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ON THE STEADY ROTATION OF A SOLID OF REVOLUTION IN
A VISCOUS FLUID

By G. B. JEFFERY.

[Received February 10th, 1915.-Read February 11th, 1915.]

rrHE only possible nlotion of a viscous fluid whicll is syulmE:trical

about an axis , and for which the stream lines are circles having their
centres on the axis and their planes perpendicular to the axis, is the
motion generated by the rotation of two infinite concentric circular
cylinders about their common axis. * If, however, the motion is slo\y so
that the syuares and products of the velocity components lnay be neglected ,
there are other possible solutions. Let 강， φ， z be cylindrical coordinates,
and it, V , w the corresponding components of velocity, then neglecting the
squares and products of 11, v , 'lV, the equa꾀ons of steady nlotion in the
symmetrical case are

~ "\

강 證+\7자l- 찮 == 0,

?’
?%-수9. == 0,

긴:r-

L 핸 +V21O = 0,
11 OZ

where 11 is the kinematic viscosity, and X == - V-pip, where V is the
potential of the externa.l forces , p the lnean pressure, and P the density.
These equations are satisfied by X == const., μ == 'w == 0, while 7.' is a
function of 'lU, Z only and

\Vriting

this equa.tion becomes

y2V_ 앓 == 0

l' == ψIsin φ，

y2ψ =0.

(1)

* “ The Equations of Motion of a Viscous Fluid," Phil. M，α(I . ， Apri11915, p. 445.
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Hence if we have any solution of Laplace’s equation
j ’ (긴T， z) sin φ， a solution of the present problem is given by

328

v == f (U.T, z).

If the motion is generated by the rotation of a solid of revolution
ahout the axis of z with angular velocity ω， we have to make l' vanish for
large values of U.T while , on the hypothesis of no slipping at the solid-fluid
surface, we have 1) == 강·ω over the surface of the solid.

If a , β， yare a system of orthogonal curvilinear coordinates, and
lι’ ， v’, W ’ the corresponding components of velocity, and if elements of arc
measJ1red along the normals to the surfaces a , β， y == const., are oa/hI'
6βI h2, oyjh3 respectively, we have with the usual notation for stress com
ponents*

( h3 a n .. n I hI 3 17. •.. ,\ 1ay == fJ. ~ '1:'3 ;, (hlu ’)+ 꾀 ~(hilUJ ’ ) f
- μ j lt1 Uy h3 6Q 9 J

where μ is the coefficient of viscosity.
Let a , β be conj ugate functions of 강， z , while y == φ， then

ho. ==초-
- 긴T

hI == h2 == -[ (뚫) 2+ (짧)텐，

If the solid is defined by one of the surfaces a == const., we have for the
tangential stress on its surface in the direction perpendicular to the axis

μhI U.T 옳 (움) ,

or the total couple exerted by the fluid on the solid is

G==2τμ규3 옳 (승) dβ， (2)

the value of the integrand being taken on the surface of the solid and the
integration extending round the contour of the solid.

If n , .') are measured along the norma] and the arc of the contour
respectively

(3)

\Ve have a solution of Laplace ’s equation in spherical polar coordinates

ψ == sIn φ L: A n 1'n十Bη 1'- 1넘 } P~t (cos 8),

G==2τμ JU.T3 앓 (움) ds

where P~ (cos 8) is the associated Legendre function of the first kind , of
degree n and of the fir‘st order. Hence we have a solution of the present

'* Lame, COOl 'donnees Cμrνilignes . p. 284.
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problem
v == ~ {.Anrn+Bμ.- ’‘ - 1 } P~(cos 8).

As a particular case taken == 1. We have

v ==lAr+B/펙 sin 8,

which is the well known solution for the motion of a fluid cont,tined be
tween two concentric spheres which are constrained to rotate about the
same dianleter. In the case of a single sphere of radius α rotating with
angular velocity ω in an infinite fiuid , we have

α3(” · λ
v==τ2sm f1, G == H 7i'"μwa3• (4)

The general case of the rotation of an ellipsoid of any shape about a
principal axis has been solved in terms of ellipsoidal harmonics by NIl' .
Edwardes (Qμαrterly J ournαl of Jl:Lαthemα tics ， Vol. XXVI, p. 70). The
simpler case of an ellipsoid of revolution can , however, be very readily
solved by the method of this paper.

Rotαtion of αη Ovαry Ellipsoid.

Take coordinates defined by

z十 iTJ == c cosh (f+써) ,

so that z == c cosh 양 cos η ， TJ == c sinh ~ sin η.

The surfaces 양 == const. are a series of confocal ovary ellipsoids, while
the surfaces η == const. are a set of confocal hyperboloids of revolution ,
the foci in each case being z == ± C, TJ == O. 'VeIl known solutions
of Laplace ’s equation are

p;;t(cos η) P:~t (cosh ~) sin 'Inφ，

P믿 (cos η) Q;~ (cosh ~) sin n↓φ，

alId hence we have solutions of the problem in hand

v == P~t (cos η) P;(cosh t),

and 1) == P;t(cos η) Q~(cosh f),

the former is finite when cosh ~ == 1, i.e. , on the line joining the foci , but
it becomes infinite with~. The second solution, on the other hand, be
comes infinite on the line joining the foci, but vanishes at infinity. It is
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therefore applicable to the case of an ellipsoid in an infinite extent of fluid.
We will , however, take the more general case of the Illotion of a fluid be
tween two confocal OY바ry ellipsoids rotating with different angular velo
cities. For this purpose both solutions are required. Put n == 1 in the
above solutions and assume

η == Sin η {AP~ (cosh f)+BQ~(cosh f)}.

If the two s없u따l

are ω0' lωt>1 respectively, the boundary conditions give

APf(cosh 양o) +BQ~ (cosh fo) == Cω'0 sinh fo'

AP~(cosh fl)+BQ~(cosh fl) = Cω1 sinh 양1 ·

We may conveniently write
ε nAO}、 ε

ref) == log coth 흐-- 간칸土후
~ J - 'V tS LVUU. 2 sinh2:;·

Then P~ (cosh f) == sinh 홍 and Q1(cosh 양) = sinh gI(g).

Solving for A , B , we have

1-. £ ~:~ __ ( f(f)-.f(흥1) l f(fo) I않) )
'V = CsInn ξ sin η l ωo I(홍'o) -f’(홍3 ;-ωlf(fo) -/(ξ) J •

rro calculate the couple on either ellipsoid necessary to maintain the
rotations we may use the formula (2) , and we have at once

G == 1",fi 7rM C3 ω。-ωI

- -흠-τμC~ I(fo} _j(얄1) .

In the case of a single ellipsoid (홍 = fo) in an infinite extent of fluid , we
have, putting 흥1 == ∞ , ω1= 0,

j(얄)
v= ωc sinh g sin --

。 ηI(fo) ’

and G= 뿐τμω。 c3/j(fo) ·

If α， b are the polar and equatorial radii respectively,

a = C cosh fa' b = c sinh fo'
and we have

”ι
-
때
U

F
ν-p

ν

+=
a
-
α

/I
l
l
\앵

l2씨
/
ρ
Uωμ

.TU-3-G
(5)

where c2 == α2_ b2 •



1잉15.J S'n~ADY ROTATION OF A SOLID 01" REVOLUTION IN A VISCOUS !,'LUID. 331

"Vhell b • α， c • 0 , and
G == 87rμω。α3，

which is the value alreaι]y given for a sphere.

Rotation of α Plαnetαl'ν Ellipsoid.

In the case of an oblate or planetary ellipsoid we take coordinates
defined by

z+iro == c sinh(양+써) ，

so that z == c sinh [ cos η ， 강 == ccosh 흥 sin 1].

The surface8 양 == const. and η == const. are ellipsoids and hyperb이oids of
revolution having a COUlmon focal circle, Z == 0, 강 == c. We have as
solutions of Laplace ’s equation*

P:~~ (cos 1]) p앙 (sinh [) sinmφ， P: (CO8 η) q임 (sinh [) sin 1nφ，

。 1 ." dIn
where P:~· (~) == (~2+ l)~~n ;~mPn (회， ψ‘ (~ ) . (~2+ l)~~n A':in qn(~) ，- \~ I.&.I d~mj/n\~!， ':l n \~I - 써

the functions pη， qn being connected with the ordinary Legendre functions
by the relations

Pn(~) == i-nPn

“
~) ， qn(~) = i n+1 Qn (째) .

Hence we have solutions

ν == P~ (C08 1])p~(8inh 양)，

ν == P~(C08 η) 값 (sinh f).

As in the previous case the former becomes infinite , while 바:le latter
vanishes at infinity.

Let the two ellipsoids [0' ξ have angular velocities ω。， ωl' Assunle

v == -lAp~ (sinh f)+ Bq~(sinh f)} sin η.

The boundary conditions give

Now

Ap~(sinh [o)+B엄 (sinh 회 =cω'0 cosh fo'
ι4.p~ (sinh 얄'1) + B펴 (sinh f1) == cω1 cosh fl'

낌 (sinh f) == cosh [,

* Lamb, Hydrodynamics , p. 136.
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and writing

we have

MR. G. B. JEFFERY

F(f) == 웰않~ -cot-1sinh f ,ash:!강

이 (sinh f) == cosh 홍 F(f).

[Feb. 11 ,

Solving for A , B ,

v == c cosh f sin YJ !ω F(fl)-F(￥) + F(흥)-F(fo) l
η l ""0 F(홍'l)-F(fo) ω1 F(홍l)-F(fo)) .

Using equation (2) to evaluate the couple which must be applied to
either ellipsoid to maintain the rotation , we have without difficulty

G == ].,;l μc껴 ω1-ω。
- -흉!.7rμ F(fl)-F(fo)'

If the fluid is not bounded externally, so that we have a single ellipsoid in
an infinite extent of fluid , we may put ω1 == 0 and {I == ∞ . I n this case

?) == c cosh 흥 sIn ηω。F(양)/F({o) ，

and G == 끊-τμc3ω'o F(홍0) '

If a, b are the polar and equatorial radii respectively

α == c sinh{o' b = c cosh 양。，
and we have

G ==]，쉰μl1.쐐

where b2_α2 == c2.

We may note that this is the form taken by the result (5) for an ovary
ellipsoid when b is greater than α for

α+iν(b2 ...;.- a2
) -

꽃 log α-ω(b2 - α2) - jcot-1 강환」싼·

The Rotαtion of α Circular D'isc in αn In껴nUe Flμid.

The solution of this problem may be obtained by putting 양。== 0 in
the solution for a planetary ellipsoid. Hence

l) == - ~객 c cosh ￥ SIn η F(￥) ， (6)
7r

and the couple necessary to maintain the rotation is

G== 웰μω。 c
S，

where c is the radius of the disc.
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From (6) the normal gradient of the velocity over the surface of the
disc can be calculated,

혔) ~=O =-풋 ωo톰 혔) ~=o
4 to

- 도 ω'0 v'(흙二감) . (7)

(8)

(9)

It appears that, while the velocity is everywhere finite , the velocity
gradient, and therefore the shearing stress, become infinite at the edge
of the disc. It is probable that in the neighbourhood of the sharp edge
the condition of nO relative motion between the solid and the tiuid breaks
down. It would be interesting to see whether this infinity disappeared in
a more accurate solution which did not neglect the terms involving the
squares of the velocity components.

Another solution of this problenl lllay be obtained in terms of Bessel
functions, for we have a solution of Laplace’s equation

e- kz J 1 (k하.) sin φ，

and hence a solution of equation (1)

v = J~ f(k)e-kzJ1 (뼈)dk

In the case of the disc we have

1'== ω'otO for z == 0, to < c,

앓 == ° for z = 0 , 감 > c,

and hence f (k) is determined by

J~ f(k) J1 (뼈) dk == ω'0 1» (to < c),

뚫(감)J1 (kUT)dk = ° (톰 > c)

It has not been found possible to solve these integral equations directly,
but if we make use of (7), together with (9) , and the theorem* that if

-# = F(강) .for z == 0,
(J Z

then 1’ == J~ e- k까 (뼈) CF(λ) 까 (kλ) "Adλdk，

.. Gray and Mathew8, Bessel Functions , p. 80. The infinity of E' 빠 ... = c does not in
validate this theorem.
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‘ we obtain without difδculty

[∞ dk
1)=- ω'0 \n e-kZ(sinck-ck cos ck) J 1 (뻐) 편 ’

7r - Jo

and this will he found to satisfy both conditions (8) and (9).

The Rotαtion of Two Non-Concentric Spheres.

This method may be applied to the problem of the m.otion of a viscous
fluid generated by the rotation of any two spheres with different angular
velocities about their common diameter. If we take coordinates defined by

ur+'i(z+ α)
t+iη = 10σ

e 강:r + i (z-α
(lQ)

in any 111eridian plane the curves t = const., η = const. are the systems
of coaxial circles αbout the points z = ± α and through these points re
spectively. The surfaces f = const. will be a family of coaxial spheres
having the COlnmon radical plane z, f = 0, and we can choose the axes of
reference and the constant a so that any two given spheres are members
of this family. "\Ve have a solution of Laplace ’s equation in these C001·
,dinates of which the following is a particular case*

ν(cosh (-cos η) ~: A n cosh ~n+흉) 얄+Bα sinh(n+i)ξ pj(cos η) sin ψ.

It £ollo\vs that a solution of the present problem is given by

n= 、I(cosh 양- cos η) ~ {An cosh(n+i) f+B ι sinh(n十훌)한 p~! (cos η) .

Let the two spheres be defined by f = ~l' 강， and let them have angular
velocities ωl' ω2. "\Vithout loss of generality we lnay take 흥'1 positive, and
f2 positive or negative according as the two spheres do or do not lie one
within the other. "\Ve have to determine A n, B n so that v is equal to 강ωl '

when f = 양'1 ' and equal to 강ω'2 ' when 홍 = 화. From (10) ,

nlη
-
%

뾰
-
한

α
-빼

-
강

and we obtain

An sinh(n+ 훌)(양1 -화)

=-2ν2a[ω1 e-(n+~)홍1 sinh(n+훌) 화-ω2 e ± (n + 굉)화 sinb(n+!) 양1J ，

B n sinh(n+팔)(강一강)

= 2ν2 α[ω1 e-(π+ ~) 훌 1 c08h(n+~) 화-ω2 e±(샤+ 훌) ~2 cosh(n+훌) 릎'lJ ，

'*' Heine, K:μgelfunctionen， II, p. 268; see also a paper by the author “ On a Form of the
Solution ofLaplace’s Equation," Proc. Roy. Soc. , A, 87, 1912, p. 109.
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where the upper Or lower sign is taken according as 잔 is negative Or
pOAitive.

We will investigate the resultant couple on either sphere

효 Iv 、 _3 sinh f~，
F홍 \ 감r J - 2α sin η U

+웅 (cosh t-t) § U빠훌~)니{ A 1’n애꽤l내St=l

where ~ == cos η.

The couple on the sphere f1 is given by

G1 == 27rμ I늄3 옳 (승) aη (f == f1)

;:. C+l (1-~2)행
=87rμas，ω1 sinh f1 ,

+27rμα2 Z1(%+훌){ Aπsinh (n+~) f1 +B꾀osh (n+윷) 양'I } Ill,

where I .. = (+1 1-당 dP~t5~) dt. ---…싸 J-1 (cosh f1- t)훌 d~ "~

Now I+1 (n.，..델Cf F ‘4 d~= 흉 cosech냥l '

and it remains to evaluate In. Now

, m="。

cosh늪확 = ν2 건。 e-(lIt+ ~) El Pm (~).

Differentiating with respect to ~，

J _ (\ /(\ 1n~J) _-f....4- 1.Lt . dPm «()
J 흥 =2ν2 ~ e-(m+~) 훌 --•

cosh U S/ ”‘: 1 ~ dζ

and so 값
‘

‘‘
l
’
/f

녕

1up
‘
값

P셔
、
「

「
l
l
l
l

J

r
ζ

샘
•

pv

gZ

」
「

‘
m

OA%--u
ri

U-U

,

서
-
”

2
-쐐

n
잉

니
、

9“
μ

--

n(n+l)
==4、12 H，~H I ~I e

2n+l
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Hence

G1 == 4τμα3ω1 cosech3ti

+4、/2 7T"μα2 L n(n+1) {An sinh(n+훌) 양'l+Bη cosh (n+옳) ξ }e-(n+ 윷) 용I ，

or , inserting the values of the constants,
G1 == 4τμα3ω1 cosech3

얄1

+ lfi 7T"μα3 ~ n(n+1).1 ω1 e-(2빠 1) §] coth (n+융)(f1- f2)

-ω2 e- (ηH)(홍 l 주 화) cosech (n+훌)(ξ-흙) } ~

T/he two series lnultiplying ω1 and ω2 are convergent, whatever 흉 may be,
provided that f1 is positive; they may thet'늄fore:be sunllued separately.

Now, when f> 0, we have

cosech3f == 8e- 3용/(1_e- 21;)3 == 4 ~ η (lt+1)e-(2u+1)S,

and so the tenns containing ω1 in G1 can be written

8τμα，3ω1 cosech3
양1+ 16τμα3£01 L n(n+1)e-(2빠 1 ) §J {coth(n+ 훌)(ξ-f2)-I} ~

Also coth (n+!) (양1 -휠) -1 == 2 L e-(2n+1)m(양l - E2)，

and so ~ n(n+1)e-(2n+l) l;t {coth(n+옳)(ξ-흙)- l t

∞ ∞ l== ~ ~ 2n(nη~+ 1) e-(2n싫n+써1)사{F(U’”빠’
1μ1=1 mμl = 1 1

The terms in this double series are all positive, and the series is convergent
when summed in the present way; 、，\'e may therefore interchange the
order of sumluation, and we have

~ L cosech 3 {(m + 1) 흥l-m흉 l .

We now see tha.t the terms containing ω1 in G1 can be brought into the
single sunl

871μ년WI L cosech3{(1n+ 1)f1-m강 } ~

The terms containing £02 can be transformed similarly, using the identities

L n(n+ 1) e-(nH)(판화) cosech (n+i) (fl-f2)

= L ~ 2까(n+ l) e-(2η+1) [(7n+1) I;t - (rn끓+!) 장」

1‘=1 rn=O

= 훌 L cosech 3
[(11~+ 1) 양1- (m+훌 ± 융) f2J·
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On combining the results we readily obtain

G1 二 87rμαa[ω1 ，，흔。 cosech3 [(m+않-極]

-繼 cosech3[(싸

If one sphere encloses the other, f2 is positive, and the lower sign must
be taken, and

G1 = 87rμα3(ω'1-(셰

If, on the other hand, 양2 is negative, the spheres are separate and the
upper sign must be taken. In this case

G1 = 87r，μα냉3 [ω1L?”흘}홀흙효화환(“얀P’f뀌cose없쐐빼ch뻐h펌3 [(n싸’

-썩 m띄찰츠환0까cosec때빠ch빠h암3 (n싸l

Suppose that the sphere 흙 is constrained to rotate with a given spin
ω'2. There will be a certain value of ω1 for which G1 vanishes. This is
the steady angular velocity with \vhich the sphere fl would rotate if
allowed to move freely. Fr01ll (11) we see that in the case 찌Then one
sphere encloses the other this gives ω1- ω2. In this case, then, if one
sphere be allowed to move freely it will acquire the same angular velocity
as the other sphere, and the fluid will move as a rigid body. In the case
of two non-enclosing spheres, if 장 is constrained to rotate with angular
velocity 액， while ξ is left free to lllove under the fluid stresses , it will
rotate with angular velocit:γ

~ cosech3(m+ 1)(화-f2)

“·'1 = ω'2 ----;;;;
~ cosech3[(m+ 1)ξ-nz，강]

In the case of two equal spheres 장 = - fl' and from (1이 we obtain

diameter of either sphere = sech 흥1 ·
distance apart of centres

The character of this influence of one sphere upon the other is exhibited

SER. 2. VOL. 14. NO. 1242. z
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in the following table :-

Two Eqμαl Spheres-One기'ee.

~l
Diameter “’I

Centre Distance ω2

'2 '9803 '1278
'4 '9250 '1023
'6 '8435 '0759
'8 '7477 '0524

1'0 '6481 '0340
1'2 '5523 '0211
1'4 '4649 '0126
1'6 '3880 '0073
1-8 '3218 -0042
2'0 '2658 '0023
2'5 '1631 '0005
3'0 '0993 '0001

It appears that even when the distance between the spheres is as small
as one fiftieth part of the distance between their centres, one sphere COl11 

municates only one eighth of its spin to the other sphere ,

If we put t2 = °and ω2 = 0, we obtain the solution for the rotation
of a sphere in a viscous fluid in the presence of a fixed infinite plane per
pendiclllar to the axis of rotation , The plane will cause the sphere to
experience an increased resistance to its rotation , and we may compare
the resisting couple with its value in the absence of the plane ,

The Increase to the Resistαnce to the Rotation of α Sphere owing to the
Presence of αn I1껴nile Plαne，

~l

'2
'4
'6
'8

1'0
1'2
1'4
1'6
1'8
2'0
2'5
3'0

Radius of Sphere I Ratio of Increase of
Distance of Centre from Plane I Couple due to Plane ,

'9803 1'171
'9250 1'126
'8435 l'OR7
-7477 1-057
'6481 1-036
'5523 1-022
-4649 1'013
'3880 1'007
'3218 1-004
-2658 1'002
'1631 1'0005
'0993 1'0001

Here again the effect is surprisingly small. If the fixed plane is
brought so close to the rotating sphere that their distance apart is but one
fiftieth of the radius of the latter, the couple required to maintain the
rotation is only increased by 17 per cent. These results, it will be noted,
are independent of the degree of viscosity of the fluid ,




