. It should be noted, however, that though
many of the theorems obtained apply as they stand, or with slight modi-
fications, to the more general case, the information afforded by the
investigations of the paper is not adequate for a complete analysis of the
facts of non-uniform convergence except when the functions to be summed
are continuous.

It remains to be added that throughout the paper all that has been
required from the series of functions is that it should have a definite sum.
The possibility of that sum having the value oo (4-ao, or —oo, as the
case may be), is not excluded. In other words, divergence is allowed,
provided it be not an oscillatory divergence. Moreover the functions
whose sunv or limit, is considered, are not necessarily bounded functions ;
in other words, their continuity- is of the generalised character, in which
infinite values are allowed. Thus the new proof, above referred to,
relating to the distribution of points of non-uniform convergence, is really
wider in scope than any of its predecessors, and the result obtained is of
a more general character, having reference moreover to points of " uniform
divergence," as we may conveniently call them, as well as to points of
uniform convergence.

2. It will be convenient to repeat here the definitions, already referred
to, of the associated left- and right-hand upper and lower limiting
functions <f>L, <pR, ^L, ^R of a discontinuous function.

Let P be any internal point of a segment throughout which, a function
f(x) is defined. Take any interval with P as right-hand end-point, then
f(x) has, for the points internal to this interval, an upper limit; as this
interval diminishes, this upper limit cannot increase, and therefore has a
limit, which is, at the same time, its lower limit; denote this limit by

<f>r.(P).
We thus get for every point P of the segment a function <J>L(%), or

shortly <J>L, which may be called the upper left-hand limiting function
of f(x).

Similarly, changing left into right, we define a function <f>R, the upper
right-hand limiting function of f. Further, interchanging the words
" upper " and " lower," " increase " and " decrease," in the definition, we
define corresponding loiver limiting functions which we shall denote by
\lrL and \{sR.

If at each point P we choose that one of the two upper limiting
functions which is not less than the other, we get a new function, which
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may be called the (modified) upper limiting function, and be denoted by <p.
Similarly we define the (modified) lower limiting function \fr, by taking that
one of the two lower limiting functions which is not less than the other.

3. Let fvf2, ... be a series of functions, having a definite limiting
function/; in other words, at any point P, we have

Ufn(P)=f(P). (1)
il=oo

We now define auxiliary numbera at P precisely-analogous to the upper
and lower left- and right-hand limiting functions of a discontinuous
function; these we shall call the left- and right-hand peak and chasm
functions, and denote them by in, TTR, XL, XR-

We take an interval PQ with P as right-hand end-point, and denote
the upper limit of /„ for points x inside this open interval by Mn,Q- Then
for all such points x, . . . ^ ,.. /n.

F fn(x)^Mn>Q, (2)

while either there is such a point x at which

fn, (X) = i¥W | Q,

or else there is at least a sequence of points passing along which fn, (x) has
the limit MniQ.

These numbers Mn> Q for the successive integers n, may be conveniently
plotted off on the axis of y ; they form a countably infinite set* which has
therefore at least one limiting point, and, in any case will have a first
derived set which may be countable or of potency c. Let the highest of
these derived points, or corresponding numbers, be denoted by MQ, and,
though this will be less used in the sequel, the lowest of these derived
points, or numbers, be denoted by MQ.

Now, if Qx and Q2 are two positions of Q of which Q2 lies between
P and Qlt it follows from the definitions that

Mn, Q2 < Mn, Ql.

Hence any limiting point of the points Mn,Qt, for successive values of v,
will determine one or more limiting points of the points Mn, g,, none of
which will lie below the former limiting point. It follows that

MQ,^MQl,

and also M'Qt ̂  M'Q^

Therefore, if we make the point Q approach P as limit, moving along a

• Counting two of the points as distinct whether or no they coincide in position. If there
is only a finite number of positions, the highest derived point is, of course, the highest of the
points which is repeated an infinite number of times.

8BK. 2 . VOL. 6 . NO. 9 7 7 . D
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sequence, or continuously, or in any manner, the quantities MQ will have
a definite limit, which, will be at the same time their lower limit, and
which will be denoted by TTL(P), and, for all positions of P, be called the
left-hand, peak function. Similarly, the quantities MQ have a definite
limit, which is their lower limit, and may be denoted by TT'L (P).

Here, of course, TT'L < -KL.

Working in like manner on the right of P we obtain the corresponding
right-hand quantities, denoted by the subscript B instead of L. Again,
interchanging "upper" and "lower," we get the left- and right-hand
chasm functions XL and XR> as well as the quantities X'L and X'R> where

X'L > XL and x* > X«-

4. THEOREM 1.—

XL(P) < XL(P) < ^L(P) < <PL (P)

(A similar inequality holds, of course, for the right-hand functions.)
For, if x be any point inside the interval PQ, we had as equation (2)

° f § 3 > /„(*)< i l W (2)
Making n increase indefinitely, fn (x) has the single limit fix), which, there-
fore, cannot lie above any limit of the quantities Mn, Q ; therefore

Now letting x describe a suitable sequence with P as limit, we obtain for
f{x) the limit ^L(-P). therefore, Q being still fixed,

Since this is true for all positions of Q,

Similarly

which proves the theorem-

THEOREM 2.—If the functions /„, are continuous at P*

XL (P) < XL(P) < / t P ) < n-itP) < irLiP).

(A similar inequality holds, of course, on the right.)

For, since fnix) is continuous at P, it has the definite limit fn{P), so

* It follows from Theorem 1, using the results of my paper quoted on p. 30 that this in-
equality holds whatever the/'s are, except at most at a countable set of points.
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that, by equation (2) of § 3 or § 4,

fn(P)^Mn>Q.

Since this is true for all values of n, the single limit / (P) approached by
the left-hand side of the inequality cannot be higher than any limit
approached by the right-hand side ; therefore

fn(P) < M'Q.

Since this holds for all positions of Q,

Similarly / (P)>Xx(P),

which proves the theorem.

5. From Theorem 1 it follows that, if the peak and chasm functions
are equal at P, they are equal to the upper and lower associated limiting
functions, and therefore, with the possible exception of a countable set of
points,* they are all equal to / (P ) ; if, however, the /,»'s are continuous,
there are no such exceptional points, by Theorem 2.

In other words, at a point where

x(P) = x ( P ) = / ( P ) ,

f is continuous; if the fn's are continuous, toe may drop the f(P) from
this equation.

We see, however, from the enunciations of Theorems 1 and 2 that,
though this condition is sufficient for continuity it is not necessary; it is
still sufficient if

x'(P) = 7 r ' (P)=/ (P) ,

but this condition also is not necessary ; anyone familiar with examples of
non-uniform convergence will recognise that this is so, and that thereby
hangs a tale.

6. The dennition of uniform convergence at a point P is as follows :—

* Loc. cit., p. 30.

D 2
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" The series of functions flt /2, ... is said to ' converge uniformly to the
function / at the point P, ' if, given any positive quantity e, however
small, an interval d can be described, having P as internal point, BO that,
for all points x within the interval d,

\f(x)-fn(x)\<e
for all values of n ^ vi, where m is an integer, independent of x, "which
can always be determined.

" Similarly we may define the expressions right-handed and left-
handed uniform convergence* at P ; in this case the interval d will have P
as end-point."

This definition may easily be adapted so as to give what we may call
" uniform divergence" at P, when the value /(P) is infinite with
determinate sign ; we merely have instead of the above inequality,

fn{x) > A or fn(x) <—A,

according as the sign of / i s + or —, A being, like e, preassigned, and
being, of course, not " however small " but " however large."

7. The connection of the peak and chasm functions with these defini-
tions is determined by the following theorems.

THEOREM 3.—If the fn's are continuous functions, and P a point at

the series fv f2, ... is uniformly convergent or divergent, at P on the left.

CASE 1.—Let 7rt(P) be finite, then, since -vrL is the limit of the
quantities MQ, we can choose Qx so that

Therefore, since MQ, is the highest possible limit approached by M,h Q,, we
can determine kv so that, for all values of n ̂  kx,

Mv, Ql < MQl+e < 7rz(P)+2e.

Since Mn, & is the upper limit of /»(x) in the interval PQlt it follows that,
for all points x of this interval and all values of n ^ kv

Similarly, working with XL instead of TTL, we can find a point Q2 inside

• It should be noted that in the definitions of right-handed and left-handed uniform con-
vergence or divergence of a series of continuous functions it is immaterial whether the interval
with P as end-point be supposed to include P or not, provided we know that the series is
actually convergent, or divergent, at P as the case may be.
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the interval PQ, and an integer k2 ^ klt such that for all points x inside
the interval PQ2 and all integers n ^ k2,

for these points, and for these values of n, the relation then holds,

Xz,(P)-2e </»(«) < TT£ (P)+2e.

But, by hypothesis, XL (P) = trz(P);

therefore irL (P) —2e < /„ (x) < trL (P) -f 2e.

Proceeding to the limit with n,

TrL(P)-2e < / (*) < 7TX (P)+2e.

From the last two relations it follows that in PQ2,

| / (a;)- /B(a;) |<4e (n > ^ ,
which is the condition for uniform convergence, /(P) being, by Theorem 2,
certainly finite.

CASE 2.—Again, if the peak and chasm functions are not finite at P
take the case when they are both = — oo. Then we can, in like manner,
choose Q so that - _ .

1\LQ "*C — A,

A being any preassigned quantity, and then determine kx so that, for all
values of n *^kx, u . ,

Mn)Q < — A ;
and therefore, for all points x in (P, Q),

fn(x)<-A,

which is the condition for uniform divergence, when the value of / is, as
by Theorem 2 it must be here, — oo .

Similarly, when the value of x and ir is + ao, we get the condition for
uniform divergence.

Thus the theorem is true in all cases.

COR.—When the /u 's are not continuous, the same reasoning sheios
that, with at most a countably infinite set of exceptions,* the series is
uniformly convergent or divergent at every point lohere the peak and
chasm functions are equal.

Where / = x = "*•> the series is certainly uniformly convergent or
divergent.

* Theorem 1 being now used instead of Theorem 2, BO that in a conntably infinite set of
caaes/ may differ from the peak and chasm functions.
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4.—<If fx, f2, ... be continuous functions, and the series is
uniformly convergent at P on the left (or unifo)inly divergent), then

CASE 1.—If the series is uniformly convergent at P on the left, assign-
ing e, ~we can find &n interval PQ, with P as right-hand end-point, and an
integer k, such that, for all points x in PQ, and all values of n > k,

\f(x)-fM\<e. (1)

Now, by the definition of Mn,Q (§ 1), we can find at least one point,
say xn, inside the open interval PQ, such that

0^Mn,Q-fn(xn)<e. (2)

Therefore \f(xn)-Mn,Q | < 2e. (3)

Now, if we let n describe a suitable sequence of constantly increasing
integers, nh n2, ..., M^Q "will have the limit MQ.

The countably infinite set of points xni, xn2, ... has at least one limit-
ing point, and may have more. Let XQ be one of these limiting points.

Then we can pick out a subsequence of the set

say n \ , n'.2, ...,

such that xn>v xn>2, ...

is a sequence having XQ as limit. In this case, by the definitions of <p and
\js, any limit approached by / (x) will lie between

\}S(XQ) and <J>(XQ),
both inclusive.

But, by (3), any such limit differs from MQ by at most 2e, hence

\js (xQ) — 2e < MQ < <(> (xQ)+2<J. (4)

Now, let us make e describe a sequence with zero as limit, and at the
same time, as we may, let us take each interval PQ less than half the
length of the preceding one ; then Q will describe a sequence having P as
limit, and the same will be true of xQ, which always lies in the in-
terval PQ.

MQ has then, as we saw in §1, the definite limit 7TL(P), while
may, or may not, have a definite limit, but any limit assumed
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by it is < <pi(P), by Theorem 1 of my paper quoted on p. 30 of the present
memoir. Hence (P) <

Similarly any limit assumed by ^(XQ)— 2e ̂  ^ziP), so that

Hence y\,L{F) < irL(P) < 0z(P). (5)

But, the fn'a being continuous and the series uniformly convergent at P,
f is continuous at P, so that

^L(P) = <PL(P) = / C P ) ;

therefore,, by (5), TTL (P) = f(P).

Similarly Xi(P) = f(P),

which proves the theorem in this case.

CASE 2.—Next, let the series be uniformly divergent on the left at P,
and first let ,./TT.

J\P) = — oo .

Then, by the condition for uniform divergence (§ 6), there is an interval
(P, Q) and an integer k, such that, for all points x in that interval, and all
integers n > k, fn{x)< - A ;

and therefore Mn, Q ^ . — A ;

and therefore MQ <; — A.

Hence, TT(P) being the lower limit of the quantities MQ,

T T ( P ) < - ^ .

Since this is true for all values of A,

,r (P) = - oo ;

and therefore also x (-P) = ~ °° »

which proves the theorem in this case.
Similarly, if /(P) = + oo, the result follows, using x(P) instead of

7r(P), > for < , and replacing MQ, ilfn> Q by the corresponding quantities
connected with x-
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THEOREM 5.—If the / n 's are not continuous throughout the interval
having P as right-hand end-point, hut the series is uniformly convergent
{or divergent) at P on the left,

tf>z(P)—TTX(P) and ^L(P)=XL(P).

CASE 1.—First, let the series be uniformly convergent at P on the
left. The proof then, proceeds as in Case 1 of the preceding theorem
down to equation (5).

Butr by Theorem: 1, irL (P) > (f>L (P);

therefore, by (5), irL(P) = <pL (P).

Similarly, XL{P) =^^L{P),

which, proves the theorem in. this case.

CASE 2.—Secondly, let the series be uniformly divergent at P on the
left. It will be found on examination that the proof given of this case in
Theorem-4 holds without modification-

COR.—At a point of uniform divergence, or at a point of uniform con-
vergence which is also a point of continuity of f(x) on the left,

8. Making then our usual assumption that the fn'a are all continuous
functions, it follows, by the results of the preceding article, that we may
take as the definition of uniform convergence at the point P the equality
of all the four peak and chasm functions.

Similarly, we can define uniform convergence on the right or left alone
by the equality of the corresponding one-sided peak and chasm functions.
It should be noticed that from this point of view uniform divergence is
merely a special case of uniform convergence.

9. When the series is non-uniformly convergent at the point P, there
are several special cases of interest.

(1) Let / be not less than TT at P ; then the function / is upper semi-
continuous at P .

For, by Theorem 1, in this case,

(2) Similarly, if / be not greater than, x a t P> fche function / is lozver
semi-continuous at P.

These conditions are again, as in the case of continuity, sufficient but
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not necessary ; in particular Theorem 1 shews that it is still sufficient for
upper semi-continuity if /(P) > ir' (P), and for lower semi-continuity if

(3) Let X ' ( -P )=^m
then the function / is continuous at P, by Theorems 1 and 2.

[It is clear from. Theorem. 1 that x' (•?) > ^ (-?)•]

This condition, is sufficient, but not necessary.

10. In Case 3, an argument precisely the same as that used in proving
Theorem 3 may be used, only that, as MQ is not the highest but the
lowest possible limit approached by Mn> Q, we cannot determine kx so that
for all values of n ^ kly , , . ,,,, .

^ x' Mn,Q<MQ+e;
but we can insure that this is true for all values of n belonging to a
certain sequence of constantly increasing integers

n^, n%, . . . .

The same is then true for the inequality

Ln, Q > LQ—e,

for all values of n ^ h2, belonging to a certain sequence

n[, n'2, ...,

Ln,Q denoting the lower limit of fn(x) in the interval PQ, and L'q the
highest limit of LHIQ.

If these two sequences are the same, or if they have a common
sequence, the argument used in the proof of Theorem 3 applies ; hence
it follows that the condition for uniform convergence at P is satisfied,
with the restriction of n to values belonging to a certain sequence.
When this is the case the convergence at P is said to be simply uni-
form.

This mode of looking at simple uniform convergence shews that there
is no essential difference between simple uniform convergence at one
point and uniform convergence at that point. If the corresponding
sequence is

nx, w2, ...,

we only have to take, instead of the given series of functions

t i t / 2 > • • • >

the sub-series fni, fn2, ...
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having the same limiting function / , and the convergence at the point
under consideration will be uniform.

11. If the given series is simply uniformly convergent at every point
of an interval or of a closed set, it may be, but this is not necessarily the
case, that the same sequence will serve at every point of the interval, or
closed set. By the extended Heine-Borel theorem, it then follows that a
finite number of the intervals which are defined at each point by the
simple uniform convergence will suffice to contain every point of the
interval, or closed set. To these intervals correspond a finite number of
integers k; thus, if k' denote the sum of these, it will be true that, for all
points x of the interval, or closed set, and for all integers n ^ k' belong-
ing to the sequence in question,

\f(x)-fn(x)\<k.

A being the quantity with which we started to determine the intervals
and integers.

Conversely, if this is true, there is a sequence of integers which will
serve at every point.

In this case it is customary to say that the given series is simply uni-
formly convergent throughout the interval or closed set, and it has been
pointed out,* by the same argument as that used above, that by properly
picking out the functions fn, we can reduce this to uniform convergence
at every point of the interval, or closed set.

It is clear, however, that this is only a particular case of simple uni-
form convergence at every point of the interval, or closed set, and it by no
means follows that in the general case of simple uniform convergence at
every point of an interval, or closed set, we can so pick out the functions
as to make the convergence uniform at all the points in question
simultaneously.

12.t We now proceed to prove for the 7r's and x's the same theorems
as those obtained in the paper already quoted for the <j>'s and y/s.

* Arzela, loc. cit.
t In this article the assumption that/n is continuous need not be made.
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THEOREM 6.*—Any limit approached by ir{x), TTI,(X), or TTR(X) as x
approaches a point P as limit on the right ^ TTL(P)> and, as x approaches
P as limit on the left ^ TTR (P).

If TTL(P) = + oo, this is certainly the case; if not, we can find a
finite quantity A > TTL(P).

Then, by the definition of *ITL(P)> we can find an interval d with P as
right-hand end-point, such that, Q being any point of this interval,

MQ< A.

Therefore, by the definition of MQ, we can find an integer k, such that,
for all integer8 n ̂  k, j ^ n Q< A.

Therefore, Mn< Q being the upper limit oifn(x) in the interval (P, Q),

fn(x) < A,

for all integers n ̂  k, and all points of (P, Q).
Now, let P1 and Qr be any two points internal to PQ, and let us con-

sider the quantities MQV and Mn> Q, referred, not to the interval PQX but to
PiQv The preceding inequality (3) gives us then

Mn,qy < A.

We then have MQl < A.

Now, let Qx move up to Px as limit, we get

7TX(P1)<^, or 7 r i : (P 1 )<^ ,

according as Qx lay on the left or the right of Pv

Since A is at our disposal, provided only it is > irL{P), this proves the
first part of the theorem ; similarly, working on the right, the second
part follows.

COR.—7T£ is upper semi-continuous on the left and irR on the right,
while x is an upper semi-continuous function, and, as such, at most point-
wise discontinuous.

The proofs of the succeeding theorems in my paper quoted, depending,
as they do, solely on the theorem correlative to the above theorem, can
now be transferred verbatim, changing only the symbol <j> into ir. It is
therefore only necessary to give the enunciations here.

THEOREM 7.—At every point of continuity of ir,

TT£ = 7TR = 7T,

and both TTL and TTR are continuous.

COR.—7Tjr and TTU, as well as IT, are at viost pointwise discontinuous.

THEOREM 8.—The only points at ivhich both irL and TTR are continuous
are the points of continuity of IT.

* The correlative of Theorem 1, foe. cit.
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THEOREM 9.*—The points, if any, at which TTR differs from -KL, are
countable.

Similar results, interchanging the signs > and < , hold, of course, for
the x's.

13. Thus we see- that, except possibly at a countable set of points,

irL = Trn = Tr a n d XL — XR — X»

while x < Y*" < / < 0 < 7r-

Thus the distinction of right and left with respect to peaks and chasms
exists at most at a countable set of points.

When the functions fn are continuous, it is, as we saw, the same to
say that there is no distinction of right- and left-handed non-uniform con-
vergence, except at most at a countable set of points.

14. THEOREM 10.—At any point P where the peak and chasm func-
tions are equal, both these functions are continuous; conversely, at any
point where they are both continuous, provided the fn's are continuous,
the peak and chasm functions are equal.

To prove the first part of the theorem, we only need Theorem 6. For,
let P be a point at which ,_. /Ty.

X(P) = TT(P).
Since, as x approaches P as limit,

X (P) < Lt X(X) < Lt 7T(X) < 7T (P),

we must have the sign of equality throughout, which proves that both x
and x are continuous at P.

To prove the second part of the theorem, we proceed as follows.
Suppose, if possible, that there were a common point of continuity of

the peak and chasm functions at which the peak and chasm, functions
were not equal, let this point be P, then

TT(P) > X(P), (1)
by Theorem 1.

By the sense of this equation TT(P) cannot be - c o , nor xC?)"!"00 >
therefore we can find two numbers a and /3, such that

X ( P ) < / 3 , a < 7 r ( P ) ; (2)

* The more specialised results denoted by Theorem ba and bb loc. cit., are not given here ;
they hold, of course, and the proofs only require the change of <p into tr.

The correlative of Theorem 6, viz., the points, if any, at which f > ir are countable,
follows, of course, at once from our Theorem 1, using the results of the former paper. This was
already referred to in the footnote on p. 34.
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-further -we can so choose these numbers that

j8 < a. (3)

Since P is a common point of continuity of the peak and chasm functions,
we can find a whole interval {A, B), at every internal point x of which

X&X/3, a <*•(*), (4)

the point P being internal to this interval.
From the definition of the peak function, it now follows from (2) that

we can find a point Q in (A, B), such that

a < M Q ;

and therefore we can find a value nx of n, greater than any assigned
integer, such that ^ „_

a < MWl, Q.
Since Mnii Q is the upper limit of the values of/n,(x) in the interval (P, Q),
there is certainly a point of this interval where fni(x) > a; hence, since
yni is continuous, there is a whole interval (Alt 2^) internal to (A, B), at
every point x of which ^ , . . /e\

J L a<fni(x), (5)
while, of course, the relations (4) hold throughout the interval.

By precisely the same argument, using x instead of ir, and inter-
changing the signs > and <., we shew that there is an interval (A{, B'i)
inside (A, B), such that at every point x of it

A (*)<& (6)
n[ being also an integer greater than the assigned integer.

We now take the interval (Alt BJ and shew, by the same argument,
that there is inside it an interval {A'i, Bo) at every point of which

/,f(a0 </3,

n-2 being a certain integer greater than nx.

Similarly, inside this we get an interval (A3, B3), at every point of
which ,

Proceeding thus we get a countably infinite set of intervals, each
lying inside the preceding,

Wi,5i), Wi,.Bi), U9,BJ, (A'4,B<), ...,

and a corresponding series of constantly increasing integers

n v ? i 2 , n3, 114, . . . ,
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such that for the intervals and integers denoted by dashed letters we have
relations of the form (6), and for the others of the form (5).

Now, there is at least one point internal to all these intervals and at
this point we shall have both

fix) = Lt fn(x) > a,

and, using (3), f(x) = Lt fn..(x) < /3 < a,

which is impossible, f(x) being, by hypothesis, determinate. Thus the
supposition made at the beginning is untenable, which, by a reductio ad
absurdum, proves the theorem.

COR. 1.—Thefts being continuous, the points at tohich

form a set of the first category ; in other words, the points of non-
uniform convergence and divergence form- a set of the first category;
this set is none other than the set of points at which one at least of the
functions x and TT is discontinuous, and is therefore an ordinary outer
limiting set.*

It should be noted that in an interval in which there are no points
of uniform divergence, ir = x is a nu-H function whose zeros are its
points of continuity and are the points of uniform convergence of the
series in that interval.

COR. 2.—In an interval throughout -which the series converges, the
points at which

7T = -+• 00

form a closed set nowhere dense; tlie same is true of the points at which

X = — co.

First, either of these sets must be closed because the peak function is
upper semi-continuous and the chasm function is lower semi-continuous. \
Hence, unless nowhere dense, either of these sets would fill up an interval,
and therefore throughout that interval x would be greater than / or /
greater than x» that is, in either contingency x would be greater than x
throughout that interval, contrary to Cor. 1.

• That is, the outer limiting Bet of a series of closed sets,
t See my paper in the Quarterly Journal already cited.
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15. THEOREM 11.—The points of uniform divergence of a series of
continuous functions form an inner limiting set.

At a point of uniform divergence either

X = 7r = -f- °° or X = <7r== — °° •

Consider the first of these sets; since x is a lower semi-continuous
function, the points x == + 0 0 form an inner limiting set.* But, if

X = + °°» ir = + « ;

since ir ^ x-

Thus the first set is an inner limiting set; similarly, the second set is
an inner limiting set, and therefore the sum of the two sets is an inner
limiting set.

COR.—If a series of continuous functions diverges at a set of points
dense everywhere in an interval, it diverges uniformly at points which
form a set of the second category.

16. In § 13 it was proved that the points at which there can be
a distinction of right and left with respect to non-uniform convergence
are at most countable. It remains to shew, by an example, that this is
the utmost that can be said. In the one we proceed to give, it will be
noticed that all four peak and chasm functions are different from one
another and from / at every point of a countable set which is everywhere
dense in the segment (0, 1).

Ex.—Let us construct the continuous function fn as follows :—
Divide the segment (0, 1) of the x-axis into ten parts. At the first

point of division, let the value assigned to fx be any chosen quantity Ao ;
at the second point of division "2, let the value be any chosen quantity
Bo; at the last point of division '9, let the value be any chosen quantity
A1; and at "8, any chosen quantity Bv At the remaining points of
division the values assigned are as follows:—At *5 the value of fx is '5,
and this value will remain fixed for every fn ; at *3 it is *8; at '4 it is '2 ;
at "6 it is *4 ; at '7 it is "6.

We then draw a polygonal line starting from the point (0, 0) and
passing in order from left to right through the points whose ordinates
are the values of fx at the points of division, and ending at the point

* Loe. cit. in the preceding note.
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(1, 1); in the figure, the first two and the last two straight lines are not
drawn; the values of the A's and B's may be such that they do not lie
entirely within the square- The equation to this polygonal line is to be

y =/i(x).

•6 -

•4 ~

•2 -

•1 -2 -3 -4 -5 -6 -7

FIG. 1.

•8 9

Everywhere outside the interval (0, 1), fx is to be zero. We may con-
veniently write symbolically

Mx) = F{x; 0,1; Ao, Bo, Alt BJ,

and a function constructed on the same principle, but to a different scale,
the interval being (a, b) instead of (0, 1), and the left-hand bottom corner
of the square the point (a, a) instead of (0, 0), will be denoted by

F{x; a,b; Aa, Ba, Ab, Bb).

The function / 2 is now the sum of two such functions, corresponding
to the two halves of the interval (0,1), which determined fv The quantities
AQ, BQ, AV, B1 are those used in constructing fx; the quantities A*, B$
corresponding to each interval are determined by the values assigned at
the four points of division nearest to '5 in constructing f±; we have, in

aC ' h = F(0, '5 ; AOi Bo, % '8)+F{'5,1; '4, '6, At, £,)•

In each half interval we now repeat the construction, and so get / 3 defined,
and then /4, and so all the /n 's in succession. The value of fn at the
point J will then, always be £, and the corresponding peaks and chasms
will always be "8 and "2 on the left and *6 and "4 on the right. Thus



1907.] CONVERGENCE AND DIVERGENCE OF A SERIES OF CONTINUOUS FUNCTIONS. 49

/ will be £ at the point £, irL will be *8, xz will be '2, irR will be "6, and
XR will be '4.

The mode of construction shews that the same will be true with
different numbers at all the rational points whose denominators are
powers of 2. The difference between any two of the five functions at
any point is the same as the same difference at any other point with the
same power of 2 as denominator, while this difference is halved when the
power of 2 is increased by 1; the value of the limiting function / at
any such point x will then itself be x.

If x be any number other than one of the fractions whose denom-
inators are powers of 10, it follows therefore that the values of the peak
and chasm functions corresponding to the end-points of the interval (a, b),
to which x is internal at each successive stage, will differ by less and less
and have the same limiting values. In other words, the segments of the
broken line fn corresponding to this interval will become shorter and
shorter without limit. Taking, therefore, any little interval with our
point x as end-point, the upper and lower limits of fn will more and
more nearly coincide the greater n is, and this will be still more so the
smaller the little interval; there is no positive lower limit to this limit,
hence the peak and chasm functions at x coincide at x. Thus x is a
point of uniform convergence of the series, and therefore a point of
continuity of the limiting function / ; it follows that throughout the
interval (0, 1) considered .. .

f(x) = x.

17. We now proceed to give examples showing that the results
obtained in Cor. 2 of § 14 are the utmost that can be stated with regard
to the points in question. We content ourselves with giving a series
for which irL and 7r/« are both -f-oo and XL a n d x^ both —oo at any
arbitrarily selected closed set of points nowhere dense. It is at once
obvious how the construction may be modified so as to give a series for
which x> for example, is everywhere finite and 7r everywhere infinite
at the points of such a set.

Ex. 2.—We only need to shew how to construct a function uniformly
convergent throughout an open interval and having at both end-points

X = — «>» T" = + <*>,

fn having at the end-points any the same assigned value which has a
definite limit as n increases indefinitely.

If we can do this, we can do it for every black interval of any given
closed set; we can then ascribe to fn the above selected value at every
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remaining point of the closed set. We thus have a series of continuous
functions defined for the whole segment whose peak and chasm functions
are respectively + °° and — oo at every end-point of a black interval, and
therefore at all the limiting points of the set of these end-points, that
is, at all the points of the given closed set. In this example, / will be
usually discontinuous, but it is easy to arrange it otherwise if ~we please.

Take the interval (0, 1) and let
, _ u2x-\-n

Jn ~ l+n(nx+lf
from 0 to £ both inclusive, while from ^ to 1 we use the same expression,
changing x into (1—&).

Here / is zero except at the extremities of the interval where it is
unity.

Or, again, put , ___
J

from 0 to £ both inclusive, while from ^ to 1 we use again the same
expression, changing x to (1—x).

Here / is always zero, and therefore continuous. At the ends of
the interval the peak and chasm functions are in both cases -+- oo and — oo
respectively.

18. Can 7T = H-oo throughout an interval ?
If so, the series must, as we have seen, be divergent at a set of

points dense everywhere in that interval. With this proviso it is easy
to construct such a series. Such a series, for example, is that given
by Borel,* . ,

n '2

where rl5 r2, ... are the distances, taken positively, of the point x from
the rational points of the segment (0, 1) arranged in countable order,
and the A's are constants suitably chosen, viz., in such a way that the
series whose general term is An converges.

Notice further that it follows from Theorem 11 that this series
diverges uniformly at a set of the second category.

19. For the sake of completeness we shew how to form a series in
which the peak and chasm functions as well as the limiting functions are

• Borel, Comptes liendnes, Vol. cxvm., p. 540 ; Schoenflies's Bericht, p . 243. See also my
paper in the Messenger of Mathematics, Vol. xxxvn., " On a New Proof of a Theorem of Baire's."
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all infinite, flay = + °°» throughout an interval, so that the series
diverges uniformly at every point of the interval. We have merely to
take any series which converges uniformly to zero positively, say

the required series is uo-|-t>1+...,

where vn = —: ; ; ; : ;—.

We content ourselves with the examples already given; it is not difficult
to construct others illustrating more fully the various theorems above
given ; for instance, the fundamental one with respect to the distinction
of right and left. Thus we could arrange that the series diverges uni-
formly on the right and non-uniformly on the left at every point of a
countable set nowhere dense.

20. All these theorems still hold mutatis mutandis if we consider the
behaviour of the series at points of a perfect set of points contained in
the segment in which the functions are defined, instead of at all the
points of that segment itself. We shall have, of course, to replace " uni-
form convergence at a point " by " uniform convergence at a point with
respect to the perfect set." The new peak and chasm functions relative
to the perfect set will be obtained by letting the variable point Q describe
not the continuum, but the perfect set in the neighbourhood of a point P
of the set.

Thus, for instance, the new and extended form of Theorem 10 gives
us the following statement:—

Thefts being continuous, the series is only point-wise non-uniformly
convergent {including divergent) with respect to every perfect set.

Using the result of § 5 relative to a perfect set, this includes Baire's
theorem that the limiting function f of a series of continuous functions
fn is only pointwise discontinuous with respect to every perfect set.
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