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The Geodvsic Geometry of Surfaces in non-Euclidean Space. By
A. N. Waiteneap. Received and read March 10th, 1898.

Introduction.

The present paper is concerned with the properties of geodesic
lines drawn on surfaces in elliptic and in hyperbolic space. There
ave two forms of elliptic space, which have been named by Burnstde
the “ single” and the  double” forms. They have also been named
the “polar” and “antipodal” forms. The antipodal (or double)
form has also been called “spherical.” In this paper the polar form
of elliptic space will be the only one considered. Thus, both in the
elliptic and the hyperbolic geometry of this paper, two straight lines
in a plane intersect in one point only; and, in hyperbolic geometry,
this point may lie in antispace (also called *ideal space”).

Now the relations between the properties of geodesics on surfaces
and non-Euclidean geometry, as far as they have hitherto been in-
vestigated, to my knowledge, are as follows :

It has been proved by Beltrami that the * geodesic geometry ' of
surfaces of constant curvature in Fuclidean space is the same as the
geometry of straight lines in planes in elliptic or in hyperbolic space,
according as the curvature of the surface is positive or negative.

The geometry of great circles on a sphere of radius p in elliptic
space of *space-constant” y is the same as the geometry of straight

lines in planes in elliptic space of space-constant v sin L
Y

The geometry of great circles on a sphere of radius p in hyperbolic
space of “ space-constant ” y is the same as the geometry of straight

lines in planes in elliptic space of space-constant y sinh £
Y

The geometry of geodesics (that is, liﬁes of equal distance), on a
surface of equal distance, ¢, from a plane in hyperbolic space of space-
constant vy, is the same as that of straight lines in planes in hyper-

bolic space of space-constant y cosh% .

Finally, the geometry of geodesics (that is, limit-lines), on & limit-
surface in hyperbolic space—which may be conceived either as a
sphere of infinite radius or as a surface of equal, but infinite, distauce

T2
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from a plane—is the same as that of straight lines in planes in
Euclidean space. '
. The preceding four propositions are due directly, or almost directly,
to John Bolyai, though, of course, he only directly treats of hyper-
bolic space. I have given demonstrations of them elsewhere.* .
From the popularization of Beltrami’s results by Helmholtz, and
from the unfortunate adoption of the name *radius of space curva-
ture ” for y (here called the space-constant), many philosophers, and,
it may be suspected from their language, many mathematicians, have
been misled into the belief that some peculiar property of flatness is
to be ascribed to Euclidean space, in that planes of other sorts of
space can be represented as surfaces in it. This idea is sufficiently
refuted, at least, as regards hyperbolic space, by Bolyai’s theorem
respecting the geodesic geometry of limit-surfaces. For a Euclidean
plane can thereby be represented by a surface in hyperbolic space.

[Added, May, 1898. It is to be noticed that the comparison of the
lengths of the space-constants of different “spaces” is nonsense. A
space-constant can only be said to be of length y in comparison
with the length of some arbitrary unit straight line in that space. No
comparison exists between lines in different spaces. But we may
compare space-constants when we are really, as above, discussing the
geodesic geometry of surfaces in a space of three dimensions; for, in
this case, the test of congruence can be applied so as to compare the
length of a geodesic on one surface with the length of any other line
in the complete space.

All non-Euclidean geometry can be interpreted as geodesic geo-
metry (allowing space of four dimensions). The preceding argument
of this preface is directed against the assumption that this is the
necessary interpretation, the refutation being based on the fact that
Euclidean geometry can also be interpreted as geodesic geometry in a
non-Euclidean space. .

In the application of geometry to the interpretation of phenomena
the-idea of a fourth dimension is useless, as we have no such intuition.
But the comparison of the space-constant y to our empirically given
units, such as a mile or the earth’s diameter, is the fundamental
problem of applied geometry. In pure geometry a disembodied mind
is contemplating a possible idéa of space. To such a mind there are
only three kinds of geometry : namely, hyperbolic, Kuclidean, elliptic
(polar and antipodal). But in applied geometry there is the mini-

* Cf. A Tveatise on Universal Algebra,§ 262.
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mum length which can be perceived—some small fraction of an inch,
—and a maximum lengi\;h——na,mely, the distance of the furthest fixed
star. These are empirically given lengths, and the properties of
space in relation to our experience will be different according to the
ratio of the space-constant to some intermediate empirically given
standard length, such as the Earth’s diameter.

It has been stated that any value of the space-constant may be
assumed, since the laws of nature can be altered to suit. This is
untrue if the possibility of measuring lines apart from any assump-
tion of a special geometry is allowed. Thus the ratio of the circum-
ference of a circle of radius r to its diameter is wy sinr/y, =, and
my sinhr/y in the three geometries respectively: accordingly, it is
possible to determine y by actual measurement without any de-
pendence on the more hypothetical laws of nature. The practical
accuracy which can be thus attained is not to the point; the possi-
bility of the experiment proves that vy is not arbitrary.]

It is the object of this paper to extend and complete Bolyai’s
theorem by investigating the properties of the general class of sur-
faces in any non-Euclidean space, elliptic or hyperbolic, which are
such that their geodesic geometry is that of straight lines in a
Euclidean plane. Such surfaces are proved to be real in elliptic as
well as in hyperbolic space, and their general equations are found for
the case when they are surfaces of revolution. In hyperbolic space,
Bolyai’s limit-surfaces are shown to be a particular case of such
surfaces of revolution. The surfaces fall into two main types, of
which figures of meridian sections are given; the limit-surfaces form
a transition case between these types.

In elliptic space there is only one type of such a surface of revolu-
tion; but it may have a finite or an infinite number of sheets ac-
cording as a certain number is rational or irrational. The simplest
surface of this type is one-sheeted, and a figure of it is given. Tts
equation, referred to the most convenient rectangular axes, is

BEHEE=3BE+E+EE+E + RO+

The same principles, only more laborious in their application,
would enable the problem to be solved of the discovery in any kind of
space of surfaces with their © geodesic” geometry identical with that
of planes in any other kind of space. The distinguishing character-
istic of surfaces is found, but I have not worked out the problem in
detail.
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As a preliminary to these investigations some general theorems are
proved. If a family of geodesics and its orthogonal curves be traced
on a surface in Euclidean geometry, Gauss has proved that the
formula for an element of arc becomes

(30)* = (%p)"+11 (39)’,

where the curves ¢ = constant are the geodesics, and the curves
p= constant are the orthogonal family. ~Such curvilinear co-
ordinates are called in this paper * semi-geodesic orthogonal co-
ordinates.” Polar geodesic coordinates form a particulsr case of such
coordinates. It is shown in this paper that all the well-known
general properties of semisgeodésic orthogonal coordinates also hold
for non-Euclidean space. In particular, the important equation

2

oo, I 0,

ap2 P1P3

where 1 and——] are the principal measures of curvature of. the
P Py
surface at the point, becomes in elliptic space

om, (1 1

~—+ {54+ —)UO=0;
o (7’ Ple)

and in hyperbolic space

g’T{u(ﬁ_%)ha

In this connexion it is necessary to note that in non-Euclidean
geometry a distinction has to be drawn between the inverse of the
measure of curvature of a curve, which may be called the radius of
curvature, and the radius of the circle through three consecutive
points on the curve, which may be called the radius of the circle of
curvature. If do be a small arc, and d¢ the angle between the
tangents at its extremities, the radius of curvature is the limit of
do/de. Also, if this be called «, and p be the radius of the circle of
curvature, then it is easy to prove * that

tan ya
Y tanh v’

KN =

according as the space is elliptic or hyperbolic.

* Cf. Universal Algebra, § 288 (4).
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The condition that a curve. drawnon a surface in non-Euclidean
space may be a geodesic is 1nvestlgated and this condition is put into
different forms. Thus, if any point on the surface be denoted by
curv111near coordinates 6 and ¢, the condition, that the curve

0=f() ¢=F(n)

is a geodesic is found in the form of a differential equation involving,
6,9,6,0,0, 9 this equation is the same equation as that which holds for
Euclidean space. In particular, if p and ¢ be semi-geodesic orthogonal
coordinates, and p bé taken as the independent variable, the simplified
1
form of the differential equation of a geodesic, involving p, ¢, gﬂ 3’)3 )
is found. This is also the same "as the corresponding equation for
Euclidean space.

Hence the proof given by Darboux for Beltrami’s theorem on the
geodesic representation of surfaces on planes is found to hold for non-
Buclidean space; .thus the theorem is extended to non-Euclidean
space. The theorem is as follows:

Surfaces of constant curvature are the only surfaces for which
.geodesics can be transformed into straight lines when the surface is
repfesented point for point on a plane. Surfaces of constant curva-
ture are here named elliptic, parabolic, or hyperbolic, according as

in elliptic geoiﬁetry p—1p—+% is positive, zero, or negative, and
173

according as in hyperbolic geometry 1_ iﬂ is positive, zero, or

negative. : Pibs Y

The *geodesic” geometry of an elliptic surface of constant curva-
ture would be that of a plane in elliptic geometry; of a hyperbolic
surface of constant curvature would be that of a plane in hyperbolic
geometry. But these cases are not here considered in detail. The
case of parabolic surfaces of constant curvature is considered in
detail, with the results already mentioned.

The elementary theorems respecting the curvature of surfaces in
non-Euclidean geometry, and the application of Gauss’ curvilinear
coordinates to such surfaces, are given by Darboux, Théorie générale
des Surfaces, Livre viL, chapter xiv. I have also developed them
by the same methods and notation as are used in this paper, in 4
T'reatise on Universul Algebra, Book vi., chapter vii. :

The theorems in this paper are proved by the use of Grassmann's
“ Calculus of Extension.” A sketch of the method of this Calculus,
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especially in relation to non-Euclidean space, has been given by
‘Buchheim in the Proceedings of this Society; cf. Vol. xv. The Cal-
culus is also investigated in detail in the previously mentioned
volume (Universal Algebra), and I have ventured to shorten my paper
by reference to it for results assumed.

The brevity and facility of reasoning gained by the use of Grass-
mann’s methods are very great. They can be immediately trans-
formed into ordinary equations; but, by their use, the theorems of
non-Euclidean geometry can be proved analytically even more easily
than those of Euclidean geometry by ordinary methods.

1. Let the small italic letters repre-
sent points. Thus, let e be the origin of
coordinates, and ee, e, ee; be three
mutually rectangular axes. Also, let
‘e, €, €5, ¢, be a set of four quadrantal
points; so that, if ¥y be the “space-
constant,” the distance between any two
of these points is }7y, being half the
complete length of a straight line. Let
z be any point, let the length ex be p, the angle zee; be 8, and the
angle between the planes e ee; and xee; be 9. Thus p, 8, ¢ are
analogous to the polar coordinates of Euclidean space. Also it is
well known that, if we assume §, &, &, &, so that

i _ & _ & - &

,
cos & sin Lsinfcosy sinsinfsing sinL-cosd
Y k4 Y Y

then &, £, &, & have analogous properties partly to rectangular
‘Cartesian coordinates; and partly to quadriplanar coordinates in
Euclidean space. All the equations can be made homogeneous, and
equations of the first degree represent planes. When the above pro-
portions are turned into equations, so that

£ = cospfy, &c.,

then &,&,&, & will be called the rectangular coordinates of the point z.
In this case they satisfy the equation

E+&+E+é=1
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The symbols which represent points are combined according to the
laws of Grassmann’s “ Calculus of Extension.” Thus, if z and y be
any two points,

zy=—yz and azz=0.

Also zyis called a “linear element™ or a *force.” Again, if #
and u be two other points,

zyz = yax = 2wy = — yxz = &oe.
Also, azy = 0.

13

A product of three poiﬁts, such as zyz, is called a “ planar element.”

Again . ;
gt (wyou) = — (uzyz) = (zuay) = &e.;
such a product is treated as an ordinary algebraic quantity, a mere
number.
The relation of the point # t6 the points e, e,, e, e, is expressed by

the equation i
z = fe+ &6+ &0+ ey

where ¢ &, &, & ave the quantities already defined by reference to the
geometrical relations of = and the axes ee,, e, ee;. Then the products
zy, xyz, (zyzu) can be expressed in terms of the products of e, e, €, ey,
taken respectively two together, three together, and four together.
But the mention of (ee,e,e;) is avoided by the convention that in
elliptic geometry.
phe geo! v (eerege5) =1,
and in hyperbolic geometry

(ee,e585) = v/ — 1.
Thus, if z = fet+&ie+Eeat+Ees,
'y ='79;|'ﬂ131+'laez+'laem'
g=letlie+Le+ ey

U =ve +ve +vye+vgey,

then zy = (Em—¢€n) ee,+ (€ny— &) eey+ &c.,
rYyz = -f, &, &) eee+ &,
M My, My

{, zl,. ‘{2 1
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-and (wyzu) = &, 51, fm 68 ‘
M Ty Ny s
c: gl, fa; ZS

v, v, Vg Vg
Accordingly zyz=0 denotes that z, y, and z are collinear, and
(ayzu) = O denotes that =z, y, 2, u are coplanar.
Also in elliptic geometry
@ | y) = tntEim+Em+En,

and in hyperbolic geometry
(@ | y) = =& —En—Eyns
Furthermore, the following formule always hold :—
(zy | 2u) = (@ | 2)(y | ) — (= | ¥)(y | 2),
(xyz | wow) = | (= | »), (z|v), (z]|w)
lw), (ylv), (y|w)
1Glw), (z]9), (z]w)
‘The most important special cases of these formule arise in the
evaluation of the forms (zy | zy) and (zyz | zyz).

If ¢ &, &, & are the coordinates of the pointz, then (z | 2) = 1.
The point # is said to be at unit intensity. But, if £, &, &, & are
only proportionals to these coordinates, then + +/(z | z) is called the
intensity of the point . It will usually be convenient to work with
points at unit intensity.

The polar plane of a point  with respect to the absolute is the
planar element |z, the pole of a planar element P is [P, the polar
line of the linear element zy is |ay. Also ||z =—2, ||P=~—P,
|2y ==y, and |ay = |=.]y.

These formulm, and others, are more particularly explained in the
work (Universal Algebra, Books 1v. and vi) already referred to.
But the preceding explanations will enable any reader unacquainted
with the calculus of extension to translate the reasoning into the
language of ordinary algebra.

Hence, with the notation of the calculus of extension as applied to
this subject (c¢f. Universal Algebra, Book 1v., chapter iii.,, also
§§ 204, 210), the distance 2y between two points = and y is given by

2y _ (z]9) 0 = ey |2y)
Y T elowinl T \/{(w|w>(y|y)}




1898.] Surfaces in non-Euclidean Space. 283

2. Now (¢f. Universal Algebra, Book vI., chapter vii.) let 2 be any
unit point on a surface, so that throunghout the subsequent reasoning
we assume (» | #) =1. Also let the position of ® on the surface be
defined, according to Gauss’ method, by two curvilinear coordinates
6 and ¢, which are not to be identified with the & and ¢ of the previous
explanations respecting rectangular axes. Thus the equations
6 = constant and ¢ = constant represent two families of curves
traced on the surface, and the ordinary algebraic quantities which
define z are functions of 8 and ¢.

» 2
Let 2, stand for a_a:’ oy, for 2% @ for g )y @ I =
]

O'n gy for Z—>

08 o * 3600 Op" " Qg

and so on for partial differential coefficients of a higher order. Thus,
if # be written in the form

z = bette +Ee,+Ese,

ot Of . O 0%,
m= et a5 9T 5

and similarly for @), and so on. Then, by differentiating the equation
(|2)=1,
which is to hold for all positions of @ on the surface, we find
@|a)=0=(@]a),
also (z, | 2)+ (= | z,;) =0,
(@ | 2)+ (2| 2) =0,

and so on.

The tangent plane at z is represented by the planar element az, «,
{cf. Universal Algebra, Book 1v., chapters i. and ii.,, and §293 (5)];
the normal at @ is represented by the linear element |x,z,; the tan-
gent lines to the curves ¢ = constant and 6 = constant through =
are z, and ax, respectively.

The angle between these tangent lines [¢f. Universal Algebra,
§295 (2)] is

R CAED

s/{("q [ @) (2 | wﬂ)} .

The length (da) of the element of arc joining the points z and z+ éx
on the surface, where 248 corresponds to the values 6+ 86 and
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¢+ 39 of the coordinates, is given (¢f. Universal Algebra, § 293) by

C = 1000 +2 (@ | ) 3039+ (o | 2 G

Thus (z, | @), (2, | @), and (z, | 2,) are the quantities which in
Gauss’ theory of surfaces are usually denominated by E, F, and G,
respectively Also

=EG~- Fa (2 | z,) (my | @) — (2, | ) = (2,2, l ) 2,).

‘The advantages of the forms (=, | «,), &c., are that they are nearly
as short as the single letters E, F, G, and at the same time they
express completely the rules for their formation and transformation.

Also, if — and — be the principal measures of curvature of the
(4] Py

surface at z, then [¢f. Universal Algebra, § 294 3)]
8{(“’1 | )y | 2)—( | “'2)%} =A—A
P1Ps

X {(wl | ;) — (2, | 2,)(2y | ‘”x)"’(”l | Te)— 3 (2 | Z)u—3 (=, | .3'1)29}; :
(1)

st {(1'1 | @) (s | 2)—(, | “’w)’}

where T, | Ts)m = aea (wl I wi)a

with similar meaning for the other terms of similar form; and 4,
and A, stand for the determinants

A= (| a), (m]ay), (CAEANSE ICAEANS
(@ | 2y, (23| o), HCREN
(@@ (@] a)i—3 @ | @) 0
A= (z]a), (@ | @)y F(x | @)
@ o),  @la), §nl o),
RGP JCYEAM 0

3. The equations 0=f(r), ¢o=F(r),

where 7 is some independent variable, and f and F are functional
signs, define a curve on the surface.
Let the point (at unit intensity) correspouding to the value r+ér
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of the variable be denoted by
a:+a':31_'+-}a‘é3r’+ e § 0t

. de . dw
the == =%
hen % T & g
and so on. Hence

¢ =50 +ag,
%= l'ly‘*'“'n;};+111b2+2“’mé4;+“'22¢g'

Also the length of an element of arc (é¢) on the curve is given by
9 .
(5_”) = (| %) &
4

Thus, if r denote the length of the arc of the curve measured from &
fixed point, then in this special case '

). 1
(w l (L) = —3g
Y
since or = da.

The osculating plane of the curve is [¢f. Universal Algebra,
§ 287 (6)] za:é ; the tangent line is z.

Let » be the angle between the normal section at @ containing the
tangent line 2% and the osculating plane of the curve. ‘Then the angle
between the tangent plane at z and the osculating plane at = is
ir—w. Thus (¢f. Universal Algebra, § 221) '

(2 | 2, 2y) .
V { (add | aki) (zz,2, | 22,7,) }

sin w ==

Now, if -}1— be the measure of fcurva,ture of the curve, that is g—:,

where 8¢ is the angle of .contin'gence, it is easily proved [cf.
Universal Algebra, § 288 (1)] that

P (| z)® ’
Also (zz,, | 22%5) = (217, | z,2,),

since @|a) =0=(2|m);
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and similarly (2 | amyzy) = (&& | 2,@,).
¢ (@ | @,2,)

7/{("’ | 2)* (22 | wlmﬂ)} '

be defined as the geodesic curvature of the curve, and let

Thus sin w =

Let sin w

it be written A-. Then
Ky

(2 | 2, 2y)
7\/{(‘7’ | £)° (2,2, l wlw'l)}

The condition for a geodesic is that

(g% | ma,) =0 2

1
Hq

may hold at every point of the curve. For this condition secures
that the osculating planes of the curve are normal planes of the
surface ; also, since the geometry of infinitely small figures becomes
- ultimately that of Euclidean space, the condition is thereby secured
that the length of each element of arc of the carve is a minimum
distance (on the surface) between its extremities.
This equation can be put into another form, which explicitly re-
lates 6 and ¢ and their differential coefficients with respect to r. For

z= m,9+w,¢,

& = 2,0+ 2,0 +2,,6°+ 20,0 + 25, 6% ;
hence i = (0¢—09) z,2,+2,2,0°+ (20,2, + 2,2,,) %9

+ (23 2yq + @, 235) 09" + 273, 6%

Hence the equation (¢ | 2y2,) = 0
beéomes
(6 4—09) (0,2, | 33) +6° (may | 2,2)

+ {2 (2 | 2,25) + (2, | a,@,) } 6”9

+ {2 (2,7 | 2i2) + (312 | T23) } 0¢° + (22 | m,3,) ¢° = 0.

The coefficients can easily be expressed in terms of the differential
coefficients of (=, | x,), (@, | @), (23 | #;). For
(g | mz) = (2 | ) (2 | @)~ (2, | @) (2 | )

= (@ | @) (e | 2 —F (o | @)@ | @)y —5(n | “"a)(a’ll )
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and 2 (2,2, | 32,) + (%2y | 72y)
=3 (@2 | u2)+1 (% | 9’1)(“’1 | 21— (_“"1 | @) (2, | @),

with similar equations for the coefficients of 6¢* and of ¢
Hence equation (2) can be written in the form
2 (09—0¢)(x,2, | 2,25)
= {@ )@ |2t @ ] 2@ | 2),-2 (@ | 2)(@ | 2)} 6
+{3@ | @)@ | 2)i—=8 (= | ) (% | )i+ (@12y | 2im),} 69
— {8 | 2) (2 | 21 =3 (@ | @) (& | @)s+ (22 | @y 7,),} 09
— (2 | 2 (s | @)+ (@1 | ) (Ry | 25)s—2 (s | 25) (2, | )5} 6" (8)

It is easy to verify that this equation for geodesics on surfaces in
elliptic space is the same as that for Euclidean space given by
Darboux in his Legons sur la Théorie générale des Surfaces, Livre v.,
chapter-iv., § 314. It is obvious that equation (3) must be the same
in Buclidean and in non-Euclidean geometry; for, in each case, it is
the immediate expression of the fact that Fd¢'+2F3é0ip+ Gogtis a
minimum. Equation (3) is practically an interpretation of equa-
tion (2) in terms of ordinary algebra, and 1is, therefore, useful when
it is required to integrate it or to discuss it in any way in connexion
with the theory of differential equations.

The equation of a curve on a surface can be put into the form

¥ (6, 9) = constant,

thus avoiding the use of an auxiliary variable v. The preceding
formula can be transformed into this notation. For

&= ‘l-'mé"r“'s??:
where g—g 6+ gl:go =0
Now let g% ) % be denoted by ¢, and ¢, respectively. Then
8o _ v
¥s —¥ 7\/i (2 | ) ‘p:_z(wl | 2) ¢+ (2, l z,) 4’:} ’

. do
where ‘e stands for e
T
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Now, following Beltrami’s notation for Euclidean space, put

{(“’; | %) ‘l’:—2 (2, | 2) Y5+ (2, | #5) ‘/’:} [ (.2, I “’1“’9) = Ay.

6
Hence :P—a =2 h = % ) 88y,

i —--_th =')’ {(“’1% | x,2,) A‘P}*
where A=y {(ma; | mz,) AP}

Hence, choosing r so that =1,

1 17,8 9y
z = ‘i (@) —25¢) " x (\"sé‘a‘#'fl'a;) 3.

Now let & stand for the symbolic operator

(‘ps’aa—a"d’x 'a%) >

0 0 0 0

’ — — — — — — —
also let &= (¢, % A a‘P) (IP, 3% 'J’xa‘P)_-
Then &= %Jw ;
also. (]| %) = %, = 11—, (0z | éz).
Similarly, &= % 5 % S+ Al S
Hence L dE = %Sxé’m
Thus Y (202dz | xlzda)b

« {(m'la:, | @) A‘l’};’

(0’2 | 2,2,)
(w2, | “'1“’:)(‘\4‘)"
The condition for a geodesic is given by

(2% | zz) = 0. ()

also X =
Hy

Thus, in the special case in which = ¢, then Yy, =1and ¢, =0; hence

d becomes —a- Thus the condition for ¢ = constant being a geodesic

oL

is that (=, | #2,) = 0at all points of it.
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. 4. Now assume that the curves ¢ =constant are a family of
geodesics, and that the curves § = constant are the family of curves
cutting the geodesics at right angles.

Then the condition that the two families are everywhere ortho-

gonal is (@ | 2) =0,
The condition that the family ¢ = constant is geodesic is
(z2y | 7y2,) = 0;
that is, @ | 2) (2 | 2)— (=, | 2)(@, | 2,) = 0.
Hence, using the condition of orthogonality, we find
(zn | ) =0,

But, by differentiating (=, | ;) = O partially with respect to ¢, we
find _
(@ | )+ (2, | 2) = 0.

Hence (=, | z3) =0.
But @ [ z) =% (2 | 1),
Hence (@ | ), =0;

that is to say, (2, | @,) is independexit of . Now

‘25-’ = (2, | @) 66+ (z, | ;) 8¢, -

But, since (z, | #,) is independent of ¢, we may write
I (| @) db = % )

and use p and ¢ as coordinates instend of 6 and ¢. The curves

_p = constant and ¢ = constant are the same as the curves 6 = con-
stant ‘and ¢ = constant. Also let the subscript 1 denote for the
future partial differentiation with respect to p. 'I'hen

d0® = 0p*+y (2, | @) O¢'.

Thus, if a family of geodesics be cut orthogonally, the distance be-

tween any two of the orthogonal curves measured along an orthogonal

geodesic is the snme for that pair of curves whatever geodesic bo

chosen. For consider the pair of curves p=p, and p =p,; and let
YOL. XXIX.—N0. 630. U
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the geodesic be 9 = a. Then an element of arc along the geodesic is
do = dp.
Then 0= p; ~ pp.

Let p, ~ p, be called the * geodesic distance between the curves.”

5. Conversely, assume that the curves ¢ = constant are a family
of geodesics, and that the length of the arc of any geodesic ¢ = a,
between any given pair of curves § =6, and 6 = 6,, is.the same for
all values of a. It is required to prove that the two families are
orthogonal, if any particular curve 6 = 6, is orthogonal to all the
carves ¢ = constant. The conditions are

(may | mm,) =0,
and that (z, | #,) is independent of ¢. For then the element of the
arc of ¢ = a is given by
do =7y (| %) é6,
and is independent of a.
It follows from the second condition, by differentiating with
respect to ¢, that (2 | 2) = 0.

Hence @ | @)= (2 | @) + (2 | 219) = (o | )
Apgain, the first condition becomes, after performing the multiplica-
tions indicated,
@ | 2) (7 | z0)— (2 | &) (=, | 2,) = 0;
that is, (@ | )@ | @)~ (2 | @) (2, | ), =0.
2 (= | 2), — (= I “’1)1_
@z (@)
Hence, by integrating, we find
(@ |2) =@ (2, | m);
where @ is a function of ¢ only. But, by hypothesis, when 6 = 6,
€ ' z,) =0, V

Hence,

for all values of 9. Hence
® (| xn)o:g,, =0,

for all values of . But (z, | 2,) cannot vanish, for an element of
the arc of any geodesic ¢ = « at the point (8, «) is

o=y (2, | z,) .
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Thus ® = 0 for all values of . Hence
(@ |2) =0
at all points of the surface.

6. Collecting results, we see that, if the coordinate curves are
geodesics and their orthogonals, and if the length p of the geo-
desic arc from a given orthogonal be taken as one coordinate, then

(mlz,>=$, (@ | 2) =0.

To these must be added the general condition that = is a unit point,

namely, @|z)=1

Also all equations hold which can be deduced from these by partial
differentiations with respect to p or ¢.

Any element of arc do takes the form
(E0)* = (3p)°+7° (25 | ) (3p)* = &p*+ I (89)°, (5)

where II* is written for (2, | z,). Let this type of coordinates be
called “ semi-geodesic orthogonal coordinates.”

7. A special form of such coordinates can always be found as
follows :—Let the family of geodesics be the geodesics issuing from
any point ¢ on the surface; let p be the arc of the geodesic through
the point @, measured from ¢, and let ¢ be the angle which that
geodesic makes at ¢ with a given geodesic of the family.

Let such coordinates be called geodesic polar coordinates; and let
the curves p= constant be called * geodesic circles centre ¢,” and
the curves ¢ = constant be called the ‘ geodesic radii from c.”

It is easily seen that the orthogonal family to the geodesic radii is
the family of geodesic circles. For, by § 5, we have only to prove
that one of the geodesic circles is orthogonal to the radii. But
it is obvious that a geodesic circle with an infinitely small radius, p,
is orthogonal, since the figure becomes ultimately a plane figure.

Since geodesic circles with small radii are ultimately plane, and
since the properties of small figures are ultimately the same as those
of figures in Euclidean space, it follows that an element of arc of the
circle p =a, when a is small, takes the form pdp. Hence the limit of
II, when p is small, is p/y. This result is only necessarily true for

polar geodesic coordinates.
U2
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8. The formula (1)in § 2 for L becomes, using the semi-geodesic
PPy

orthogonal coordinates of §6 and simplifying,

_?-d_ﬁ— A— A+(—’J—-’){—@’-'Jy,—wﬁ‘%‘("’xlms)n}y

Y PP
where A,=0 o=~} 23 V’m X
Hence (z_’p-.!—‘)_;:” =} (2, | 2h— M —3 (25 | o) (25 | 2
Now I’ = (a:, | @),

Therefore, substituting and reducing, we find

|
Q_[_I+(_1_’.+_1_)n=o. 6)
ap’ Y PrPs

This is the analogue in elliptic geometry of Gauss’s well-known
equation in Euclidean geometry for the measure of curvature at any
point of a surface in terms of semi-geodesic orthogonal coordinates
(¢f. Salmon’s Solid Geometry, 3rd ed., §329, and Darboux, §524.
Darboux also considers for Euclidean space semi-geodesic orthogonal
coordinates, Livre v., chapter v.). If y be made infinite, the equa-
tion reduces to the Euclidean form, as it ought to do.

9. Now, transforming equation (3) into the special form which
it assumes when the semi-geodesic orthogonal coordinates (p, ¢) are
substituted, we obtain as the equation satisfied by geodesics, after’
division by 2IT%/+*,

Gi-in=-2Woi-F Wipnile @

Also p can be taken instead of r as the independent variable. Hence
Thus the equation (7) becomes

__2dm,_10m, Lo,

This is the same as the equation for Euclidean geometry given by
Darboux, § 598.
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10. Beltrami’s theorem, that the surfaces of constant curvature are
the onlysurfaces for which geodesics are transformed into straight lines
when the surface is represented on a plane, can now be proved by
exactly the same method as is employed by Darboux (cf. §598) to
prove it for Euclidean space.

The following proof is substantially taken from Darboux :—

Let the point ¢, on the plane correspond to the point e on the sur-
face. Then the straight lines through e, correspond to the geodesics
on the surface through e. Also, if p, and 6 be the polar coordinates
of any point on the plane, and p and ¢ the polar geodesic coordinates
of the corresponding pointon the surface, we must have

po=1(p ), 0=F(9),

where 6 and ¢ are measured respectively from a corresponding pair
formed by a straight line through ¢, and a geodesic through e. But
the general equation of a straight line is

asin 2 cos0+Bsin 2 sin 648 = 0.
Y Y

Hence a+Pp4de =0,

where p is a function of ¢ only and ¢ is a function of p and ¢, is the
general integral for geodesics on the surface.

But the differential equation (8) can be written, substituting x for
¢ as the coordinate,

But, differentiating the integral form, we have
Bu—3(o,+o,p) =0
ﬁi‘.-*'s (on+20y f“+¢’-.'e I.‘a+°'a l‘) =0.

Eliminating 8 and ¢,
I.".(‘Tl'*“"s#.) = I»‘ (o + 20y, p +a'.n;‘4’+0, p)
ence F—_."_l.z"'u 2+°'25 s
0
Accordingly, by comparison,
oy, 2 oI 20y, __ 1 Ol oy on

Alm e = o - = I —. 9
oy Hap o, E),u 7, ap ()



294 Mr. A.N. Whitehead on the Geodesic Geometry of [March 10,

From the first two of equations (9) we deduce

] 1
Moy = & Io; = P
where ® and P are arbitrary functions of u and p respectively. Hence
P ]
o= & N
Th =o|d .M
us o= P + M,

where M is another arbitrary function of u only. Hence, from the
third of equations (9),

dp — ¢ P P - P,
S| Frtrn= = Gp g =~
Differentiating both sides with respect to p,
P14 (5)
p? @ dp \P
d (P,
¥, = —pr 2 (1),
Hence » P Z (P )

But the left-hand side is & function of p only, and the right-hand
side is s function of p only. Hence both sides are constant. Thus

PP, = —e, P"d—% (%‘) =e.

The second equation can be written

b d ( 5) =P
P dp\P p3
. . 1 P: — € 1
Hence, by integration, } l;l =—p + 1y,
where 5 is constant. Hence
I’f = —e+qPs
Therefore PP, =9PP, P, =P

Now, from equation (6),
loo_ (1,1
5 (G+:-)

Y Pif
But I= o
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100 _P

==
therefore i g P
Hence 1 = — -—l,.

P1Ps b4

Thus the only surfaces for which the geodesics correspond to
straight lines are surfaces of constant curvature.

11. There are three types of surfaces of constant curvature,

according as 1 }; is positive, negative, or zero,
PP Y

1 1
Let — == —p 0,
° P1P1+ Y e o
in the three cases.
In case (1) II = o sin (% —r)
. ’ 10
in case (2) I = osinh (%_,) (10)
in case (3) O=op+r

where, if semi-geodesic orthogonal coordinates be used, o and r are
functions of ¢ only.

Let the surfaces of type (1) be called “elliptic surfaces of constant
curvature,” of type (2) *hyperbolic surfaces of constant curvature,”
of type (8) “ parabolic surfaces of constant curvature.”

12. If geodesic polar coordinates be used, it follows from § 7,
by making p small, that r =0 and o =e/y for the elliptic and

hyperbolic surfaces, and r =0, o = i— for the parabolic surfaces.

Hence, with these coordinates,

I = £ sin £ for elliptic surfaces,
Y €

1= = sinh £ for hyperbolic surfaces,
b% e

o =~£ for parabolic surfaces.
Y

Conversely, if the limit of II be Z2, when p is small, then' the
€

curves p == constant are geodesic circles.



296 Mr. A. N, Whitehead on the Geodesic Geometry of [March 10,

For, if o, be an element of the arc of one of these curves, for which
p is & small constant,

3o, = Y2 pdg.
e

Now write ¢ = -~ ]. od$, remembering that ¢ is a function of ¢
€

only. Then
[ =0 (0i— -

Hence the length of arc [u,]i" is very small, when p is small. Thus

the limit of the curve p = constant must be an evanescent curve
round & point. Hence p and ¥ are polar geodesic coordinates.

13. The only surfaces in elliptic space on which two orthogonal
families of geodesic curves can be drawn are parabolic surfaces of
constant curvature.  For, by the collected results of § 6, if
we take these orthogonal geodesics as curvilinear coordinate curves,
it follows that we may write

@|m=%=@|m,mdwdm=a (1)

Here the orthogonal curves are the families ¢ = constant and
n = constant, and the element of arc do takes the form

(80)® = (0€)"+ (3n)*;

also the suffix 1 denotes partial differentiation with respect to ¢, and
the suffix 2 with respect to 4.
It follows from equations (11) that

@ah=0=(z | &)= (& | ), = (%3 | @)y = (m [ 25), = (=, [EN

Hence the equation (1) in § 2 for A becomes

£1Ps
1 __1
P2 Y

This proves the proposition.

14. Conversely, two orthogonal families of geodesics can always be
drawn on any parabolic surface of constant curvature so as to include
any given geodesic as a member of one of the families. For, from
each point of the given geodesic, draw the geodesics cutting the given
geodesic at right angles. Let the length of the geodesic arc drawn in
this manner to any point # be p, Let the family of geodesics so
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drawn be denoted by the equation ¢ = constant: Then (by §5 above)
p and ¢ are semi-geodesic orthogonal coordinates ; and, of the curves
p = constant, one curve, namely, p =0, is a geodesic. We will

now prove that all the curves p = constant are geodesics.
For, from §§ 6 and 11, we have

@ =) = ‘YL (@ | ) =0, (z|2) = (sp+r)},

where o and + are functions of ¢ only. Also,by § 3, equation (4),
the condition that the curves p = constant may be geodesics is that
(@3 | @,@;) should vanish at each point of the surface. Now

@2 | ma) = (1] 2) (% | @) — (23 | 2)(% | %)

= — (2 | @) (2, | @g9).

But (@ | 3+ (@ | ) = (21 | )2 = 0;

and (s lz) = 3|

Hence (@ | 2) = —3 (25 | T

Therefore (hta | 2) = 3 (0| )@ | ),
= o (op+7)*.

But, when p = 0, by hypothesis,

(232 | ma,) = 0.
Hence or® = 0.

Now, if r=0, the curve p=0 is, by § 12, an evanescent circle,
and is, therefore, not.a geodesic, contrary to hypothesis.
Hence, ¢ =0; and, therefore, at all points of the surface

(g 7y | ?'11'1) =0
Thus, the family of curves p = constant are geodesics.
Thaus, on parabolic surfaces of constant curvature, and only on such
surfaces, geodesic orthogonal coordinates are possible; and the co-
ordinate curves can be chosen so as to include any assigned geodesic.

14. On any parabolic surface of constant curvature let geodesic
orthogonal coordinates be chosen. Let the curves ¢= constant
denote one family of geodesics, and the curves n = constant denote
the orthogonal family of geodesics. Also choose £ and 7 so that 8¢
denotes an element of arc of a carve 5= constant, and dy denotes an



298 Mr. A. N. Whitehead on the Geodesic Qeometry of [March 10,
element of arc of a curve £ = constant. Then, by § 6,'

(| @) = = (o | ),
and (2 | =) =0.

Hence (30) = (3¢)*+ (3n)* (11)

The identity of the geodesic geometry of parabolic surfaces of
constant curvature with the geometry of straight lines in a Euclidean
plane follows immediately from. this equation. It may be convenient
to some readers to illustrate this identity by the following investiga-
tion, occupying the remainder of this article (14).

Let any geodesic be given by

E=f(), 1=¢(;

and let differentiation with respect to r be denoted by 7, and so on.
The condition for a geodesic has been given by equation (3) of §2.
This now takes the special form

CEn—En=0.
Integrating the form i - L=y,
¢ n
we have 7= af'. (12)
Integrating again, n=af+p. (13)

This is the general equation of a geodesic in terms of orthogonal
curvilinear coordinates. The tangent line at any point = of the
geodesic (13) is 2@ But

ak = 1'(-’”1£+“’s'i) =2 (2, +az,) 3

Hence x (2, + ax;) is the tangent line. The tangent line to any other
geodesic

= a’£+ﬂ '1
" through the same point z, is z(z,+a'z;). The angle 6 between these
lines is given by
{“’ (v +azy) | 2 (2 + a'zi)}

0 =
O U {o(antany) | 2l tam)} (o(atazy) | 2 (otaa)} ]

= 1+4ad .
J{(+a)(1+a"}’
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a~a'

that is, tan 6 = -
l14aa

Thus the angles that the geodesics severally make with n =0 at their

points of intersection with it are tan-'a and tan~'a'.

15. We will now find the equation of the general type of those
parabolic surfaces of constant curvature which are alse surfaces of
revolution. By so doing we also prove the important proposition that
parabolic surfaces of constant curvature in elliptic space are real
surfaces, o

Let ee, be the axis of revolution, and let ¢, e,, e, ¢; be a set of unit-
normal (or quadrantal) points e, [cf. Universal Algebra, § 223 (1)
and § 245]. Then the three lines ee,, ee,, ee; form a system of three
axes mutually at right angles, origin e.

Any unit point z={fetée+Eet+ée
satisfies the condition (zl2)=1,
that is, E+E+6+E6=1;

and ¢, &, &, & are the ordinary rectangular coordinates of elliptic
geometry.

The meridian curves of the surface of revolution lie in planes
through ee, and are geodesics of the surface. The parallels of
latitnde are curves (not geodesics) which cut the meridians ortho-
gonally. Take these two families of curves to define a system of
semi-geodesic orthogonal coordinates. In accordance with the nota-
tion of § 6, let a point # on the surface be defined by p, which
is the geodesic arc measured from some fixed parallel of latitude, and
by ¢, which is the angle between the plane ee;z and the plane eeye,.

Then, from § 11, equation (10), we have
T = ap+3, (14)
where a and 5 are constants, since the surface is one of revolution.
Also, since the surface 1s one of ;'evolution, We may assume
z = ¢e+p (e, o8 ¢ + ey 8in ¢) + & e, (15)
where §, p, and & are functions of p only.
Also, since (z|z)=1,
we have E+u’+E=1 16)
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Since @ | =) = —717

we have .(f}f)"" (‘;_:)".*. (%’%)’ = _:3 i an
Since (s | @) =1II' = (ap+B)?,

we have p = (ap+P)*;

that is, B =ap+p. (18)

The condition (z, | ;) = 0 is satisfied identically.

From (17) and (18) we find

() + (= -

Hence for a real surface we must have ot <—1i. Put

Ca=288
Y
Then (gf)'Jr ((‘%)'_—. (“i;‘:a). (19)

Also equations (16) and (18) give
E+8=1—(ap+B)* =,
say. Assume §=occosw §{=0sinw, (20)

where w is a function of p only.- Hence equation (19) becomes

(' () -

{sin‘b‘_ (_@2)’2
do _ L & dp/ )
Thus e — .
Now, put ap+B=r,
8o that d=1-7.

S oasan
Then o = secd [ (L]'i%Ll dr.

The argument of the integral is rationalized by the assumption

sin®8—r° =%
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Finally, we find
_ {*sin*d — (pcos 3 +«)*}
(pcos é+x) cos 8

2 {7'sin*d—(pcos d+x)2}!
pCcosd+x

o—e = tan

—secd tan

» o (20)

where we have written 8 =«

and e is an arbitrary constant.
Thus the required surface is given by

z = le+ %HK (e, cos p+¢;5in¢) +4,e,,

where E= { 1—- M} ! cos w, 1)

Y

&= {1— (p.cos 4x). f+x)’} ’ gin ®,

Y
and o is given by equation (20).
If we measure p from the parallel of latitude which in equations
(21) is denoted by

p = —rxse¢d,
the equations become

z=le+ p_c_;)‘ss(el co8 ¢ +¢; 5in ¢) +£, 6y,
t] 4
E= {1-—"—9%3’—8} cos w,
4 : !
&= {1—&:—:'2}‘sinw,

o {7'sin® §—p®cos? 6} 4

9 aindiS __ps 384
w—e = tan" ~—sec d tan™! {7 sin®9—F cos? 3} )
pcos® o p €08 0
(22)
The equation of the surface can also be put in the form
tan=1-8— ¢ = tan-! si‘n’Bz—E:—E";} —secd tan~' M‘. (23)
¢ (6 +5)" cos 3 E+8)

The equations (22) and (23) can be conceived in two different ways,
which are not quite identical in their results. Equation (23) may be
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taken as the fundamental equation; and p must then be conceived as
standing merely for the analytical expression

20l fe+ &)
Y
Then the equations (22), together with the equations
99 d .
&= P_c:_q“cos‘P, &= %Sln%

define the coordinates i, £, £, & in terms of the auxiliary variables
pand ¢. The surface will be found to consist of many sheets, and the
geometrical meaning of p must be varied to make it appropriate to
each particular sheet.

The second method of conceiving equations (22) and (23) is tho
one by which they have been attained; namely, p is conceived as the
arc of the meridian geodesic measured from a given parallel of
latitude. This method is appropriate for studying the properties of
any one particular sheet of the surface; and, since the different
sheets are merely repetitions of each other, which arise owing to the
multiple values of the inverse tangents in equation (23), this will
be the convenient method for us to continue to adhere to for the
present. It will save confusion if, during our adherence to this
geometrical definition of p, the surface is called *the sheet.” The
change of name is appropriate, for we are considering one sheet of
the surface obtained by the first point of view.

16. The parallel of latitude p = O is an evanescent circle surround-
ing and coinciding with some point on the axis ee,, Let this point be
called “the conical point of the corresponding sheet,” and let the sheet
be considered as consisting of all that part of the complete surface
denoted by equation (23) which is represented by equations (22)
when the ambiguities of the inverse tangents are so determined that
p represents the length of the meridian geodesic drawn from their
conical point.

Firstly, let p be assumed to be positive, and let X and u be positive
acute angles such that
§ ¥*sin’ B—e“cos’ 3}1, oob = § y?sin® 8—p? cos? 5}‘-

pcos®o p cos &

cot A =

Then the most general expression of the last of equations (22), without
any determination of the umbiguities, is

w—e = (nm+ir—X)—sccd (mr + Im —p),
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where m and % are any two integers, positive or negative. Now let

e =1m(secd~1). (24)
Then the equation for = becomes
w = (n—m) mr—2ime—p sec 6—N\. (25)

The only equations in which w is used are the following :—

2 2 3 3 3
£ = {1—9—%3} cosw = (—=1)*" { l—p—c%SE} cos { —2me +psecd—A}
Y

3 38 4 2 28y 4 :
§3= {1_P C:? a} sinm‘:(—l)""'" {I_P__c_,;f_a} sin {—21)16-}-}[ sec B—A}

(26)
Secondly, let p be assumed to be negative and equal to —p’, and let
X and p be positive acute angles such that
cob N = {y*sin’§—p®cos® o} cot u’ = {y’sin?d—p"cos?d}¢
pcos’d ’ p’cosd )

Then A and u’ are respectively the same functions of p" as X and p
are of p.

Hence the last of equations (22) becomes, when p is negative,
w—e = (n'r+ir+N)—secd (m'r+ {7 +4'),

where m' and %' are any integers, positive or negative. Hence,
using equation (24), this equation becomes

o= (n'—m') r—2m'e—pu'sec s+ N\ 27)
Substituting in the other equations (22), we find

3nnct ) 4 4 a8y .
¢ ={1_P (i;s 8} COSGX:(—l)"‘""" {1—’3_%25_3§ cos {2"""5'*'/4'8803—)\'}

. s IR 4
¢ = { 1-0" c(i____s’ 6} ’cos;m' = =1y~ {I—P———-—= co’s 8} sin {2u'e +p'secd—)\'}
Y Y
(28)
The factor (—1)" in equations (26) and (—=1)"-" in equations
(28) may be omitted. For the points (£§ =&, &, &), that is to

say, the points (¢, &, = &, % &), are both on the surface if one of
them is.

17. Now, when p is small, so that p* is neglected,

3l Q 1
A = £C0s 8, F___:p(.:ObB, psccé—)\=esma.
ysind sind v
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Hence equations (26) become

£ = cos2me+ 220 8sin 2me
(29)
& = —sin 2me + ps% cos 2me
Similarly, when p’ is small, equations (28) become
¢ = cos2mie— p'sind sin2m’e
i (30)

§, = —sin2mle— geind cos2m’e
Y

Hence the series of conical points on ee, are given by
& =cos 2me, & = —sin2me (m=0,%1, +2,...).
Let these points be denoted by d,, d,, d_1, d;, d.2, ..., S0 that
d,, = e cos 2me —e; 8in 2me, d_, = e cos 2me+ ¢, 8in Sme;

also d, is the point e. The distance between any two consecutive
conical points, such as d,, and d,,,, is «, where

K (dm l llm+])- )
cos — = = (du | dnsr)
y ‘\/ { (dm I dm) (dvu#l | dnnl)} '

= cos 2me cos 2m + 2 e +s5in 2me sin 2m+ 2 € = cos 2e.

Hence « = 2ye, where, since the whole line is of length 7y, a num-
ber of complete circuits of the line may be included. If e/ be a
rational number, that is, if cos 3 be a rational number, there are only
a finite number of conical points to the surface. But, if cos & be an
irrational number, there are an infinite number of conical points to
the surface.

18. Let us now study the sheet of which e, that is d,, is the conical
point,
Putting m = 0, equations (26) become

¢ = { l—g&f’f}*cos{psccé—k} '
Y

) 31)
_{- 2cosd )b .- o (
&= { I—LF, sin {psecd—A}
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where \ and p are positive acute angles given by

pcos®d pcosd
{7’sin’8—-p“cos"’3}" {7*sin® d—p’cos? 3}
Also, when p is small and p* is neglected, equations (29) become

£=1, —f%“a (32)

tan A = tan p =

L =
Also putting m’ = 0, equations (28) become

CYUNE SN
¢= { 1—%} cos {4’ secd—\'}

: , (33)
&= { 1—""1—0_;8—,3} * sin {1 secd—N\'}
where A" and u” are positive acute angles given by
tan N = p’ cos® & p cos d

{7 sin® —p" cos® 3}’ tan p’ = {

Also, when p’ is small and p* is neglected, equations (30) become

y'sin? —p® cos? 3}’

e=1, fs=—’i§j;‘—3. (34)

Hence,'from equations (32), (34), and the first of equations (22), a
point z on the sheet in the neighbourhood of e is

psmﬁe

85 (35)

and this equation holds whether p be positive or negative. Hence,
in the neighbourhood of e,

z=ce+ p_co_s_E(el cos ¢p+e;sin @) +
Y

T = gos 3 (e, cos P +e¢; sin ¢) + Su; 8 e (36)
Y
Hence (¢f. Universal Algebra, § 293) the tangent at e to the meridian
geodesic in the plane ¢ is the line ex,, that is,
sin &

(LS.B (ee, cos p +eey sin @) + —— eey.
Y Y

Now the angle x between ez, and ee, is given by

(ex, | eey)

cosx = - = sin §,
\/{(e‘vl | ex,) (eey | ee,)}
since (ee, | eey) = 0 = (eey | eey), and (eey | ee) = 1.
Hence x = $r—a.

VOL. XXIX.—NoO. 631. X
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Hence the tangents at ¢ to the meridian geodesics form a cone of
revolution of semi-vertical angle 1w —2¢.

It is now easy to state the relation of the semi-geodesic coordinates
p and ¢ to polar geodesic coordinates p and 6. For the two geodesics
¢ and ¢9+38p make an angle 06 with each other at their point of
intersection e. Now let p and p’ be two points respectively on these

P

e [ ej

geodesics, and at the same small geodesic distance p from e. Draw
the perpendiculars pg and p’q to ee;. Then, remembering that the
properties of small figures are ultimately those of Euclidean space,

pp = ep .36 = p3b.
Also PP =pq. 8 = pcos § ¢.
Hence 08 = cos 03¢, 6 = ¢ cos?d.
Hence, if do be an element of arc at any point of the surface,

(30" = ()" +¢" cos? 8 (39)"
= Qo) +e* (36)";

and this agrees with § 12 and with the formula of Euclidean plane
geometry which holds for the geodesic geometry of this sheet.

19. Recurring to equations (31), note that, as p increases from 0 to
v tan &, A and p increase from O to iw; and that, when p>7y tan §,
A and u are imaginary. Hence, for p positive, the sheet is real only
when p< y tan’d.

Thus, as p increases from O to ytan §, ¢ decreases from 1 to
cos 6 cos ¢, & increases from O to cos & sin e.

The plane of the parallel of latitude through @ is perpendicular to
eey, and 1s, therefore, the plane we,e,.

Hence the centre of the circular parallel of latitude is the point
xe, €, . eey, that is, (ze e e;) e— (e e5¢) €5, that is, fe-+ £ ey,

Hence, as p increases from 0 to y tan d, the centres of the successive
parallels of latitude of the sheet occupy successive positions on the
line ee, hetween the point e and the point ecose+e,sine, which is
the centre of the extreme parallel of latitude on the sheet. Let
€cos €+¢ysin e be called the point c.
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The distance between e and ¢ is ye. But, in §17, it is proved that
the distance between e and d_; is 2ye. Hence ¢ bisects the intercept
between e and d_;, of which the length is 2vye.

Similarly, when p is negative, and equal to —p’, equations (33) and
(34) show that the remainder of the sheet is, in all respects, a
reflexion in the plane ee, ¢, of the part of the sheet for p positive. Thus
there is an extreme parallel of latitude, of which the centre is the
point e cos e—e; sin e (:==c’, say), and the point ¢’ bisects the intercept
between e and d, which is of length 2ye.

The perpendicular distance, {, of any point z on the sheet from the
axis ee, is given (¢f. Universal Algebra, § 226) by

gin 2 = \/ (m(mee,, __(aeey | weey) } V {(zeey | meey)} =B°27 cosd (38)

| @) (ees | ees)

Hence, as p increases from O to y tan J, the radii of the correspond-
ing parallels of latitude increase from 0O to dy.

Though the real part of each sheet is bounded by the two extreme
parallels of latitude corresponding to p’=y’tan’$, the complete
surface denoted by equation (23) is not discontinuous. For, since ¢,
bisects the intercept between e and d_,, the point ¢ is also the
centre of one of the extreme parallels of latitude of the sheet cor-
responding to the conical point d_;, and the two parallels of latitude
centre ¢ coincide. Thus, at the termination of one sheet, another
sheet commences, corresponding to the next conical point given by
the series ... d_,, d_y, dy, &y, dy, .... It will be proved that the junc-
tion of two sheets forms a cuspidal line on the surface.

20. The simpler properties of the meridian curves can now be
easily stated. Consider the meridian curve in the plane eese,. Take
any point p on the curve and draw pg perpendicular to ee,.
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Let ep denote the distance between e and p, and p the length of
the arc ep of the curve. ‘At e the curve cuts the line ee;. at an
angle 3w—0d. From equation (38),

inPd _ pcos?d _arcep.cosd
7 Y Y

This may be looked on as the geometrical definition of the curve.

The angle ¥, which the tangent at p makes with pq, can be found
from this equation. For, let ' be a neighbouring point to p on the
curve; draw p’q’ perpendicular to ee,, Let pm be an arc of the circle
of equal distance from ee;, Then the arc pm is ultimately a straight
line perpendicular to pg. Also

pm=pq—py
Hence, by differentiating equation .(38),

cosPL 2™ _ dpcosd _ pp'cosd

Y Y Y Y
Hence cosy = Lt. pm_ cosd . yesd (39)
o' 29 §y*—p? cos? 8}
Ccos
Y

The angle ¢ increases with p; hence the curve is convex to the
axis eeg.

The value of  is imaginary if

v cos &
{y*—p*cos’ 8}}

that 1s, if p > ytand.

This agrees with §19.

When p= ytand, ¢y =0. Hence the tangent at f, the extreme
point of the curve, is perpendicular to the axis ee;, Hence, as pre-
viously stated, the junction of two sheets is a cuspidal line. '

The inverse measure of curvature (p,) of the curve at p is most
easily found from the formula

1 1 -

PPy 7’
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which expresses the condition that the curve is a meridian geodesic
of a parabolic surface of constant curvature.

For draw the normal pg cutfing ee; in g. Then, from Napier’s
formules for right-angled triangles,

tan?¥ = tanPZsec (90°—y) = tan?9 cosec y.
Y Y Y
Hence, from equations (38) and (39),

tza,n’—’-—'2 == pcos?d .
Y  {7’sin®d—p’cos® S}

But pg is the radius of circular curvature at p of the line of curva-
ture perpendicular to the meridian; this must be distinguished [¢f
Universal Algebra, § 288 (4)] from the inverse measure of curvature
0,. The relation between the two is

= 7ta,n£-‘—’.
Ps o

Hence py = _YPCO8 8 .
{7*sin? - p? cos?d}
9 # 8in® & —p® cos® 814
Hence =—!—=—Y{y .
. P P3 pcosé (40)

Therefore p decreases numerically from oo at e to O at f.

21.- The distance between successive conical points of the complete
surface is (¢f. §17) 2ye, that is, vy (sec §—1). But the length of &
complete straight line is wy. Hencs, if cosd = %, that is, if § = =,
the surface has only one conical point. In this case the surface has
only one sheet, and the two extremities of the sheet, for p positive and
p negative respectively, coincide along a parallel of latitude of radius
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37y [¢f. equation (38)]. The total length of a meridian are,
measured from e, is y tan 3=, that is, +/3.y.

The accompanying figure, of course, cannet, in Euclidean space,
represent the form of the meridian section of the surface in elliptic
space; but it may help the imagination to realize the geometrical
relations of the parts. The two lines fe,f’, at the extremities of the
figure, must be conceived as coinciding—thus the figure may be
wrapped on a cylinder so that these lines become the same generator.
The lines are tangents, so that the surface in elliptic space has a
cuspidal line.

With the notation of the end of §18,0 =¢cos d =4p. Now ¢
varies from O to 2r. Hence, each half of the sheet of a single-sheeted
parabolic surface of revolution of constant curvature corresponds to
a semi-circle of radius /3. y on a Buclidean plane in Euclidean space.

The equation (23) can be rationalized in this case, since ¢ = §m,
€ = 4m. Thus, the equation of the one-sheeted parabolic surface of
revolution of constant curvature is

3(E+E6E=3 BE+EL(E+E) E+E+E8-E(E+E

[Added May, 1898.—Professor Burnside, who has kindly read over
this paper in manuscript, has pointed out that the detailed mention
of the simplest case of all has been omitted. For in equation.(16)
put a =0, so that #=f; this is equivalent to putting & = 1.
Hence the equation for @ becomes

dw 1 pte

&y =R TSy =@y
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Thus, instead of equations (21), we find
2= (1—Fecos —LFEE_ e+p (e, cos p+e,sin ¢
( p) y (1 __ﬁg)a ( 1 ¢ ] )
pte

+(1 _ﬁi)a cos m €g.

Thus the surface is a surface of equal distance from ee;, and the con-
stant distance from ee;is y sin~! 8. Professor Burnside makes this

surface the basis of a synthetic treatment of the subject of this paper
which is appended to this paper.]

* Geodesics on Surfaces n Hyperbolic Space.

22. The preceding results can now easily be adapted to hyperbolic
:space ; it will not be necessary to repeat the proofs in detail.

Let ¢ be the origin of three mutually rectangular axes ee), ee;, eey;
and let e, ¢, ¢, ¢; be a system of mutually normal unit points. Then
(¢f. Universal Algebra, Book vI., chapter iv.) e, e, e, are points in
antispa-ce, and

ele)y=1, (& e) =—1= (e | &) = (¢ | e).

Also, if 2 be any point, it can be ex- ¢
pressed in the form fe+ £ e, + &g, + &6,

If it be a unit point in (hyperbolic)

space, as distinct from antispace, B P

E-f—-E—6=1 9\(\ G
Also, if p be the distance ez,  the

:angle zee;, ¢ the angle between the £
planes xee; and e, ee;, then, z being a
unit point,

)

&= cosh —5—, & =sinh L gin O cos ¢, ¢ = sinh-2 sin 6 sin b,
Y Y

& = sinh % cos 0.

Hence v is the * space constant ” of the hyperbolic space.

Also let =, as before, be a unit point on a surface, defined by
curvilinear coordinates 6 and ¢, distinct from the 6 and ¢ of the
previous explanation. Then (z |z) =1. The formule remain
substantially unchanged from those of elliptic space; they can be
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derived from the “elliptic ” formule by writing y+/(—1) instead of
y. Hence formuls not involving y will be absolutely unchanged,
others involving y® will have their signs changed, and some trigono-
metrical functions will be turned into hyperbolic functions. Then

oo

8 = o @) (02 e | ) 036 (o | ) (39"
Also _73{(‘”1 | 2,) (@ | 25) — (24 l wa)}a
Pips

=47 —A,+ {(a’l I ) (2, | ) — (=, | wa)g} ‘

x {(mx | 25— (2 | @) (2 | %)+ (20 | @)u—3 (2 | @)n—3( | @)},

(41)

where A, and A, have the same meanings as in the corresponding
formula (equation 1) for elliptic geometry.

The condition that the curve § = f(r), = F (r) may be a geo-
desic is

(& | 2y2) = 0. (42)

This can be expressed in the same form as equation (3).
23. The investigations of §§(4), (5), and (6) hold for hyperbolic
space; that is to say, all the properties of semi-geodesic orthogonal

coordinates. Thus,if the curves ¢ = constant be the geodesic family,
and the curves p = constant be the orthogonal family, we have

(@ | 2) = —$, (2 | 23) = 0. (43).
Also  (30)' = (3)'—7*(m | m) (36) = (3p)+ YV IE ()%, (44)
where L= — (z, | o).

The special properties of polar geodesic coordinates also hold, and
with these coordinates the limit of T, when p is small, is p/y.

Equation (6) of §8 becomes, with semi-geodesic orthogonal
& 1 1
3 (plps '*7> r=0 ()
Also equations (7) and (8) of §9 for geodesics hold without any
change of form. Hence Beltrami’s theorem respecting the geodesic
representation on planes of surfaces of constant curvature can be
proved as in § 10. Also, as in § 11, putting

1_1_1

1
— ST or g, or 0,

coordinates,
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equations (10) hold without modification. Let these surfaces, as in
elliptic space, be called respectively “elliptic,” *hyperbolic,” and
‘ parabolic ”’ surfaces of constant curvature.

The theorems of §§ 13 and 14 also hold, namely, the only surfaces
in hyperbolic space which admit of two families of geodesics being
drawn on them mutually orthogonal are parabolic surfaces of con-
stant curvature, and, conversely, on any such surface two such
families can be drawn, of which one family includes any assigned
geodesic.

Let ¢ = constant denote one such family of geodesics, and let.
n = constant denote the orthogonal family. Let the subscript 1
denote differentiation with respect to £ and « with respect to ».

Then we may assume
1 .
@la)=—5=@ln), @]x)=0;

and (3o = (3£ + (3n)%.

Thus, as in elliptic space, it may be seen that the geodesic geometry-
of the surface is Euclidean.

24. To find the equation of the general type of surfaces of revolu-
tion which are also parabolic surfaces of constant curvature. It
may be noticed that Bolyai’s limit-surfaces must be included as a
special case of such surfaces.

Let ee; be the axis of revolution, and let ee,, ee, ee; be three:
mutually rectangular axes of origin e. Let e, ¢, €, ¢; be a set of'
mutually normal unit points; thus e,, e, e, are antispatial. Any unit.

atial point
spatial poi T = fe +$\31+§392+ faes
satisfies the condition () z) =1,
that is, £—g—6—6=1,

and &, &, &, ¢, are the ordinary rectangular coordinates of hyperbolic
geometry. Now, as in § 15, take meridians and parallels of latitude
as a system of semi-geodesic orthogonal coordinates. Let the length
of the arc of the meridian through #, measured from a fixed parallel
of latitude, be p, and let ¢ be the angle between the planes zee; and
eee.  Then, as in § 15, we have, since the last of equations (10) holds,.

(30)* = (3p)*+¥°T* (3¢)";
and I= ap+B, (46)
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where « and 3 are constants, since the surface is one of revolution.
Also, since the surface is one of revolution, we may assume

@ = fe+p (g cos ¢ +e, sin ) + &ge, 47

where £, u, & are functions of p only. Also, since
(z]2)=1,

we have E—p—E=1. (48)
Since (@ | 2)=— —15 J
we have (%%)g+(%%)2—(g—i)g =%. (49)
Since (2 | ) = =TI = — (ap+f5)’,
we have p=ap+p. (50)

The condition (», | #;) = 0 is satisfied identically. From equations
(48) and (50) we find

52-5§= 14p* = 14 (ap+8)* = ¢* say. (51)

Assume § = o cosh w, §, = o sinh w, where w is some function of p
to be determined. Substituting for u, £, & in equation (48), we find

A =3

2
1 ._.,,}+£"_2 :
Y

. de _ (7 (52)
that 18, E; = (1 +,u,2)
Hence these cases arise for examination according as

(Casel.) a = —’17, (Case IL.) a < —1-, (CaseIll) a > —3—
Y

95. Case I—Let a=1,
Y

Equation (52) becomes

dw _ __w»_ _ _ p+x
dp vy @+p) Y+
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where «/y is written for 8. Hence
@ =log {7'+ (2 +«)*}! + constant

fa2 2%
=10g'("7 +(3P+K) } 3

where ¢ is the constant introduced by integration. Hence

¢ = {')’g'f'(A'-"'i"‘)”}'coshm__5"-i—'y5’+(p+v<)2 \
- Y - 2y0
¢ _ P Y =8 (pte)
P = 270
! b (53)

&=L %005 g

y
$s=p+KSin¢

Y J

Now measure p from the evanescent parallel of latitude, which
has hitherto been denoted by p = —r, and choose ¢ to be the point in
which ee; cuts the axis ee;, so that 8 =y, and we find, without
diminishing the generality of the type of surface,

3
¢ ‘—‘“**é‘%, &=35,

¢ =Lcos¢, &=Lsing.
Y Y

Hence (@|2)= {a| (c+e)}”

But (¢f. Universal Algebra, § 299) this is the equation of Bolyai’s
limit-surface, which passes through the point ¢, and has its centre
at the point e +¢; on the absolute.

96. Case IT—Let = 8089
Y

Equation (52) becomes
dw _ {sin?d+p*}  {y’sin’S+ (p cos §+x)}H
dp~ y(A+p) T Y (pcosd+r)

Integrating by means of the transformation

~25in? 8+ (p cos 8+ «)? = £ (p cos 8 +«)?,
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we find
w+e = secd coth™? {y'sin 8+ (p cos 8 +«)*}
pcos o+«
—coth! {y*sin® 3+ (p cos B+K)s};

(pcosd+«x) cosd
Hence, measuring p from the parallel of latitude hitherto denoted by
p = —ksec 3,

we find the following set of equations to determine the surface,

z = fe+ pcyos B(el cos p+e,5in ) +&;¢ ' \
3. 35) 4
§= {1+P o8 3} cosh &
Y
k] 3 3
§,={1+f&f3} sinh = L. (54)
? ST
w+e = secd coth™? {o" sin’ 3+’ cos’ 3}
pcosd
o1 LY 5in" 3+ cos? s

pcos®d J

The parallel of latitude p = O is the evanescent parallel surround-
ing the point in which the surface cuts the axis ee;. Let this point
be the point e; then this assumption determines e by the equation

€ =sec 0 coth™' oo —coth™'o0 = 0.
Also, in the neighbourhood of the point e, when p* is neglected,
—, (3= _psind,
T=r ( dp ) o= y
sin 0
Y

and hence E=1, ="

Thus, in the neighbourhood of e,

w=et L2220 :sa(e, cos ¢ +e,5in ¢) + £ 2 S;na -

Hence T = ‘i;—s— (e, cos p+e, sin ) + S—;la
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Thus the tangent line at e to the meridian curve in the plane ¢ is
denoted by the line element ez, that is, by

cos d sin

(ee, cos ¢+ee,8in @) + ee,.
Hence (of. Univevsal Algebra, §§244, 248) the angle between this
line and the axis is given by

cosf = (e | em)

\/{(ees | ees) (e, | e“’l)}

Hence the tangents at'e form a cone of semi-vertical angle }r—3,
and the point e is a conical point on the surface. By putting —p’
instead of p in the equations it is easily seen that the surface is
symmetrical with respect to the point e.

The plane of the parallel of latitude through the point # is per-
pendicular to eey, and is. therefore represented by the planar element
2e,6,, that is, by the planar element (éee e,+£,¢;6,¢,). The centre of
the parallel of latitude lies on ee;, and is therefore the point we, e, . eey

= sin d.

But zey e, . e, = feeyey. eey+Egeze, 6y . €65
= (Ee+&05) (ceres05) = Ee+ &y
omitting the numerical factor.
The distance 4 of this point from e is given by

d {e | (£e+§3ea)} ¢ _
hZ = hw.
Oy TG e | Gorbed}] JE-E]
Heuce d = wy.

The radius (£) of the parallel of latitude is the perpendicular dis-
tance from 2 to the line ee;. This is given by [¢f. Universal Algebra,

§ 254 (5)]
smh = \/ (— (weey | meey) = /(wee; | zeg;) = p_c_:i§ (35)

@ | z)(ee; | eey)
Now in the ﬁgure let « and 2' be two neighbouring points on a

X

T(—p
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meridian, let 2d and 2'd’ be the perpendiculars on to ee;, and let zp be
the arc of the curve of equal distance from ee;, which is ultimately a
straight line perpendicular to #’'d’. Then ultimately

2 =30, xp=23.

Also, if ¢ be the angle which the tangent to the meridian at  makes.
with zd, we have ultimately

coslp:g:?: cos d ’
e P cosht
Y
from equation (55). Thus
v cos 0
cosy=_——"——" . (56
v {¥'+pfcos’ 81 )

The form in hyperbolic space of the section of the surface by any
meridian plane is suggested by the annexed figure. Both branches
go to infinity at both ends. By putting & =0, the surface becomes
the limit surface investigated in Case I.

[Added May, 1898.—Here again, as in elliptic space, the simplest
case has been omitted, namely, when 6 =4w=. Then the equations
become

¢=Q+p cosh —2FE ¢ — (1+8%) sinh
v (1+8)
L, =fcos¢g, & =PBsing.

p+e
y A+8H)Y
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Thus the equation of the surface is

B E-&—1+BYE+E) =0.

This is a surface of equal distance from the line ees.]

27. Case IIT—Let o= C0shd
Y

Equation (52) becomes

dw _ {p’—sinh"'B}"_ { (o cosh 3+x)’—yasinh’6}‘.

dp y Q+p®) T ¥'+(p cosh 3+ )
Integrating by means of the transformation

(pcosh +«)?—y? sinh? § = & (p cosh & +«)?,

319

we find
w +¢ = sech  tanh™! {(p cosh 3+¢)'—y*sinh? 5}
pcosh é+«
—tanh-! {(P COSh 3+"')’—7’ sinh? 5}‘

(p cosh d4«) cosh &

The generality of the surface will not be impaired by assuming
«=0=¢. Then the following set of equations determine the surface

x = fe+P_C();—ha (e, cos p+e,8in @) + ;64 )

3

¢ = {1+'p’c°31£—8-} ‘coshw
Y
2
&= {1+p__008,h23} ‘sinhw
7

p* cosh §—y*sinh® §}4

w = sech d tanh™! {
p cosh 0

R 58_ $ o3 3
— taah-! {n* cosh? —y*sinh*o}4

p coshid J

LY

The value of & is imaginary if p lie between v tanhd; hence the

surface does not cut the axis eeg in real points.

Also =0, when p==+ytanhd; and w is real as p iucrenses

numerically from &y tanhd to 0.
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Also, a8 p increases from y tanh § to +o0,
_{e cosh’S—-y sinh? 5}‘
dp v*+p*cosh’d

-and is therefore always positive. Hence w continually increases, and
@(ue) = Sech § tanh~! 1—tanh~! {sech 8} = .
Hence when p is infinite, the limit of /¢ = 1.

Negative values of p- give the same numerical values of w, with
the opposite sign, as the numerically equal positive values of p.
Hence, for negative values of p, £/£, runs through the same numerical
series of values only with the opposite sign, and the limit of /¢,
when p = —,is —1.

The perpendicular distance of z from ee; is given by

h £ _ — (2ee, | wee)) _ pcoshd 5
sin \/(m | z)(eey | ees) =0 | oo = Y

As p increases from y tanh d to o, ¢ increases from dy to .-

The centre of the parallel of latitude through 2z is the point
xe,e,. e8y, that is, the point fe+f,e,. As w varies from O to oo, this
point moves from ¢ to e+e¢;, a point on the absolute on eey; and, as w
varies from O to —co, this point moves from e to e—e, the other
point on the absolute on ee;.

Let 2 and 2’ be neighbouring points on the same meridian curve,
and draw zp and z'p’ perpendiculars to e, Let ¢ be the angle

z'

¥l,
< 4

e p p' [}
‘between the tangent at z and zp. Then, by the same construction as
before,

d{ _ coshd __ . v cosh &
cosyY =-—>2= = .
v dp  cosh £ {¥'+picosh?iP
Y
Hence, when p = ytanh§,

¥ is zero, and as p increases to w, { increases to .
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Thus the form in hyperbolic space of a meridian curve is suggested
by the annexed figure.

Z¥e,

L:4d
N Ng’h

P

There are two detached branches, AP and A’P, which both go to
infinity; A4’ is the tangent to the curve both at 4 and at 4". The
arc AP = p—ytanh 8, where the parameter.p defines the point P;
also, if p be negative and is written —p’, and if it defines a point P on
the other branch, then the arc A’P'= p'—ytanhd. The surface is
formed by revolving this figure round ee,, A meridian section is
shown in the annexed figure.

‘When ¢ =0, tbe surface becomes a Bolyai limit-surface.
VOL. XXIX.—NO. 632. Y
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APPENDIX.

Synthetic Proofs of some of the above results, communicated to me by
Professor Burnside, F.R.S., April, 1898.

- At Mr. Whitehead’s request I have written out for publication at
the end of his paper a note which the latter part of the paper sug-
gested to me when I read it in manuscript. The note is the outcome
of an attempt to approach the subject dealt with in the last half of
Mr. Whitehead’s paper from a synthetical point of view.

The locus of a point whose perpendicular distance from a given
straight line is constant is called an equidistant surface; the given
line 1s the axis of the surface, and the constant distance the radius.

An equidistant surface is clearly self-congruent for all translations
along and rotations round the axis, and also for rotations through two
right angles about any radius of the surface.

If the section of the surface by a plane through the axis be called a
meridian, and that by a plane perpendicular to' the axis a circular
section, then, by every displacement for which the surface is self-
congruent, a meridian is changed into a meridian and a circular
section into a circular section. The distance between any two given
circular sections (or meridians) measured along a meridian (or circular
section) is, therefore, the same at all points.

Consider now a curve on the surface which meets all the meridians
at a constant angle. Through a given point 4 on the surface, one, and
only one, such curve can be drawn to meet the meridians at a given
angle a (0 < a<w). If the surface be rotated through two right
angles about the radius through 4, the surface, and, therefore, also
the curve, is changed into itself. Hence the osculating plane of the
curve at 4 must contain the radius through 4; in other words, the
curve is a geodesic.

The geodesics on the surface are, therefore, the curves which meet
the meridians (and circular sections) at a constant angle. .

An infinite number of geodesics can clearly be drawn to join any
two points on the surface. Among these, the shortest will be
that one for which the (acute) angle «is least. Suppose, now, that
any three points 4, B, O on the surface are joined by shortest
geodesics AB, BO, CA. Since each of these makes equal angles with
each meridian it meets, it immediately follows that the sum of the
angles of the geodesic triangle ABC is equal to two right angles. The
infinitesimal geodesic geometry of the surface is, therefore, the same
ag that of the Euclidean plane.
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The radius of the equidistant surface considered may be any what-
ever; and therefore it follows that a portion of the surface of one
equidistant may be cut out and applied without stretching or tearing
on an equidistant of different radius.

The existence of surfaces, in elliptic or hyperbolic space, whose in-
finitesimal geometry is the same as that of the Euclidean plane being
thus demonstrated, their form, when surfaces of revolution, may be
determined by the consideration that, in. & given space, a portion of
any one such surface must be applicable on any other.

Let the figure represent a finite portion cut out from an equi-
distant surface; APB, CQD, ERF being a set of geodesics which
meet in a point on the surface, while ACE, PQR, BDF are a family of
curves on the surface which meet the set of geodesics everywhere at
right angles. Since the geometry of a finite portion of the surface is
the same as that of the Euclidean plane, such a set of orthogonal
curves must exist, and the relations

AP = (CQ = ER,

arc PQR—arc ACE = a . AP,

must be satisfied for each curve PQR of the family, « being a
constant.

Now bring opposite edges to coincidence so that 4 and F, P and I,
B and F coincide, while ACE, PQR, BDF become circles with their
centres on a straight line and their planes perpendicular to it. The
surface will then form a portion of a surface of revolution whose
infinitesimal geodesic geometry is that of the Euclidean plane.

Let ADB be a meridian section of the surface so formed, and ab the

Y 2
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axis of the surface ; Aa, Bb being the perpendiculars from 4 and B
on the axis,

a b
Then, taking suitable units of length, the meridian section is

given (i) in elliptic space by '

sin Bb—sin Aa = ~ arc 4B;

o
and (ii.) in hyperbolic space by
sinh Bb—sinh 4o = >~ arc 4B.
2n

It will be found that for elliptic space the relation
n’

4’

is necessary in order that thesurface may be real ; and that, when a=£0,

the surface necessarily cuts the axis. Reckoning the arc s from a

point where the curve cuts the axis and representing the ordinate by
¥, the equation is

<1

: as
smy = —,
2

In hypeérbolic space there is no limitation on a. If a'<4a?, the

curve cuts the axis; and, with the previous notation, the equation is
ginh y = 2%,
Y=o
If a*>4x?% the curve does not cut the axis. In this case, writing
cosh 3 for 21, the equation can be put in the form
s
sinh y —sinh 8 = scosh 3.

The dividing case a = 2« gives the limit-surface, as it obviously
should ; for the limit-surface may be regarded as the equidistant of a.
straight line whose only real points are at infinity.





