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Abstract. The capability of a mobility model to detect certain pat-
terns of user behavior (e.g., favorite walks or walking habits) enables
solutions for a number of challenging networking problems, including ef-
ficient opportunistic communications and handoff / cellular planning. We
argue that the limited viewpoint of a single mobile node and its scarce
resources (e.g., energy, memory or processing) are major obstacles for
accurate estimations. Targeting at hybrid network environments, we of-
fload prediction capabilities to the fixed nodes that may be available in
the area, offering a global view and the capability of resource-demanding
calculations.
Here, we introduce a solution running on top of the infrastructure nodes
that: (i) implements a mobility model which provides a number of mobil-
ity forecasts to the mobile users in the area, (ii) supports proactively the
routing decisions of opportunistic mobile devices being taken at times
there is not connectivity. We introduce the corresponding semi-Markov
model and demonstrate its efficiency using scenarios deployed in a pre-
selected city center, where a number of mobile nodes seek for Internet
access.

Keywords: Delay-Tolerant Networks, Opportunistic Networks, Infrastructure-
supported Mobile Communication, Mobility Prediction

1 Introduction

Internet is entering a new era, in which sophisticated devices can be deployed
anywhere, run demanding applications and require connectivity occasionally or
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permanently. Various challenging networks have been introduced, initially as
stand-alone homogeneous networks that were gradually attached to the Inter-
net. Space Networks [22] are the most recent example; other examples include
the Mobile ad-hoc networks (MANETs), Delay - and disruption - tolerant net-
works (DTNs) [11], and Vehicular ad-hoc networks (VANETS) [13]. This inher-
ent heterogeneity is dominant in today’s Internet; however, the properties of such
internetworks are typically studied in the context of the extended network mod-
ule alone (e.g., MANETs, DTNs, VANETs) and not in the appropriate context
of their influence to the global internetwork.

This hybrid setting requires supportive strategies to exploit even the slightest
communication opportunity; let alone the technology to allow for dynamic up-
dates and the capability to continuously seek an optimal solution. In this context,
what appears theoretically possible becomes conditionally feasible, only when
system granularity and routing accuracy can adequately match user-behavioral
and -mobility patterns. Beyond that, the complexity of the task increases if we
also consider device constraints, energy aspects and application diversity.

Here, we claim that infrastructure nodes around areas with poor or inter-
mittent connectivity could collectively build and, based on historical data, train
a stochastic model capable of predicting future contacts. Actually, each fixed
node can trace the coordinates of mobile devices passing by along with their
corresponding connectivity times. Such data can be communicated within the
infrastructure and constitute valuable input for the mobility model, which, in
turn, can produce node-level (i.e., detect mobility patterns of certain nodes),
or system-level estimations (e.g., number of nodes at a certain area after some
time). This allows each mobile node to query the system for information regard-
ing its future contact opportunities and expect by the neighboring fixed node to
reply with a potential suggestion. Such response information could become, for
example, a probability value or the coefficients of a known distribution. The lat-
ter can represent the inter-contact time PDF between a mobile/class of mobiles
and other mobiles or Internet hotspots.

So, the moving device can calculate the cost functions associated with po-
tential tactics - from holding data further, to forwarding to another node and
also to which particular direction - and make a decision with respect the delivery
time of the data or, perhaps, the certainty to reach the destination within some
required timeframe. It is obvious that storing the data in the source mobile un-
til a new hotspot appears is a conservative strategy that misses communication
opportunities. Furthermore, 3G networks are often expensive and unavailable.
In experiments documented in [3], in places 3G is not available there is WiFi
availability roughly half of the time. In our experience, forwarding decisions can
be taken with a level of accuracy that can be occasionally high (when the sce-
nario allows) although communication and processing overhead could be low.
Other approaches to location-prediction using historical information are based
on the limited contact history of a single node (e.g., [12]), group contact-time
information of a certain number of users (e.g., based on their social ties [10]) or



use offline network traces to evaluate the accuracy of Markov or semi-Markov
based approaches (e.g., [19], [9]).

In this paper, we employ a semi-Markov model for the prediction of contact
opportunities. Semi-Markov models [15] were introduced as stochastic tools with
capacity to accommodate a variety of applied probability models: they may pro-
vide more generality to describe the semantics of complex models - which, in
turn, increases the complexity of analysis. However, the extra-added variables
improve the modeling expressiveness of real-life problems. We also note that the
increased complexity is assigned to the resource-capable fixed nodes, improv-
ing prediction accuracy without damaging the sensitive performance of mobile,
battery-powered devices. It is documented (e.g., in [9], [25]) that Markov-based
location predictors perform very well in practice, but require more complex and
expensive mobility data for sophisticated forecasts such as the time and location
of the next user movement or duration of stay in an area.

Our approach is characterized by two main advantages: (i) the fixed infras-
tructure allows for a global view of the system and improved predictions of
connectivity opportunities, (ii) the mobile devices delegate resource-expensive
operations to the infrastructure nodes in order to exploit their capabilities in
terms of energy availability, processing power and memory allocation. There-
fore, the performance of mobile devices is preserved without trading prediction
accuracy and hence communication efficiency. Decoupling (but also improving)
the forecasting capability from the routing strategy enables a number of new
efficient protocols to be introduced. Furthermore, the forecasting connectivity
opportunities can be a basis for an efficient energy-saving strategy also; the
mobiles could be switching off their communication subsystems at times the
probability to meet other nodes is low.

To demonstrate the potential of our solution, we consider an urban scenario
where mobile users are interested into getting Internet access. Different hotspots
are scattered in a city center (i.e., around 60 km2 in Thessaloniki, Greece), cover-
ing with Internet connectivity some percentage of that area (i.e., less than 40%).
The hotspots are deployed in real points of interest (central squares, museums
and other places attracting people) and are collectively building a communica-
tion model. The mobile nodes can request information on neighboring nodes:
how often or with what probability they do contact the available hotspots. Such
information is passed from the closest hotspot to the mobile contacts. So, a
moving user can easily make decisions on whether a neighboring node is more
suitable to forward its own data towards the Internet. Indeed, as we show in our
experimental results, we were able to identify useful mobility patterns for future
efficient network protocol designs.

The paper is structured as follows. In Section 2 we review the state of the
art that is relevant to the present work. In Section 3 we describe a particular
scenario, along with the proposed semi-Markov stochastic model. In Section 4
we evaluate the above model in three experimental scenarios. Finally, in Section
5 we conclude the paper.



2 Related Work

Internet complexity has been increased rapidly since new communication pa-
radigms, other than Infrastructure - based networking, have been incorporated
into the internetworking model (e.g., ad-hoc, mesh or space networking). In this
context, the network becomes also a storage device - not just a communication
vehicle. This new property of the Internet alone challenges all known models and
evaluation standards for internetworked systems. Furthermore, approaches such
as Delay - and Disruption - Tolerant Networks (DTNs) [11] undergo major stan-
dardization efforts that target a unification perspective for the various pieces of
the global network jigsaw puzzle. We note that protocols originally designed for
a homogeneous network environment are not expected to work optimally in such
a hybrid setting. An example work that brings closer different types of networks
(i.e., wireless and mobile) is [8], attempting to define a continuum between the
different networks.

A number of approaches support mobile communication using the surround-
ing infrastructure. In the area of VANETs, proposals either exploit infrastructure
to support car-to-car communication (e.g., through roadside access points) or the
opposite (e.g., [23]). Recent papers consider clouds as a dynamic infrastructure
that improves mobile communication through offloading resources from the mo-
bile users (e.g., [18]). The DTN throwboxes have been introduced as stationary,
battery-powered nodes, embedded with storage and processing capabilities that
are able to enhance the capacity of DTNs [4]. Mobile infostation networks use
the infostation nodes to support mobile communications for this specific context
(e.g., to keep information close to the mobile users [17]). Other proposals move a
portion of the mobile data traffic to WiFi networks, exploiting the significantly
lower cost of WiFi technology and existing backhaul infrastructure [24].

In the literature, approaches to mobile connectivity forecasting have been
proposed in different contexts, such as resource reservation in cellular networks
or handoff planning (e.g., [5, 28]). For example, BreadCrumbs [20] maintains a
personalized mobility model on the user’s device that tracks APs (i.e., using RF
fingerprinting) and combines the predictions with an AP quality database to
produce connectivity forecasts.

Compared to the related works, our solution decouples the mobility model
from the routing protocol and offloads prediction operations to the surrounding
infrastructure. This allows a larger number of samples to be considered (i.e., due
to the more complete view) and more complicated calculations to be performed,
improving the forecasting accuracy in a resource friendly way for the mobile
devices. In our proposal, we model user mobility with a semi-Markov process
with heterogeneous properties, allowing for flexible definition of different dis-
tributions for inter-contact times, under different conditions. Such conditions
and other relevant patterns are being explored and associated with practical
constraints (e.g., resource availability). Other relevant approaches using semi-
Markov processes are [6], [29]. Both of them model routing behavior rather than
mobility patterns.



3 Case Study and Modeling Considerations

3.1 Studied Environment

In this paper, we consider a heterogeneous network scenario consisting of both
mobile and infrastructure nodes. In this context, we assume a communication
system that integrates deployed infrastructure (e.g., a network of hotspots) with
opportunistic networks, therefore allowing for additional communication oppor-
tunities even for uncovered city areas. The infrastructure nodes have been dele-
gated the responsibility of tracking the position of mobile nodes as well as the
potential estimation of their future positions.

At this stage, we study an urban scenario where mobiles require Internet
connectivity at times they are not covered from deployed hotspots. For method-
ological reasons, we start from the particular environment and the study of
next-place or WiFi connectivity forecasts in order to devise strategies for ex-
tended and efficient Internet access. As a next step, we plan to move on to more
complicated scenarios, predicting device-to-device connectivity opportunities in
heterogeneous deployments (i.e., mixing networked vehicles with pocket switched
networks).

Our scenario includes a number of hotspots covering only a percentage of the
area with connectivity (e.g., 30-40 %). There is a wide-range of mobile device
types moving around the hotspots. Each mobile node may need to access the
Internet or to interact with any other node. To address this demand, a dynamic
path should be established between the communicating nodes, carrying the data
to be transmitted. This is not trivial, since all nodes may be constantly moving
and all participating node positions are not known in advance. The communi-
cation between the user and the closer hotspot can be handled from variations
of well-known opportunistic network protocols, such as the Spray ’n Focus [26],
the MaxProp [7] or any other similar.

In our case, the hotspots collectively train a model which is able to estimate
the evolution of node topology structure, elaborated in the following subsection.
In a more general setting, the source mobile node can query any hotspot for the
destination node position or any other relevant information. If the latter node is
directly connected to an infrastructure node, data will be carried through the in-
frastructure to the destination, straightaway. In case the destination mobile user
is located in an uncovered area, data will be forwarded through the infrastructure
to the hotspot that has the higher probability to be near the user. This hotspot
is selected from the source mobile node using forecast information produced by
the proposed semi-Markov model and the most recent location information of
the destination mobile.

Since the source node may not be always connected to a hotspot, the in-
frastructure responses regarding the potential destination node positions will be
more general, enhancing mobiles with limited but resource - efficient and ac-
curate estimation capabilities. For example, the responses can be coefficients of
known distributions, which are functions of time.



3.2 Semi-Markov Model and Basic Equations

In this subsection, we detail the proposed stochastic model and its basic equa-
tions reflecting different aspects of users’ mobility behavior. The stationary nodes
implement collectively the model and communicate the output of the equations
to the interested mobile nodes. An efficient routing decision may require one or
more calculations, based on its own criteria. We present usage examples along
with the model description (denoted in italics), in the context of our proposed
infrastructure. We note that all equations can be used as contact predictors for
communication between the mobiles as well.

We model the users’ mobility behavior using a Discrete - Time Semi - Markov
System (DTSMS). A semi-Markov chain is a generalized Markov model and
can be considered as a process whose successive state occupancies are governed
by a Markov chain (i.e., embedded Markov chain), although state duration is
described by a random double variable which associates with the present but also
with the next transition state. A relevant model discussion focused on theoretical
aspects can be found in [21].

At the beginning of our analysis, we assume a population of users moving
around a city center (i.e., in this paper we considered the city of Thessaloniki)
and pass through a number of scattered hotspots in real points of interest in
the area (e.g., central squares, museums etc). The users can be stratified into
a set of areas S = 1, 2, ..., N . We assume that a number of areas have network
coverage (e.g., 1 to K) while other areas do not (e.g., K to N). These areas are
assumed to be exclusive and exhaustive, so that each user is located at exactly
one area at any time. The system state at any given time is described by the
vector N(n) = [N1(n), N2(n), ...., NN (n)], where Ni(n) is the expected number of
users located at an area i, after n time slots. We consider a closed system with
constant total population of users denoted with T . Also, we assume that the
individual transitions between states occur according to a homogeneous semi-
Markov chain (i.e., embedded semi-Markov chain). In this respect, let us denote
by P the stochastic matrix whose (i, j)th element equals to the probability of
a user in the system which entered an area i to make its next transition to
area j. Thus, whenever a user enters area i selects area j for its next transition,
according to the probabilities pi,j .

A mobile node may request a specific probability value in the form of pi,j from
the infrastructure system. This expresses the probability of a node to reach an
area j after being at an area i, in the next transition. This value could be used
from a mobile node in order to check if there is a chance for a user to pass by
area i and reach area j straightaway. For example, the mobile could perform a
quick check if two areas are adjacent.

In our model, the mobile user remains for sometime within area i, prior to
entering area j. Holding times are described by the holding time mass function
hi,j(n), which equals to the probability that a user entered area i at its last
transition holds for n time slots in i before its next transition, given that node
moves to area j.



The holding time mass function hi,j(n) could be used by a mobile in order to
check the possibility of a direct transition from area i to area j at a given time.
Occasionally, the destination area may not matter, but instead, the transition
is important: for example, a transition from a non-covered to a network-covered
area. A node, therefore, at an isolated area may evaluate the cumulative proba-
bility to move to any area with connectivity, independently of which area it is.

By the same token, we discuss the following variation of the holding time
mass function:

hi(n) =
∑

j=1,2,...N(j 6=i)

pi,jhi,j(n) (1)

The hi(n) function captures the probability of a mobile at state i to make
a transition at time n (the particular destination area is irrelevant). Along the
same lines, we introduce the probabilities:

hconi (n) =
∑

j=1,2,...K

pi,jhi,j(n) (2)

hdisci (n) =
∑

j=K,K+1,...N

pi,jhi,j(n) (3)

The functions hconi (n) and hdisci (n) capture the probabilities of a mobile to
move from area i to any area with connectivity or not at time n, respectively.
For example, a forwarding decision could be made based on the possibility of the
forwarding node to carry data to an Internet access network.

We also detail equation >wi(n) which expresses the probability of a user who
made a transition to area i to reach the next area in longer than n time slots:

>wi(n) =

∞∑
m=n+1

N∑
k=1

pi,khi,k(m) (4)

The initial condition is >wi(0) = 1.
Similarly, variations like >wcon

i (n) and >wdisc
i (n) could be introduced.

The >wi equations can support the forwarding decisions of the opportunistic
routing protocol inline with data transmission deadlines, e.g., delay constraints
for real-time or other time-critical applications.

A main aspect of the proposed model is related to the interval transition prob-
abilities which correspond to the multistep transition probabilities of a Markov
process. So, let us define as qi,j(n) the probability of a user from area i to
be at an area j after n time slots, independently of the required intermediate
state changes. This metric allows multi-path contact predictions, i.e., captures
the probability of a node to be at an area after some time (or two mobiles to
contact each other, in a general setting), independently of the required steps.

The basic recursive equation for calculating the interval transition probabil-
ities is the following [14], [27]:

qi,j(n) = δi,j
>wi(n)



+

N∑
k=1

n∑
m=0

pi,khi,k(m)qk,j(n−m) (5)

The initial condition is qi,j(0) = δi,j , where δi,j is defined:

δi,j =

{
1 if i = j
0 elsewhere

(6)

4 Evaluation

4.1 Evaluation Methodology

Here, we detail our evaluation methodology and the experimental scenarios we
studied. We extracted a large area of the city center of Thessaloniki, Greece from
the OpenStreetMap website [2]. The area’s dimensions are 6.2km x 10.1km, in-
cluding 397 streets and 1884 landmarks. We selected twelve representative points
of interest, assuming they offer Internet connectivity as well. For simplicity, we
consider as area 13 any other area without connectivity. Their locations were
extracted from the same information source and selected based on their popu-
larity (e.g., the Aristotles Square, the railway station, the St. Sophia Church,
well-known museums etc). We use theone [16] simulations augmented with real
parameters. A map screenshot that includes some of the selected points of inter-
est is shown in figure 1. The mobile users walk around the city, following one of
the identified streets each time and directing towards an area based on a mobil-
ity pattern detailed in the corresponding scenario. The users stay in each area
from few minutes to hours and their walking speed ranges between 0.5 and 1.5
m/sec. Our next step is to use alternative mobility traces from the CRAWDAD
database [1] in order to validate the general applicability of our proposal. A real
deployment is in our plans as well.

We grouped our experiments into three distinct scenarios, demonstrating
the efficiency of the proposed semi-Markov model, assuming corresponding user
mobility behavior in the city center:

– A ”Home-to-work” scenario, where a mobile node walks occasionally between
home, work and the main city square. There is a 33% probability of the user
to be in one of these three areas.

– A ”Walking around the city” scenario, where the mobile node occasionally
selects one of twelve different areas in the city center as the next visiting
area, with equal probability.

– A ”Going out” scenario, where the mobile node has a high probability (33%)
to be in the main square (assuming it as a meeting point) and an equal
probability for each of the other eleven areas.

For the above scenarios, we show how the proposed equations can be used
as prediction mechanisms for a number of different mobility aspects and how
different mobility patterns can be detected and exploited by a communication
protocol.



Fig. 1. The experimental scenario

4.2 Evaluation Results

Scenario 1: ”Home-to-Work” In figures 2(a), 2(b) we show the equations hi
and hi,j , respectively. Both metrics reflect the probabilities of a mobile to move
to the next area, at given time slots. In the case of figure 2(b), the destination
area does not matter, as long as we have a state change. It takes some time (i.e.,
more than 50 secs) for the mobile to change state, a value that is a factor of the
movement speed and the distance between the three areas. In figure 2(a), we
show the probability of a mobile to move to one of the three areas (i.e., home,
work or main square), when it is located at an area without connectivity (i.e.,
area 13). The three h probabilities (i.e., h13,1, h13,3 and h13,9) have often similar
values, something not surprising given the experimental setup parameters. This
behavior leads to reduced communication overhead of the forecasting request
interactions between mobiles and infrastructure: an average value suffices.

The w metric (figure 2(c)) reflects the probability of a user who made a
transition to an area, to reach to the next area after at least n time slots. In this
case, there is a very low probability for a state change, if the mobile stays at a
particular area for more than 600 secs. The w13(n) value is indeed interesting,
since it represents the probability of a mobile node being at an area without
connectivity, to move to an area with connectivity in less than n minutes. In
this example, there is an insignificant chance of a connectivity time that exceeds
200 secs. Of course, this result is guided by the experimental setup parameters.

Equation q, shown in figure 2(d), reflects the probability of a node being at
an area without connectivity to move to an area with connectivity at some given
time, but without considering the number of areas crossed. We see that after
some time, i.e., 200-300 secs, the probabilities to move to one of the three areas
with connectivity, tend to converge to fixed values. Curve q13,13(n) shows the
probability of a mobile being at an area without Internet connectivity to visit
an area covered by a hotspot, stay for a while and then leave the hotspot again.
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Fig. 2. ”Home-to-work” and ”Walking around the city” scenarios results



Scenario 2: ”Walking Around the City” Compared with scenario 1, the h
values have an equivalent behavior (see figures 2(e), 2(f)) because the transition
probabilities of state changes in the two scenarios are similar. The main difference
lies in the number of states (i.e., 12 areas for scenario two and 3 areas for scenario
one). In figures 2(e), 2(f), we depict three states only, for clarity and comparison
purposes (i.e., between the three scenarios). We note that the h values reflect
changes between state 13 (i.e., area without connectivity) and any other available
state. This happens because we assume that available hotspots do not have
overlaps and have uncovered areas between them. State changes are associated
with the parameters of our system, i.e., waiting time at each state. In our case,
it is a random value picked from a uniform distribution in the range of [0, 120]
seconds.

Of course, the topological properties of the system (i.e., locations and dis-
tances between the hotspots) do matter and impact the state change probabilities
between the different areas within the same scenario. This is reflected on the w
values (i.e., figure 2(g)) and the q values (i.e., figure 2(h)). After some time, the
different q values converge to fixed values.

Scenario 3: ”Going out” Through the h metrics (i.e., figures 3(a), 3(b)), we
see a notable difference compared with the previous two scenarios. The h values
for area 1 (the main square of the city, the Aristotle Square) are significantly
lower. In this scenario, state 1 has been chosen with a probability 0.33. So,
there is a high probability for a node to remain at the main square (i.e., same
destination state to the source state). This is a pattern that could potentially be
detected (i.e., hotspots that have a high probability to host mobile users). The
same is reflected in a number of other metrics. For example, the w1(n), q13,1(n)
values are significantly higher than other q, w values, respectively (see figures
3(c), 3(d)).

To summarize, the proposed model allows detection of certain patterns re-
garding the spatial behavior of the users. Some examples are:

– How probable is a state change between two particular states in a single step
(i.e., hi,k values) or in many steps (i.e., qi,k values).

– What is the probability of a state transition from some given state to any
other target state (i.e., hi and wi values).

– Whether some states have a significantly higher probability to be reached
(i.e., qi,k, or wi or h values).

5 Conclusions

In this paper, we detailed a communication paradigm where infrastructure and
opportunistic networks can efficiently inter-operate. We argue that:

– Opportunistic networks can bridge distant infrastructure networks (i.e., in
areas without connectivity) using sophisticated routing protocols capable of
detecting and exploiting user mobility patterns.



– Infrastructure nodes can support opportunistic communication with mech-
anisms that: (i) detect system - wide mobility patterns, and (ii) perform
resource - expensive forecasting calculations for the benefit of the mobile
devices.

We introduced a semi-Markov model and detailed a number of equations able
to predict different aspects of user mobility behavior. This work focuses on the
infrastructure being able to support a variety of network protocols exploiting
communication opportunities using a number of accurate user- and system-level
forecasts. Our approach allows for more complete and complex mobility models
that would be difficult to integrate in a homogeneous network setting. A sophis-
ticated protocol design exploiting the potential of the proposed infrastructure is
in our short-term plans.
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Fig. 3. ”Going out” scenario results
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