

Introduction

The ​Python in Astronomy workshop took place from April 20​th ​to 24​th 2015 at the Lorentz Center in
Leiden. This aim was to bring together Python developers, users, and educators in Astronomy to
share information about state-of-the art Python Astronomy packages, as well as focus on improving
interoperability between astronomical Python packages, providing training for new contributors,
and developing a common set of educational materials for Python in Astronomy.

In total, 54 participants attended the meeting. The format of the meeting was designed to include
presentations in the mornings, and free-form ​unconference ​sessions in the afternoons. The idea of
the unconference time was to allow participants to propose and vote for sessions during the
workshop itself. Individual unconference sessions were typically 1h long, and there were usually at
least three parallel sessions.

The talks given in the morning sessions have been collected in a ​Github repository (DOI:
http://dx.doi.org/10.5281/zenodo.17666​), and the videos have been posted to the Python in
Astronomy Youtube channel​. The purpose of this document is to complement these resources by
providing proceedings for the various unconference sessions. The tone is deliberately informal, and
we have tried to include information that will be useful for future such events. The main categories
of unconference sessions were tutorials and demos, discussions about future plans for
development of packages, discussions on educational resources, discussions on community
aspects, and finally coding sprints/hacks.

We hope that you find this document useful – please don’t hesitate to get in touch with the
organizers if any information is missing or unclear, or if you are interested in getting involved in
some of the efforts described here!

Many thanks to the Lorentz center for making this meeting possible, and our sponsors (GitHub, LCOGT,
NumFOCUS, and the Python Software Foundation) for providing generous travel support which
allowed us to make sure that no one was unable to attend the meeting for financial reasons.

https://github.com/python-in-astronomy/talk_slides
http://dx.doi.org/10.5281/zenodo.17666
https://www.youtube.com/channel/UCcP2jgY1MR56pjktdc-eNjg/videos
https://www.youtube.com/channel/UCcP2jgY1MR56pjktdc-eNjg/videos

Table of Contents

Introduction
Table of Contents
Tutorials and Demos

Git tutorial (led by Pauline Barmby)
GitHub tutorial (led by Matt Craig)
“My first pull request” (led by Tom Robitaille)
Intermediate git topics (led by Erik Bray)
Intro to Python packaging (led by Erik Bray)
Python packaging and releasing (led by Erik Bray)
Performance tutorial (led by Mike Droettboom)
Getting started with Django (led by Edward Gomez and Mathieu Servillat)
yt tutorial (led by Britton Smith)
Pycharm tutorial (led by Matt Mechtley)
Ginga visualization (led by Eric Jeschke)
Toyz demo (led by Fred Moolekamp)
Monte Carlo sampling methods (led by Joe Zuntz)
PythonTex (led by Stuart Mumford)

Development Discussions
Observatory planning and scheduling (led by Eric Jeschke and others)
Python packages for working with spectra (led by Wolfgang Kerzendorf)
Discussion of astropy.stats (led by Alex Hagen)
Regions and shapes (led by Tom Aldcroft and Perry Greenfield)
FITS alternatives/replacements (led by Mike Droettboom)
Generalized world coordinate systems (led by Nadia Dencheva and James Turner)
Photometry in python (led by Matt Craig)
New reprojection module (led by Tom Robitaille)
Astropy modeling (led by Erik Tollerud and Erik Bray)
Astropy: where next? (led by Tom Robitaille)
Python and galaxies (led by Steve Crawford)
MCMC galfits (led by Matt Mechtley)

Educational Resources
Astro-Python educational resources (led by Kelle Cruz and Pauline Barmby)
Astropy tutorials (led by Kelle Cruz)
astropython.org reboot (led by Tom Aldcroft)
Making documentation easy to write (led by Stuart Mumford)

Community Discussions
Running a local user group (led by Althea Moorhead and Adam Ginsburg)
Credit for software development (led by Erik Tollerud)
Roles/titles org chart (led by Kelle Cruz)
Career tracks discussion (led by Erik Tollerud)
Code of Conduct (led by Kelle Cruz)

Sprints/Hacks
Astroquery hack session (led by Adam Ginsburg)
Ginga collaboration sprint (led by Eric Jeschke)
Interactive bad pixel masking (led by Eric Jeschke)

Tutorials and Demos

Git tutorial (led by Pauline Barmby)

The tutorial went through the basics of using Git on a single computer; we had about 10 people
actively typing along, plus a couple of expert helpers. We followed the ​Software Carpentry lesson
(items 1-5) fairly closely and found that this fit well into a little-more-than-an-hour session.
(Workshop attendees were much more familiar with the command line than the typical Software
Carpentry workshop attendee and that certainly helped speed things up.) We ran into a few glitches
with people having trouble setting their preferred editor with ‘git config’ and getting into ‘detached
HEAD’ state when experimenting with rolling back changes, but neither was fatal; everyone seemed
to be comfortable with the basic ideas by the end.

GitHub tutorial (led by Matt Craig)

In this tutorial participants forked a “toy” repository on GitHub that was based on the example
repository used in the Git tutorial preceding it. Each participant cloned their fork to their local
machine, made a new branch, edited a file on the branch, pushed that branch to GitHub, and
opened a pull request for their changes against the original repository. The distinction between
branches and forks caused quite a bit of confusion; fundamentally a fork is really like a clone, not a
branch. We looked at what a repository owner sees on GitHub when a pull request is made and
discussed how to update a pull request.

“My first pull request” (led by Tom Robitaille)

The aim of this session was to put into practice the skills learned in the previous two tutorials on Git
and GitHub. Experienced developers paired up attendees with existing open issues in various
packages of the Astronomy/Python ecosystem. The following attendees opened pull requests as
part of this session:

● Christine Koepferl: pull request ​#130​ in Hyperion
● Ricarda Beckmann: pull request ​#36​ in the acknowledgment generator
● Althea Moorhead: pull request ​#35​ in the acknowledgment generator
● Alexa Villaume: pull requests ​#255​ and ​#257​ in APLpy
● Haley Gomez: pull request ​#256​ in APLpy
● Pauline Barmby: pull request ​#158​ in WCSAxes
● Jennifer Karr: pull request​ #206​ in ccdproc
● Mathieu Servillat: pull request ​#157​ in WCSAxes

http://swcarpentry.github.io/git-novice/
https://github.com/hyperion-rt/hyperion/pull/130
https://github.com/astrofrog/acknowledgment-generator/pull/36
https://github.com/astrofrog/acknowledgment-generator/pull/35
https://github.com/aplpy/aplpy/pull/255
https://github.com/aplpy/aplpy/pull/257
https://github.com/aplpy/aplpy/pull/256
https://github.com/astrofrog/wcsaxes/pull/158
https://github.com/astropy/ccdproc/pull/206
https://github.com/astrofrog/wcsaxes/pull/157

The most difficult part of introducing people to working on a first pull request is finding ‘easy’ issues
that can be solved relatively quickly, so as to be able to focus on the Git and GitHub workflow rather
than worrying about debugging obscure issues. As part of Astropy, we have defined a set of labels
for issues that can be used across packages, to indicate issues that are suitable for people not
previously familiar with packages, but we had no easy way to search for these issues across many
repositories. Following the workshop, we added links on the ​Astropy website that return a full list of
issues that are suitable for beginners:

In future similar training sessions, we will point attendees to these lists to make it easier to identify
good starting issues.

Intermediate git topics (led by Erik Bray)

Toward the end the ​introductory Git tutorial on Monday there was some discussion of more
intermediate topics that some people wanted to learn more about. In particular, there were a
number of people throughout the week who expressed an interest in learning more about the “git
rebase” command, both what it does and when/why to use it. About ten of us took time for a more
in-depth look at how git branches work, how merging works, and finally how rebase works and how
it is different from normal merging. We used the ​Learn Git Branching tool by Peter Cottle to visualize
a git repository and how merging and rebase change the structure of the repository. There were
also some moments when even Erik was confused, but was able to correct himself – the important
point to come out of that was that although git is not easy, having some idea of how a git repository
works enables one to reason about the various git commands in order to dig one’s self out of holes.

Intro to Python packaging (led by Erik Bray)

Packaging of Python projects is, in the most common cases, not too difficult. However, there
remains a fair amount of confusion surrounding the topic, in large part for historic reasons – the
best practices for Python packaging have changed in fits and spurts, and it’s difficult to keep up and
find current documentation. We looked at some of the history and the overloaded vocabulary that

http://www.astropy.org/contribute.html
http://pcottle.github.com/learnGitBranching/?demo

makes packaging a confusing subject, and tried to cut through it to narrow in on the current best
practices. We also discussed why packaging of Python code can be useful even for personal use,
and is not just for making public code releases. We finished by having everyone create their own
setup.py script for a piece of sample code provided as part of the tutorial. The only major issue to
come up was caused by a typo in one of the slides that lead people to mistype a parameter in their
setup.py scripts. However, the distutils documentation contained the correct spelling and most
people were able to find the fix on their own. Another issue for some people was not having
permissions to install Python packages on their own machines. However, the topic of personal
installation of Python packages (via virtualenv or the like) was beyond the scope of this tutorial.
Because we only got through about half the slides, we had a follow up tutorial described next.

The slides for this and the next tutorial can be found ​here​.

Python packaging and releasing (led by Erik Bray)

This was a followup to the intro to Python packaging. We went through most of the rest of the
prepared slides, including some discussion about how to go about versioning one’s software. We
had to skip a few of the slides on version numbers for time. We then finished by going over how to
create an account on ​PyPI and register and upload one’s package. We used the ​TestPyPI site which
is an exact replica of the real PyPI, but which is wiped clean once a week or so – this is useful both
for practice, and for testing one’s package before uploading it to the real PyPI. Although a few
people had network issues or other problems getting the syntax of the PyPI configuration file just
right, several others managed to upload some amusing practice packages:

This tutorial along with the previous one enabled at least a couple of workshop-goers to upload
their real code to PyPI for the first time as well.

Performance tutorial (led by Mike Droettboom)

This tutorial covered:

https://github.com/embray/pyastro-packaging-tutorial
https://pypi.python.org/pypi
https://testpypi.python.org/pypi

● coverage.py​, which is a tool for measuring code coverage of Python programs (essentially
which lines get executed when tests are executed)

● Profiling, which is the process of determining how much resources different parts of a
program use, such as CPU, memory, etc.. The tools covered include ​time​, ​psrecord​, ​cProfile​,
snakeviz​, ​runsnakerun​, ​kernprof/line_profiler

● Benchmarking over time using ​asv​ (or ‘airspeed velocity’)

Given the time constraints, this was really just a “survey” talk to show what is possible without too
much hands-on following along. We did identify a hole in the Python toolset – a memory profiler
that understands Numpy arrays.

The slides for this tutorial can be found ​here​.

Getting started with Django (led by Edward Gomez and Mathieu Servillat)

In this tutorial, we first created a virtual environment into which to install Django and then followed
the official online tutorial:

https://docs.djangoproject.com/en/1.8/intro/tutorial01/
https://docs.djangoproject.com/en/1.8/intro/tutorial02/

An adapted version of the files in the DjangoProject tutorial are available here:

https://github.com/zemogle/django-pyastro15

One of the main reasons for this session was showing that if you have a project which needs a
simple, powerful way to interact with a database in Python, Django is a good framework. We had
very little time to cover much of the tutorials but by the end of the session everyone had a virtual
environment set up running Django, with a little bit of experience of the built in Admin site.

Like all powerful frameworks, it is highly complex and can be quite daunting for the novice. There is
a large and active developer community who are present and responsive on ​StackOverflow​.

Full notes on this session can be found ​here​.

yt tutorial (led by Britton Smith)

This session was devoted to taking first steps with the yt analysis toolkit. All participants succeeded
in installing yt, mostly with pip and conda with one person using the official yt install script.
Participants tried out some simple analysis on one of the sample datasets available on
http://yt-project.org/data/​. We first made simple plots such as projections and slices. Most
participants were analyzing a simulation of an isolated galaxy. We went through the steps of

http://coverage.readthedocs.org/en/coverage-4.0a5/
https://docs.python.org/2/library/time.html
https://github.com/astrofrog/psrecord
https://docs.python.org/2/library/profile.html
https://jiffyclub.github.io/snakeviz/
http://www.vrplumber.com/programming/runsnakerun/
https://github.com/rkern/line_profiler
http://asv.readthedocs.org/
http://stsdas.stsci.edu/download/mdroe/coverage/index.html
http://pbarmby.github.io/2015/04/21/Python-in-Astronomy-Day-2.html
https://docs.djangoproject.com/en/1.8/intro/tutorial01/
https://docs.djangoproject.com/en/1.8/intro/tutorial02/
http://pbarmby.github.io/2015/04/21/Python-in-Astronomy-Day-2.html
https://github.com/zemogle/django-pyastro15
http://stackoverflow.com/questions/tagged/django
http://pbarmby.github.io/2015/04/21/Python-in-Astronomy-Day-2.html
http://yt-project.org/data/

making a spherical data container, calculating the angular momentum vector, and using that to
create a properly oriented disk data container. Finally, we made two-dimensional profiles of the gas
mass in bins of density and temperature for the disk. We concluded with a discussion of how to use
yt to do exploratory analysis of a simulation whose nature is unknown.

Pycharm tutorial (led by Matt Mechtley)

We went over the basics of ​PyCharm​, which is an integrated development environment (IDE) for
Python, including: creating a new project, setting up its Python interpreter, basics of autocomplete
and code introspection (and how awesome and vital these features are), viewing function
docstrings, git integration, and basics of using the debugger. Matt plans to make a tutorial podcast
covering the same material.

Ginga visualization (led by Eric Jeschke)

Ginga is a Python project that provides a high-performance visualization widget for viewing
scientific images contained in numpy arrays. This unconference session was primarily for people
unfamiliar with the project, or who had specific interests in it. We showed demos of the basic
widget as used in some example programs, a short demonstration of the reference viewer (an
example “full featured” fits viewer that comes bundled with the package) and Q&A from
participants interested in possibly using the widget in their projects or writing a plugin for the
reference viewer.

Toyz demo (led by Fred Moolekamp)

We became the first group of users to attempt to install Toyz on their laptops and discovered a few
bugs in the installation process. We then looked at a demo of different features of Toyz including
features in the image viewer, how to connect to a remote data source and open multiple interactive
plots. We then discussed possible use cases and how Toyz can be customized for individual
analysis. The video demo from the lightning talk is ​here​, and there are Github repos for ​Toyz and
Astro-Toyz​.

Monte Carlo sampling methods (led by Joe Zuntz)

In this session we discussed people’s experiences using a variety of MCMC (and similar) sampling
methods. There’s been wide adoption of these methods across astronomy for constraining the
parameters of models, and an explosion of different approaches and codes.

We started with the fundamentals of MCMC, looking at the Metropolis Hastings algorithm and the
basics of proposals and convergence in single chain methods. I discussed how these samplers are
all collected and given a common interface in the CosmoSIS package, which I also talked about
later in the week.

https://www.jetbrains.com/pycharm/
http://ejeschke.github.io/ginga/
https://www.youtube.com/watch?v=aY-11VcqHGs
https://github.com/fred3m/toyz
https://github.com/fred3m/astro-toyz

We then moved on to more modern sampling methods which are more parallelizable than
Metropolis, like the famed emcee, kombine, and nested sampling in (py)multinest and Kyle
Barbary’s Nestle code. We also learned about the limits of the multinest parallelization, which
apparently can be quite wasteful if used with many samplers.

We ended on the related area of maximum likelihood methods, in which a best-fitting single
parameter set is found instead of a distribution. There was a strong recommendation to use the
Minuit sampler for such problems for its robustness when dealing with numerically difficult
problems.

Full notes for this session can be found ​here​ and a list of links to packages is ​here​.

PythonTex (led by Stuart Mumford)

PythonTex is a LaTeX package that allows Python code entered within a TeX document to be
executed, and the output to be included in the original document. A quick session on PythonTeX
expanded on a lightning talk demo that was given earlier during the workshop, but we ran into a lot
of installation problems. After some research the conclusion reached was that the easiest way to
install PythonTeX is an up-to-date TeXLive installation. The figure helpers Stuart has developed are
available as a Python module ​here​.

https://docs.google.com/document/d/1C35PzVxsip3S4oMy9Ht1ppjlDfScUdz_nBi9_gjRViY/edit
https://github.com/python-in-astronomy/PythonAstronomy_links/
https://github.com/gpoore/pythontex
https://github.com/Cadair/texfigure

Development Discussions

Observatory planning and scheduling (led by Eric Jeschke and others)

This aim of this unconference session was to gather ideas for an observation planning and
scheduling package to be created as an astropy affiliated package. There are two GSoC students
scheduled to work on this and the mentors present (Eric J., Erik T. and Christoph D.) were interested
in gathering ideas from the community. There was an interesting discussion about the different use
cases for telescope scheduling (we heard from LCOGT, SALT and Subaru) including the need for
good performance in calculations since these can make up a significant fraction of the time needed
to schedule. We also created a summary of constraints that are used for different use cases. The
observation planning side of the package should provide convenience classes that make it easy to
produce airmass charts and other common plots and tables that astronomers commonly need
when planning a night, as well as performing simple scheduling to optimize efficiency.

The full notes for this session can be found ​here​.

Python packages for working with spectra (led by Wolfgang Kerzendorf)

We first discussed the packages that are out there and what issues they face when dealing with
spectra. One of the most common issues was the pixel to physical coordinates transformation
(commonly known as WCS, for world coordinate system). The second main issue was that there are
currently no replacements for spectral reductions and that specutils does not currently offer much
in that direction either.

In the end, we decided to split up efforts for spectral analysis and reduction into three branches:
representation and data, reduction, and analysis. Steve Crawford is leading the effort called
specreduce that will use ​specutils for internal objects and will try to recreate some of the IRAF
onedspec and twodspec functionality. For this effort there was a desire for a formal release of
specutils so that people could easily install this with pip (this is now done with the release of
specutils v0.1). Specutils will continue to develop a Spectrum1D object that can hold the necessary
metadata for all the different spectral applications (e.g. uncertainties with Neil Crighton,
rest-frequency with Adam Ginsburg).

Discussion of​ ​astropy.stats (led by Alex Hagen)

We first discussed how the Astropy community wanted to proceed with astropy.stats, and then
discussed some statistical techniques we’d like to see added to the package. This discussion led to
multiple pull requests and more development.

https://docs.google.com/document/d/1Vv1AVOHw0XkpsAICb70b7YSkTKur3Rf5V4_QiEZRn4w/edit
https://github.com/crawfordsm/specreduce
https://github.com/astropy/specutils
http://docs.astropy.org/en/v1.0.2/stats/index.html

Those at the session talked about a bit of the tension with astropy.stats, that is, that many
statistical techniques used by astronomers are not unique to astronomy, and thus some live in
astropy.stats, some in scipy.stats, pandas, and other places. The community consensus was that if
there’s a statistical technique someone in astronomy wants to add, it can be first added to
astropy.stats, and then moved upstream (for example to SciPy) if needed. Astropy is also easier to
commit to than SciPy, and so this approach is welcoming, and allows for the fastest and easiest
way for folks to commit new statistics code. We also discussed how larger packages, such as ​emcee​,
are very useful for some statistical analysis, but anything that large should be an affiliated package
and not in astropy.stats.

We next discussed some good resources and ideas for functions to add to astropy.stats:

Good resources:

● interactive lecture notes: ​https://github.com/dhuppenkothen/ClassicalStatsPython
● Tutorials from astro stats course: ​https://github.com/mwcraig/astropy-tutorials.git

Desired functionality:

● Circular/spherical distributions (+2, at least) (very basic available in scipy.stats.morestats) –
issue in astropy

● Bayesian blocks (pull request ​#3756​ opened in Astropy since the workshop)
● Dealing with correlated errors and covariances – issue ​#3709​ in Astropy
● (Straight) Line fitting with all the different possible error inputs (x,y,correlated,etc) – issue

#3710​ in Astropy
● Tutorials
● information criteria (way to penalize your likelihood as you add more parameters) – pull

request ​#3700​ opened in Astropy
● Poisson error bars (beyond just taking square root) – pull request ​#3717​ opened in Astropy
● Wrappers/translations from stats functions to functions astronomers understand
● Comparisons of N-th dimensional distributions – issue ​#3707​ in Astropy
● Goodness-of-fit measures (overlaps with modeling in astropy, e.g. bootstrap/jackknife test)

– issue ​#3708​ in Astropy
● Tools for working with cash statistics – issue ​#3711​ in Astropy
● More robust image statistics (or at least a tutorial/improved documentation)

This discussion prompted multiple astropy issues and pull requests, and thus astropy.stats should
have significant additional functionality and techniques very soon.

Regions and shapes (led by Tom Aldcroft and Perry Greenfield)

There was discussion about the various facets of the issue of dealing with regions on the sky. In the
end these facets appeared to fall in one of the following categories:

http://dan.iel.fm/emcee/current/
https://github.com/dhuppenkothen/ClassicalStatsPython
https://github.com/mwcraig/astropy-tutorials.git
https://github.com/astropy/astropy/pull/3756
https://github.com/astropy/astropy/issues/3709
https://github.com/astropy/astropy/issues/3710
https://github.com/astropy/astropy/pull/3700
https://github.com/astropy/astropy/pull/3717
https://github.com/astropy/astropy/issues/3707
https://github.com/astropy/astropy/issues/3708
https://github.com/astropy/astropy/issues/3711
https://t.co/ZWpbxbV39P

1) being able to read and write existing disk formats or serializations for region definitions.
2) representing all the necessary information about regions in python objects (to some extent, this
is a union of all the use case needs)
3) determining what operations should be possible on regions.

One issue was determining whether all could be done by the same package. To alleviate stress from
the suspense of waiting, the short answer is that it doesn’t appear that 3) can be well handled by
one package. The reason is essentially set by the somewhat different goals used for regions. Two
major use cases are:

1. Aperture photometry or other similar extraction needs. Typically these involve
comparatively small areas and often rely on simple shapes (circles, rectangles, ellipses and
annuli thereof). Very often the location of the center is given in world coordinates (though it
doesn’t have to be), but the computation of what pixels are involved is almost always done
in cartesian pixel coordinates. Speed is essential since this kind of masking or extraction
may be done on thousands of areas.

2. Determination of the boundaries of larger areas on the sky, e.g., footprints and similar. In

this case the drawbacks of using cartesian coordinate assumptions are often significant,
and it often best to do such computations in an intrinsically spherical coordinate system
that are not subject to the problems presented by the poles of the celestial coordinate
system used. But unfortunately, doing this way is much slower and does not lend itself to
the needs of aperture photometry.

The following covers in more detail some of the topics discussed under the first three categories:

1. Dealing with various formats. DS9 region files are probably the most common, but not the
only format available. Other cases included VO region definitions (it’s unclear how widely
this used, but apparently Aladin uses it). CASA has its own region format as does CIAO.
There is often associated metadata for regions such as labels, coordinate system, etc, that
needs to be retained.

2. Generic python objects. The need for two different computational approaches suggests that

two different kinds of objects are needed, but it is quite likely they can inherit from a base
class that supports common operations for both (e.g., is a point inside a region is useful in
both cases)

3. Supported operations. For aperture photometry, the need is mostly to determine which

pixels are within the specified region. This is essentially a mask generation operation. The
question was raised as to whether only binary masks were needed or was dealing with
fractional pixels needed as well. Answer: fractional pixels perhaps eventually, but probably
not initially. There may need to be a few different options for determining pixel

membership. Some did indicate that being able to perform union and intersection of
regions for aperture photometry would be useful in some cases, but generally only very
simple cases would be needed (and perhaps could be satisfied by a bit more complex
shapes, i.e.., fractional circles and annuli).

For footprints, besides membership, the determination of more complex footprints from the
combination of simpler ones is required. This can result in multiple disconnected regions so this
case must be handled.

Existing software:

All of the following handle regions in some way:

● DS9
● Ginga *
● photutils *
● SDSS mangle
● funtools
● pyregion *
● IRAF X-ray package
● CASA
● CIAO
● shapely *
● spherical-geometry *

Those marked with * are easily used by Python. It was mentioned that pyregion parses DS9 region
files quite slowly and this probably needs to be improved. It is quite possible that the best solution
to this is to use the most appropriate parts of pyregion, ginga, shapely, photutils and
spherical-geometry, but that needs some investigation. The work can be partitioned somewhat into
the I/O aspect, base class design, and the specialized classes. There was hope that at least a
tentative API could be defined by the end of the workshop. Some discussions continued after the
workshop and resulted in the creation of a ​package to experiment with an API that covers all use
cases.

FITS alternatives/replacements (led by Mike Droettboom)

The basic outline of the new file format being developed at STScI, ​Advanced Scientific Data Format
(ASDF) was shared. Many of the questions from the audience involved whether certain uses cases
were met by the new format, mostly in the positive. There was a core contingent of participants
who are currently using HDF5 for reasons of performance whose needs may not be met by ASDF. It
is unclear if these can be resolved, since the primary concerns of ASDF – transparency and
expressiveness – may be at odds with those of HDF5 – flexibility and performance. A later offline

https://github.com/astropy/regions
http://asdf-standard.readthedocs.org/

investigation was performed to see if ASDF’s structures could be represented directly in HDF5 which
turned out to be not terribly promising.

The full notes for this session can be found ​here​.

Generalized world coordinate systems (led by Nadia Dencheva and James Turner)

In this session we described the ​GWCS (Generalized World Coordinate System) package, developed
at STScI. Nadia explained a bit how the transforms and co-ordinate frames are used and chained
together and some recent changes in the modelling syntax etc. There was a discussion of use cases
and a request to work out and add a couple of examples to the documentation:

1. Given two images, one with known WCS and one with incorrect or unknown WCS, create a
valid WCS for the second one by fitting (x, y) positions in it to (ra, dec) in the first one.

2. Given a WCS with mixed axes, e.g. (RA, Lambda, DEC) make sure the inverse works correctly

on WCS.invert(SkyCoord, Spectral) input.

There was also a discussion of how to use GWCS with FITS files and FITS WCS. We decided to use
astropy.wcs to read the FITS WCS from the header and use the all_pix2world() and similar methods
as forward and inverse transformations in GWCS. There's a PR for this ​here​. Work on GWCS
serialization is still in progress, as the intent is to build on the work done for ASDF but at the
moment Nadia is still using a placeholder JSON serialization.

In a related session we discussed the coordinate frames in GWCS. We decided that

● gwcs.coordinate_frames will be renamed to gwcs.axes with CelestialAxes, SpectralAxes and
so on. They will be informational containers. SpectralAxes will hold a reference to the
associated CelestialAxes.reference_frame to facilitate changing reference position when the
SpectralAxes is of type Velocity.

● All conversions between standard systems will be done in astropy.coordinates.

There was general enthusiasm to get started using GWCS, eg. in specutils, and Mike Droettboom
already has a hack to integrate it with Matplotlib.

During the week James Turner additionally started hacking out a simple example of CCD
mosaicking with GWCS and ndimage. Due to performance optimizations without which the code is
unusable, it’s currently a bit too convoluted to go in the main documentation. In the process it was
noted that the order of the axis mappings between GWCS & ndimage can get a bit confusing.

The full notes for this session can be found ​here​.

http://pbarmby.github.io/2015/04/21/Python-in-Astronomy-Day-2.html
https://github.com/spacetelescope/gwcs
https://github.com/spacetelescope/gwcs/pull/10
http://pbarmby.github.io/2015/04/21/Python-in-Astronomy-Day-2.html

Photometry in python (led by Matt Craig)

There are currently (at least) two python-based photometry packages: ​photutils​, an
astropy-affiliated package which implements some of the photometry functionality of IRAF, and
SEP​, a python wrapper around the internals of the Source Extractor.

Photutils implements daofind-like source detection, aperture photometry, and image
segmentation. Although rudimentary PSF photometry is included it needs additional work. SEP is
does exactly what Source Extractor does: background generation, source detection and aperture
photometry with some source deblending, all of it very fast.

Participants agreed that PSF photometry, local background subtraction in aperture photometry,
source deblending and the addition of convenience functions (analogous to apphot) are the top
priorities for future development. Development of SEP as a separate package will be frozen, with a
slow integration of SEP into photutils as an option for performing the photometry at a low-level. A
higher-level interface to SEP needs to be added to photutils; Matt Craig and Kyle Barbary agreed to
work on this. Curtis McCully and Christoph Deil agreed to work on PSF photometry in photutils.

Existing comparisons between photutils, SEP and SExtractor need to be highlighted on the Web
site, and additional comparisons, to, e.g. IRAF, should be added and perhaps eventually developed
into a paper.

Photutils and SEP should be better advertised. Jennifer Karr and Brigitta Sipocz will work on
tutorials for photutils for inclusion in astropy-tutorials.

Two other unconference sessions covered topics very relevant to this one: ​astropy modeling and
MCMC galfits​. See the latter for a link to the google group created to discuss galaxy fitting.

The full notes for this session can be found ​here​, and the Twitter hashtag was #pyastrophot.

New reprojection module (led by Tom Robitaille)

The ​reproject package is a proposed Astropy affiliated package that aims to deal with many
different kinds of image reprojection, where reprojection means that we want to transform data in
a given world coordinate system and projection into a different world coordinate system (e.g. what
Montage, SWARP, and drizzle do). We brainstormed on use cases that should be covered by this
module, which are reprojection of:

● Celestial 2-d image
● Non-celestial 2-d image
● N-dimensional cube with celestial axes
● N-dimensional cubes with no celestial axes

https://github.com/astropy/photutils
https://github.com/kbarbary/sep
https://docs.google.com/document/d/1EpC1Lhy3q-NfSNWPLkerfBWcugFQCBNEJat6IA5k-6k/edit?pli=1
https://github.com/astrofrog/reproject

● HEALPIX data
● X-ray event lists

In addition, we discussed the algorithms that are or should be available:

● Interpolation
● Flux-conserving Montage algorithm
● Drizzle

A few people started to sprint on various aspects, including testing out the package and identifying
things that do not work correctly, Later in the workshop, there were discussions of how we can
build a mosaicking engine around the reproject functionality (including determining optimal
headers for mosaicking, and co-adding the images). A few weeks after the workshop, the first
version (v0.1) was released on PyPI.

Astropy modeling (led by Erik Tollerud and Erik Bray)

There was both some confusion about what the astropy.modeling package is for (from those who
haven’t used it much) and interest by those who have used, or at least looked at it in discussing
what directions it should go in. It was apparent shortly into the discussion that we should have had
a prior tutorial (pun unintended) to explain and demonstrate the existing capabilities of the
package. Those of us who work on it or have used it tried to summarize, by explaining that it is
really two things: A framework for describing manipulating mathematical models in an
object-oriented fashion in Python. The common interface between these models then enables
writing tools that work on generic models. The other aspect of the astropy.modeling package is a
collection of “fitters” for fitting models to data–demonstrating, in principle, how the model
interface makes the process of defining models independent of individual fitting algorithms or
other statistical analyses.

One concern that was immediately raised by Christoph Deil, and possibly others, is that is vague
what is meant by “fitter” in this context. We explained that a fitter in astropy.modeling can consist
of both an optimization algorithm and a statistic function to optimize. Christoph raised the point
that the fitting process should include determination of goodness of fit, and that there should be a
place for that in the fitting framework. This was uncontroversial, though the details were not
hashed out.

Also of interest was that many of the attendees were interested in Bayesian analysis–in their words
the current capabilities of the astropy.modeling fitting framework only allow “traditional”
frequentist techniques–maximum likelihood estimation. We discussed what would be needed to
enable integration of Bayesian fitting techniques, and agreed that the most critical missing feature
was the ability to assign priors to all the parameters on a model. This wasn’t discussed in detail, but
presumably priors could be assigned either as some (normalized) array from an external source, or
in principle as some distribution which would itself be described by astropy.modeling Model object

with its own hyperparameters. There should be no huge technical barriers to integrating this into
the modeling framework. The only major barrier is that no one currently active in development has
expertise in Bayesian analysis, so some further community involvement would be desirable to get
this work done.

The third major topic was how astropy.modeling should interact with (or if it should even be
replaced by) the modeling and fitting package Sherpa, which was originally developed as part of
Chandra’s software suite, but has recently been made available under an open source license. In
fact, much of astropy.modeling’s early design was inspired by Sherpa. It was the opinion of Tom
Aldcroft, who had the most experience in the room with Sherpa, that its model definition
framework may be less flexible than Astropy’s for integrating with other fitting code–that it is too
tightly coupled to Sherpa’s optimizers to be as “generically” useful as Astropy models. However,
there are many useful models in Sherpa that should be made available in Astropy, and it is also
possible to adapt arbitrary Astropy models to Sherpa via Sherpa’s custom model interface. We
decided found that there are many useful features in Sherpa’s optimizers that could be made
available through astropy.modeling, with Sherpa as an optional dependency.

We also discussed several other statistical fitting packages such as PyMC, PyMultinest, jbopt, and
possibly others. The overall summary to this discussion was that astropy.modeling should best be
viewed as a “glue” between various disparate optimization packages and routines, enabling a
common interface between them (while still allowing access to the low-level details of individual
codes). A few other desired features for astropy.modeling were raised, including end-to-end
handling of errors, and support for units, but we did not have time to go into detail on the specifics
of those features, except to say that Erik Bray is working on an initial prototype of units support.

Astropy: where next? (led by Tom Robitaille)

In this session, which included both users and developers, we brainstormed on future
improvements and features for the core Astropy package. Ideas raised during this session include:

● An easier (one-line) way to match/merge catalogs. Matching two catalogs is already
possible, but takes several lines of code, and given that this is a common use-case, several
users and developers agreed that having a one-line way to do this would be much better. A
working group consisting of Geert Barentsen, Becky Smethurst, and Christoph Deil was
formed to work on a possible API and implementation.

● A way to register images - that is, if an image has WCS information and another has
incorrect or missing WCS information, we should have a way to fit the correct WCS to the
second image so as to then be able to align the images later. The ​reproject affiliated
package is able to reproject two images with different WCS to a common WCS assuming the
WCS is valid for both images, but we are missing the ability to fit WCS to images in the first
place. This will be made much easier with the new generalized world coordinate system
(GWCS) framework being developed by Nadia Dencheva and others at STScI, so we agreed

https://github.com/astrofrog/reproject

that getting GWCS in Astropy 1.1 would be ideal. Matt Mechtley and Tom Robitaille can look
into this with help from STScI.

● Improvements to performance in several places, and in particular table I/O and
manipulation for large files. Since every issue may be different, users who run into
performance limitations should open dedicated issues on GitHub, outline their use cases,
and provide example files and code.

● Several users also requested the ability to be able to interface to databases (e.g. SQL) from
the Table class. There are two levels of interfacing here - one is to simply be able to read and
write from databases (as was possible in ​ATpy​, but this code has not been ported to
Astropy), and the other is to actually make Table objects a ‘live’ view of the database. The
latter will likely be complicated to implement, but the former should be feasible (either
using code from ATpy or using pandas or sqlalchemy). A working group was formed,
consisting of Geert Barentsen, Carolin Villforth, Joe Zuntz, Tom Aldcroft, and Tom Robitaille.

Python and galaxies (led by Steve Crawford)

Through the conference, a number of packages related to galaxies were presented including ​yt
(interface for galaxy simulations), ​barak (fitting absorption line profiles), and ​starpy (determination
of star formation histories of galaxies using MCMC techniques). During this ​session​, we presented
other packages that we are using, tools that we have developed, and brainstormed what further
tools we would find useful.

Much of the discussion revolved around tools for performing analysis of galaxy profiles. This
included different ways of fitting galaxies (see Matt Mechtley’s discussion of MCMC fitting below),
wrappers for existing tools (Alex Hagen’s ​galfit python parser​, Kyle Barbary’s source extraction
and photometry library ​SEP​), and existing codes still in development (Benne Holwerda’s
morphometric software for quantitative morphologic measurements, Pauline Barmby’s ​imagecube
for matching images across different wavebands). One thing that generated the most interest from
people were interactive tools to be used to improve galaxy photometric and kinematic fitting,
where a user can create custom masks for the data (see Eric Jeschke ‘​interactive bad pixel
masking’ hack session).

In addition we also discussed ways to bridge the gap between observers and theorists using yt. For
the most part, the observers were interested in ways to extract simulated observations from the
models (HI or CO maps, realistic spectra, data cubes, or images). Additional feature requests
included easy ways to find sources in the simulations that matched an observed object and
possible integration into galaxy zoo projects.

The full notes for this session can be found ​here​.

http://atpy.readthedocs.org/en/latest/
http://yt-project.org/
http://nhmc.github.io/Barak/
https://github.com/rjsmethurst/starpy
https://github.com/astronomeralex/galfit-python-parser
https://github.com/kbarbary/sep
https://github.com/sophiathl/imagecube
https://docs.google.com/document/d/1lU6Qxd8AXYQaYTuejPyCfDJRPCTV6xB0X-C6nVBu_sY/edit

MCMC galfits (led by Matt Mechtley)

There are many disparate packages right now trying to do the same thing: 2D surface brightness
modeling (like Galfit) but with MCMC sampling. We discussed how we might better combine efforts
rather than everyone rolling their own. There are several parts to the problem (creating the SB
models, PSF convolution, hooks for the various MCMC samplers, analysis after sampling is
complete), but we discussed how we might be able to move much of this to astropy.modeling (SB
models) and photutils (PSF/convolution). We created a ​Google group for further discussion and
planning.

https://groups.google.com/forum/#!forum/astropy-galfitting

Educational Resources

Astro-Python educational resources (led by Kelle Cruz and Pauline Barmby)

There were two major threads in this discussion: how to format new educational material, and how
to make existing material more discoverable and shareable. For new material, both
Jupyter notebooks and GitHub repositories (Software Carpentry has a ​template​) are both good
options. For discovering existing materials, it would be ideal to have a database of links plus
suggested curricula for different needs (few-day workshops, week-long summer schools,
full-semester courses) and levels. The ​Open Astrophysics Bookshelf approach is one possible way to
go with this.

Major outcomes:

● started a ​Google group​ for discussions
● also started compiling resources on an ​AstroBetter wiki

The full notes for this session can be found ​here​.

Astropy tutorials (led by Kelle Cruz)

astropy-tutorials is a repository of tutorials which demonstrate the functionality of both Python and
and the astro-specific packages. The rendered tutorials are visible at​ http://tutorials.astropy.org
and the github repository is​ https://github.com/astropy/astropy-tutorials.

To suggest/request a new tutorials, please make a new issue or comment on an existing one:
https://github.com/astropy/astropy-tutorials/issues

The discussion and work on new tutorials began in the unconference session, but work was done
over several days. One new tutorial was contributed and two were started:

● Cosmology and plot with redshift and universe age axis
● Photutils
● ccdproc

Based on these interactions, more guidelines to authors ​were added​ to the Contributing document.

The full notes for this session can be found ​here​.

https://github.com/jupyter/notebook
https://github.com/swcarpentry/lesson-template
https://github.com/Open-Astrophysics-Bookshelf
https://groups.google.com/forum/#!forum/astro-comp-ed
http://www.astrobetter.com/wiki/astro-comp-ed
https://docs.google.com/document/d/16C2zZ96A8pX6f_-cRyIPjW7MfGwH7B9J7CX9pO6fCwk/edit
https://docs.google.com/document/d/16C2zZ96A8pX6f_-cRyIPjW7MfGwH7B9J7CX9pO6fCwk/edit
http://tutorials.astropy.org/
https://github.com/astropy/astropy-tutorials
https://github.com/astropy/astropy-tutorials
https://github.com/astropy/astropy-tutorials/issues
https://github.com/astropy/astropy-tutorials/issues
https://github.com/astropy/astropy-tutorials/pull/85
https://github.com/astropy/astropy-tutorials/issues/88
https://github.com/astropy/astropy-tutorials/issues/87
https://github.com/astropy/astropy-tutorials/pull/86
https://t.co/wc0Yfkyd55

astropython.org reboot (led by Tom Aldcroft)

The astropython.org site was launched 5 years ago with the goal of becoming the main community
portal for Python in Astronomy. In one sense it has been successful because the site is one of the
top two generic informational / resource sites about Python in astronomy. But in another way it has
fallen short because there is little community involvement.

This site uses Google App Engine and is basically all custom code built around the bloggart engine.
Issues with the site include:

● Guest posting is very difficult.
● Even for current owners, adding content is unpleasant.
● The comment system is lacking (no feedback to comment authors etc).
● The website code itself is convoluted and difficult to maintain / improve.

The plan is to start over with Django and modern web tools to bring fresh energy and community
involvement into this project. This will be done by an Astropy Google Summer of Code student, with
Tom Aldcroft as primary mentor. The most important difference will be that any authenticated user
(google, facebook, twitter) will be able to post (with moderation as needed). A key goal will be
retaining high signal to noise in terms of content.

During the unconference session we brainstormed ideas for reorganizing and renaming the
top-level content and settled on:

● Forum (News, community, opinion)
● Packages and tools
● Teach and learn (tutorials, education resources, code snippets)

In addition to discovery via content tagging, we talked about dividing content (especially packages)
by a few predefined categories.

We decided that a markdown based system for content input would be the baseline, with a
preference for github-flavored markdown. Other suggestions in included having topic upvotes,
auto-tweeting, and email group subscriptions.

Making documentation easy to write (led by Stuart Mumford)

The discussion focused on the challenges faced by new users when writing documentation,
specifically with the sphinx package. We spent a long time explaining the architecture of sphinx and
how it leads to some complex error messages, however, as we discussed sphinx is a very powerful
package and is easy to use, when it works.

The main conclusion from the session was that the Astropy docs on ​writing documentation are very
comprehensive, but not widely known. There should also be an effort to expand the documentation
on common errors, or methods for debugging problems.

The full notes for this session can be found ​here​.

http://docs.astropy.org/en/stable/development/docguide.html
https://docs.google.com/document/d/1W9H9Lof02AdLN3cSRuz1bo0e89m9AoUcQJ7TCBLaP3Q/edit?pli=1

Community Discussions

Running a local user group (led by Althea Moorhead and Adam Ginsburg)

We discussed issues faced by groups trying to arrange weekly (or otherwise regular) meetings of
python / coding enthusiasts at science institutes. Many groups (CfA, ESO, NASA Marshall) started
with initial enthusiasm but ran out of steam after a few meetings. By contrast, the hackNY group
has weekly 3 hour-1 day “meetings” of grad students teaching and advising each other; this group
apparently faces no problems of participation or interest.

One solution is the ​newly created e-mail list to provide fresh material for discussion each week. The
updated ​http://astropython.org site is also expected to provide a partial solution by providing lists
of new packages and important updates to major packages that can provide a starting point for
discussion.

The full notes for this session can be found ​ here​.

Credit for software development (led by Erik Tollerud)

This discussion was about trying to determine what steps should be taken to try to improve how
credit is given for software work in astronomy. The discussion was focused particularly for projects
like Astropy or affiliated packages, where many of the contributors are on traditional academic
research tracks where committees often don’t consider software work as “real” work.

There was a fair amount of discussion and exploration of tools for making metrics to measure
software contribution that might be useful for inclusion on a CV or even used by search committees.
An example examined in some detail was ​OpenHub​, which attempts to quantify the effort involved
in open source packages (for example, ​it reports astropy as being worth approximately $1.5M in
developer time, for 27 person-years of effort). Some of the attendees agreed to try to work on
designing metrics that would follow an approach like this to quantify the impact of such projects on
astronomy, as well as determining individuals’ contributions. Other discussion centered around
how many metrics provide ways to “game the system.” Further discussion considered exactly what
software contributions should be treated as - for example, a Pull Request could be thought of as a
(small-scale) peer-reviewed publication.

Further discussion considered ways to co-opt the existing system to give credit to contributors.
Providing awards through the RAS or AAS might make it clearer that these contributions have real
value. Including better names that could go on CVs for important roles in larger projects like Sunpy
and Astropy was also discussed. Tools like ​Zenodo or the ​ASCL provide ways to immediately use the
existing citation system to provide more traditional forms of credit for software work. At that point
we realized that a more “high-powered” group had had a meeting and ​published a report on the

https://groups.google.com/forum/#!forum/astrocodetopics
http://astropython.org/
http://pbarmby.github.io/2015/04/21/Python-in-Astronomy-Day-2.html
https://www.openhub.net/
https://www.openhub.net/p/astropy
https://zenodo.org/
http://ascl.net/
https://softwaredatacitation.org/Workshop%20Report/SoftwareDataCitation_workshop_report_2015_April_20_without_logo.pdf

importance of mechanisms for citing software work. General consensus seemed to be that
developing better metrics could be a valuable outcome, but more information is needed on what
the “average” astronomer (i.e., those not plugged into the astro software community) would
actually consider as a valid metric.

The full notes for this session can be found ​here​, and the Twitter hashtag was #pyastrocred

Roles/titles org chart (led by Kelle Cruz)

As a spin-off from the discussion on ​credit​, one of the ways of improving how we give credit to
people in the community we identified is to define roles more clearly, and assign meaningful titles
to them. There are many roles needed in a typical organization such as Astropy (lead developers of
sub-packages or affiliated packages, being responsible for tutorials, documentation, outreach,
interactions on social media, and so on), and by making these roles explicit, we can recognize that
they are all are essential to a functional community and project.

When applying for jobs, it’s important in many cases to show examples of leadership, and there are
many places in projects like Astropy where one can assume a leadership position, and this should
be highlighted. For instance, saying ‘I was the lead developer of astropy.stats’ or ‘I am the
coordinator for tutorial content for the Astropy project’ is more meaningful than ‘I am part of the
Astropy project’ or ‘I contributed to Astropy’.

The bottom line from this discussion was that each project (for example Astropy, SunPy, yt, etc.)
needs to come up with a list of all the different roles one can take in the project, and this will help
identify not only places where no one is clearly responsible for something, but also places where
some people might be over-committed and looking for someone else to take over.

Career tracks discussion (led by Erik Tollerud)

We discussed several aspects relating to career tracks and strategy for members of the Python
Astronomy community, both relating to how people contributing to this community can maximize
their chances in the traditional academic track (postdocs, tenure-track) and also in terms of
defining their own career track if the traditional career track does not suit them. The main points
and conclusions from this discussion session were:

● It is critically important for us all to recognize the existence and importance of multiple
career tracks. While many in the community in traditional academic positions see that as
the only road, there are other ways to apply the experiences from this community in
non-traditional astronomy positions or positions outside the field entirely.

● One of the main benefits of being a member of our community is that it is an invaluable
network to have. Networking is (for better or worse) a hugely important factor for success
when applying for any academic or non-academic job, and through the open source

https://docs.google.com/document/d/1aXOQdM46gAGCJEt1LvF0zFHlq-mtaZ9HOgvOHD7gy00/edit?pli=1

development community, you will get to know people at many different institutions across
the world and therefore it's very likely you may meet people at an institution where you
would like to go. Even if the person you know through this network does not work in your
field of research, they can still serve as an entry point into their institution–for instance they
could have you visit to work on Python development and then arrange a research talk so
that you can then meet other members of the institution. In addition, knowing people
outside your field of research is very important because most people on a hiring committee
may not be in your field of research, and being part of the open-source development
community, which is intrinsically multidisciplinary, is a great way to make valuable
contacts.

● For non-traditional career tracks in or outside of Astronomy, it is also important to realize
that people within the astronomy software community will be able to help you by writing
reference letters, LinkedIn recommendations and endorsements, and so on. If you
contribute to projects like Astropy, you should ask lead developers or coordination
committee members whether they would be able to write letters for you.

● For career tracks in software, in and out of Astronomy, it is important to understand the
different types of development that employers may be looking for - in some cases it might
be important for you to have very detailed knowledge of certain technologies, while in other
cases broader and shallower knowledge would be desirable. In any case, it is important to
show potential employers that you do not know just Python, but also lower level languages
(e.g. C), and that you are able to learn new languages/technologies efficiently.

● For Astronomy software careers, it is important to know when a job is more focused on the
astronomy or algorithms, and when it is more “software-y”. I.e., is it more about developing
new approaches to solving scientific problems, more about developing solid software, or a
mix of both? Different positions will have different expectations in this regard, and a
candidate who understands which way a position goes will have a significant advantage.

● People interested in career tracks outside of Astronomy should make sure to set up a
LinkedIn profile as soon as possible so as to grow their 'online CV' and network of
connections.

● We need to ensure that we invite to conferences and workshops people who represent a
diversity of career tracks. This will provide a diversity of role models, expand our network,
and keep everyone aware of the career opportunities available to us. We also must ensure
that members of our community following these tracks are not excluded from the
community. They provide important opportunities both for us to learn and to provide
context and alternative perspectives.

Code of Conduct (led by Kelle Cruz)

During the workshop, prompted by some discussions and interactions on social media, to create a
code of conduct for the Python Astronomy developer and user community, in order to make our
community as inclusive and welcoming as possible. This code of conduct is being adopted by the
Astropy project, and the intent is that other Python projects in Astronomy, and other forums (such
as the newly formed ​Python users in Astronomy Facebook group) can adopt this too. The writing of

https://www.facebook.com/groups/1596306890613995/

the code of conduct was a nice exercise in collaborative writing during the workshop. The code of
conduct, as adopted by the Astropy project, can be found ​here​.

http://www.astropy.org/about.html#codeofconduct

Sprints/Hacks

A number of sessions described in previous sections including coding, but there were also
dedicated sprinting/hacking sessions, a few of which are described below:

Astroquery hack session (led by Adam Ginsburg)

Many people were interested in getting new features into astroquery. Pull requests have been
issued:

The online Astrometry.net
The LCOGT archive
Performance improvement in Vizier (not completed, but new options are available)
The HEASARC archive

In addition, some important ​fixes​ to the ​template​ module were made.

Ginga collaboration sprint (led by Eric Jeschke)

This was an unconference session to collaborate and sprint on some projects using ginga. Megan
Sosey got her imexam package updated to work with the latest version of ginga. Stuart Mumford
optimized the speed of single point coordinate conversions when tracking the mouse across the
image in the ginga reference viewer and astropy is performing the WCS lookups. He also got sunpy
coordinates handled correctly when solar images are being displayed. Mike Droettboom got a
plugin working to browse ASDF files and load them into the reference viewer.

Interactive bad pixel masking (led by Eric Jeschke)

This unconference session was about designing a plugin for the ginga reference viewer to create
bad pixel masks. This was driven by interest from Alexa Villaume and Peter Teuben. Alexa got up to
speed on plugin development in ginga and got a basic plugin working that draws circles in images
and then obtains information about the areas drawn.

https://github.com/astropy/astroquery/pull/521
https://github.com/astropy/astroquery/pull/537
https://github.com/astropy/astroquery/pull/526
https://github.com/astropy/astroquery/pull/523
https://github.com/astropy/astroquery/pull/518
https://github.com/astropy/astroquery/pull/529

