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18 Dr. Booth on the Rectification and

per cent.
Fluoride of calcium. . . . . ., . 186
Soda . . . . . . . . .. . 108
Chloride of sodium . . . . . . . 242
Magnesia and chloride of magnesium . 350

Twelfth. Analysis of a portion of a recent skull.
per cent.
Organicmatter . . . . . . . . 8343
Phosphate of lime . . . . . . . 51'11
Carbonate of lime . . . . . . . 1081
Fluoride of calcium* . + . . . . 199
Seda . . . . . . . . . .. 108
Chloride of sodium . . . . . . . ‘60
Magnesia and phosphate of magnesiat  1°67

It is perhaps unnecessary to add more to these analyses
than the statement that they have been performed with great
care, and that to these and congeneric inquiries I have devoted
some months; while pursued as they were in the laboratory
of University College, I had the advantage of most able advice
and assistancef. I am, &ec.,

London, June 7, 1844. J. M1pDLETON.

IV. On the Rectification and Quadrature of the Spherical
Ellipse. By the Rev. James Boorn, LL.D., M.R.I.4.,
Vice-Principal of, and Professor of Mathematics in Liverpool
Colleges.

IN the livraison of the Journal de Mathématiques published

in September 1841, a paper is given on the quadrature
of the spherical ellipse, but as the method there adopted,
although the established one in inquiries of this nature, ap-
pears in the present instance somewhat complex, and as the
author, M. Catalan, has confined himself to merely reducing
the quadrature to the evaluation of a complete elliptic func-
tion of the third order, without noticing or appearing to be
aware of the singular relation which exists between the lengths

* 8o far as an inference may be drawn from qualitative indications, the
bone of a feetus of 63 months contains as great a proportion of fluoride
as tl:iat of an adult; an interesting fact, and not, I believe, previously no-
ticed.

t+ If none of the magnesia existed in the bone as phosphate, which there
is much reason to doubt, the phosphate of lime would be increased about
1 per cent; the fluoride of calciim would be therefore proportionally di-
minished.

1 [The results of M.M. Girardin aud Preisser’s analyses of ancient and
fossil bones will be found in Phil. Mag. S, 3. vol. xxiv. p. 18.—Enyr.]

§ Communicated by the Author.
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and areas of those curves, nor of the striking analogies which
connect together the plane and spherical ellipse, an investiga-
tion of the same problem, conducted on different principles,
and leading to some very curious results; may not be unac-
ceptable to the mathematical reader.

The method here pursued is founded on two general theo-
rems, which may be enunciated and proved as follows :—

II. Theorem (1.). Tkearea A of any portion of a spherical
surface bounded by a curve may be determined by the formula

2w o .
A=‘/(;A dw . deo.[sinc},. . . . (L)

where ¢ is the arc of a great circle intercepted between a fixed
point P which may be termed the pole, and any variable point
s assumed within the curve on the surface of the sphere, p the
spherical radius of the curve measured from the pole and pass-
ing through the point s, » the angle, which the plane of the
great circle passing through the points P s makes with the
fixed plane of a great circle passing through the pole P.

Let O be the centre of the sphere, Fio. 1.
P the pole, s the assumed point, P Q °
the great circle passing through P_\

them; through P let a great circle
O P Q' be drawn indefinitely near
the former, d » being the angle be-
tween those planes; through s let a
plane be drawn perpendicular to
OP, meeting the gteat circle O P Q'
in . Let a point u be assumed on
the circle P Q indefinitely near to s,
and through = let a plane be drawn perpendicular to O P,
meeting the great circle O P Q' in «/; it is clear that the whole
area to be determined is the sum of the indefinitely small tra-
pezia, such as su s'4/, into which the required portion of the
spherical surface is thus divided. To compute the value of
this elementary area, we have ss'=sin ¢ dw, s u=d ¢; hence
the area of the trapezium s« s'#/ = d w sin ¢ do; and the whole
area A round the pole P, and bounded by the curve, is there-
fore given by the formula

A _/‘”d * do[si
=/, /. o [sin o],

Integratiug this expression between the limits p and 0,

A=‘/O-2de[l—cos,o]. C e ()

III. Theorem (2.) To find an expression for the length of
a curve described on the surface of a sphere.
C2

Q qQ o
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Let s and §' be two consecutive Fig. 2.
points on the curve, Ps, Ps two
great circles passing through these
points and the pole P, inclined to
each other by the angle d w; through
s let a plane be drawn perpendicular
to O P, meeting the great circle P ¢/
in %; then ultimately ss’« may be
considered asa right-angled triangle.
Hence (s §')? = (su)? + (s »)?, but
s¥=ds,Ps=p,su=sinpdw,su
=dp; or (9= (dp)* +(sinpd )’

Integrating this expression and taking the limits p,, pg,

e
arc=‘/P;pldp [1 + (sinp%-c‘:) ]g. .. (8)

IV. Def. A spherical ellipse is the curve of intersection of
a cone of the second degree with a concentric sphere.

Let 2« and 28 be the greatest and least vertical angles of
the cone, which may be termed the principal angles of the
cone, the origin of coordinates being placed at the common
centre of the cone and sphere, and the real axe of the cone
assumed as the axis of z meeting the surface of the sphere in the
point P, the centre of the spherical ellipse, which point may be
taken as the pole. Let the mean axe of the cone be in the
plane of  z, the least in thatof y z; p being the arc of a great
circle drawn from P to any point Q of the ellipse, w the angle
which the plane of this circle makes with the plane of x 2, in
which the semiangle « of the cone is placed, then the polar
equation of the spherical ellipse is

cosfw  sinfa 1 4
tan? « ' tan?B " tan®p’ coee ()

To show this, through the point P let a tangent plane be
drawn to the sphere, intersecting the cone in an ellipse, which
for perspicuity may be termed the elliptic base of the cone; let
the great circle passing. through P and Q cut this ellipse in
the central radius vector r, @ and 0 being the semiaxes of this
section, and ¢ the radius of the sphere ; then we have from the
common equation of the ellipse,

cos?w | sinfw __ 1
a® T 2
w being the angle between rand a, but @ = ctana, b = ctang,
r = ctan p; making these substitutions,
cos’w  sinw 1
tan® 2 tan®?B "~ tan®p
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Now this equation may be written in the form

2 in2 in2
cOs* w . sIn® w . 1 —sin®p
b 1 — sin? 7 (1 —sin?B) = ~— L
sin® a( “) + sin? 8 ( f) sin?p ’
cos?w | sin?w 1
or sin®a ' sin?@ "~ sin?p’ T " 7 7 ()

which is the equation of the spherical ellipse in another form.
V. Dividing (4.) by (5.), and reducing, there results

tan? «

1+ tan? B

\/1+s‘“ S rowed (6.)
8

Substituting this value of cos p in (2.), integrating, and putting
A for the area of a quadrant of the spherical elhpse (for, as
the surface of this spherical ellipse evidently consists of four
symmetrical quadrants, the length or area of one quadrant is
one-fourth of the length, or of the area of the whole),

\/ 1+ ;:‘rizZtan‘zw
A= -— —cos a/ dw e e | (7))
1+ ﬁ%ﬁ tan® w
sin? 3
VI. Now this definite integral is an elliptic function of the
third order, as may be thus shown. Assume

tan? @
COS p = COS &

tan 3
tanw = —— P €

d_w _ tan « tan 8 (9
d¢ ~ tanfacos?p + tan®Bsin®¢

Introducing the relations established in (8.) and (9.) into (7.),
the resulting equation becomes

A= w __tang, f . (10.)
tana d¢ {1 sin?e —~ sin? 8 sn“’q)j\/l (sm% — sin2 B sin?p

TsinSz cos? cos?

then

VII. Let two 11ght lines be drawn from the vertex of the
cone in the plane of z 2, or in the plane of the principal angle
2 «, making equal angles ¢ with the real axe of the cone, so
that

cos o
oS ¢ cos B (1L)

* The most accessible treatise to which I can refer the reader desirous
of information on the subject of cones and spherical conics, is a translation
of two Memoirs of Chasles, lately published by the Rev. Charles Graves,



Downloaded by [University of California, San Diego] at 04:17 05 April 2016

922 Dr, Booth on the Rectification and

These lines are termed focals, and the points in which they
meet the surface of the spherical ellipse, are analogous to the
foci of the plane ellipse.

Let e be the eccentricity of the plane elliptic base of the
cone, then

2 a®—b0* _tana —tan® B sin®a —sin®g

=Ta T tan?a T sinfacps?f ’ (12)
.o sinfa — singﬁ.
and by (11.) sinfe=—— 55

Introducing the relations established in (11.) and (12.) into
(10.), we find

w

BT % S R
A 2 tana > “Jo de (1 —€®sin®g) 41 — sin%esin?p (13,
a complete elliptic function of the third order, whose para-
meter is of the circular form, as might be easily shown. This
appears to be the simplest shape to which the quadrature
of the spherical ellipse can be reduced, the parameter and
modulus being the eccentricities of the plane and spherical
ellipse respectively.

VIIIL. To find the length of an arc of the spherical ellipse.

In this case it will be found much simpler to integrate
the equation (3.) with respect to p, instead of w, the independ-
ent variable in the last problem; for this purpose, then, solving
equation (5.), we find '
sin? B [sin®a — sin®p

sin?w = = . : e s .
sin® p Lsin®a — sin®B (14.)

cos®m = sin « {sinQF — sin? (15.)
sin? p {sinfa —sin®g |’ o ’

Differentiating (14.) with respect to w and p,
. dw — sin? 2 sin® B cos p
SiINwCoS w — = ~—5— e
dp  sin®p (sin® @ — sin® @)
Dividing this equation by the square root of the product of
(14.) and (15.), we obtain
dw — sinesin B cos p
dp ~ sinp V/sin?a — sin®p V/sin?p — sin® B’

(16.)

Substituting this value of %‘5 in the formula (3.) for the rec-

M.A,, Fellow of Trinity College, Dublin, who has enriched his version with
very valuable notes, and an appendix containing amongst other original
matter a new theory of rectangular spherical coordinates, which is likely
to become a powerful instrument of investigation in researches of this
nature.
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tification of the arc of a spherical curve, the resulting equation
becomes

T
arc:fp, [ smfz«/cos p — cos occos B . an)

Vsin?a — sin?p ¥/sin? p — sin? B_{’

the arc being measured from the minor axis towards the major.
IX. Let s be the arc of a spherical quadrant, then

sin p #/cos® p — cos? a cos? B
= d . (18.
$ f 'p[Msinga—sin“’p&/sin”"p—-singﬁ (18
This is a complete elliptic function of the third order, which

may be reduced to the usual form in the following manner.

Assume o _ sin®acos?¢ 4 sin® §sin? cp
COS™P = tan?a cos? ¢ + tan?Bsin® @’

the limits of integration being changed from « and 8 to 0

. (19.)

and —g—, or (changing as well the order of integration as the

sign) from -g— to0. Differentiating (19.) and introducing the

relations assumed in it into (18.), there results the equation

§= '-w- sin d - 20.
% ? (1 -e"‘sm%)\/ (Sm%‘—-sm%>sm52 (#0)

sin?

X. Let oy denote the angle which the plane of one of the
circular sections of the cone makes with the plane elliptic base,
then it may be shown with little difficulty that

cos y = nﬁ’ e e e e e (21)

sin? & — sin? B
sin® g

d S
tanex ‘6./. Sb[ 1 — ¢?sin?g) 4/1 ~ sin? ysm%&]

a complete elliptic function of the third order, whose para-
meter is also of the circular form.

XI. Let & and ' be the principal semiangles of the sup-
plemental cone*, and s the length of a quadrant of the spheri-
cal ellipse, the curve of intersection of this cone with the sphere,
then

* A cone is spid to be supplemental to anpther when their principal
angles are supplemental,

orsiny = . Introducing this relation into (20.),
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! —

T
tanf . fé p [ 1 ]
tana’smﬁ 0 ? {1 —¢%in%)} v 1—sin?y/sin% I’ (23.)
Now as the cones are supplemental,
a+ B = %, B+d = —;—, sin B! = cosa, sine' =cosB;
tang/  tanp

A St € =0 siny/ =sine. . . (24.)

Making these substitutions in (23.), we find
T

hence

tanf 2 1
= — d e A
s fana a~/0. ? [ {1—e%sin%p} V1 — sin?esinecp] - (25)

Adding this equation to (13.), we obtain the very simple re-
lation *

A+s'=12'-;. C e e e e . (26)

or taking the whole surface S of the spherical conic, and the
whole circumference =/ of the supplemental conic, introducing
¢ the radius of the sphere, we obtain the remarkable theorem

S+ed =27 . . . . o . (27)
Now ¢ 3/ is twice the lateral surface of the supplemental cone,
measured in one direction only from the centre, and may be
put equal to 2 L, hence we deduce that

XII. The spherical base of any cone, together with twice the
lateral surface of the supplemental cone, is equal to the surface
of the hemisphere.

XIIL Let §' denote the spherical base of the supplemental
cone, and L the lateral surface of the given cone contained
within the sphere, then from the preceding equations we have

S+ 2L =22, S+2L=2¢c» . . (28)
adding these equations,

S+2L)y+ 8 +2l)=4c»;. . . . (29.)
subtracting S—-8=2(L~-1L"% . . . . (30)
or,
X1V, If any two concentric cones, supplemental to each other,
be cut by a concentric sphere, the sum of their spherical bases,
together with twice their lateral surfaces, is equal to the surface
of the sphere.

And the difference of their bases is equal to twice the differ-
ence of their lateral surfaces. Hence also this other theorem:

* The discovery of this remarkable relation between the length and area
of a spherical ellipse is due to Professor MacCullagh, to whom mathema-
tical science is so much indebted for many new and beantiful theorems in
this department of geometrical research.
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XV. Let a cone whose principal angles are supplemental be
cut by a concentric sphere, the sum of the two spherical bases,
together with twice the lateral surface comprised within the
sphere, is equal to the surface of the sphere.

XVI. We shall now proceed to establish some other ana-
logies between plane and spherical ellipses.

To investigate the formula s = fp d A + u for the rectifica-
tion of a plane curve, where p is the perpendicular from any
assumed point called the pole on a tangent to the curve, A the
angle between this perpendicular and any fixed line drawn
through the pole, u the portion of the tangent intercepted
between the point of contact and the foot of this perpendi-
cular.

Let Q be the centre of Fig. 3.
curvature of the arc at A,

ABatangentat A, OBa \\’E’\ N
perpendicular from thepole S ' 2
O upon the tangent, O Ca
perpendicular upon the ra-
dius of curvature Q A, then
A B=0C; assumea point
a indefinitely near to A; let
abbe atangent ata, Oba ¢
perpendicular from O upon
this tangent, O T a perpen-
dicular from O upon the
radius of curvature Qa;
let O C cut the radius Qa
in#, and through ¢ let ¢ n be
drawn parallel to the radius Q A, then A a = differential of
thearc =ds=An+na; now An=C¢t=0T -~ 0OC=abd
—~AB=du,andna=ntx L atn=pdxr; hence
ds du
=Pt . . . . (81)

It will be seen that in the proof of this theorem the radius
of curvature is assumed as being greater than p; should it, on
the contrary, be less, the expression becomes in that case

Q

ds . du
dr =P T
hence generally s =fpdA +w . . . (81%)bis

It is obvious also that when the perpendicular p is equal to

the radius of curvature, at that point of the curve ‘—;—: =0, or

% is there a maximum or a minimum.
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From these considerations it easily follows that u, the por-
tion of the tangent between the point of contact and the foot
of the perpendicular, is either a maximum or minimum when

. . d
the radius of curvature is equal to p; for then d——: = 0.

It is alsa manifest that L =u; . . .. .. (82)

for tT=Ta—ta=Ta—cA=p' —p=dp,
and OT=u+duy but OT x LtOT=¢T, tQT =4dx;
hence %= %, since d u d A is of the second order.
XVII. To apply this formula to the rectification of the
ellipse, let the centre be the pole, A the angle between the
perpendicular p from the centre on the tangent,and the major-
axe; then, as the perpendicular is greater than the radius of
curvature towards the vertex of the curve which lies on the
major-axe,

s=/.pdA—u; now p=a+'1— e¥sin?a;
hence s=afdrAV1—&sin®A~u . . . . (38)

On the major and minor axes of the ellipse as diameters let
circles be described, and let a common diameter making the

angle ¢ with the Fig, 4.

minor axis be drawn —

cutting the circles in m s N
mand n; let fall the N
ordinates ms and n?, B

then ms=x=asing, # e N

and nt:y:bcosg. e K \
Now these, it is easy 2 0

to show, are the co-

ordinates of the ex- 4 T o
tremity of the arc B Q of the ellipse measured from the vertex
of the minor axis. Differentiating » and y, ¢ being the inde-
pendent variable, and substituting the resulting values in the

. . ds dy?
common formula for rectification T = 1+ T2 e find

s=afdev1—esin®p. . . . . (84)

If now the integrals in (33.) and (84.) be taken between the

same limits for A and ¢, the values of the expressions under

the sign of integration will be equivalent, equal to K suppose;
hence s=K—u s =K;
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therefore sS—s=w.. . . . . . . (85)
Hence we may take on an elliptic quadrant two arcs mea-
sured from the extremities of the minor and major axes respect-
ively, whose difference shall be equal to a right line.

XVIIL It is not difficult to show that the extremities of
these arcs are the points of intersection of the given ellipse
with two hyperbolas having the same foci as the given ellipse,
one passing through the extremity of the arc measured from
the minor axe, whose axes A, B, are given by the equations

A=aesina, B=aegcosAr;. , . . (36)
the other passing through the extremity of the arc measured
from the major axe, its semiaxes A', B’ being deduced from
the equations
aecos A ' besina

Al ————— — =, 317.
V1 —&sin®a’ V1 — e?sin® A (87,
XIX, Ta determine the general value of %,
dp 4. g _aeQSinAcosA
B u=gr=greVl-deins u= iy

‘We may hence deduce some remarkable relations between «,
a, b, A, B, A, B'; for by the help of the preceding equations
it is easily shown that i

BB b

— 1) — ! e — e
au=AA, bu=BB, XA

Let 20 and 2¢ be the angles between the asymptots of those
hyperbolas, then '

(s8.)

tan§ = % =cotA, andtanf = —f—itan A3 . (39)

hence tanftan @ = —,

& | o~

a result independent of A
XX. Let # and ' be the semidiameters of the ellipse mea-
sured along these asymptots, then

cos?§  sin®¢ 1
@t E =
or putting for cos4, sin§ their values deduced from (39.), we find
: aQ 2)2 aQ 62

2= =47
a®cos? A + 6% sin® A P
In like manner it may be shawn that
2 = @2 cos? A + B2 sin? A = p?;
hence ' =ab, . . . . . . (40.)
a result also independent of A,
We have thus the remarkable result that the segments of
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the asymptots between the centre and the curve are, the one
a fourth proportional to the perpendicular and the semiaxes,
while the other is equal to the perpendicular itself.

XXI. To find when the difference of the elliptic ares is a

. . . . . du
maximum; in this case # is a maximum, or —— = 0, but

da
dp .
w=—=3 hence
&Ep _ a. 2 el 5
W—O’ ordAga«/l — e?sin?A = 0.

From this equation we find

N (0

Deducing from this value of tan A the values of sin A, cos A, and
substituting in (36.) and (37.), we find

A=qa(a—b), B=b(a—0b), A'=a(a—0b), B=b(a—b), . (42.)
or A=A, B=DB.

In this case, then, when the difference of the elliptic arcs is a
maximum, the two confocal hyperbolas become identical, and
therefore the two elliptic arcs constitute the quadrant; this is
the well-known theorem of Fagnani.

To find the corresponding value of u, as

au=AA=a(a~byu=a—56; . . (48)
also as =2, and " =p, p’=ab;. . . (44.)
hence the semidiameter of the ellipse along the asymptot is
equal to the perpendicular from the centre. In this case the
whole quadrant is divided into two arcs whose difference is
equal to the difference of the sgmiaxes, and this point may,
for the sake of distinction, be called the point of linear section.

The locus of this point for a series of confocal ellipses may
be shown to be the curve whose equation is

ate? = (2t — y?) (aF + %)%

Let tangents be drawn to the ellipse at the point of linear
section and produced to meet the adjacent axes; calling the
segment of the tangent terminated in the minor axe #, the other
terminated in the major axe #, it can be easily shown that

t =tanA v a2cos? A + 02sin%a,
J = b? tan A

vV a?cos? A + 6%sin® A
_ @ESINACOSA L L (44k) Bis.
¥ a®cos? x + b%sin? A
XXII. It would be easy to show, were it not too wide a

.
3

hence ¢t—¢=
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digression from the main subject of this paper, that if a series
of concentric ellipses be described having coincident axes, and
the sum of their semiaxes constant equal to L suppose, the locus
of their points of linear section will be a hypocycloid, concentric
with the ellipses; the radius of whose generating circle = L,
and the radius of whose rolling circle is = 2 L; and also that
the difference between the elliptic arcs is to the difference be-
tween the corresponding hypocycloidal arcs in the constant
ratio of 2: 3.

XXIII. A formula analogous to (81.) may be established
for the rectification of any curve on the surface of a sphere
formed by the intersection of this surface with a concentric
cone of any order.

In the first place, let the cone be of the second degree, and
let a plane be drawn perpendicular to the axis of this cone,
touching the sphere and cutting the cone in the elliptic base;
let a tangent plane (T) be drawn to the cone, cutting the plane
of the elliptic base in a right line », a tangent to this ellipse,
and the surface of the sphere in an arc of a great circle, touch-
ing the spherical ellipse; let the distance from the centre of
the sphere to the point of contact of the tangent with the
ellipse be R; through the centre of the sphere let a plane (H)
be drawn perpendicular to u, then as u is a right line as well
in the plane (T) as in the elliptic base, the plane (H) is per-
pendicular both to the tangent plane (T) and to the base of
the cone; hence the plane (H) passes through the axis of the
cone and the centre of the plane ellipse, as also of the spheri-
cal ellipse, cutting the former in a perpendicular p from the
centre on the tangent «, and the latter in an arc = of a great
circle, perpendicular to the tangent arc to the spherical ellipse;
for the two latter arcs must be at right angles to each other,
since the planes (T) and (H) are at right angles. Let P be
the distance from the centre of the sphere to the point where
the plane (H) cuts the right line «, r the distance from the
centre of the plane ellipse to the point of contact of u with it;
then to any one attending to this construction it will be mani-
fest that (¢ being the radius of the sphere)

Re=c+7r% PP=c+p% R*=P2+4% . (45)

XXIV. Let d s be the element of an arc of the ellipse be-
tween any two consecutive values of R indefinitely near to each
other, ¢ d ¢ the corresponding element of the spherical ellipse
between the same consecutive positions of R; then the areas
of the elementary triangles on the surface of the cone between
these consecutive positions of R having their vertices at the
centre of the sphere and their bases an element of the arc of
the ellipse and of an arc of the spherical ellipse respectively,
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are as their bases multiplied by their altitudes; calling these
areas M and N, we have

M:N::dsx P:cdo x t;
but these areas are manifestly as the squares of the sides of the
elementary triangles, or

M:N:: R%: %
Pds
Re?
an expression for the element of an arc, the intersection of a
concentric cone with a spherical surface whose radius is 1.

Hence do = (46.)

Substituting in the formula as p+ du (81:) the value of
da da
4, we find
do_Pp . P du
drx~ R* 7 Rfan
Now @ being the arc which p subtends at the centre of the
sphere, p = Psin @ and P? = R? — 42 making these substi-
tutions in the last formila, the resulting equation becomes

ds
Tx in terms of 7

g-%: sin e + TIF {P%—-zﬂsinw}.
Now iv d , Bap
ST =P Y =aRdn" da? and —m= =p i - (47)
ritbking these substitutions in the preceding equation,
do . 1 &p dPdp .
a—;\:smw-{-ﬁ—é{Pﬁg—ﬁa—x o s e (4‘8-)
XXV, We now proceed to show that the last terin of this
equation is the differential of the arc with respect to A, sub-

tended by = at the centre of the sphere.

Let this are be v, then tanv = %, cosv = o3 differentia-
ting the first of these equations and eliminating cosv by the
aid of the second,

du 1 du ap du _d°p _dp,
H‘W{Pﬁ‘“ﬁ}’b“tﬁ"m’““ﬁ’
dv

1 d’p dPdp\
hence —d—-}:———R*g W—a—}:ﬁj. . (49)
Subtracting (46.) from (45.), we find

d

c . dv . ,
37=51nm+¢Z—A,or¢=fdA[51nw]+v, . (50.)
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a formula for the rectification of curves on the surface of a
sphere analogous to (31.).

As in none of the successive steps of the preceding demon-
stration is any reference made to the peculiar properties of
curves or cones of the second degree, it is clear that the pre-
ceding formula will hold for the rectification of any curve upon
the surface of a sphere, the intersection of this surface with a
concentric cone of any order, and as a curve traced liberd
manu on the surface of a sphere may be constituted the base
of a cone whose vertex shall be at the centre of the sphere, it
is plain that the above formula may be applied to the recti-
fication of any curve upon the surface of a sphere.

Hence as an arc of any plane curve may be expressed by
means of a definite integral and a finite right line, so may the
arc of any curve described on the surface of a sphere be ex-
hibited by means of a definite integral and an arc of a circle.

XXVI. To apply this formula to the rectification of the
spherical ellipse.

Let a and & be the semiaxes of the elliptic base, r the cen-
tral radius vector drawn to the point of contact of the tangent #,
P the perpendicular from the centre on the tangent, » the in-
tercept of this tangent between the point of contact and the
foot of the perpendicular; let a, 8, p, =, v be the angles sub-
tended at the centre of the sphere whose radiusis ¢ by the lines
a, b, r, p, u, then
a =ctana, b=ctan B, r=ctanp, p = ctan@ and u=Ptanv.
Now in the plane ellipse p? = a?cos® A + &% sin® A; hence

tan?w = tan®a cos® A + tan® B sin®a,
and 1= cos?A + sin? A,
Adding these equations together,

sec? & == sec® d cos? A + sec? Bsin? A;
dividing the former equation by the latter,
__tan®acos®A 4 tan® Bsin? A
" sec®a cos? A 4 sec? BsinZA” "
Substituting this value of sin = in (47.), we obtain the equation

_ tan® & cos? A 4 tan® Bsin? a
7 —./]d}\\/secgacosi)u + sec? Bsin? A oo (52)

XXVIIL To investigate another formula for rectification.

Assume sin?p = sin? « sin® @ + sin®Bcos?@; . . (58.)

hence cos?p = cos® a sin® @ + cos® B cos? ¢,
Substituting these values in (18.), we find

' tan® « cos® ¢ + tan® B sin? @ N
7 _ﬁ¢ \/sec2 acos®@ + sec®*Bsing” T (54.)

sin? @ . . (51)
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Now if the integrals in the last two equations be taken be-
tween the same limits of A and ¢, their values will be equal,
hence, subtracting the former from the latter,

o —c=—v

. u dp
Now as smu__Fandu_(—l—)—\,

ap

ﬁ ’
Pp
P nor p pass through infinity or zero, they always retain the
same sign -+, hence the sign of sin v will depeud upon that of
dp
an

sinv=p and as neither

but p? = a® cos®? A+ #%sin®A; hence

d .
pd—§= — (a® — 6%) sin A cos A,

therefore sin v is negative, and as v is always less than =, v is
negative, and may be written — v; making this change in the
last formula for rectification,
od ==y, . . . . . . (55)
a formula precisely analogous to (85.). :
Thus as the difference of two elliptic arcs may be exhibited
by a right line, so may the difference of two arcs of a spheri-
cal ellipse be represented by an arc of a great circle.
XXVIII To show the geometrical interpretation of the
assumption made in (53.).
In the first place we may observe, Fig. 5.
that if O A, OB are arcs of great cir- B
cles at right angles, a point P on the
surface of the sphere may be referred
to those axes either by the arcs P m,

P n, which are secondaries to the arcs n
O A, O B, or by theares Om, O n; P

let Pm=3j Pn=uz Om=E,

On=1% OP =p, and the angle A °
POm= w; we shall then have by the mw

common rules for right-angled spherical triangles,
sinj =sinpsinw, sinz=sinp cosw}
tany =tanpsinw, tanf =tanpcosw ’

hence sin?y + sin®z = sin%p, tan?f + tan®y = tan®p.

We may easily establish a relation between % and £, i and »,

for in the preceding equations, eliminating the functions of w,

we find

. (56.)

sinz =tan£cosp, siny=tanycosp;
by the help of these equations we may pass from the one
system of spherical coordinates to the other.
If now, between equations (4.), (5.) and (56.), we eliminate
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sinw, cosw successively, we shall obtain for the equations of
the spherical ellipse,
sin®z  sin®y _ tan®f  tan®y
sinfe ' sin?B@ ~ 7 tan?a @ tan®@

On the major and minor axes of the spherical ellipse as
diameters, let circles be described (see the fig. page 26), and
let a great circle be drawn through the centre of the ellipse,
making the angle ¢ with the minor axis and meeting the cir-
cles in the points m and n; through m and = let arcs of great
circles m s and n¢ be drawn at right angles to the spherical
axes OB, O A; then as Oms is a right-angled spherical tri-
angle, sinm s = sin « sin ¢, in like manner sin n¢ =sin @8 cos ¢,

sin?ms  sin®ni

sin« sin? 3
the coordinates of a point on the spherical ellipse.

Let ¢! be the central radius vector of this point, then sin? ¢/
=sin?m s + sin® n# = sin? a sin? ¢ 4 sin? B cos® ¢, but in (53.)
sin? p = sin® & sin® ¢ + sin® B cos® ¢, hence p=/, or in (53.) p is
the central radius vector of a point of which the coordinates
are sin « sin ¢, and sin 8 cos ¢ respectively.

XXIX. To find when v is a maximum,

=1 . (57.)

=1; it follows then that ms and n ¢ are

In this case g—}g\ = 0, or from (49.) g—‘: -“Zl—l: = P%. . (58.)
Now p= v aPcosa +b%sin’a, P= v/ @+ aPcos A+ Bosin?A;
dp _ —(a®>—b% sinAcosa
hence N = Vatcomn + Feininy
dP _ —(a*—b*sinacosa
dr T V@ a’cosA + b2sin? A’
d*p _ —(a®—b%) (a’cos*A—bsin%A)
ant™ {aPcos®A + B%sin®A}E

N . a
Making these substitutions in (58.) and putting tan « for -

tan B for —%, we find

tana seca _ sina
tanBsecB ~ sinf
a result analogous to (41.).
XXX. To find a general expression for the value of v; as
o 1 _up? (a® —b?)?sinacosA
A= = P2p? = (@®cos? A+ 0?sin?A) (2 + a®cos®A -+ bPsin®A) ’

tan? A = sec?s, . . (59.)

. a b
we shall have, introducing the relations tan « =—, tan g= -

Phil. Mag. S. 3. Vol. 25. No. 163, July 1844. D
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and those given in (11.) and (12.),

9. .
e*Sina SN A COS A
tanuv = a . . (60.)

V1 —e?sin®A &1 —sin®esin?a

XXXI. Having already exceeded the conventional limits
of a mathematical paper in this Journal, it may suffice to give
the enunciations of a few theorems on the spherical ellipse
analogous to those which have been already established on
the plane ellipse, postponing their discussion to a future oc-
casion.

Through the extremities of the arcs of the spherical ellipse
two spherical hyperbolas may be drawn having the same focus
as the spherical ellipse; calling the axes of the one nearer to
the minor axe 2 A and 2B, the axes of the other passing
through the extremity of the arc measured from the major axe
2 A’ and 2 B', we may with little difficulty establish the fol-
lowing relations: —

P2 i ;2 2
sin“ e sin® A Sin* e COs* A
tan? A = ——————, tan?B=—"~——""_" . (6l.
1—sin®esin?A’ 1 —sin?esin? A’ 61.)
tan? e cos®A e2cos®esin?Bsin®A
tan? Al = — tan? Bl =~ """ (62.
1 —e%sin® A, 1 — &%sin?a (62,

‘We may hence show that
tan v tan B cos« = tan B tan B’} 63
tanvtanacos B =tan Atan A' f* ° ° ° (63.)
tan B tan B! _ tan Bsec
tan Atan A’ ~ tan aseca’
results analogous to (38.).

In the spherical hyperbola ¢ being the eccentricity, we shall
find

tan? A + tan? B

l—tan*B °’
A and B being the semiaxes, while ¢ being the eccentricity of
the spherical ellipse whose semiaxes are « and g,
tan?« — tan? B

1+ tan®*g
Let ¢’ be the eccentricity of the hyperbola whose semiaxes are
A! and B/, we shall find, putting for A, B, A', B/, their values
given above,

tan?¢ =

tan%e =

! !

E=¢g ==¢,
When v is a maximum we have found for the correspond-
ing value of tan® A the expression
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Substituting the values of sin A, cos A, thence derived in (61.)
and (62.), there results
tan® A = tan « sec « (sin & — sin )
tan? B = tan B sec B (sin « — sin )
tan® A! = tan & sec « (sin « — sin )
tan? B/ = tan @ sec § (sin « — sin @)
hence A = A!, B=B'; or when v is 8 maximum the two hy-
perbolas coalesce, and the arcs of the ellipse have a common
extremity, or constitute the quadrant, and this point may be
termed the point of circular section.

XXXI1I. To find the value of v when v is a maximum; as

tanutanacosB = tan A tan A’ = tan*> A =tanasec«(sine — sin 8)
tanv = secasecfB (sina —sinfB). . . . . (65)

XXXIIIL To find the values of the arcs of the asymptotic
circles to the hyperbolas contained within the spherical ellipse.

The asymptotic circles to the spherical hyperbola are the
great circles whose planes are parallel to the circular sections
of the cone, of which these hyperbolas are sections.

Let 2§ be the angle between the great circles which con-
stitute the asymptots of the hyperbola passing through the ex-
tremity of the arc measured from the minor axe; then, as the
asymptotic circles are parallel to the circular sections of the
cone, and whose principal semiangles are ' and @, of which
the given hyperbola is a section, we,shall have (see (21.)),

sin? @

N (1 9

but it may be shown that
sin B! = cosa and sine! = cos A;
cos®A
cos? A’
Substituting for cos? A its value derived from (61.), we find
tan§ = cosﬁcot A . . . . (66)
cos a
Eliminating 8 between this equation and the equation of the
cos*§  sin®f
sinfa ' sin?B
tan?a cos® A + tan? Bsin®A _ sinasin®g (67.)
sec?acos® A + sec*Bsin? A~ sin?p 7 ’
but it has been shown (51.) that the first member of this equa-
tion = sinwm.
Making this substitution,
. sina sin 8
sinp = ~——-.
sinar

D2

hence sin?d =

ellipse

1
—, there results
sin?p
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XXXIV. Let 2¢ be the angle between the asymptots of
the spherical hyperbola passing through the extremity of the
. . sin g
arc measured from the major axe, then, as before, sin §'= S
o' and B" being the principal semiangles of the cone of which
this hyperbola is a section.
It may with little trouble be proved that
'
tan g7 =:—:ﬁ—§—,, sin & = cos A,
Substituting for the functions of A’ and B’ in these equations
their values given in (62.), we find, after some obvious reduc-
tions,
tan? 3sin® A

sin?§ = -
tan®z cos? A + tan? Bsin? A’
cos? bl = tan® « cos? A .
““tan?a cos? A + tan®3sin®A’
tan
hence tan §' = 'GtanA. e e e e e e . (89)

an &
Multiplying (66.) (69.) together, we obtain
tanftanf = i‘ﬁ, B ((t5)
sin
a result independent of A, and in strict conformity with (39.).

In the polar equation of the ellipse, substituting the values
of sin ' cos ¢’ given above, p' being the corresponding radius
vector, we obtain the resulting equation
tan®a cos’ A + tan®Bsin®A 71
sec?a cos? A + sec? Bsin?A’ T ° (71.)
hence sinpsing =sinesing, . . . . . (72.)
a result also independent of A.

We have thus p'=w; or the semidiameter of the ellipse along
the asymptot of this hyperbola is equal to the perpendicular
from the centre on the tangent to the ellipse drawn through
}ihe point R of intersection of the ellipse and hyperbola. See

g. 4.

XXXV. Let 7 and 7 be the semidiameters of the spherical
ellipse passing through the points m, p, in which the ordinates
of the extremities of the elliptic arcs being produced meet the
circle on the major axe; let 3 and ¥ be the angles which # and

sin? gl =

7 make with the major axe (fig. 4), then 9= 1;— — A, and the

value of &' may be thus found; calling H the spherical coor-
dinate of the point x on the circle,
tan?¢ tan®? H

——2 4+ —; > =1 in the circ
tan®a ' tan®a cle,
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tan®f  tan?y
tana © tan?f
tanH _ tany
tana m’

and by the rules for right-angled triangles,

and = 1in the ellipse;

hence

tan? H .
———s— = sin? Y,
tan* e
tan®y tan? 8 sin? A

in2¢y —
or sin?y = G == - .
tan? 8~ tan®gcos®A + tan® Bsin® A

Eliminating ¥ between this equation and the polar equation
of the spherical ellipse,
tan?# = tanacos?A + tan?Bsin?xr; . . . (73.)

andas&:—;i—k,

g0 tan?a tan? 3
tan*r = — 5 N PO
tan® e cos? A + tan? 3sin? A
or tanr7tan# = tanatanB. . . . . (74.)

XXXVI. Resuming the values of the angles which the
asymptots of the spherical hyperbolas, as also the diameters
of the ellipse through the points m and w on the circle make
with the major axe, we find

0s

tang§ = —— cotA, tand = cota
Ccos

tan 3

tan
'Gtan}\, tan 9y = —tan A
ne tan «

We may here perceive a remarkable interruption of the
analogy which has been found hitherto to exist between the
properties of plane and spherical conics, while in the plane
section the asymptots to the confocal hyperbolas coincide with
the diameters drawn through the points m g, as is also true of
the spherical hyperbola adjacent to the major axe; the asymp-
tot of the hyperbola nearer the minor axe does not coincide
with the diameter through the point m; in other words, while
§' = 9, § is not equal to 3.

XXXVII. Two tangents being drawn to the spherical
ellipse at the point of circular section and produced to meet
the adjacent axes, to find the values of those circular arcs.

Let y be the coordinate of this point along the axis of Y,
and z the point in which the tangent arc = cats the minor axis;
let 0z = §, then tanytan{ =tan®gB; and as r, ¥ and ({—»)
are the sides of a right-angled spherical triangle,

Cos T = €0s & €S ({ — 1) = cos # €os {cos n + cos 7 sin ¢ sin 1.

tan §' =
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tan® 3

Now as tan { = tany® e maYs eliminating ¢ from the last

equation, find

cos & sin v sec? 8

Vtant + tan®y

and y being the common ordinate of the ellipse and hyperbola,
sin? 3 cos? A .

cos?a sin? A + cos? 3 cos?A’

we have also sin # = sin & sin A.

Making the necessary substitutions deduced from these
equations, we obtain

tan?s == tan? {

COST =

tan?y =

tan? g cos? A + tan? 3sin® A}
sec?a cos® A + sec? Fsin?A S’
or tanr = tana.sina Y 1ZESA (76.)
1—sinZesin? A
Let v/ be the segment of the second tangent between the
point of circular section and the major axe, adopting nearly the
same notation as in the latter case, we shall have

. v 2
sin & cos 9 sec®a

cost = —————— —,
4tant a } tan® ¥
4 g
and tan® ¥ = — ta;1 @ COS* A —
tan?a cos® A -+ tan® 3sin® A
. tan? Bsin?
sin?y = an’ 3

tan?asec®a cos?A - tan®@ sec?Gsin?A’

By the help of the last two equations, eliminating the func-
tions of # and 4, we find

tan Atan? B cos®a

——— 3 ..o {7
: /\/ 1—eé?sinfa = (77,
sing Lo A
1 —sin®esin?a
€2 sin a sin A cos A
hence tan (v—7) = - - —-—: (78,
( ) V1I—e*sin®A v/ 1—sin%esin® A’ (78.)
but this last expression is equal to tan v, see (60.);
hence r—rl= Uy

a result precisely similar to (44°%.).

tant! =




