ON A FORMULA FOR THE SUM OF A FINITE NUMBER OF TERMS OF THE HYPERGEOMETRIC SERIES WHEN THE FOURTH ELEMENT IS UNITY

(Second Communication.)

$B y$ M. J. M. Hill.

[Received March 10th, 1908.—Read March 12th, 1908.]

Abstract.

In a paper communicated to the Society and printed in the Proceedings, Ser. 2, Vol. 5, pp. 335-341, it was shown that when the real part of $\gamma-\alpha-\beta$ is negative, then, in general, the sum of s terms of the series

$$
1+\frac{\alpha \beta}{1 \gamma}+\frac{\alpha(\alpha+1) \beta(\beta+1)}{2!\gamma(\gamma+1)}+\ldots
$$

was asymptotic with $\frac{\Pi(\gamma-1) s^{a+\beta-\gamma}}{(\alpha+\beta-\gamma) \Pi(\alpha-1) \Pi(\beta-1)}$, l.c., p. 339.

The proof given did not, however, apply to the special case in which $\gamma-\alpha-\beta$ is a negative integer, and it did not apply when $\gamma-a-\beta$ is equal to zero.

The object of the present communication is to show that the formula given above does hold when $\gamma-\alpha-\beta$ is a negative integer, but that, when $\gamma-\alpha-\beta$ is equal to zero, then the sum of s terms is asymptotic with

$$
\frac{\Pi(\alpha+\beta-1)}{\Pi(\alpha-1) \Pi(\beta-1)} \log _{e} s
$$

This last result was obtained in the first instance by taking the expression given in Art. 4 of the former paper, putting $\gamma=\alpha+\beta+\epsilon$, and equating the terms independent of ε. The difficulty of obtaining a thoroughly satisfactory proof by this method led me to build up an independent proof.

The method adopted has a point of interest.
Calling the terms of the original series $T_{1}+T_{2}+\ldots+T_{s}$, certain factors
$U_{1}, U_{2}, \ldots, U_{s}$ are obtained, such that $U_{n} T_{n}$ can be put into the form $V_{n}-V_{n-1}$. From this it follows that

$$
U_{1} T_{1}+U_{2} T_{2}+\ldots+U_{s} T_{s}=V_{s}-V_{0}
$$

The factors $U_{1}, U_{2}, \ldots, U_{s}$ depend upon an integer r; in such a way that when r is increased to infinity, these factors all tend to unity.

To sum the series $T_{1}+\ldots+T_{s}$, all that remains is to make r infinitely great in $V_{s+1}-V_{0}$, and then determine the simplest expression with which $V_{s+1}-V_{0}$ is asymptotic. The result is as given above.

Thus the only discontinuity in the formula takes place at the value of γ which separates those series which are convergent from those which are divergent.

1. With the notation used in the former paper, and also the following,

$$
\begin{aligned}
& t_{r, s}=\frac{1}{a+r-1}+\frac{1}{\beta+r-1}-\frac{1}{r}-\frac{1}{\alpha+\beta+s+r} \\
& u_{r, s}=1+\frac{a \beta}{\alpha+\beta+s+1}+\frac{a_{2} \beta_{2}}{2!(\alpha+\beta+s+1)_{2}}+\ldots+\frac{a_{r-1} \beta_{r-1}}{(r-1)!(\alpha+\beta+s+1)_{r-1}} \\
& u_{r, s}=t_{1, s} u_{1, s}+t_{2, s} u_{2, s}+\ldots+t_{r, s} u_{r, s}
\end{aligned}
$$

it will be proved that

$$
\begin{align*}
\frac{a_{s} \beta_{s}}{s!(\alpha+\beta)_{s}}\left(1-\frac{a_{r} \beta_{r}}{r!(\alpha+\beta+s)_{r}}\right. & \left.-\frac{\alpha_{r} \beta_{r}}{(r-1)!(\alpha+\beta+s)_{r+1}}-\frac{s u_{r, s-1}}{\alpha+\beta+s+r}\right) \\
& =\frac{\alpha_{s+1} \beta_{s+1}}{s!(\alpha+\beta)_{s+1}} w_{r, s}-\frac{\alpha_{s} \beta_{s}}{(s-1)!(\alpha+\beta)_{s}} w_{r, s-1} \tag{I.}
\end{align*}
$$

Dividing out by $\frac{\alpha_{s} \beta_{s}}{(s-1)!(\alpha+\beta)_{s}}$, it is necessary to prove

$$
\begin{aligned}
& \frac{1}{s}\left(1-\frac{\alpha_{r} \beta_{r}}{r!(\alpha+\beta+s)_{r}}-\frac{a_{r} \beta_{r}}{(r-1)!(\alpha+\beta+s)_{r+1}}-\frac{s u_{r, s-1}}{\alpha+\beta+s+r}\right) \\
&=\frac{(\alpha+s)(\beta+s)}{s(\alpha+\beta+s)} w_{r, s}-w_{r, s-1} \\
&=\frac{(\alpha+s)(\beta+s)}{s(\alpha+\beta+s)} \sum_{v=1}^{r} t_{v, s} u_{v, s}-\sum_{v=1}^{r} t_{v, s-1} u_{r, s-1} \\
&=\sum_{v=1}^{r} t_{v, s}\left(\frac{(\alpha+s)(\beta+s)}{s(\alpha+\beta+s)} u_{v, s}-u_{v, s-1}\right)+\sum_{v=1}^{r} u_{v, s-1}\left(t_{v, s}-t_{v, s-1}\right)
\end{aligned}
$$

1908.] finite number of terms of the hypergeometric series. 341
2. It may be immediately verified for $v=1,2, \ldots$, and then, by induction for all values of v, that

$$
\frac{(\alpha+s)(\beta+s)}{s(\alpha+\beta+s)} u_{v, s}-u_{v, s-1}=\frac{a_{v} \beta_{v}}{s .(v-1)!(\alpha+\beta+s)_{v}}
$$

3. Hence the equation to be proved is

$$
\begin{aligned}
& \frac{1}{s}\left(1-\frac{a_{r} \beta_{r}}{r!(\alpha+\beta+s)_{r}}-\frac{a_{r} \beta_{r}}{(r-1)!(\alpha+\beta+s)_{r+1}}-\frac{s u_{r, s-1}}{\alpha+\beta+s+r}\right) \\
& =\sum_{v=1}^{r} \frac{a_{v} \beta_{v} t_{v, s}}{s \cdot(v-1)!(\alpha+\beta+s)_{v}} \\
& \quad \quad+\sum_{v=1}^{r} u_{v, s-1}\left(\frac{1}{\alpha+\beta+s+v-1}-\frac{1}{\alpha+\beta+s+v}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \quad: \sum_{v=1}^{r} u_{v, s-1}\left(\frac{1}{a+\beta+s+v-1}-\frac{1}{\alpha+\beta+s+v}\right) \\
= & \frac{u_{1, s-1}}{\alpha+\beta+s}+\frac{u_{2, s-1}-u_{1, s-1}}{a+\beta+s+1} \\
& +\frac{u_{3, s-1}-u_{2, s-1}}{a+\beta+s+2}+\ldots+\frac{u_{r, s-1}-u_{r-1, s-1}}{\alpha+\beta+s+r-1}-\frac{u_{r, s-1}}{\alpha+\beta+s+r} \\
= & \frac{1}{\alpha+\beta+s}+\frac{\alpha \beta}{(\alpha+\beta+s)_{2}}+\frac{a_{2} \beta_{2}}{2!(\alpha+\beta+s)_{3}}+\ldots+\frac{a_{r-1} \beta_{r-1}}{(r-1)!(\alpha+\beta+s)_{r}} \\
& -\frac{u_{r, s-1}}{\alpha+\beta+s+r}
\end{aligned}
$$

4. Hence the equation to be proved is

$$
\begin{aligned}
& \frac{1}{s}\left(1-\frac{a_{r} \beta_{r}}{r!(\alpha+\beta+s)_{r}}-\frac{a_{r} \beta_{r}}{(r-1)!(\alpha+\beta+s)_{r+1}}-\frac{s u_{r, s-1}}{\alpha+\beta+s+r}\right) \\
& \quad=\sum_{v=1}^{r}\left(t_{v, s} \frac{a_{v} \beta_{v}}{s \cdot(v-1)!(\alpha+\beta+s)_{v}}+\frac{\alpha_{v-1} \beta_{v, 1}}{(v-1)!(\alpha+\beta+s)_{v}}\right)-\frac{u_{r, s-1}}{\alpha+\beta+s+r}
\end{aligned}
$$

Now

$$
t_{v, s} \frac{\alpha_{v} \beta_{v}}{s \cdot(v-1)!(\alpha+\beta+s)_{v}}+\frac{\alpha_{v-1} \beta_{v-1}}{(v-1)!(\alpha+\beta+s)_{v}}
$$

$$
=\frac{a_{v} \beta_{v}}{s \cdot(v-1)!(\alpha+\beta+s)_{v}}\left[\frac{\alpha+\beta+2 v-2}{(\alpha+v-1)(\beta+v-1)}-\frac{\alpha+\beta+s+2 v}{v(\alpha+\beta+s+v)}\right]
$$

$$
+\frac{\alpha_{v-1} \beta_{v-1}}{(v-1)!(\alpha+\beta+s)_{v}}
$$

$$
=\frac{\alpha_{v-1} \beta_{v-1}}{s .(v-1)!(\alpha+\beta+s)_{v}}[(\alpha+\beta+s+v-1)+(v-1)-s]
$$

$$
-\frac{\alpha_{v} \beta_{v}}{s . v!(\alpha+\beta+s)_{v+1}}[(\alpha+\beta+s+v)+v]+\frac{\alpha_{v-1} \beta_{v-1}}{(v-1)!(\alpha+\beta+s)_{v}}
$$

$$
=\frac{a_{v-1} \beta_{v-1}}{s .(v-1)!(\alpha+\beta+s)_{v-1}}+\frac{\alpha_{v-1} \beta_{v-1}}{s .(v-2)!(\alpha+\beta+s)_{v}}
$$

$$
-\frac{a_{v} \beta_{v}}{s . v!(\alpha+\beta+s)_{v}}-\frac{\alpha_{v} \beta_{v}}{s .(v-1)!(\alpha+\beta+s)_{v+1}}
$$

The third and fourth of the above terms are obtainable from the first and second by increasing v by unity.

When $v=1$, the formula is

$$
t_{1, s} \frac{\alpha \beta}{s(\alpha+\beta+s)}+\frac{1}{\alpha+\beta+s}=\frac{1}{s}-\frac{\alpha \beta}{s(\alpha+\beta+s)}-\frac{\alpha \beta}{s(\alpha+\beta+s)_{2}}
$$

therefore

$$
\begin{aligned}
\sum_{r=1}^{r}\left(t_{v, s} \frac{a_{v} \beta_{v}}{s .(v-1)!(\alpha+\beta+s)_{v}}\right. & \left.+\frac{a_{v-1} \beta_{v-1}}{(v-1)!(\alpha+\beta+s)_{v}}\right) \\
& =\frac{1}{s}-\frac{a_{r} \beta_{r}}{s . r!(\alpha+\beta+s)_{r}}-\frac{a_{r} \beta_{r}}{s .(r-1)!(\alpha+\beta+s)_{r+1}}
\end{aligned}
$$

Hence the equation to be proved is

$$
\begin{aligned}
& \frac{1}{s}\left(1-\frac{\alpha_{r} \beta_{r}}{r!(\alpha+\beta+s)_{r}}-\frac{\alpha_{r} \beta_{r}}{(r-1)!(\alpha+\beta+s)_{r+1}}-\frac{s u_{r, s-1}}{\alpha+\beta+s+r}\right) \\
& \quad=\frac{1}{s}-\frac{\alpha_{r} \beta_{r}}{s . r!(\alpha+\beta+s)_{r}}-\frac{\alpha_{r} \beta_{r}}{s .(r-1)!(\alpha+\beta+s)_{r+1}}-\frac{u_{r, s-1}}{\alpha+\beta+s+r}
\end{aligned}
$$

which is correct.
5. There is no difficulty in applying the demonstration of equation (I.) to the case $s=1$.

But for the first term $s=0$ a separate proof is required.
In this case the terms $u_{r, s-1}$ and $w_{r, s-1}$ disappear, and it might be expected that the identity to be proved reduces to

$$
\begin{equation*}
1-\frac{\alpha_{r} \beta_{r}}{r!(\alpha+\beta)_{r}}-\frac{\alpha_{r} \beta_{r}}{(r-1)!(\alpha+\beta)_{r+1}}=\frac{\alpha \beta}{\alpha+\beta} w_{r, 0} \tag{II.}
\end{equation*}
$$

To prove that this is so

$$
w_{r, 0}=t_{1,0} u_{1,0}+t_{2,0} u_{2,0}+\ldots+t_{r, 0} u_{r, 0}
$$

Now $u_{r, 0}=1+\frac{\alpha \beta}{\alpha+\beta+1}+\frac{\alpha_{2} \beta_{2}}{2!(\alpha+\beta+1)_{2}}+\ldots+\frac{\alpha_{r-1} \beta_{r-1}}{(\alpha+\beta+1)_{r-1}(r-1)!}$

$$
=\frac{(\alpha+1)_{r-1}(\beta+1)_{r-1}}{(r-1)!(\alpha+\beta+1)_{r-1}}
$$

by the result in Art. 5, (a), of the former paper. Also

$$
\begin{aligned}
t_{r, 0} u_{r, 0}= & \frac{\alpha+\beta+2(r-1)}{(\alpha+r-1)(\beta+r-1)} \frac{(\alpha+1)_{r-1}(\beta+1)_{r-1}}{(r-1)!(\alpha+\beta+1)_{r-1}} \\
& -\frac{\alpha+\beta+2 r}{r(\alpha+\beta+r)} \frac{(\alpha+1)_{r-1}(\beta+1)_{r-1}}{(r-1)!(\alpha+\beta+1)_{r-1}} \\
= & {[(r-1)+(\alpha+\beta+r-1)] \frac{(\alpha+1)_{r-2}(\beta+1)_{r-2}}{(r-1)!(\alpha+\beta+1)_{r-1}} } \\
& -[r+(\alpha+\beta+r)] \frac{(\alpha+1)_{r-1}(\beta+1)_{r-1}}{r!(\alpha+\beta+1)_{r}} \\
= & \frac{(\alpha+1)_{r-2}(\beta+1)_{r-2}}{(r-2)!(\alpha+\beta+1)_{r-1}}+\frac{(\alpha+1)_{r-2}(\beta+1)_{r-2}}{(r-1)!(\alpha+\beta+1)_{r-2}} \\
& -\frac{(\alpha+1)_{r-1}(\beta+1)_{r-1}}{(r-1)!(\alpha+\beta+1)_{r}}-\frac{(\alpha+1)_{r-1}(\beta+1)_{r-1}}{r!(\alpha+\beta+1)_{r-1}} .
\end{aligned}
$$

The third and fourth of the above terms come from the first and second by increasing r by unity. Also

$$
t_{1,0} u_{1,0}=\frac{1}{\alpha}+\frac{1}{\beta}-\frac{1}{1}-\frac{1}{\alpha+\beta+1}
$$

$$
\begin{aligned}
w_{r, 0} & =t_{1,0} u_{1,0}+t_{2,0} u_{3,0}+\ldots+t_{r, 0} u_{r, 0} \\
& =\frac{1}{a}+\frac{1}{\beta}-\frac{(a+1)_{r-1}(\beta+1)_{r-1}}{(r-1)!(\alpha+\beta+1)_{r}}-\frac{(a+1)_{r-1}(\beta+1)_{r-1}}{r!(a+\beta+1)_{r-1}} ;
\end{aligned}
$$

therefore $\quad \frac{a \beta}{a+\beta} w_{r, 0}=1-\frac{\alpha_{r} \beta_{r}}{(r-1)!(\alpha+\beta)_{r+1}}-\frac{a_{r} \beta_{r}}{r!(\alpha+\beta)_{r}}$,
which is the equation (II.) to be proved.
6. Hence, by means of equations (I.) and (II.) together, it follows that

$$
\begin{align*}
& 1-\frac{a_{r} \beta_{r}}{(r-1)!(a+\beta)_{r+1}}-\frac{a_{r} \beta_{r}}{r!(a+\beta)_{r}} \\
& +\sum_{s=1}^{s} \frac{a_{s} \beta_{s}}{s!(\alpha+\beta)_{s}}\left(1-\frac{a_{r} \beta_{r}}{r!(\alpha+\beta+s)_{r}}-\frac{a_{r} \beta_{r}}{(r-1)!(\alpha+\beta+s)_{r+1}}-\frac{s u_{r, s-1}}{a+\beta+s+r}\right) \\
& =\frac{a \beta}{a+\beta} w_{r, 0}+\sum_{s=1}^{\dot{s}}\left(\frac{a_{s+1} \beta_{s+1}}{s!(\alpha+\beta)_{s+1}} w_{r, s}-\frac{a_{s} \beta_{s}}{(s-1)!(\alpha+\beta)_{s}} w_{r, s-1}\right) \\
& =\frac{a_{s+1} \beta_{s+1}}{s!(\alpha+\beta)_{s+1}} w_{r, s} . \tag{III.}
\end{align*}
$$

In this result it is necessary to make r infinite.
Now

$$
\frac{a_{r} \beta_{r}}{r!(a+\beta)_{r}}=\frac{\Pi(r, a+\beta-1)}{r \cdot \Pi(r, a-1) \Pi(r, \beta-1)},
$$

and therefore tends to zero as r tends to infinity. Similarly

$$
\frac{a_{r} \beta_{r}}{(r-1)!(\alpha+\beta)_{r+1}}, \quad \frac{a_{r} \beta_{r}}{r!(\alpha+\beta+s)_{r}}, \quad \frac{a_{r} \beta_{r}}{(r-1)!(\alpha+\beta+s)_{r+1}}
$$

all tend to zero as r tends to infinity.
Also $u_{r, s-1}$ is a convergent series and therefore finite, and therefore $\frac{s u_{r, s-1}}{a+\beta+s+r}$ tends to zero as r tends to infinity. Hence, when r tends to infinity, the left-hand side of equation (III.) tends to

$$
1+\sum_{s=1}^{s} \frac{a_{s} \beta_{s}}{s!(a+\beta)_{s}} .
$$

Next $\quad \frac{a_{s+1} \beta_{s+1}}{s!(\alpha+\beta)_{s+1}}=\frac{\Pi(s+1, a+\beta-1)}{\Pi(s+1, a-1) \Pi(s+1, \beta-1)}$,
and hence when s is large it will be asymptotic with

$$
\frac{\mathrm{II}(\alpha+\beta-1)}{\Pi(\alpha-1) \Pi(\beta-1)} .
$$

It remains to examine $w_{r, s}$.

$$
\begin{aligned}
w_{r, s} & =t_{1, s} u_{1, s}+t_{2, s} u_{2, s}+\ldots+t_{r, s} u_{r, s} \\
& =t_{1, s}+t_{2, s}+\ldots+t_{r, s}+t_{1, s}\left(u_{1, s}-1\right)+t_{2, s}\left(u_{2, s}-1\right)+\ldots+t_{r, s}\left(u_{r, s}-1\right) .
\end{aligned}
$$

Now
$u_{r, s}-1=\frac{\alpha \beta}{\alpha+\beta+s+1}+\frac{a_{2} \beta_{2}}{2!(\alpha+\beta+s+1)_{2}}+\ldots+\frac{a_{r-1} \beta_{r-1}}{(r-1)!(\alpha+\beta+s+1)_{r-1}} ;$
therefore
$\frac{u_{r, s}-1}{\left(\frac{a \beta}{a+\beta+s+1}\right)}=1+\frac{(a+1)(\beta+1)}{2!(\alpha+\beta+s+2)}+\ldots+\frac{(\alpha+1)_{r-2}(\beta+1)_{r-2}}{(r-1)!(a+\beta+s+2)_{r-2}}$. (IV.)
Now when s is large the right-hand side of (IV.) tends to the limit 1.
Suppose that the right-hand side of (IV.) lies between $1-\varepsilon$ and $1+\eta$, where ε, η are two functions of s which tend to zero as s increases.

It follows that

$$
t_{1, s}\left(u_{1, s}-1\right)+t_{2, s}\left(u_{2, s}-1\right)+\ldots+t_{r, s}\left(u_{r, s}-1\right)
$$

lies between

$$
\frac{\alpha \beta}{a+\beta+s+1}\left(t_{1, s}+t_{2, s}+\ldots+t_{r, s}\right)(1-\epsilon)
$$

and

$$
\frac{a \beta}{a+\beta+s+1}\left(t_{1, s}+t_{2, s}+\ldots+t_{r, s}\right)(1+\eta) .
$$

Now

$$
t_{1, s}+t_{2, s}+\ldots+t_{r, s}
$$

$$
=\left(\frac{1}{a}+\frac{1}{\beta}-\frac{1}{1}-\frac{1}{a+\beta+s+1}\right)
$$

$$
+\left(\frac{1}{a+1}+\frac{1}{\beta+1}-\frac{1}{2}-\frac{1}{a+\beta+s+2}\right)
$$

$$
+\ldots
$$

$$
+\left(\frac{1}{a+r-1}+\frac{1}{\beta+r-1}-\frac{1}{r}-\frac{1}{a+\beta+s+r}\right)
$$

$$
\begin{aligned}
= & \left(\frac{1}{\alpha}+\frac{1}{\beta}-\frac{1}{1}-\frac{1}{\alpha+\beta-1}\right)+\frac{1}{\alpha+\beta-1}-\frac{1}{\alpha+\beta+s+1} \\
& +\left(\frac{1}{\alpha+1}+\frac{1}{\beta+1}-\frac{1}{2}-\frac{1}{\alpha+\beta}\right)+\frac{1}{\alpha+\beta}-\frac{1}{\alpha+\beta+s+2} \\
& +\ldots \\
& +\left(\frac{1}{\alpha+r-1}+\frac{1}{\beta+r-1}-\frac{1}{r}-\frac{1}{\alpha+\beta+r-2}\right)+\frac{1}{\alpha+\beta+r-2}-\frac{1}{\alpha+\beta+s+r} \\
= & \sum_{r=1}^{r}\left(\frac{1}{\alpha+r-1}+\frac{1}{\beta+r-1}-\frac{1}{r}-\frac{1}{\alpha+\beta+r-2}\right) \\
& +\left(\frac{1}{\alpha+\beta-1}+\frac{1}{\alpha+\beta}+\ldots+\frac{1}{\alpha+\beta+s}\right) \\
& -\left(\frac{1}{\alpha+\beta+r-1}+\frac{1}{\alpha+\beta+r}+\ldots+\frac{1}{\alpha+\beta+s+r}\right) \\
& \text { Now } \\
& =-\sum_{r=1}^{r}\left(\frac{1}{\alpha+r-1}+\frac{1}{\beta+r-1}-\frac{1}{r}-\frac{1}{\alpha+\beta+r-2}\right) \\
& \frac{(\alpha-1)(\beta-1)[\alpha+\beta+2(r-1)]}{r(\alpha+r-1)(\beta+r-1)(\alpha+\beta+r-2)}
\end{aligned}
$$

and is therefore a convergent series with a finite sum, when r is infinite.
Next

$$
\frac{1}{\alpha+\beta+r-1}+\frac{1}{a+\beta+r}+\ldots+\frac{1}{a+\beta+s+r}<\frac{s+2}{\alpha+\beta+r-1}
$$

and therefore tends to zero as r tends to infinity.
Next

$$
\frac{1}{a+\beta-1}+\frac{1}{a+\beta}+\ldots+\frac{1}{a+\beta+s}
$$

is asymptotic with $\log _{e} s$. Hence

$$
t_{1, s}+t_{2, s}+\ldots+t_{r, s}
$$

is asymptotic with $\log _{e} s$, whilst

$$
\frac{\alpha \beta}{\alpha+\beta+s+1}\left(t_{1, s}+\ldots+t_{r, s}\right)
$$

tends to the value

$$
\frac{\alpha \beta}{\alpha+\beta+s+1} \log _{e} s
$$

1908.] FINIte NUMBER of terms of the hypergeometric series. 347 and is therefore very small when s is large ; therefore

$$
t_{1, s}\left(u_{1, s}-1\right)+\ldots+t_{r, s}\left(u_{r, s}-1\right)
$$

is very small when r is infinite and s is large; therefore $w_{r, s}$ is asymptotic with

$$
t_{1, s}+t_{2, s}+\ldots+t_{r, s} ;
$$

and therefore with $\log _{e} s$. Hence

$$
\frac{\alpha_{s+1} \beta_{s+1}}{s!(\alpha+\beta)_{s+1}} w_{r, s}
$$

is asymptotic with

$$
\frac{\Pi(\alpha+\beta-1)}{\Pi(\alpha-1) \Pi(\beta-1)} \log _{e} s
$$

Hence

$$
1+\sum_{s=1}^{s} \frac{a_{s} \beta_{s}}{s!(\alpha+\beta)_{s}}
$$

is asymptotic with

$$
\frac{\Pi(\alpha+\beta-1)}{\Pi(\alpha-1) \Pi(\beta-1)} \log _{\varepsilon} s
$$

7. Consider now the case where $\gamma=\alpha+\beta-n$.

Putting

$$
\gamma=\alpha+\beta-n, \quad t=n-1
$$

in equations (V.) and (VI.), p. 337, of the former paper, it follows that

$$
\begin{aligned}
& G(\alpha, \beta, \alpha+\beta-n, s)=\frac{(\alpha-n)_{n}(\beta-n)_{n}}{(-n)_{n}(\alpha+\beta-n)_{n}} G(\alpha, \beta, \alpha+\beta, s) \\
& \quad+\frac{\alpha_{s+1} \beta_{s+1}}{n . s!(\alpha+\beta-n)_{s+1}} f(\alpha, \beta, \alpha+\beta-n, s, n-1)
\end{aligned}
$$

where

$$
f(a, \beta, \alpha+\beta-n, s, n-1)
$$

$$
\begin{aligned}
= & 1+\frac{(\alpha-n)(\beta-n)}{(-n+1)(\alpha+\beta-n+s+1)}+\frac{(\alpha-n)_{2}(\beta-n)_{2}}{(-n+1)_{2}(\alpha+\beta-n+s+1)_{2}}+\ldots \\
& +\frac{(\alpha-n)_{n-1}(\beta-n)_{n-1}}{(-n+1)_{n-1}(\alpha+\beta-n+s+1)_{n-1}} .
\end{aligned}
$$

$$
\text { Now } \frac{a_{s+1} \beta_{s+1}}{n . s!(\alpha+\beta-n)_{s+1}}=\frac{\Pi(s+1, \alpha+\beta-n-1)}{\Pi(s+1, \alpha-1) \Pi(s+1, \beta-1)} \frac{(s+1)^{n}}{n} \text {; }
$$

and is therefore, for a large s, asymptotic with

$$
\frac{\Pi(\alpha+\beta-n-1)}{\Pi(\alpha-1) \Pi(\beta-1)} \frac{(s+1)^{n}}{n}
$$

Also $f(\alpha, \beta, \alpha+\beta-n, s, n-1)$ tends to unity as s increases.

348 Sum of a finite number of termis of the hypergeometric series.

Further, $G(a, \beta, \alpha+\beta, s)$ has been shown to be asymptotic with a finite multiple of $\log _{e} s$, which is very small compared with $(s+1)^{n}$, when n is a positive integer and s a large positive integer.

Consequently $G(a, \beta, a+\beta-n, s)$ is asymptotic with

$$
\frac{\Pi(a+\beta-n-1)}{\Pi(\alpha-1) \Pi(\beta-1)} \frac{(s+1)^{n}}{n},
$$

which is the value assumed by the expression

$$
\frac{\mathrm{II}(\gamma-1)(s+1)^{a+\beta-\gamma}}{(a+\beta-\gamma) \Pi(a-1) \Pi(\beta-1)}
$$

given in Art. 4, on p. 339 of the former paper, when $\gamma=\alpha+\beta-n$.

