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ON THE STEADY ROTATION OF A SOLID OF REVOLUTION IN
A VISCOUS FLUID

By G. B. JEFFERY.
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Tue only possible motion of a viscous fuid which is symmetrical
about an axis, and for which the stream lines are circles having their
centres on the axis and their planes perpendicular to the axis, is the
motion generated by the rotation of two infinite concentric circular
cylinders about their eommon axis.* If, however, the motion is slow so
that the squares and produects of the velocity components may be neglected,
there are other possible solutions. Let =, ¢, 2z be cylindrical coordinates,
and u, v, w the corresponding components of velocity, then neglecting the
squares and products of wu, v, w, the equations of steady motion in the
symmetrical case are

% g’_X + Vi — % =0,
Vio— 1—;—; =0,
% g—;( +Viw =0,
where v is the kinematic viscosity, and x = — V—p/p, where 1 is the

potential of the external forces, p the mean pressure, and p the density.
These equations are satisfied by x = const., & = = 0, while v is a
fanction of =, 2z only and

Tip— 5 = 0. RN
ko)
Writing v = \r/sin ¢,
this equation becomes vh)r = 0.

* ¢+ The Equations of Motion of a Viscous Fluid,”’ PLil. Mag., April 1915, p. 445.
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Hence if we have any solution of Laplace’s equation of the form
f (=, 2) sin ¢, a solution of the present problem is given by

v = f(w, 2).

If the motion is generated by the rotation of a solid of revolution
about the axis of z with angular velocity w, we have to make » vanish for
large values of = while, on the hypothesis of no slipping at the solid-fluid
surface, we have » = ww over the surface of the solid.

If a, B, v are a system of orthogonal curvilinear coordinates, and
', o', w' the corresponding components of velocity, and if elements of are
measured along the normals to the surfaces a, 8, v = const., are da/h,,
63/ g, Sy/hg respectively, we have with the usual notation for stress com-
ponents* _ hg O hy ©

&= G 2 g )]

where u is the coefficient of viscosity.
Let a, B be conjugate functions of =, 2, while y = ¢, then
“h= () nel
hl_h2_(am' +am' j hs =
If the solid is defined by one of the surfaces a = const., we have for the
tangential stress on its surface in the direction perpendicular to the axis

2 (2).

@

or the total couple exerted by the fluid on the solid is
o (v
— 3
G Qrujm' % <m'> s, (2)

the value ot the integrand being taken on the surface of the solid and the
integration extending round the contour of the solid.
If n, s are measured along the normal and the arc of the contour

respectively d /v
— 3
6 = 2mu [w 2 (L) s ®)

We have a solution of Laplace’s equation in spherical polar coordinates

nN=wn

I =sing = 'Ad,"+B,r~""1] P, (cos ),
14 ¢

n=1

where P) (cos ) is the associated Legendre function of the first kind, of
degree »n and of the first order. Hence we have a solution of the present

* Lamé, Coordonnées Curvilignes, p. 284.
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problem
v =

M8

{Adur*+B,r~""*} Py(cos 6).
1

As a particular case take n = 1. We have
v = {Ar+B/r*} sin#,

which is the well known solution for the motion of a tluid contained be-
tween two concentric spheres which are constrained to rotate about the
same diameter. In the case of a single sphere of radius a rotating with
angular veloeity » in an infinite fluid, we have

0130) .
v = '72_5”1 a, G = Bruwd®. 4)

The general case of the rotation of an ellipsoid of any shape about a
principal axis has been solved in terms of ellipsoidal harmonics by Mr.
Edwardes (Quarterly Journal of Mathematics, Vol. xxvi, p. 70). The
simpler case of an ellipsoid of revolution can, however, be very readily
solved by the method of this paper.

Rotation of an Ovary Ellipsoid.
Take coordinates defined hy
7+ i = ¢ cosh (£+17),
so that z==ccoshfcosy, @ = csinh £siny.

The surfaces £ = const. are a series of confocal ovary ellipsoids, while
the surfaces » = const. are a set of confocal hyperboloids of revolution,
the foei in each case being 2 =+4¢, mw=0. Well known solutions
of Laplace’s equation are

P™(cos n) P (cosh £) sin me,
P™(cos ) QF(cosh £) sin me,
and henee we have solutions of the problem in hand
v = Pl(cos n) P, (cosh §),
and » = Pl(cos ) L (cosh &),

the former is finite when cosh £ = 1, i.e., on the line joining the foei, but
it becomes infinite with £ The second solution, on the other hand, be-
comes infinite on the line joining the foei, but vanishes at infinity. It is
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therefore applicable to the case of an ellipsoid in an infinite extent of fluid.
We will, however, take the more general case of the motion of a fluid be-
tween two confocal ovary ellipsoids rotating with different angular velo-
cities. For this purpose both solutions are required. Put 7 =1 in the
above solutions and assume

v = sin g {AP} (cosh f)—l—BQi(cosh o}

If the two surfaces are defined by £ = &,, &, and if their angular velocities
are wy, w, respectively, the boundary conditions give

APi(cosh fo)—{—BQi(cosh £p) = cw, sinh &,
APj(eosh &)+ BQi(cosh &) = cw, sinh &,

We may conveniently write

A ) £ cosh ¢
J(&) = log coth 2 " sinhig’
Then P} (cosh &) =sinh & and Q}(cosh £) = sinh £ f(£).

Solving for 4, B, we have

FO~FE) o fE)—f@
v = osinh € sinn oy LA o FE0E

To calculate the couple on either ellipsoid necessary to maintain the
rotations we may use the formula (2), and we have at once

|
L

Wy — Wy

f(é:o) —f(s 1)

In the case of a single ellipsoid (£ = £,)) in an infinite extent of fluid, we
have, putting & = @, o, =0,

G =1

&
v = @y¢ sinh £ sin ”;(%;’
o

and G = LBmuwy Blf (€.
If @, b ave the polar and equatorial radii respectively,

a =cecosh &, b =csinh§,
and we have

a+c> ac)

G = Yrumyc /]%10g< c T 5

where ¢ = a—1%
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When 6 —a, ¢ —>0, and
G = Bruwyd®,

which is the value already given for a sphere.

Rotation of a Planetary Ellipsoid.

In the case of an oblate or planetary ellipsoid we take coordinates
defined by 2-iny = c sinh (E+in),
80 that z = csinh £ cosy, = = ceosh £ sin 7.

The surfaces £ = const. and » = const. are ellipsoids and hyperboloids of
revolution having a common focal circle, 2 =0, = =¢. We have as
solutions of Laplace’s equation®

Pi}(cos n) p;(sinh £) sinmeg,  P(cos ) g (sinh £) sin me,

dnl . . " duL
where pr({) = ({>+ 1) an(f), g =+ 1)t ace g (),

the functions p,, ¢, being connected with the ordinary Legendre functions
by the relations

Py =47 Pu(GE),  qu() = 1 Qn (6E).
Hence we have solutions
v = P!(cos n) plsinh £),
v = P, (cos n) ¢, (sinh §).

As in the previous case the former becomses infinite, while the latter
vaunishes at infinity.
Let the two ellipsoids £, £; have angular velocities w,, ;. Assume

= | Ap} (sinh £)+ Bg!(sinh £)} sin ».
The boundary conditions give

Api(sinh £)+ Bgl(sinh £y = cw, cosh &,
Ap](sinh &) + Bq}(sinh £,) = cw, cosh &,.
Now p; (sinh £) = cosh ¢,

* Lamb, Hydrodynamics, p. 136.
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and writing F) = ::Sl}}]lgi, —cot~!sinh §,
we have q, (sinh £) = cosh £ F(£).
Solving for A, B,
Fg)—F () FE)—F() ) .

v = ccosh £ siny - wo

FE)—F&) T FE)—F &)

Using equation (2) to evaluate the couple which must be applied to
either ellipsoid to maintain the rotation, we have without difficulty
w;— g

— 16
G =Tl FE TGy

If the fluid is not bounded externally, so that we have a single ellipsoid in
an infinite extent of fluid, we may put o, = 0 and £ = ®. In this case

» = ¢ eosh £ gin nw, F(E)/F (£,
and G = Leauclo, F(£).
If a, b are the polar and equatorial radii respectively

, @ =csinh§, b =-ccosh§,
and we have

where B—a? = A
We may note that this is the form taken by the result (5) for an ovary
ellipsoid when b is greater than a for

a+iy/ (b —a?d)
W= =

1 log = ¢eot™!

%
N
The Rotation of a Circular Disc in an Infinite Fluid.

The solution of this problem may be obtained by putting & =0 in
the solution for a planetary ellipsoid. Hence

p = 2(’)0 ¢ cosh £ sin 5 F(§), (6)
and the couple necessary to maintain the rotation is

G = 32uw,c?,

where ¢ is the radius of the dise.
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From (6) the normal gradient of the velocity over the surface of the
dise can be caleulated,

w
Wy m . ("N

ov 4 O€\.
L
4
™
It appears that, while the velocity is everywhere finite, the velocity
gradient, and therefore the shearing stress, become infinite at the edge
of the dise. It is probable that in the neighbourhood of the sharp edge
the condition of no relative motion between the solid and the tluid breaks
down. It would be interesting to see whether this infinity disappeared in
a more accurate solution which did not neglect the terms involving the
squares of the velocity components.
Another solution of this problem may be obtained in terms of Bessel
funetions, for we have a solution of Laplace’s equation

e " J (k=) sin ¢,
and hence a solution of equation (1)
v = J"f(k)e"‘"Jl(kw)dk.
9

In the case of the dise we have

v =ww for z2=0, m<e, (8)
ov ,
5_0 Jor z2=0, =>c, 9

and hence f(k) is determined by
50 FO) T k) dk = wym (@ < ),
j EfR)T (kw)dk = 0 (w > o).
0

It has not been found possible to solve these integral equatiouns directly,
but if we make use of (7), together with (9), and the theorem™® that if

—(-(;)—: = F(m) for z=0,
then v = j o= T, (k) 5 FO J,(k\) NdAdR,
Q i

* Gray and Mathews, Bessel Functions, p. 80. The infinity of ¥ at = = ¢ does not in-
validate this theorem.
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we obtain without difficulty

» = 4 w"j e " (sin ck— ck cos ck) J, (k=) %',
s 0

and this will be found to satisfy bhoth conditions (8) and (9).

The Rotatron of Two Non-Concentric Spheres.

This method may be applied to the problem of the motion of a viscous
fluid generated by the rotation of any two spheres with different angular
velocities about their commmon diameter. If we take coordinates defined by

Etin = log%—i—i%%‘%, (10)
in any meridian plane the curves £ = const., = const. are the systems
of coaxial circles about the points z = + a and through these points re-
spectively. The surfaces £ = const. will be a family of coaxial spheres
having the common radical plane z, £ = 0, and we can choose the axes of
reference and the constant @ so that any two given spheres are members
of this family. We have a solution of Laplace’s equation in these coox-
dinates of which the following is a particular case*

y/(cosh E—cosn) 214, coshin+3)E+ B, sinh(n43) ¢} P, (cos #) sin .
It follows that a solution of the present problem is given by
v = a/(cosh E—cosn) X | A, cosh(n+3%) £+ B, sinh(n+3) £} Pl (cos »).

Let the two spheres be defined by § = &, &, and let them have angular
velocities w;, w,. Without loss of generality we may take & positive, and
£, positive or negative according as the two spherves do or do not lie one
within the other. 'We have to determine 4,, B, so that » i8 equal to ww,,
when £ = ¢, and equal to ww,, when £ = §,. From (10),

- = a sin y
" cosh £—cos 5’
and we obtain
A, sinh(n+3)(E—E)
= — 2/2 a[wle~(7b+é)§1 sinh (n43%) f,z—wzei('”%)Ez sinh(n+3) El] ,
B, sinh(n+3%)(,—&)
= 2/2alwe " Dhcosh(nd-3) &—wpet D i cosh(n+3) &,

* Heine, Kugelfunctionen, I1, p. 268; see also a paper by the author ‘* On a Form of the
Solution of Laplace’s Equation,”’ Proc. Roy. Soc., A, 87, 1912, p. 109,
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where the upper or lower sign is talen according as & is negative or
positive.
We will investigate the resultant couple on either sphere

a(zg> 331nh§

& \w 2a sin 7

-{-—~(cosh‘f &) 2 n+3 {4, sinh(n+3) €+ B, cosh(n+3) £} dfp,,(g

where = cos .

The couple on the sphere £, is given by
G=2mw L (L) =2

. 1 (1—¢Yd¢
= 87ua’e, sinh & j’_l Zc(oj—gfl)—_—%;

+2mua® T (n+3) { Ansinh (n43) €, + B.cosh(n+3) & 1.,

n=1

_ (7 1= ap) .
where I _5_1 (cosh & =01 ¢ d¢.
N +1 1—¢? .\ 4

™ 5-1 (cosh £,— &) d{ = % cosech* £,

and 1t remains to evaluate /,. Now

1 m=wn
————— o =+ 6 p
(cosh & —¢)3 =2 mzn e hR Py ).

Differentiating with respect to ¢,

] " apP,({)
_ m+p s, (L)
(cosh fl_“g)% 2‘\/2 mEI ¢ dg‘ ’
and so I, = 24/2 s e“”‘*’)“J P P (O d¢
m=1

P 2 (mtD!
—_— (n+3) ¢
W2e "1 (e—1)!
A Lln ok VIO
V2 2n-+1 € '
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Hence

Gy = 4mua’ow, cosech?® &;

+44/2 wpa® S (n41) {4, sinh (n+3) &+ B.cosh (n+}) &} e 0+PE,
1

"=

or, ingerting the values of the constants,

G, = 4mua’w, cosech? &,

+ 167wua® %1 n(n41) {w, e~ @+ coth (n+ 1) (E,— &)
—w, ef(n+§)(§\-?fz) COSGCh (”—I—%) (51-—52)} .

The two series multiplying o, and w, are convergent, whatever &, may be,
provided that £ is positive; they may thereforezbe summed separately.
Now, when £ > 0, we have

coseeh3 £ =8¢ 3/(1—e %P3 =4 2 n(n+1)e- D
n=1

and so the terms containing w; in G| can be written

o«

8wuade, cosech?® £+ 167uale; = n(n41)e~@+V 6 {eoth(n+P (£, —E)—1}.
1

h=

Also coth(n43) (£, —E€)—1 = 2 3 e~ @+DhmlGi-),

n=1

and so = (1) e~ 4 {ooth (1) (€ —E)—1}
n=1

w o0 1
=3 3 2nm+1) e—(2n+1)|{(m+1) & —més}

n=1 m=1
The terms in this double series are all positive, and the series is convergent

when summed in the present way; we may therefore interchange the
order of summation, and we have

1 i cosech® {(m—+1) &§—mé;t.

m=1

We now see that the terms containing w, in G, can be brought into the
single sum »
87ua’w, T cosech® {(m—+1)&—m&,}.

=0

The terms containing w, can be transformed similarly, using the identities
Z nn41) e~ +HEFE cogech (n+3) (£, —Ey)
n=1

% 271‘(n+ 1) e~ @A D Im+1) fr—(mid+d) £al

n=1 m=0

i
Ms

1 § cosech®[((m+-1) & —(m+1+D &,
m=0
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On combining the results we readily obtain

Gy = 8rua®| w;, T cosech®[(m+1) & —m&,]
()]

m=

—ay 2 cosech [0n+1) &=+ P &] |

If one sphere encloses the other, &, is positive, and the lower sign must
be taken, and

G = 87ua’ (w,—oy) 5 cosech® [(m+1) £ —m&,). an
m=0

If, on the other hand, &, is negative, the spheres are separate and the
upper sign must be taken. In this case

G, = 8wua®| w, % cosech®[(m+1) £ —mé&,]

m=~

—wy 33 cosech® (m—+1) (fl—’f-z)]- (12)

m=0

Suppose that the sphere &, is constrained to rotate with a given spin
w;. There will be a certain value of w, for which G, vanishes. This is
the steady angular velocity with which the sphere £, would rotate if
allowed to move freely. From (11) we see that in the case when one
sphere encloses the other this gives w, = w,. In this case, then, if one
sphere be allowed to move freely it will acquire the same angular velocity
as the other sphere, and the fluid will move as a rigid body. In the case
of two non-enclosing spheres, if £, is constrained to rotate with angular
velocity w,, while £, is left free to move under the fluid stresses, it will
rotate with angular velocity

T coseeh®*(m-+1)(E—E&)
© = wy 5= )

3 cosech? [(m+1) £, —méy]

m={)

In the case of two equal spheres £, = — &, and from (10) we obtain

diameter of either sphere __
distance apart of centres

sech &;.

The character of this influence of one sphere upon the other is exhibited

SER. 2. VOL. 14, no. 1242, Z
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in the following table :—

Two Equal Spheres—One free.

¢ Diameter w)

! Centre Distance wg
-2 9803 -1278
-4 9250 1023
6 8435 0759
‘8 7477 10524

1-0 6481 0340
1-2 +5523 -0211
14 4649 -0126
16 *3880 -0073
18 3218 0042
20 -2658 0023
2:5 1631 0005
30 *0993 +0001

It appears that even when the distance between the spheres is as small
as one fiftieth part of the distance between their centres, one sphere com-
municates only one eighth of its spin to the other sphere.

If we put & =0 and », = 0, we obtain the solution for the rotation
of a sphere in a viscous fluid in the presence of a fixed infinite plane per-
pendicular to the axis of rotation. The plane will cause the sphere to
experience an increased resistance to its rotation, and we may compare
the resisting couple with its value in the absence of the plane.

The Increase to the Resistance to the Rotation of a Sphere owing to the
Presence of an Infinite Plane.

Radius of Sphere Ratio of Increase of
& Distance of Centre from Plane | Couple due to Plane.
2 *9803 1-171
4 *9250 1-126
6 ‘8435 1-087
‘8 7477 1-057
1-0 '6481 1-036
1-2 *5523 1-022
1-4 4649 1013
16 *3880 1-007
1-8 +3218 1004
20 12658 1:002
2:5 +1631 1-0005
30 -0993 10001

Here again the effect is surprisingly small. If the fixed plane is
brought so close to the rotating sphere that their distance apart is but one-
fiftieth of the radius of the latter, the couple required to maintain the
rotation is only increased by 17 per cent. These results, it will be noted,
are independent of the degree of viscosity of the fluid.





