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1. The lake considered in this paper is such that the size and shape
of its transverse section vary only slowly. The variations may be in any
manner, subject only to certain very general conditions which are satisfied
in many actual lakes.

The determination of the ordinary longitudinal seiches in such a luke
was redueced by Prof. Chrystal® to the solution of a linear differential
equation of the second order in the normal form, with certain boundary
conditions,

The determination of the ‘ temperature seiche,” discovered by E. R.
Watson and E. M. Wedderburn, has been shown by the latter of these
authors * to be similarly redueible.

Again, the discussion of the vibrations of a string of any law of
density forms a problem which is reducible to the same equations and
conditions. Ior the special case in which the string is of uniform density
the original method of John and Daniel Bernoulli was to replace it by
one in which the mass was concentrated at a finite number of equidistant
poinis. ;  This, when the masses at the points are no longer equal, is the
method used in the present paper to suggest the form of the general solu-
tion. It involves the regarding of the differential equation as the limiting
form of a ditference equation, a method which has been very much used.

In the tirst place the determination of the forced motion in the lake
due to a periodic change 1 atmospheric pressurey which varies along the

¥ ** Hydrodynamical Theory of Seiches,”” Trans. Roy. Soc. Kdin., Vol. xL1, p. 599
(1905).

t ¢ The Temperature Seiche,’” ibid., Vol. xLvir, p. 619 (1910) ; ** Temperature Observa-
tions . . .,”" #bid., Vol. xLviiI, p. 629 (1912).

+ The analysis is given by Lord Rayleigh, Theory of Sound, Vol. 1, p, 172.

§ The effect of a number of types of pressure disturbances on a special lake has been con-
sidered by Prof. Chrystal, Trans. Roy, Soc. Edin., Vol. XLvi, p. 499 (1908).
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lake, as well as to a periodic bodily disturbing force which is directed
everywhere along the length of the lake, is reduced to the solution, with
the same boundary conditions, of a differential equation which is an ex-
tension of that of Prof. Chrystal. Of course we are merely concerned
with a very simple linear boundary problem, of which Prof. Chrystal’s is
the “ homogeneous ”’ case.

A general equation for the free periods, and a general expression. in
terms of the period, for the motion in any free mode, are obtained, as well
as a complete expression for the periodic foreed motion.

General Equations.

2. Following Prof. Chrystal, let 2 denote the area of the surface of the
lake from one end up to a transverse section which is at a distance s,
measured along the length of the lake, from some fixed transverse section.
Then, if @ denotes the total area of the surface of the lake, z will range
from O to @. Let the transverse section corresponding to z have an area
A {x) and be of breadth 4 (x) at the free surface, so that

dx

Now let V denote the total volume of water which has passed the sec-
tion at x up to time ¢; then V will vanish at 2 =0 and # = a. Let
£ denote the forward displacement of a particle in the section at z, and §
the elevation of the free surface at this seetion. It is supposed that £ and
¢ are functions only of z and ¢. We shall then have

|4 ov
f - m H f - _azl
the latter being the equation of continuity.

Let II denote the atmospheric pressure, and S the bodily disturbing
force per unit mass, supposed to act everywhere along the length of the
lake. II and S are supposed o be functions only of = and ¢.

When the motion is ‘ tidal 7 in character, the pressure intensity in
the water will be

II+4gp ({+depth below mean surface),

where p is the density, supposed uniform, of the water, and g is the
acceleration due to gravity. The dynamical equation then gives, on
SER. 2, voL. 14. No. 1236. R
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neglecting squares and products of displacements,

¢ _ 1ol _

BT T, s

of
q 8'—3' +S, (1)

which, on substituting from the above, gives

2V b A@ Ol PV ‘

%F=—4%7ﬁ7%+@mAw§?+Am& @)
If we write

PW =bwdw), F=L~M_ 1 g ®)

T gp ox  gb@® "’

2 2
(2) may be written %TI: — éﬁl(z—) %—g = F. 4)
The function p(x) can never be negative, and can only vanish at the ends
of the lake. For the possibility of the type of motion we are considering
p{x) must be a continuocus funetion of x, and we shall further require that
dp/dz shall not vanish at an end point for which p vanishes.*
Suppose now the motion to be periodic with speed &, and take
2

A=
7

Then V is determined by the equation

A

p(x)V—‘:F, ®)

av
@t
with the condition that V shall vanish at * = 0 and = = a.
For a free mode we have F = 0; let V, A be then denoted by V,, A,
respectively, so that we have
V. | A

d.’EQ +};(;) Vn =0. (6)

It is to be remarked that, owing to the approxzimations made in
deriving the equations, only the smaller values of A will admit of inter-
pretation.

When we speak of a solution of (5) or (6), we shall always suppose it
understood that the solution vanishes at x = 0 and z = a.

* Chrystal and Wedderburn have calculated the function p (z) for Lochs Earn and Treig,
and in each case this condition is satisfied : Trans. Rey. Soc. Edin., Vol. xvi1, p. 823 (1905).



1914.] FREE AND FORCED LONGITUDINAL TIDAL MOTION IN A LAKE. 243

The determination of the possible values of A, for which (6) possesses
a solution, together with that of the corresponding solution, has been
considered by Piecard,* and, in fact, he has given direct processes by

which they may be calculated. The processes of the present paper are
different.

Solution of a Difference Equation.

3. In accordance with the method indicated in § 1, let us consider the
determination of the m—1 eonstants

v(1), »(?), ..., vim—1),

which are subject to the relations

. a? A . i _at
por=1+ {3 503 "2 et = 05 f 0, v
for r=1,2, ..., m—1,
with p(0) =o0m)=0.

The difference equation (7) is suggested by the differential equation (5)
which may be regarded as a limiting form of it ag m > .
For our purpose we shall require the determinant

—5517:.:1_), -1, 0, 0 .
-1, --Slz"'p(,u_)\*-‘?-)' -1, s 0
0, -1, 2—1‘;’_12. p—(,:\T?J 0
g, 0, 0, ) ey 0
o, 0, o, -1

which we shall call A(u, v, A).
Au, v, 0) is easily evaluated and found to be v—u, and then, on ex-
panding A (u, v. A) in powers of A, 1t is easily seen to be given by

v—p—1

A(,M., v, x) = (V‘-M)"*' ?—:l (—'A)"’ Sn (Iu} V)y (8)

* Traité d' Analyse, t. 111, ch, vi.

=
34
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where Sa(u, v) i8 given by either of the two equal multiple sums

2 -1 8, —1 Noy . —

a™ yz ”2 ~ ! s‘vl (v—5)(8n—3n-1)... (Sl_ﬂ) (9)
7 e et — ) *

met Sy=pti g _y=ptn—1 sy=p+2 §=ptl 1)(51)1)(52) p(Sn\

a™ "z:" et & r—s) 8=y ... (5.~ ) (10)
23 Ed av e e — - -

M it s =e ] sl =l PSP PGS . pis)

The cofactor of the element in the r-th row and s-th column of the
determinant A (0, m, \) is, for the respective cases in which r <, =, > s,

A, r, NYA(s, m, A), AQ©, r, N A@, m, \), A0, s, M) A(r, m, ), (11)
where AW, 1, ) =Am—1, m, A) = 1.

Now, when f(r) = 0 for all values of » concerned, the condition for the
existence of a solution of the problem in question is

A, m, A) = 0. 12)
This is an algebraic equation of the (m—1)-th degree in X ; let its roots be
denoted by

x17 AZ; ey /\m—l-

Corresponding to A, we have, by the ordinary theory,

o e® v wm=D g
A0, 1, A A, 2,7) " T AW, 7, N T A, m—1, A
and

@ @ v vl g,
AL, m, ) - ACm N T A, my Ay T Am—1,m, A

and the determination is unique. We notice that when A(Q, m, A) = 0.
A, r, N)/A(r, m, \) must be independent of 7.
When £ (r) is not zero for all values of » concerned, and \ is prescribed,

we shall have, provided
A, m, \) =0,

1

r—1
SNy { A, m M) = A, 5 0 f()+ A0, 1N Al m N f

v(r) =

m—1

+AO, 7, N T A, Nf6) |, (15)
s=r+l

for r=1,2,..., m—1.
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Solution of the Differential Equation.

4. We now proceed to solve the original problem on the lines

suggested by the preceding section, giving, however, an independent
justification.

From the expressions (9) and (10) for S, (u, ») we are led to consider
the two multiple integrals

Y r. ..j'sa Ssg n—5.) (Sn—8n—1) ... (S5—8) (8, — &) ds,ds, ... dsa, (16)

=t s =t Jm=g o=t p(s) p(sy ... plsa)
n " n T (p—8) (889 ... (8n—1—8y) (Su'_f)
Sg ... dsy, (1
L,.=§53,._,=s,. Jsz=3353|=-"2 PG p(sy ... plsy) ds, ds, s (17)

for n> 0, where 0 < £<n < a. The integrands of these are always
positive, so that if the integrals exist we may change the ovder of integra-
tion. Doing this for (16), we obtain

K L K K (71— 82) (Sn—58n—1) ... (55— 8))(§;— &)
531=§L2=31 h 5 j‘:u=8u-l p('gl) ¥4 (s‘l) Y (S’L) dSI dsg h dsn ’

-1~ 8-z

which only differs by a change in notation from (17). The integrals
obviously exist for 0 < £ < n << a, since the integrands are then con-
tinuous ; let their common value be denoted by

In (57 ’1):
and take To (&, n) = n—¢. (18)

The equality of (16) and (17) was to be expected from that of (9)
and (10).
From (16) we have

L n = L 1 Taa €, 9 ds, (19)

and this may be written as the double integral

5" Sﬂ L& 8) g gy, oo
s=gly=s DP9

which, by interchanging the order of integration, may be written

5" S L& 8) 5o gor, @1)
§=fJs=¢ _p(s)
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Similarly, from (17), we obtain

1 = E s, s @2)
£ p()
- j" j Leaa(® %) 4 g 28)
s=tdy=g P9
=5" 5" Taao ) g gy (24)
y=£ Js=¢ p(é‘)

These relations are true for n > 0.

For s particular value of £, I,(£, n) increases as » increases, while for
a particular value of », I, (£, n) decreases as £ increases.
We now proceed to show that 7,(0, @) will exist, provided that

p@) > kx(@a—x), (25)

where % is any positive constant. It will obviously be sufficient to show
the existence for the case in which p(x) = z(a—=x). Now

xx_s s\ _ w0 1 wn+'r 1 w'u+2
50 a—s <a> ds = ,Eg m+r—1n+r) a*t"! < n+1 a*tt’

for 0 < & < @, so that we have in succession, on using (19),

1,0, &) =,

¢ L8 z?
II(O, uC) = 50@—-8 dsg z s

T e—s8 8 1 28
150, x)<joa,—s 7ds< 9 Q%

1 v p—g § \ -1 1 xn+l
L, o L m -L a—s (;) ds < P

We thus see that when (25) is satisfied, 7,(0, @) will exist and have a
value which is <a@/n!k". The only restriction imposed by (25), further
than those already required, is that dp/dz shall not vanish at an end for
which p vanishes.

From (24), (21) we obtain respectively

i _ T In 18, n) 0 . In—l(f, s) .
af In(é: 7]) —_55 p(S) dS, E}In(fv ’l) —J’}'_—_ ds’ (26)

2
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for 0 <{Ln<<a and 0 << €y < a respectively, while from (18) we obtain

aa_gIO(E’ 'l) - 17 ga;’.Io(fs 'I) =1. (27)
We next obtain
e 1 o? 1
3 L& n = 7@ I, _\(§, n), o L& ) = e L2 (& ), (28)
for » > 0 and the same ranges, while
o 2
a_f'ﬁ-[o(fr 77) =0, a;ﬁIo(fa n = 0. (29)

The eonditions necessary for the validity of the operations involved in
the derivation of (26) and (28) are satisfied.

The above relations may he used for the determination of I, (&, ) in-
stead of (16) and (17). For instance, I,(£, ), regarded as a function of
the parameter £ and the variable », may be determined step by step from
the differential equations in (28) and (29), together with the conditions
at the initial point » = &,

10 (f’ n =0, aa;’.[o(f, 7 =1,

[n.(f, ’l) =0, ga;In(f, 7 =20 (n > 0),

which are derived from (26) and (27).

5. Now take
B 7\ = glo (=N I n). 80)

This is suggested by (8) ; we shall expect the condition for a solution of
(6) to be RO, @, \,) = 0,
and the solution itself to be given either by

Vo=PRE@©, z,\,) or V,= R, a, A\y).

When (25) holds, we see from the upper limit obtained for I1,(0, a),
that (80) will be absolutely convergent, as well as uniformly convergent
with respect to £, 5, for all values of A.
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We shall then have

b ° D
ZREnN= X NG LE

I,.(s, )7)

= —14A S (— x)njc e

n=0
- R(s, 7 N g
a s My - n:0 g;] a\Gy 7
RN L P10
= 1= 5 =N L S
el l_kj’ R($5 8, K) ds. (32)
¢ P

We have here used the relations (26) and (27).
We next obtain

a2

2
é‘-ﬂR(ﬁn 7, x) p?gSR(f’ /D A)) aa_nﬂR(Sé’ 7, X) R(f 1, 7\) (33)

p( )
We now see that R (£, x, A\) and R (z, n, \) are each solutions of the
differential equation 2V

wtamV =0 (84)

p(z:)

or 0 L L <a, and 0 < 2 < n << a respectively, and that
P Y

R, =z, \) =0, %R(E, z, A) =1,

Jor x =§, while Rz, n, A) =0, 80_3: Rz, 5, \) = —1,

for x = 1.

Again, these conditions, which are ‘ conditions of Cauchy,” may be
used to determine the funetions R(§, z, A), B(z, 5, A), and this determina-
tion may be carried out in a manner similar to that of Picard mentioned
in § 2, which is based on successive approximations, If we assume, as a
solution of (34), for example,

V=2 Xuvy,
n=0
with the conditions V = 0, dV/dz = 1, at the initial point z = ¢, we
obtain by Picard’s method a differential equation and initial conditions for
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v,, which, on comparison with those of § 4, show that

v, = (—1)" In(‘fy .’Z).

£

Picard himself does not use these ‘‘ conditions of Cauchy,” but takes his
primary solution to have a prescribed value at each of the end points.
The functions R (£, z, A\), R(z, n, \) are included in a solution given by
Forsyth,* while the function R({, z, A) has been obtained by Liapounoff+
for the case in which the function p (x) is periodie.

Sinee E (£, z, A) and R (z, 5, \) are two solutions of (84), we know that

a 0 o3
3= B(E 2, N R@, o, V= 5= R, . M) R 2, V),

will be independent of iz; we have, in fact,
0 0 .
85 R(f’ iz, A)-R(-I7y 7, A)_' ;%';:R(J;; 7, A) R(Sés &, >\) = R(é‘s 7, A)a (85)

on putting either # = £ or x = 5. When R(, 5, \) = 0, we see further
from (35) that R(£, z, A}/ R(z, 5, A) will be independent of z. This was
to be expected from §8. Wemayput £=0,5=a, if <z <a.

6. With regard to the tidal problem, the solution for the free modes
s now seen, as was expected, to be given by

V-n = R(O’ Ly An) or V,=~H (-I', a, An,), (36)
where A, is a root of the equation
R, a, X)) =0. 37)

This is the period equation ; the left-hand side is an integral function in
A, and we know that the roots are real, positive, infinite in number, and
isolated.}

The ratio of the two solutions in (86) is seen from the end of the pre-
ceding section to be independent of x.

For the forced motion, we assume, on the suggestion of (15), when

ER(0, a, 2) 50,

1

V@ =—56,an

{RmmMKR@&MF®@

+mammf3@mmF@m}4%)

* A Treatise on Differential Equations, 3rd ed., p. 120, Ex.
+ Ann, Fac. Sci. Toulouse, (2), t. 1x, p. 403.
1 Bee, for instance, Picard, l.c.
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This vanishes at ¢+ =0 and £ = a. Wae have further

1

0 2
T RO, {55 Bz, a, ) L,R(O, 5, N) F(s)ds

d —
Iz Vig) =

+ % RO, 2, V) 5 R(s, a, \) F(s) ds } . (89)
and, consequently,

4 A 1

737 =30 o e {R(z, a,\) L R(0, s, \) F(s) ds

+R(0,z, N SaR(s, a, \) F(s) ds }

1

0
T RO, a N {a—g;R(’“”’“'MR(O, z,\)

-~

—aiR(o, 2,V R(z, a, A)} F(x). (40)

T

Equations (39) and (40) are valid for 0 <2 { @. Therefors

a A .
i V(‘J?H“p-(;) Vig) = Flx),

on using (385), so that (88) provides the solution of (5) required.





