for surface drainage only, was laid under my direction in Madison Square; located from seven to fourteen feet distant from white willow trees, Salix alba. The mortar used in making up the joints of the pipe when and sand. Three years after, in 1874 , this drain pipe made to force an partially obstructed; and an ort partial success. The following year the pipe was taken up , and found completely filled with fibrous roots growing from the willow trees; and so compact had the mass of roots become that a horse attached to one end removed a piece sixty feet long. The roots composing of an inch in diameter; and the proportion I found to of an inch in diameter; and the proportion 1 found to ter composed thirty per cent.; fibers one-thirtieth of an inch in diameter, sixty per cent.; fibers one-fourth of an inch in diameter, four per cent. The mortar used in cementing the joints of this pipe was in perfect condition, and no cracks were discovered to allow the roots to enter the pipe, but a closer examination revealed
the mystery. The fine fibers, one-sixtieth of an inch in diameter, had grown through the solid mortar, and increased within the pipe to the size and length described.
This drain was then relaid with similar mortar joints, but the roots still continued to obstruct the pipe, makWhen this drain was relaid for the third time, in 1881 I recommended bituminous paving cement to be ap
perature of 200° Fahrenheit. Before applying this mix ture the pipe was painted with crude coal tar without heating, to make the concrete adhere more readily to tied on a stick. The concrete was then put on around the joints not less than three inches in thickness, ex ending four inches each way from the ends of the ongitudinal of the pipe, the ground having previously been dug away from under the joints and pipe for les than three inches. This concrete was packed thor oughly around the pipe by ramming with wooden ram mers. Great care should be taken to pack the concrete
thoroughly while warm. No filling of the trench thoroughly while warm. No filling of the trench
should be done until after the concrete has become hard. This concrete was applied to the drain for sev enty feet, with manholes at each end to enable it to be readily examined in the future.
The partial success obtained in the first imperfect trial ha induced me to believe that the latter experi ment will be successful; and also that the carbolic and cresylic acids, naphthaline, and the basic oils contained described, will effectually prevent the ingress of any roots into drains. Time will determine whether my conclusions are correct.-Engineering News.

A GROUP OF CACTUS IN JAMAICA
In the temperate zones, although some species of the cactus are known, like that of the nopal in the Medi-
terranean region, which is the Opuntia vulgaris, there
ing Iceland in many directions. The country is civil ized, and has a history in many respects like our own, to be seen. A brief note of the more salient points in ts early history will render apparent how closely its ivilization must have resembled our own in Saxon we shall be at no loss to understand why no traces o them remain.
Iceland was colonized in the middle of the tenth cen tury, and so rapid that Harold, in order to check it oo rapid growth, imposed a fine of four ounces of sil er upon all immigrants. A Saxon bishop arrived in A.D. 1000 the whole country was converted to Chris tianity; Benedictines and Augustinians settled, and a tribute was paid to the Roman See. It was not unti 1261 that the inhabitants put themselves under the pro ection of Norway, and there is every reason to believ that prior to that date their civilization equaled any and. Their manners, customs, mode of life were pro bably identical, and of these their scalds have left an almost uninterrupted record from the golden age of Harold, aux beaux cheveux, to late historic times. We have, in addition to direct evidence that these have never undergone much change, collateral evidence to how that the habits and customs of the population and eleventh centuries. The ordinary Icelander has no owns and no centers of reunion; he lives alone, wheth or priest or peasant, and when he meets his distant

A GROUP OF CACTUS IN JAMAICA

usual manner with mortar, to prevent if possible further trouble from roots; but they obstructed the drain for the fourth time the present season, and when the pipe was removed, about twelve feet of it was found where the mortar had been imperfectly covered by the Wherever the cement was soft the roots grew through it, but were killed; wherever the coating of cement wa only one-eighth of an inch thick but hard, it killed the roots but was not penetrated by them. 1 tested roots that grew through the soft cement, with a microscope, and also placed them in water of a mild temperature of vitality appearing
This drain was relaid again in July last, and I the treated it in a thorough manner with a bituminous concrete, which will now be described. When relaying the pipe this season, the sockets only were filled with mortar, in order to present as little mortar surface as possible to be covered with the concrete, preferring to rather than on the mortar. The bituminous concrete was composed of N. Y. Coal Tar Chemical Co. pavin cement, known to the trade as No. 5, mixed with fine gravel; No. 4 paving cement and fine sand would have been preferable-the proportions used being seven gallons of paving cement to forty cubic feet of fine gra-
vel. This proportion should be varied according to the fineness of the gravel or sand. The paving cement and gravel were heated separately to about 220° Fah renheit; then thoroughly mixed, and applied at a tem-
is little idea of the powerful development which these neighbors it is by accident. The people, though nomiingular plants acquire in the tropics, especielly in modern botanists. until within the last two years the tituted botanists, until within the last two years con pecies were not well defined. but later discoverie made in the Antilles, Ecuador, Guatemala, and other Sou th American countries have led naturalists to con titute a family divided into two tribes according to the orm of their flowers, and subdivided into various chino whose names are mamillaria, melocactus, puntia, and simple nopal to the other
In Jamaica these plants acquire gigantic dimensions while bewaen their prickly spines they dimension while between their prickly spines they throw out
solitary flowers, large, beautiful, and of most vivid olors, which perish in a few hours.
Recently we have received the photograph which we reproduce in our engraving. It represents a group of coiossal cactus in the interior of Jamaica, and shows air sample of the powerful vegetation of this tropica
country.-La Ilustracion Espanola.

ICELAND.

By J. Starkie Gardner, F.G.S.
The utter disappearance, with the most trifling ex eptions, of the dwellings and even public buildings of relatively high civilization, has been a subject of won der to moderately well informed people like myself. I had the opportunity a short time since of travers-
nally under Denmark, have never been called on to and until nuiteliers or sailors to the Danish services, ing outside quis latively no one ever thought of wanderor bridges, and the country consists entirely of narrow valleys, separated by mountains or hills averaging 1,200 to 2,000 feet high, each valley being the bed of a orrent, often difficult and even dangerous to ford. The Norse language, which was carried to Iceland by was spoken with conservative elo first settled there, mixture of foreign idiom. While, in course of ages, it became modified on the mainland, it was preserved in the interior of Iceland in all its native purity, so that even as early as in the twelfth century the language of the primitive conditions and habits obtaining in this isolated country, it has remained undeflled and pure, indeed there is no priest or peasant at the present day guage of even the most ancient of the sagas. The relationship between modern Icelandic and the Saxon element of the English language is still to be traced, for, though marked by wide divergences of spelling, a great number of common words, when slowly pronounced, can be mutually understood, and a glance at the names on a map will indicate the kind of community
that exists. Another example of the small amount of that exists. Another example of the small amount of is seen in the collection of native work in the museum at Reykjavik. The wood-carving, and more especial-
ly the needlework，would not，from its style，be assign－
ed to a later date than the twelfth century，yet much
of it of it has been executed in，and is actually dated of，the
eighteenth century．Patterns originated in the days of eighteenth century．Patterns originated in the days of Harold，and used in the Bayeux tapestry and contem－ porary works，have been faithfully adhered to，and handed down froil generation to generation without the smailest change in style．The costume of an cee made frieze of a uniform brownish tint．Thewomen dis－ play a somewhat greater variety of color，but all alike wear a peculiar black fez cap and long tassel．They have account of its costliness，the head－dress of which is small white Phrygian bonnet，the lapel of which is stuffed and stiffened like the crest of a helmet，decora－ ted silver frontlet and ornaments，from which depends backward a long lawn or lace veil．Thisdress must be of extreme antiquity．Other instances of the conservancy
of the Icelander might be adduced were it not almost superfluous to do so here the dwelling house being the point in view．The probability is great that the Ice－ lander has been as conservative in the plan and build
of his dwelling as he has been in his language and his
$\stackrel{\text { art．}}{\text { Nothing can，in fact，be well imagined that could }}$ have modified it，for ICeland remained so isolated unti PRS visited it toward the whene of osh Banks， Poney was almost unknown，and traffic was entirely carried on by means of bartering coarse home－spun cloth，dried fish，etc．
The typical II，elandic house，or bor，as it is termed is constructed either entirely of earth or of earth and rough stones in layers，and has a turf roof，made water－
proof by a lining of birch bark or straw．It is far，how－ ever，from a mere earth cabin，and has an intricate ar－ rangement．Very little wood is used in its construc
tion，as the country is destitute of timber，for it is not tion，as the country is destitute of timber，for it is no
only costly but difficult to transport from the seaport in a land where any approach to a wheeled vehicle is unknown，and the balks or logs have to be dragged over mere，tracks at the heels of the sturdy little ponies
through whom locomotion is alone possible．The raft－ ers and lintels，however，are of wood，obtained some how，and the floor of beaten earth．A well arranged dwelling consists of seven houses side by side，each un der its own peat roof，and with walls four or five feet
thick．Those toward the center are the largest and thick．Those toward the center are the largest and loftiest，consisting of two floors，with one room to each．
These are the dwelling rooms，and possess but one door in common．The entrance，anens on to a dark ond low ante－room（beardyr）on the left of which is the guest chamber（gestaskail）．The inmates usually sleep in lofts under the roofs，reached by ladders，and some－
times situated over the cow－house for warmth．Not times situated over the cow－house for warmth．Not
infrequently，however，the dwelling room（badstofa）is infrequently，however，the dwelling room（badstofa）in in rear of the other buildings，and is rached by a long
dark passage 50 to 80 feet in length．It is a large and gloomy apartment lighted only by small holes in the side or roof，around which turf bunks are arranged，as
in emigrant ships，in which the family and servants o both sexes sleep．The kitchen is a much smaller apart ment，some flat stones on the ground serving as a stove while a hole in the roof，with the sides carried up to prominte draught，acts as window and chimney．Th rear，and there may be two state rooms in front though this is very rarely the case．The bed in the guest chamber occupies a niche in the wall facing the
front window．The low house at one extremity is the cattle shed，and at the other a storehouse or smithy．A dairy and store or tool house complete the row，thes vided with a small glazed window．In the better class of priest＇s or farmer＇s house，and every priest is a farm－ er save on Sunday，one room at least is wainscoted，
and it is obvious that wood would be less a luxury if its cost were brought within the means of the builders differ but little from that inhabited in England by the well－to－do Anglo－Saxon farmer up to the Norman inva sion．The absence of any stove or fire，except in the kitchen，leads to the exclusion as far as practicable of the outer air and a crowding together for the sake of warmth．The smoke in the＇kitchen is generally beaten down into the apartment，and the odor is very unpleas ant and everything exceedingly dirty．In the matter much to be desired．Externally the frontage，if board ecase in more recently erected buildings，is rather imposing；but the simpler and smaller houses，mere cabins，may be almost ridden
over unintentionally when descended upon from the slope of a hill，owing to their grass－green roof and low elevation．Every farm stands in an inclosed piece of
ground，surrounded by low turf walls called the tun，or town，which provides the winter＇s hay，while elsewher cattle and sheep seem allowed to browse at will
There are，of course，stone buildings in the capital for the use principally of the Danish officials；the Danish trading stations are ordinary wooden houses． Here and there a rich man，who has combined trading
with farming，has had a complete house shipped from with farming，has had a complete house shipped from are so exceptional that there are probably not half a dozen over the entire island，whose area is somewhere about the same as Ireland．There is nowhere any trace of the ruins of ancient buildings，and the only piece of old masonry existing seems to be the circular bath of thirteenth century The older churches and wood，and of no architectural interest，though sometimes gaudily painted inside．There are no other
public buildings，and even the Icelandic Parliament was held al fresco in the historic plain of Thingvallir the deputies being housed in tents．－The Architect．

UNDERGROUND WATER AND THE MOISTURE OF THE SOIL．

By fr．Hofmann

THE author contends that，in order to understand he distribution of moistare ine soin，we must dis of receiving and giving up water．The upper layer ＂evaporation zone，＂depends on the weather，and is exposed to the greatest fluctuations in its proportion
of noisture．After persistent drought it may take up
the entire rain of six or even twelve months，so that not
a drop passes into the lower strata．This zone is the itary point of view zone is th posed to contamination from above，to the direct nd the lowest pathous fungi，and to both the highes and the lowest temperature．The middle stratum ably constant proportion of water，depend ng on the size of the soil capillaries．Evaporation has no influence upon this region，and an influx from above modifies its proportion of moisture only in so far as the water which penetrates it traverses the capillaries mor
or less rapidly according to their size．According to the thickness of this stratum，its quantity of water may be very considerable，equal to the downfall of several years The lowest stratum is called the zone of the capillary groundwater level．It begins at the surface of the subter nean waters，and itsmoisturedependson the nature o he capillary intervals．The author concludes that al face remain in the upper zone，and cannot be washed down into the subsoil waters，even by heavy rains．

WATER METERS．

The Minneapolis Tribune gives the followng list of

AN ABSOLUTE STANDARD OF LIGHT

IT will be remembered that during the Paris Electr
al Exhibition of 1881，M．Violle suggested as a stand ard the light radiated by a square centimeter of plati of solidification a point，or in other words，at its poin mended the Carcel lamp，of the Dumas and Regnaul ype as a secondary standard，and the Internationa Conference has now definitely adopted the Violle light as the primary standard．V．Violle has since deter mined the value of the Carcel lamp in terms of his pro－
posed standard．By different methods he finds the normal value of the Carcel＂bec＂is $\frac{1}{2 \cdot 08}$ of the plati num standard ；and surface for surface，the intrinsic light of the latter is about eleven times greater than his standard with electric incandescent lamps，which rom their color and constancy are easily compare with the platinum light．A Swan incandescence lamp was fed by thirty Kabath accumulators；a resistanc ox being inserted in circuit to regulate the current． and the fall of pobserver noted the current strengt， the photometric values of the light were also deter mined．Comparison between the electric lamp and standard was effected by means of a Bunsen photome er having a range of 4 meters．The rays of the plati um emitted vertically were bent horizontally by mean f a mirror at an angle of 45 deg．For eighteen experi－ was found to be 7．023 carcels The normal carcel was found by this method to be $\frac{1}{2 \cdot 07}$ of the light reflected， which agrees well with the prior value．The experi ments led M ．Violle to the conclusion that the plati num at its fusing point fulfills the conditions requisite definite physical phenomenon．The standard chosen is readily comparable with existing standards，and th nit can be multiplied by increasing the surface in fusion．

REDUCTION BY ELECTROLYSIS．

M．Niaudet has recently been experimenting with ome success on the reduction of chloride of sodium，or by means of the electric current；and as both of these products are very valuable，the former for bleaching， is further for chemical purposes，it is to be hoped that uccess．Mr．Sommer，a Californian electrician，has also devised a method of reducing lead from its ores by electrolysis．Salts of lead in solution submitted to the electrode and peroxide on the positive electrode． Mr Sommer arranges to amalgamate the ；lead before it oxidizes or deposits．His process consists in pracing ayer of mercury in a glass test tube（ 20 to 40 grammes） then a quantity of dilute chlorhydric acid（ 15 to 20 per ent．of H ．C．L．）．Into the tube is then placed a of the mercury．An electrodeof lamp carbon is then dip－ ped into the mercury，and one of graphite into the acid． The current of four Daniell or Meidinger or two Bunsen or Grove elements passed through the combination，
while the test tube is kept at 70 deg．Cent．，serves to
effect the reduction．Sulphureted hydrogen is disen gaged at the negative pofe，and hypochlorous acid at
the positive pole．At the end of five hours the reduc tion is complete，and the mercury being taken out washed，and weighed，shows that the lead has been malgamated．It is necessary to have the positiv

THE LIQUEFACTION OF GASES．

Dr．D．Tommasi．－The author has come upon the ollowing passage in the Antoloogia di G ．P ．Viesseuux
vol．xxvi．，A．D．1827）：＂Perkins has submitted water vol．xxvi．，A．D．1827）： othe liguid to and other liquids to powerful pressure，employing a
bronze cylinder in which worked a steel piston．The cylinder was 34 inches in length；its internal diameter is $11 / 2$ ，and its external diameter $131 /$ inches．The great－ est pressure exerted by means of this apparatus was
2,000 atmospheres．Compressed air in contact with ， 1，000 atmospheres the mercury filled two－thirds of the space previously occupied by the air，and small liquid
drops began to appear．At 1,200 atmospheres there was een over the mercury a transparent liquid occupying seev of the space previously taken up by air．Ethylen
zoban to be liquefied at 40 atmospheres，and at 1,200 it was entirely reduced to a liquid．＂Dr．Tommasi raises the question whether
Perkins was absolutely dry．

A catalogue containing brief notices of many im－ portant scientific papers heretofore published
SUPPLEMENT，may be had gratis at this office．
$\boldsymbol{T} \boldsymbol{x}$
Scientific American Supplement． published weekly
Terms of Subscription，$\$ 5$ a year．
Sent by mail，postage prepaid，to subscribers in any part of the United States or Canada．Six

All the back numbers of THE SUPPLEMENT，from the 10 cents each
All the back volumes of THE SUPPLEment can like－ wise be supplied．Two volumes are issued yearly．
Price of each volume，$\$ 2.50$ stitched in paper，or $\$ 3.50$ bound in stiff covers．

Combined Rates．－One copy of Scientific Ameri can and one copy of Scientific american Supple MENT，one year，postpaid，$\$ 7.00$
count to booksellers，news agents，and
MUNN \＆CO．，Publishers，
361 Broadway，New York，N．і．
TABLE OF CON＇IENTS．
Chemistry，metallurgy，etc．－On Japanese Camphor oil．page －By H．OrsBr．－To extract the camphor．－Distilling the oil．－Reac－
tions with acid．－To separate oils of diferent boiling points．－Uses of the oil． 22 figures．
Reduction by Electrolysis．
The Liquefaction of Gases
die Mule，－2 engravings．
Lubricating Oils．－Measurements of friction of lubricating oils．－ I．J．H．Woodrury．－With tables and 6 figures Improved Tandem Engine．－2 engravings．
Spring Motors for Vehicles．－4 Algures．．．
Improved Spring Wheels fortIraction E
Comblied Wood and Iron Wheels for Portable Engines
The Dutton Sluices．－River Weaver navigation．－With e．．．．．．．．．． 7555
BRCC GUKRHARD，Russian mining engineer．-12 tigures．．．．．．．．N．
II．TECHNOLOGY．－Photographing Surfaces More Sensitive for the
Green，Yellow，and Red Rays．－By H．W．VoarL．．．．．．．．．．．．．．．．．．．．．．
Copyling Maps and Plans．－Abstract of paper read before the Derby PhotographicSociets．
Photographing the Larynx
，
 Electric Power at Bienne．Switzerland．－With engravingof cascade
at entrance of sorge of Suse River，and cut showing arrangement of turbine and dynamo．． Ochorowicz． ${ }^{7556}$

```
V. ARCHITECTURE, ETC.-A Veranda.-An engraving...............
```

VI．GEOJ＿OGY．－Underground Water and the Moisture of the Soil．．．．
II．HORTICULTURE，ETC．－Obstruction of Drain Pipes by Roots．
－By F．A．Calenss．
III．miscellaneous．－The Worla＇s First Meridian．－By Richard
A．Proctor．．．
㭡登 窓

PATENTS．

In connection with the Scientific American，Messrs．MUNN \＆ expere are solicitors of American and Foreign Patents，have had 40 years＇
exp now have the largest establishment in the world．Patents are obtained on the best terms．
A special notice is made in the Scientifc American of all inven－ tions patented through this Agency，with the name and residence of the ected to the the immense circulation thas given，pubic attention is di－ rected to teane
Any person who has made a newdiscovery or invention can ascertain， Munn \＆Co．
We also send free our Hand Book about the Patent Laws，Patents， Caveats，Trade Marks，their costs，and how procured．Address
unn \＆Co．， 861 Broad way，New York．
Branch Office，cor．F and 7th Sts．，Washington，D．C

