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ABSTRACT
Live coding commonly takes pieces of code from algorithmic composition systems. However, sometimes
algorithmic generators either do not consistently show high-level properties, like dramatic transition among
parts, or simply, our aesthetic criterion prefers some particular cases among all the possible. In such cases it
is  useful  to  have  tools  for  exploring  the  output  space  of  generative  systems,  in  order  to  identify  and
categorize outputs with specific properties. This paper presents an approach to creating linguistic rules out
of human-evaluated patterns and their potential  uses in live coding to create high-level structures.  The
methodology starts with a set of sampled examples from an algorithmic system that are evaluated by the
user  through  qualitative  linguistic  variables.  Then,  the  examples  along  with  the  user's  evaluation  are
analysed through an inductive and rule extraction methodology. For a particular example case, these rules
are extracted and evaluated. Its application then as information used for writing code on the fly, as well as
its implementation in the form of filters or generators is presented.

1. INTRODUCTION
Live coding is closely related with algorithmic composition (Collins 2003a). Many times structures are taken
from one domain to the other to supply new material.  However,  it  is  common that the outputs  of  the
algorithmic systems either  do not  consistently  show high-level  properties,  like  real  dramatic  transition
among parts (Collins 2009), or simply, our aesthetic criterion prefers some particular cases, among all the
possible,  for specific parts. In addition, some systems have a large amount of input parameters (see for
example Povel, 2010) that make them difficult to set or control, specially in the context of live performance.
Also, the output space of the systems is normally huge and difficult to explore by hand. Furthermore, in
manual explorations, it is usually hard to establish a relationship between the variables or parameters of the
system and the desired outputs. To overcome this problem within a live coding context, instead of starting
from a blind exploration, it is helpful to have tools to explore the sample space of the algorithmic systems,
in order to identify and categorize the outputs that we want to use. An interesting example, is presented in
Dahlsted (2001), who proposed a system, based in interactive evolution, that finds preferred spots in the
output space of sound objects created by synthesis and pattern generation algorithms. This work undertakes
the  exploration  of  the  algorithmic  system's  output  spaces  by  looking  for  subspaces  with  high-level
structures. By high-level structures we mean musical objects that are derived from the combination of lower
level  musical  objects,  in  this  case  from the  combination of  the  input  variables.  This work  presents  an
approach to creating linguistic rules out of human-evaluated patterns, characterizing those subspaces, and
discusses  their  potential  uses  in  live  coding  to  create  high-level  structures.  The  rest  of  the  paper  is
structured as follows: Section 2 describes the rule extraction methodology through a specific example, and
section 3 discusses the implementation of the rules in the live coding context and outline some ideas for
possible further work.

2. AN INDUCTIVE APPROACH FOR HIGH-LEVEL FEATURES RULE GENERATION
This section describes the rule extraction process through a specific example. For further details about the
rule extraction methodology, the reader is referred to Mugica et al, (2015), Nebot and Mugica (2012), and
Castro et al, (2011). The system's design is shown in Figure 1.
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Figure 1. General chart flow of the rule extraction process.

The first module (1) is the algorithmic system. For this example, a simplified algorithm (shown in Table 1)
based  on  (Collins,  2003b)  was  used.  It  consists  of  a  set  of  probability  templates  for  1  bar,  divided  in
semiquavers for kick, snare and hihat, that produces beat patterns in the style of UK garage. Each number is
the probability (normalized up to 1) for an instrument to play at that point in time.

kick    [0.7, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3]

snare [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.5, 0.0, 0.2, 0.0, 0.0, 1.0, 0.0, 0.0, 0.3]

hihat  [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7]

Table 1. Templates for UK garage based on Collins, (2003b).

From these templates a training set of 100 patterns, structured in A + B form where A and B are instances of
the algorithm and A ≠ B, was created. The training set was evaluated by the user by means of linguistic
variables. In this example, for each pattern in the training set, the aesthetic quality of  the structure was
labeled as low, medium or high. The data was represented in arrays of length 33. The first 32 values are the
semiquavers of the pattern A + B, with a 4 denoting silence, 1 kick, 2 snare, and 3 hihat. The final value at
index 33 was the user's evaluation: 1 = low 2 = medium and 3 = high. The examples were evaluated and the
data was used as input for the Fuzzy Inductive Reasoning methodology (FIR, module 5). FIR is a qualitative
non-parametric, shallow model based on fuzzy logic (Nebot and Mugica 2012). It obtains a set of pattern
rules, that describe the qualitative behaviour of the system, by means of searching algorithms, like trees and
genetic algorithms. This rule base can be very large and difficult to understand. The Linguistic Rules in FIR
(LR-FIR, module 6) contain the algorithm for linguistic rule extraction starting from the pattern rules set
generated by FIR, and deriving a reduced and manageable set of linguistic rules. The algorithm performs an
iterative process that compacts (or compresses) the pattern relationships obtained by FIR in order to create
interpretable rules. This is done by following several steps that include algorithms for rule compaction and
optimization processes (Castro et al 2011). An example of the resulting rules is shown in Table 2. Rules are
expressed  in  terms of  the values  in  its  variables  (V)  representing the  33 indexes of  the representation
discussed above. For example RULE 1 should be read as: If location 16 has a snare or a hihat and location 24
has a kick and location 32 has a kick, then the pattern will be evaluated as high. For each rule “Classified
pattern” denotes the amount of patterns (taken in A + B form) that satisfy that rule among all others in the
sample space of the algorithm.



RULE EVALUATION

RULE 1:    V16 in 2-3 AND V24 in 1 AND V32 in 1 THEN V33 in 3
Classified patterns 512 out of 16384

TP = 16, FP = 4, PRECISION = 0.8

RULE 2:   V24 in 1 AND V26 in 2 AND V32 in 1 THEN V33 in 3
Classified patterns 512 out of 16384

TP = 16, FP = 4, PRECISION = 0.8

RULE 3:   V10 in 4 AND V24 in1 AND V32 in 1 THEN V33 in 3
Classified patterns 512 out of 16384

TP = 15, FP = 5, PRECISION = 0.75

Table 2. If-then rules obtained by the system and its evaluation in terms of precision. The three rules describe
aesthetic structures user-evaluated as “high” (V33 in 3).

The resulting rules were evaluated using the standard confusion matrix. The Precision (True positive (TP) / 
True positive + False positive (FP)) was used for the evaluation of each rule. In this case, for each rule a 
sample of 20 pattern satisfying the rule was created and evaluated. TP patterns were patterns perceived as 
belonging to the class established by the rule. FP patterns were patterns that satisfy the rule but that are not 
perceived as belonging to the class of the rule.

3. RULE IMPLEMENTATION FOR LIVE CODING
In this section two approaches for the implementation of these rules in live coding are discussed. Both have
been  used  during  live  performance  with  each  having  their  own pros  and  cons.  The standard way  of
implementing the rules, is to analyse them and use the resulting information as a guide to write our code on
the fly. However, as the number of variables in the rules increases, this strategy becomes impractical. In
addition, depending on the venue, sometimes we cannot take the risk of have awkward transition moments
during the performance. In that cases, the safety of having a pre-programmed structure is preferred. Next,
these two strategies are discussed.

As examples of information that can directly be inferred from the rules, let's consider two cases. 
First, in Table 2 it can be seen that kicks are always found in variables 24 and 32. Then, a safe bet 
would be to start by setting kicks in those variables. Another insight that can be directly inferred from 
inspection of the rules is: If we compare the amount of silences (variables in 4) contained in rules 
describing the high class against silences in rules describing the low and medium classes shown in 
Mugica et al. (2015), we find only 1 in the high class, while we find 15 and 9 in the medium class and low 
class rules respectively. From this, we can infer that to produce the desired structure as obtained from the 
listener’s evaluation, it is better to avoid silences, i.e. patterns with higher content of sound information 
were preferred.

When instead of starting from the white screen we choose to write a patch, or prepare some code from the
rules, this can be done in two main forms (without excluding possible combinations): 1. Implement the rules
as a filter, to filter out patterns that satisfy rules that do not belong to the chosen class. 2. Implement
the rules as a module or class for pattern generation.

3.1 Filter of rules v.s. generative implementation

Implementing the rules as a filter can be thought of as follows. Create a pattern, and if the created pattern
does not satisfy any of the rules in the filter, then play the pattern. This implementation produces patterns
that show more variety compared with the generative implementation (discussed next). However, we have
to be careful, given that the rules do not cover the whole output space. The current methodology produces
rules covering around 60% of the space and the precision is approximately 72% (Mugica et al, 2015). Thus,
we may be exposed to surprises that have to be managed as we play.

The generative implementation considers the selected rules, and modifies the original algorithm to 
produce only patterns satisfying one of them. This implementation is perceived as more stable, but at 
the same time, it produces less variability because of the number of fixed variables. To achieve more 
variability, implementations can vary ranging from the random selection of the rules to be 
satisfied, to the use of pondered schemes or probability distributions, assigned according to a 



ranking of the preferred rules. We can also listen to a sample of the patterns created by each rule, 
and select the rules for its application in different sections of the performance by aesthetic criteria.
Finally, a more conservative approach could be to pre-select some structures and launch them in turn. This
has also been tried by using the rules of the prior example. Patterns in  A + B form were selected and then
structured in the form n times (A+B) + n times (A' + B ') + etc., to handguide  the development of the piece.
In this context the cells found could be used as a raw material to fill sections, guiding the  evolution of the
piece by hand.
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