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FREE AND FORCED LONGITUDINAL TIDAL MOTION IN A
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1. l'he lake considered in this pa.per is such that the size and shape
of its transverse section vary only slowly. rrhe variations may be in auy
nlanner, subject only to certa.in very general conditions which are satisfied
in many actual lakes.

The determination of the ordinary longitudinal seiches in !:Il1ch a. lake
was reduced bv Prof. Uhrvstal * to the solution of a linear differential
equation of the second onler in the nonnal form , with certain boundary
conditions.

The detennination of the “ temperature seiche," discovered by E. B.
\Vatson and E. ~L \Vedderburn, has been shown by the latter of these
authors .j. to be 닙imilarlv reducible.

Again, the discussion of the vibrations of a string of any letW of
density fonns a problem which is reducible to the SaIn e equations and
conditions. PO l' the special ca l:le in which the string is of uniform density
the original method of J o11n and Daniel Bernoulli was to replace it h~'

one in which the mass was concentrated at a finite number of equidistant
points. : This, when the mas!:le~ at the points are no longer equal, is th상

method used in the present paper to suggest the fonn of the 당eneral solll­
tion. It involV t::lS the re햄rdin당 of the differential equation as the limitinμ‘

fonn of a difference equation. a nlethod which has been very much used.
I n the first place the determination of the forced illotion in 야Ie lake

due to <.1. periodic chauge in atmospheriμ pressnre ~ which varies along the

* “ Hydrodynamical Theory of Seiches,’ ‘ TJ’ans. B.oy. :)’ur: . E ’din . , Vol. XLI , p. 5VV
(1905).

f “ The rremperature Seiche ,"ibid. , Vo l. XLVII, p. 619 (1910) ; “ Temperature Ob::;erv1\ ­

tions ...," ibid. , Vo l. XLVIII , p. 629 (1912).
~ The analysis is given by Lord Rayleigh , Theorν of Soμnd， Vo l. I , p. 172.
§ The effect of a number of types of pressure disturbances on <t speciallake has been C011­

sidered by PI’ of. Chrystal, '1’'rans. Roy. Soc. Edin. , Vo l. XLVI , p. 499 (1908).
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lake, as well as to a periodic bodily disturbing force which is directed
everywhere along the length of the lake, is reduced to the solution, with
the same boundary conditions, of a differential equation which is an ex­
tension of th와 of Prof. Chrystal. Of course we are merely concerned
with a very simple linear boundary problenl, of which Prof. Chrystal's is
the “ homogeneous" case.

A general equation for the free periods, and a general expression , in
terms of the period, for the motion in any free mode , are obtained, as well
as acornplete expression for the periodic forced motion.

Generαl Equations.

2. Following Prof. Chrystal, let x denote the area of the surface of the
lake from one end up to a transverse section which is at a distance s,
measured along the length of the lake, from some fixed transverse section.
Then, if α denotes the total area of the surface of the lake. x will range
from 0 to a. Let the transverse section corresponding to x have an area
A (x) and be of breadth b (x) at the free surface, so that

딴 = b(x).
αS

Now let V denote the total volume of water which has passed the sec­
tion at -x up to time t; then V will vanish at x = 0 and x = α. Let
f denote the forward displacement of a particle in the section at x , and t
the elevation of the free surface at this section. It is supposed that f and
t are functions only of x and t. We shall then have

t= V ”= 6V--- ._---
A (x) ’ ~ - ax ’

the latter being the equation of continuity.
Let II denote the atmospheric pressure, and S the bodily disturbing

force per unit mass, supposed to act everywhere along the length of the
lake. II and S are supposed to be functions only of x and t.

'Vhen the motion is “ tidal" in character, the pressure intensity in
the water will be

II+Up (t+depth below mean surface),

where p is the density, supposed uniform, of the water, and g is the
acceleration due to gravity. The dynamical equation then gives, on

SER. 2. VOL. 14. NO. 1236. R
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neglecting squares and products of displacements,

,(Pf _ 1 all _ at
간 =-- -:5τ -g ;~ +8,
~~t μ ι”

(1)

which , on substituting from the above, gives

02y b(x) A (x) orr. ", ., , 02Yot2 =- 。 김강 +gb (x) A (x) ~흙 +A (x)S. (섭)

1£ we write
1 aIr 1

p(x) == b (x) A (x) , F == 끓 값 -월끊 S，

a2 y 1 a2 y
(2) may be written ~짚 - 끓꾀 경~- == F

m
ω

/I

i‘
、

(4)

The function p(x) can never be negative, and can only vanish at the ends
()f the lake. For the possibility of the type of motion we are considering
p (x) must be a continuous function of x , and we shall further require that
ιip/dx shall not vanish at an end point for which p vanishes.*

Suppose now the motion to be periodic with speed σ" and take

λ = 흐듀.
g

T’hen Y is determined by the equation

a2y λ
-'7 '9. +~ y== F ,
αx:.l I p(x)

(5)

with the condition that V shall vanish at x == 0 and x = α.

For a free mode we have F = 0; let y , λ be then denoted by Vη , λn
respectively, so that we have

nu--V
μ
-찌

、
A-/­-P+E

-상

윈

-d
(6)

It is to be remarked that, owing to the approximations made in
deriving the equations, only the smaller values of λ will aumit of inter­
pretation.

"\Vhen we speak of a solution of (5) or (6), we shall always suppose it
understood that the solution vanishes at x == 0 and x == a.

'* Chrystal and Wedderburn have calculated the function p (x) for Lochs Earn and Treig,
and in each case this condition is satisfied: Trans. IWν. Soc. Edin. , Vo l. XLI, p. 823 (1905).
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The dete밍nnina꾀on of the possib비Ie values of Ail for which (6) possesses
a solution, together with that of the corresponding solution, has been
considered by Picard,* and , in fact , he has given direct processes by
which they may be calculated. The processes of the present paper are
different.

Solution of a D~fference Equation.

3. In accordance with the method indicated in ~ 1, let us consider the
determination of the 1n-l constants

v (1), 1) (2) , ... , η (m- l) ，

which are subject to the relations

I a2 A ~ I α
1)(1' - 1)+ 1ζ 」」 -2 } U(y·)+η(1'+1) =갚 f (1'), (7)l m2 p(r) ~ J

for

with

r = 1, 2, ... , m-l ,

1) (0) = v(m) == O.

The difference equation (7) is suggested by the differential equation (5)

which may he regarded as a limiting form of it as 1n • ∞ •
}1' or our purpose we shall require the determinant

all A
1 0,2-~ηi! p (，&μA. + 1) ‘’

0

-1, a2 λ

2-;l:! P I.μ.u + 2)'’
-1, 0

0, -1, a l\
02- 1~'% P (1'μ， + 3) '’

0 , 0 , 0 0

0 , 0 , 0, -1

0, 0, 0, 2- ~ __l\
-김힌뇨1)

which we shall call ~ (μ， v, λ).

~(μ ， v, 0) is easily evaluated and found to be v-μ， and then , on ex­
panding ~ (μ ， l'. λ) in powers of λ， it is easily seen to be given by

a(μ， 11 ， λ) == (v-μ)+ ~ (-λ)“ SII(μ ， ν) ，

• Trail‘; d’Analνse， t. III, ch. vi.

n 2

(8)



244 MR. J. PROUDIIAN [June 11,

where Sn. (μ ， v) is given by either of the two equal multiple sums

g맏 ‘ε1 s’i I 전1 S~~ I (v-Sn)(Sll-Sn- I) .. ' (81-μ) • (9)

ηl“ s’‘=μ+ι 8..-1=μ+ “-1 --- ’:1=μ+ 2 $)그十I P (·~l) P (8 2) .• , p (쇄 ’

rw2n v-n IJ-n+l

二-;;τ ~ ~
?’1,- " s ，， =μ + t -'’‘- 1= $,‘ + 1

v;j r‘1 (V-S1)(SI-S2) (s ，， - μ)

.~:!피+t 81=:;+1 p (SI) p(한) p(ι )
(10)

The cofactor of the element in the ,.-th row aud s-th column of the
oeterminant A (0, ln, λ) is , for the respective cases in which ,. <, =, > s,

.1 (0, '1', λ) A(s, 1n, λ) ， A(O, r, λ) ~ (1', 1μ， λ) ， A(O, S, λ) .1 (1', ?n, λ) ， (11)

“’here A (0,1, λ) = A(m-l , m, λ) = 1.

Now, when fer) = 0 for all values of l' concerned, the condition for the
existence of a solution of 야Ie probletn in question is

.;l (0, 'JIl, λ) = 0. (12)

λl' λ잉 ， "" λTtl - I ·

1'his is an algebraic equ따ion of the (m-l)-th degree in λ ; let its roots be
denoted by

Corresponding to λ It we have , by the ordinary theory,

v (1) v (2) - v (,.) - ν (m- 1) , (13)
..l lO, I , λπ) A(O, 2, λ 1/) ~ (0 , 1', λ r， ) - ,., - A (0 , m-1 , Xη)

,md

ν(1) v(2) - - V (1') - - V (1μ- 1 ) , (14)
~(1 ， η2- ， λn) A(2 , m , λ11) ... A(l', m , λII) . -. ~ (m-1, ln , λ11 )

and the determination is unique. \Ve notice that 、、Then A(O,m" λ) = 0 ,

A(O, r , λ)/A (1', 111" λ) lnust be independent of 1'.
When f (1') is not zero for all valnes of 1’ concerned, and λ is prescribed.

we shall have, provided
A (0, m , X)추 0,

vCr) =- ‘ 감 、 、 녀 (1', 까， λ) 핀 .l (O, S, λ) /(s) +A (0, 1', λ) A(r, 1n, λ) fer)

+.l (O, r , λ) 눴l A (s, 1l1, λ)/(8) }, (15)

for r = 1,2, .." m- 1.
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Solμtion of the D(lferential Eqμation.

4. We now proceed to solve the original problem on the lines
suggested by the preceding section, giving, however, an independent
j usti:fication.

From the expressions (9) and (10) for Sμ (μ ， v) we are led to consider
the two multiple integrals

J.:.=EJ.:' I .=E··· J::=tJ:~ (η-8“) (sn -Sn-l) ... (S2-
S1) (81-f) ds1ds2 짧， (16)

이‘ = t J.~’‘- l =~ ···J.'l2 = ~ J 서 1 =홍 P(SI) p(S강 ••• p(Sη)

J:'~'=8_ ... f2=S3I’ (η - 81) ('~1 - '~2) 폐 - su) (S?l-E) dSl dS2 dsn, (17)
1=8.. J'~2=셈 S,='~2 P (SI) P (S2) ... P (.<;n)

for n > 0, where 0 등 f 같 η 등 α. The integrands of these are always
positive, so that if the integrals exist we may change the order of integra­
tion. Doing this for (16) , we obtain

1:1파 =s E F (17-S1‘) (8n - Sn- l) (S2- S1)(Sl-f)

=8n_2 J ，~’‘= 8’‘ - 1 P(Sl)P(S2) p(Sn

which only differs by a change in notation from (17). The integrals
obviously exist for 0 < f 특 η < a, since the integrands are then con­
tinuous; let their common value be denoted by

and take

In (응， η) ，

10 (f, η)= η-f· (18)

The equality of (16) and (17) was to be expected from that of (9)
and (10).

From (16) we have

In (양， η) = ~7I ~二;. I n- l (홍" s) ds,J§ p (.c:)
(19)

and this may be written as the double integral

J:=t C I n
-

1 (f, s)
s=t Js' = 8 P (8)

(20)

which, by interchanging the order of integration, may be written

g9-aan1d사
이-

￠
-
넨

1「-p
u-

Tl

-

략

선
S

r------

,J
샤
「

끼
1

J”

F
-
-
-’
l
，
，
ι

(21)
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Similarly, from (17), we obtain

μ(f， 'I) = \η 슨￥
J양 pes)

= J:파 ;t L김찮 'I) 삶ds'

= J:，파=t I”김찮 ’~ dsds ’

(22)

(23)

(24)

These relations are true for n > 0.
For a particular value of f , In(f, η) increases as η increases. while for

a particulal‘ value of 'I, In <f, 'I) decreases as 흥 increases.
We now proceed to show that In (0, α) will exist, provided th따

p(x»kx(α-x)， (25)

where k is any positive constant. It will obviously be su뼈cient to show
the existence for the case in which p (x) = x (α-x). Now

[x x-s / s\ n ~;:， 1 ι.η + r 1 X N +2
\~{~}ds=~ ， . ~" .，~~~~.h α-s \ α J ~V~ /,:2(n+ r-1)(n+1') αn+ 1'- 1 ~ n+1 an + 1 ’

for °같 z 등 α， so that we have in succession, on using (19) ,

Io(O , x) = X ,

긴 (0， x) = J:뜸§ dS 등 찮 ,

μ (0， x) 등 E짧 응ds 득 윷 혔，

Il~(O， x)특역끽τT U $드; (풍) n-
1
ds~ 옳 띤짧f

We thus see that when (25) is sati배ed ， In(O, α) will exist and have a
value which is < a/n! kit. The only restriction imposed by (25) , further
than those already required, is that dp/dx shall not vanish at an end for
which p vanishes.

From (24) , (21) we obtain respectively

서 ‘ [깨 η - 1 (S ， 'I)
; ... In(~ ， η，) =- \ot ...n\~"'J- Je pes)

서 F Iη-I(흥~ s)
송 L(t, n) = l ds, (26)

」양 pes)
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for 0<흥등n흑 a and 0듣흥등 η < a respectively,while from (18) we oLtain

흐 Io (흥， 껴 =-1,of
¥le next obtain

~2 ~

황 1n (f, r,) =삶Iη-l(f， η) ，n ρ(f)

for n > 0 and the same ranges, while

~2

짧 Io (f， ,.,) = 0,

옳 Io {f， ,.,) = 1

~2' 1

월 In{f, η)=-느 1n-1 (f, ,.,),
dη p(η)

~2

옳g μ (f， η) = O.

(27)

(28)

(29)

The conditions necessary for the validity of the operations involved in
the derivation of (26) and (28) are satisfied.

The above relations may be used for the determination of In (f, η) in­
stead of (16) and (17). For ins뼈，nee， In (f, η) ， regarded as a function of
the parameter f and the variable η ， may be determined step by step from
the differential equations in (28) and (29), together with the conditions
at the initial point η =f,

10 (f, η) = 0,

Iμ(f， 끼 =0,

옳 Io (f， η) = 1,

옳 In (홍， η) = 0 (n > 0),

which are derived from (26) and (27).

5. Now take

R(f, η， λ) = ~ (-X)“ In (홍， η).
11,= 0

(80)

R(O , α， λπ) = 0 ,

This is suggested by (8); we shall expect the condition for a solution of
(6) to be

and the solution itself to be given either by

Vη = R(O, x , λn) or Viπ = R(x, α， λn) .

When (25) holds, we see from the upper limit obtained for 111,(0, α) ,
th빠 (30) will be absolutely convergent, as well as uniformly convergent
with respect to 흥， η， for all values of λ.



248

We shall then have

~IR. J. PROUn:UAN [,June 11,

and

」 ∞ '"'
:;;:R (f, '1, λ) = ~ (-λ)n :;;: In(f, η)
8홍 11:'0' ,,,, df ..c.

n

~， "'1'1. rη 11/ (s, η)=-1+\ ~ (-λ)n \ "<'1/ '~' :'f ds
n=-o' .., J, p(s)

l깨 R(s, η， λ)
=-1+\ \J§ P (s)

잃R(f, η ， λ) = RF。 ←λ)1t 옳 In (홍， η)

ζ ['I In (f. s) :J
=1-λ ~(-λ)1L ' "'n\~ ， \ ~/ d

n:O \ ." Jt p(S) ‘

["R(흥， s, λ)
=1-λl

We have here used the relations (26) and (27).

'Ve next obtain

(31)

(32)

::'2

늪'2 R (양， η， λ) = --잔\ R (f， η， λ) ，f :l. _v \~7 "17 "'/ p(f)
'02 λ

5감 R(양， η， λ) == - __ 'I'"~ R(f, η ， \) . (33)
p ('1)

We now see that R (얄， x , \) αnd R (x , η， λ) are eαell， sohιt-ions of the
d-i fleren tia l eqμation d2V λ

-τ+'; ， V == 0, (34)
dx~ I p(.x)

for °듣 f 등 x <a, and 0< x 등 η 등 α respectively , αnd that

R(양， x , λ) == 0, 옳R (흥， x , λ) == 1.

for x == ￥， ψhile R(x, η， λ) = 0, 앓 R (x ， η， λ) == - ] ，

for x = η.

Again, these conditions, which are “ conditions of Cauchy," may be
used to determine the functions R (양， x, λ) ， R(x, η， λ) ， and this determina­
tion may be carried out in a manner similar to that of Picard mentioned
in § 2, which is based on successive approximations. If we assume, as a
solution of (34), for example,

V= ~ λnvπ，
π= 0

with the conditions V == 0, dVjdx == 1, at the initial point x = f , we
obtain by Picard’s method a differential equa꾀on and initial conditions for
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l)n which, On comparison with those of § 4, show that

I사 = (_I)n In (종， x).

Picard himself does not use these “ conditions of Cauchy," but takes his
primary solution to havA a prescribed value at each of the end points.
The functions R(f, x , λ)， R(x, η， λ) are included in a solution given by
Forsyth,* while the function R (f, x , λ) has been obtained by Liapounoff+
for the case in which the function p (x) is periodic.

Since R (f, x , λ) and R (x , η， 시 are two solutions of (84), we know that

옳R (f， x , λ) R(.z , η， ;\)- a~ R(x, 서) R(f, x , ;\),
[
(J

will be independent of ;]:; we have, in fact ,

옳R싫 λ) R (;x ， η， λ)- 값R (x ， η， λ) R(f, x , λ) = R(f, 서)， (85)
꺼

on putting either x = [ or x = η. When R(f, η， λ) = 0, we see further
from (85) that R (홍， x , λ)/R (.x ， η， λ) will be independent of x. This was
to be expected frOIn § 8. vVe may put 홍 =0, η =a , if 0< x < α.

6. With regard to the tidal problem, the solution for the 꺼'ee 1nodes
is now seen, as was expected, to be given by

Vπ =R(O, x , λμ) or VJ’‘
= R (.r, α， λ，th (36)

where λπ is a root of the equation

R (0, a, λ) = 0. (37)

This is the pefriod eq'ttat-ion; the left-hand side is an integral function in
λ， and we know that the roots are real, positive, infinite in nunlber, and
isolated.!

The ratio of the two solutions in (86) is seen from the end of the pre­
ceding section to be independent of x.

For the forced motion, we assume, on the suggestion of (15), when

R(O, α， λ) 추 0,

V(x) =- M1- 、、 { R(x,샤) J: R(O, s, λ) F(s)ds

+R(O,성) J: Rμ λ) F(s) ds } . (38)

:it A Tr t!4Rse on Differential Equations, 3rded., p. 120, Ex.
t Ann. Fac. Sci. Toμ10μ"e ， (2), t. IX, p. 403.
:t: See, for instance, Picard, l.e.
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This vanishes at x =0 and x = a. We have further

때
-
-
-
ι
l
l
I

go1
α

샤
이뀐시

1없

A

샤
”
”

“
애
、

RR
시

F
l

·n

e”

시

0Z
/
l
I、R

μ

다
l
』

R

시

8-&

α
+

zR
a-h/l!

,l‘--,‘1
-
願

-­
씨

vd
-’앓

and, consequently,
서2 λ 1 f _. _, r
숲짖 V(x) = ~~'/~__' n ,,",, ~ _~ '-, ~ R(x, α ， X) \ R(O, s, λ) F(s) dsp(x) R(O, a , λ) l -.,-, -, .•, Jo

+R(O, x , λ)靜(s ， a , λ) F(s) 삶 }

1 ( a
- R (Q.~a. X) i a~x R(x, a ,λ) Rω， X , λ)

- 앓 R(O, x ,λ) R (x ， α， λ) } F(x). (40)

Equations (39) and (40) are valid for °등 $ 등 a. Therefore

쩔2 V(x)+ 괴~ V(x) = F(x:) ,dx ".4 • ,- I I P (x)

on using (35), so that (88) provides the solution of (5) required.




