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On the Motion of a Liquid Ellipsoid under the Influence of its own
Attraction. BY A. B. BASSET.

[Bead June 10*,"*, 1886.]

1. In the ninth volume of the Abhandlungen der Kb'niglichen Gesell-
schaft der Wissenschaften zu Gottinyen, Rieinann has obtained equations
for determining the motion of a mass of liquid, which rotates under
the influence of its own attraction, in such a manner that its bound-
ing surface always remains an ellipsoid with variable axes.

The motion of the liquid is supposed to be rotational, but the
molecular rotation is assumed to be independent of the positions of
individual particles of liquid, and the consequence of this assumption
is, that the velocities at any point of the liquid are linear functions of
the coordinates of that point. As regards their form, Riemann's
equations leave nothing to be desired; but as the analysis by which
he obtains them is somewhat complicated and difficult to follow, I
propose in the-present communication to deduce these equations by
the dynamical method which Professor Greenhill has employed in his
papers in the Proceedings of the Cambridge Philosoph ical Society (Vol.
iv., pages 4 and 208), for dealing with the question of the steady
motion of an ellipsoidal mass of liquid. It will be seen that the
application of this method to the general case in which the axes are
functions of the time, involves nothing more than the addition of the
terms ax/a, by/b, cz/c to the expressions for the component
velocities obtained by Professor Grreenhill; and also that, in differenti-
ating with respect to the time, the axes of the ellipsoid must be
regarded as functions of the time.

2. The motion of the liquid, as Professor Greenhill has pointed out,
may be supposed to be generated by the two following operations,
which are supposed to take place instantaneously one after the other.

1st, Let an ellipsoidal case, whose axes are a, b} c, bo filled with liquid
which is frozen, and then set in rotation with component angular
velocities £, J/, £ about the principal axes.

2ndly, Let the liquid be melted, and additional angular velocities
fij, O2, £23 be impressed on the case.

If the axes vary with the time, we require the following third
operation:—

Let the case be removed, and by means of a suitable impulsive
pressure applied to the bounding surface, let the axes be made to
vary with velocities a, b, c.
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Let x, y, z be the coordinates of a pai'ticle of liquid referred to the
principal axes; u} v, w the component velocities of the particle; and
U, V, W the component velocities relative to the axes; also let
uv wa, w8 be the angular velocities of the axes, so that

The boundary condition is

% n g g (i),at ax ay

where F= (a5/a)8+(y/Z>)a+(s/c)2-l = 0,

and V — u + (i)sy— o>2)s, &c, &c.

Equation (1) can be satisfied by assuming

v = Z2a5+wa y + 11.^,

w =

where 1^, mu &c, are independent of x, y, and z. Substituting in (1),
and equating coefficients of powers and products of x, y, z to zero, we
obtain

Zj = a I a, m2 = b/b, «8 = c/c,

(«2 +
 wi) o3+ ( w 8 - w j i8 = 0,

(Z3 + w2) a
i+(nJ — w2) c

2 = 0,

But, from the mode of generation, £, JJ, t, are independent of x, y, and s;

therefore 2^ = w3—n2, 2J? = Wj—Z3, 2C = k~ mv

Hence the nine coefficients are completely determined, and we shall
finally obtain

a aa + 6a

with symmetrical expressions for v and w.
These values of u, v, and w obviously satisfy the equation of con-

tinuity, since on account of the constancy of volume

c = 0.
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The general equations for the pressure referred to moving axes are*

1 dp -V , du , , TTdu . Trdu.fTrdu _ n ,Q^
— -f—X+ — —uws + «;w2+£/ — + K — + W — = 0 .......(3),
p dx dt dx dy dz

&c. &c,

and by eliminating the pressure and potential, the equations for mole-
cular rotation are found to be

f ^a+^+uf+rf+w§ = ^+,,^+sp w,
dt dx dy . dz dx dy dz

&c. &c.
Substituting the values of w, v, and w, from (2) in (4), wo shall ob-

tain £ ( M - - | ^O 3 (A) + _ 2 ^ « 3 ( I ) = 0 . . . - (5),
d t \ a l a? + b* 3 \ Z > / c 2 + a 2 3 \ c / w >

&c. &c.

If hi, hv h3 be the components of angular momentum, then

&c. &c.

^ 3w2 = 0 (7),

where M is the mass of the liquid.

In ordor to facilitate the calculation, Ricmann introduces six new
quantities u, v, w, w', v, w\ such that

to + iv' = o»3 )

, 2a6,O ( C8)-
W + cl c* + a' a? + b2 J

* Equation (3) maybe shortly proved by remembering that X -^ = the
p <£.£

acceleration of a particle of liquid parallel to the axis of x. Now, if u + du be the
velocity at tirao t + St parallel to the new position of the axis of .r, of the particlo
whose coordinates at timo t are x, y, z, then, since

u =f(x, y, z, t), u + Su =/(.!-•+ V8t,y+ VSt, z+ Wtt, t + tit),

therefore sJl = dll.+ U
dJl+ V ^ + W ?u-,

St dt dx dy dz

and tho acceleration = — — vu3 + ww.2.
St
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(9).

Whence « = (& + c ) V - ( & - c ) ^ & c &c

2b c

c)a«], &c. &c.

Substituting these values of £, >/, K and hv hif hs in (5) and (7), and
then multiplying (5) by 2Mahc/5 and adding to (7), we obtain

Similai'ly, by subtraction, we obtain

( l c ) + 2 « ( l

Four other equations can respectively be written down by symmetry,
and we thus obtain six equations of motion. The three remaining
equations can be obtained as follows. The potential of the liquid at
an internal point is

V - \ (4OJ2 + By*

where H = f [ y (

and A = 3—, &c, &c.
a da

Now, Mr. H. W. G. Mackenzie has shown very shortly, at the end
of Prof. Grcenhill's first paper, that the equations determining the
pressure may be reduced to the form

p dy

p ciz

whero a, /3, and y are quantities independent of x, y, and z, and which
will be hereafter determined. Integrating, we obtain

{( ) ( ) 2 / ( ) } = 0 (12).

Since the external surface is the ellipsoid (it)/a)3 + (2//6)a + (i3/c)s = 1,

we must have (A + a) aa = (J3+/3) 6a = (G + y) c9 = 2a (13),

whero a is a function of the time.
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Hence (12) may be written

P — A. a (i a ) 2 _ ]£_ _ ^ \ n -4A
p p \ a* 6* c* /

In order that the external surface may bo a free surface, it is
necessary that vr should vanish, and consequently a must never
become negative.

Returning to equation (3), we sec that a is the coefficient of x in
the expression for the component acceleration parallel to to of a liquid
particle, and therefore

ji / a \ w-\-w'

= — 7-5 (a—b) w— — (a + 6)w2 ( a - c ) uJ

a at a a a a
Whence, by (13),

a z
(15).

Two other symmetrical equations can be obtained; hence, collecting
our results, we have the following ten equations:

jr Aa
~a ~2

a Bb
T ~ ~2~

(T Cc

~c ~"%

(6~c) w + 2tt (6—c) +(6+c-2a) vw + (b+c + 2a) v'w = 0

abc = const.
s2
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These are Riemann's equations of motion. They furnish ten inde-
pendent relations between the ten unknown quantities a, b, c, wx, w3,
w3, £, r), £, and <r, and are therefore sufficient for the solution of the
problem.

3. Three first integrals of the general equations (16) can be at once
obtained. Multiply equations (5) by 4/a, »?/&, £/c respectively, and
add, and we obtain

L

The second integral is

ftJ + ^ + fcJ = const (18),

which expresses the fact that the angular momentum is constant.

The third integral is the equation of energy

T+U = const (19).

o- fff j , j , lid?
Since p I I x ax ay dz = -r—,

and I \\xy dx dy dz = 0,

we obtain, from (2),

~ 1 0 + +

, 4b2cT 4 c W . .
62 + c2 T c 2 + a2 ^

fffNow tf=ip Fdajdyefo*
•J J J

3 3 P r r l aa . y • c2

+ X &2+\ 2 +

where P =

* Maxwell's Electricity, VoL I., Art. 85.
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Integrating the last integral by parts, we obtain

4. Dirichlet's equations for the oscillations of a spheroid may be
deduced by the preceding method.* Let the density of the spheroid
be unity, and let wu w2, £, 17, £lu O2, O3 be each zero; also let a = b,
w3 = £; so that u = w' = £/2.

From the last of equations (5), we obtain

d ( Z\ - o

therefore • — = -0-,
c c0

where the suffixes denote the initial values of the quantities.

Let D3 = a2c, and let us introduce two new variables a and p, such

that a = D'Ja? — c/D;

and p = £/(2TT)» = 4>/co</27r = pon/ao.

From the first and third of equations (16), we obtain

a , 3aa o 3 2fftt2
 A

2 4a -D2 '

u a a

Eliminating a and er, remembering that -4 + (7/2 = 27r, we obtain

(22),

If we put / (a) = I
Jo

ds

* Crelle, Vol. LVIII., p. 209.
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the left-hand side of the last equation can be easily shown to be equal
to 8rf (a). Multiplying by a and integrating, we obtain

(24),

which is the equation of energy.

Equations (22), (23), and (24) are the equations obtained by
Dirichlet.

Solution of the Cubic and Quartic Equations by means of Weier-

strass's Elliptic Functions. By A. G. GREENHILL.

[Bead May 13M, 1886.]

A. Solution of the Cubic Equation.

1. The solution of the cubic equation, when presented in the form

4xs-Sx-T-0,

by means of the trigonometrical circular functions, is well known;
for, putting a> = ny, then

and, comparing this equation with

4 cos8 a — 3 cos a — cos 3a = 0,

we can put y = cos a, and as = n cos a,

Tprovided that n% — \8, and cos 3a = —-;

the other two roots being TOCOS (a =fc -|JT).

Denoting the discriminant /S8—27Tsby A, and the absolute invariant

— by J, according to Klein, then

cos8 3a = —- =
S3 ~ J '

sin8 3a = —, or cosec* 3a = J.
J


