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On the Integration of Discontinuous Functions.

By Henry J. Stepuen Smirs, F.R.S.

1. Riemann, in his Memoir * Ueber die Darstellbarkeit einer Func-
tion durch eine Trigonometrische Reihe” (Abbandlungen der k. Gesell-
schaft der Wissenschaften za Géttingen, vol. xiii., p. 87), has given an
important theorem which sc-ves to determine whether a function f (=)
which is discontinuous, but not infinite, between the finite limits a and
b, does or does not admit of integration between those limits, the vari-
able z, as well as the limits @ and b, being supposed real. Some further
discussion of this theorem would seem to be desirable, partly because,
in one particular at least, Riemann’s demonstration is wanting in
formal accuracy, and partly because the theorem itself appears to have
been misunderstood, and to have been made the basis of erroneous in-
ferences.

2. Let d be any given positive quantity, and let the interval b—a be
divided into any segmenfs whatever, & =z —a, & =z—2z), ......,
8, = b—=,.;, subject only to the condition that none of these segmenta
surpasses d. We may term d the norm of the division; it is evident
that there is an infinite number of different divisions having a given
norm ; and that a division appertaining to any given norm, appertains
also to every greater norm. Let ¢, €, ...... €. be positive proper frac-
tions; if, when the norm & is diminished indefinitely, the sum

S= Elf(a-l-e,al)+3,f(m,+€,3,)+ ...... +0.f (@u-1+€40,)

converges to a definite limit, whatever be the mode of division, and
whatever be the fractions e, €, ...... €n, that limit is represented by

)
the symbol j S () de, and the function f () is said to admit of inte-

gration between the limits @ and . We shall call the values of f(z)
corresponding to the points of any segment the ordinates of that seg-
ment ; by the ordinate difference of & segment we shall understand the
difference between the greatest and least ordinates of the segment.
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For any given division 8, 3y, ...... 3,, the greatest value of S is obtained
by taking the maximum ordinate of each segment, and the least value
of S by taking the minimum ordinate of each segment; if D; is the
ordinate difference of the segment &, the difference 6 between these

two values of Sis 0 = 8,D,+6D,+...... +46,D.,.

But, for a given norm d, the greatest value of S, and the least value of
'8, will in general result, not from one and the same division, but from
two different divisions, each of them having the given norm. Hence
the difference © between the greatest and the least values that S can
acquire for a given norm, is, in general, greater than the greatest of
the differences 0. To satisfy ourselves, in any given case, that S con-
verges to a definite limit, when d is diminished without limit, we must
be sure that © diminishes without limit; and it is not enough to show
(as the form of Riemann’s proof would seem to imply) that 8 diminishes
without limit, even if this should be shown for every division having
the norm d.

8. Let A (d) be the greatest value of S appertaining to a given norm
d, and let B (d) be the least value of S appertaining to the same norm.
If d, and d, are any two norms, of which d, is greater than d,, it is
evident that A(d)) 2 A (ds), B (d));< B(ds), because every divisian
appertaining to the norm d, also apperfains to the norm d,. And it
may be proved (although, for brevity, we omit the demonstration here)
that, given any norm d,, we can always assign a norm d,, less than d,,
which shall satisfy the inequalities A (d,) > A (d;), B(d)) < B(d));
except only when the function is such that the maximum (or minimum)
ordinate is the same, throughout the whole interval, for all segments
‘however small. In this excepted case, which is one by no means in-
conceivable, the value of A (d), [or of B (d),] is independent of d, and
is simply % (b—a), where & is the mazximum (or minimum) ordinate
common to all segments of the interval b—a. In all other cases, it is
possible to assign a series of norms, decreasing without limit, and such
that the corresponding maximum values of S form a decreasing series,
while the corresponding minimum values of S form an increasing
geries.

Besides the maximum and minimura values of S corresponding to a
given norm, we have also to consider the maximum and minimum
values of S corresponding to & given division. Let P (d) be the maxi-
mum valae of S appertaining to a given division of norm d, and let Q(d")
be the minimum value of S appertaining to a different division, having the
same norm or & different norm. It is important to observe that we shall
always have P (d) > Q (4), the sign of equality being ipadmissible,
except when the function is such as to be represented geometrically by
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a single segment, or a system of segments, parallel to the axis of =.
Leaving out of consideration the excepted case, we may enunciate the
theorem— The least value of S that can be obtained by taking, in any
division whatever, the greatest ordinate of each segment, is greater
than the greatest value that can be obtained by taking, in any division
whatever, the least ordinate of each segment.” To prove this theorem,
let the two divisions, which give the values P (d) and Q (d"), be simul-
taneously applied to the interval b—a. To obtain P(d), ach seg-
ment in the resulting division will have to be multiplied by its greatest
ordinate, or by a still greater ordinate in some adjacent segment;
wherens to obtain Q (d’) each segment will have to be multiplied by
its least ordinate, or by a still less ordinate. It follows that we have,
in general, P (d) > Q (d). If, however, we regard the interval b—a
as composed of segments 7, I, ..., each of which has for its extremities
points which are also extremities of segments in each of the two given
divisions, we shall find that the inequality P (d) > Q (d') must be re-
placed by the equality P (d) = Q (d'), if it should so happen that the
maximum ordinate of each segment ! is the same as its minimum
ordinate; t.e., if the function f(2) is represented geometrically by &
series of segments parallel to the axis of z, and respectively equal to
the segments [}, 1,, ...

4. Again, let B'(d) be the least value of S corresponding to the
division which gives A (d); and let A’(d) be the greatest value of S
corresponding to the division which gives B (d); it is evident from
what lias been said that we shall have the inequalities

A (d) > A'(d) > B'(d) > B(d).

Now .
A (d)—B (d) = [A(d)—B'(d)] +[A(d)—B (d)]—-[4'(d)—B'(d)];
and A'(d) ; B'(d);

therefore A (d)—B (J) S [A (d)-B'(d)] +[A'(d)—B (d)].

Hence, to prove the evanescence of A (d)—B (d) or O, it suffices to
prove the evanescence of A (d)—B'(d), and of A’(d)—B (d), which
are, in fact, the two values of 0 corresponding to the two divisions
which give the absolutely greatest and least values of S for the norm d.

5. The theorem of Ricmaun may be enunciated as follows : —

“Let o be any given quantity, however small; if, in every division
of norm d, the sum of the segments, of which the ordinate differences
surpass ¢, diminishes without limit, as ¢ diminishes without limit, the
function admits of integration; and, wvice versd, if the function admits
of integration, the sum of these segments diminishes without limit
with 4.”
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The following (with a slight modification suggested by the preceding
considerations) is Riemann’s demonstration of the first part of the
theorem :

Let s, be the sum of the segments which, in the division corres-
ponding to A (d) and B'(d), have ordinate differences surpassing o;
and let £ be the greatest ordinate difference in any division appertain-
ing to the norm d; & is necessarily finite, because all the ordinates
are finite. The contribution of the segments s to the difference
A (d)—B’(d) cannot surpass 8 X £, and the contribution of the remain-
ing segments cannot surpass o X (b—a—s,); t.e,

A (d)—B'(d) S 8, xQ+0 (b—a—s).
Similarly, if s; is the sum of the segments which, in the division cor-
responding to A’ (d) and B (d), have ordinate differences surpassing o,

A'(d)—-B(@d) Z e xQ+0 (b—a—s,).
Adding these two inequalities, we find

A(@)—B (@) £ (8+5) (2—0) +20 (b—a).

But o may be taken as small as we please, and, by hypothesis, however
small o may be, d can always be taken so small as to render s, and s,
as small as we please ; 1.e., the difference A (d)— B (d) = 6 diminishes
without limit with d, and f () admits of integration between the limits
@ and b. '

6. Riemann’s demonstration of the second part of the thcorem re-
quires no modification. For, if S converges to a definite limit, © must
be comminuent with d, and, & fortiors, each of the quantities 6 must be
comminuent with d. But, evidently, in any given division in which &
is the sum of the segments having ordinate differences which surpass

0, 0s<6. Hence, however small the given quantity ¢ may be, we can
always, by takiug 4 small enough, make % less than any assigned quan-

tity ; <. 6., if S converges to a definite limit, ¢ must diminish without
limit at the same time with d.

7. It will be observed that, in order to establish the convergence of
S to a definite limit, it is sufficient to know that the sum of the seg-
ments, having ordinate differcnces surpassing ¢, is comminuent with
d in each of two specified divisions [viz., in the division which gives
A (d) the maximum value of S, and in that which gives B (d) the
minimum value of S]. Hence, if these two sums are comminuent with
d, the corresponding sum in any other division of norm d is also com-
minuent with d.

8. Let us suppose that the function f () las any number of dis-
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continnities between a and b; and let there be ¢ (o) points at which
there are discontinuities surpassing ¢. (We say that a discontinuity
surpassing o exists at a given point, when any segment, however small,
being taken which includes that point, the ordinate difference of the
segment surpasses 0.) If ¥ (o) has a finite and assignable value for
every value of ¢, however small, the condition of integrability is cer-
tainly satisfied, even if (o) increase without limit, when ¢ diminishes
without limit. For, in any division of norm d, the sum of the segments
having ordinate differences which surpass ¢, cannot surpass 2d Xy (6);
and, however small ¢ may be, d can be taken so small that 2d x{ (o)
shall be less than any quantity that can be assigned. As an example,
we may take the function considered by Riemann, viz.,
_@, o), (30)
f(z) = —1- + 4 + 9 +...... )

where, by (¢) we are to understand the (positive or negative) excess
of z above the whole number nearest to 2 ; or, if  lies half-way between
two whole numbers, the arithmetical mean between the two differences

, . s . m
1 and —1, 7. e, zero. In thisfunction, if z = %’ where m and 2n are

relatively prime, we have
3

75+ 0) =5 (5) -

m m w?
71(3-0)=7s(5)+
Thus the number of discontinuities in any given interval is infinitely
great. But the number of discontinuities which in any given interval
surpass a given quantity o, is always finite. For example, the number
of discontinuities between 0 and 1 which surpass o, is equal to the
number of irreducible proper fractions, having even denominators 2n,

2
which verify the inequality 8—7::’ >a'; or,if ¢ (m) be the number of num-

bers not surpassing m and prime to m, and if & be the greatest integer

- ™ . . o 3 . .
not surpassing W the number of discontinnities in question is

oD+ (@) +...... o (h) = ¢ (o),
which is evidently finite for any given value of @, although it increases
without limit when ¢ diminishes without limit.

9. Next, let us suppose that f (2) in the interval d—a has an infinite
number of discontinuities surpassing a given quantity ¢. The points
at which these discontinuities occur may either * completely fill” one
or more finite portions of the interval b—a, or there may be no finite
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portion of that interval which is * completely filled” by them. A
system of poiuts is said to * fill completely ” a given interval when, any
segment of the interval being taken, bowever small, one point at least
of the system lies on that segment. 'Thus the rational points on any
line, ¢. e., the points of which the abscissm are rational, completely fill
any segment whatever upon the line. We may observe that the
assertion, that any given segment of an interval contains at least one
point of a given system, is equivalent to the assertion that any given
segment contains an infinite number [4. e., a number greater than any
that can be assigned] of tLe points of the system. Ior we may divide
the given segment into as many parts as we please, and cach of them
must contain at leust one point of the system.

10. When the poiuts at which there occur discontinuities surpassing
o completely fill any finite portion of the interval b —a, the function
S (@) is certainly incapable of integration. For, if I be the total length
of the segments which are completely filled, we have evidently 8 >4l
for any division of any norm d; <. e., it is impossible that © should
diminish without limit with d.

But points may exist in an infinite number within a finite interval,
without completely filling any portion of that interval. Whenever this
bappens, it must be possible in any given segment of the interval, how-
ever small, to take a finite part such that it shall contain no point of
the system ; otherwise, the segmeut in question would be completely
filled. We give a few examples of such systems of points, the limits of
the interval being in each case 0 and 1. We shall say, for hrevity,
that points are in close order on any segment when they completely
fill it, and in loose order when they do not completely fill it, or any
part of it however small.

11. (i.) Let the system of points be defined by the equation = %, a

being any positive integer. It will be seen, (1) that these points ave
infinite in number; (2) that they are indefinitely coudensed in the
vicinity of the origin; (3) that they are in lovse order over the whole
interval, no segment, even in the immediate vicinity of the origin, beinyg
completely filled. IFor if ¢ be any given quautity, bowever small, we

can always find a finite integral number such that ;—b<d, and then

- 1 1 1 1 .
the fi —_— —_— e eennee
© fimte spaces (m+l' m-)' (m+'_’-’ m+l)’ &o all lie on

the segment (0, d), and are all free from points of the system, if we
leave their initial and terminal points out of account.

12. (ii.) Let the system of points be defined by the equation

1 Qe s
®=— + =, where a, and a, are any positive integers. Here, it is evi-
(S 7
yOL. VI.—NQq. 85. L
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dont that the points are indefinitely condensed in the vicinity of each
of the points of the system (i). But it can also be shown that they
are in loose order over the whole interval from 0 to 1. Let z=1L,
@=L, (In<Ly,) be two consecutive points of the system (i); let u be

any positive quantity whatever, and consider the segment (" I""’ + Ly L )

Ifo= 1— + ” lies on this segment, we must ha.ve 1< <L, ‘lh< L,

because no point of the system (i) lies on the mterval Ly, L);
1 .1 5 plh+L, +1 ptl

and also o + a,;_——p+l ; whence a, < Lz a < LT,
These inequalities show that, if, from the beginning of n.ny free scgment
in the system (i), we cut off as small a part as we please (which we
may do by taking u great enough), the remaining portion of that seg-
ment will contain only a finite number of points belonging to the
system (ii). And this suffices to prove that the points of the system
are in loose order; for if d be any segment, however small, situated
anywhere in the interval from 0 to 1, we can certainly find on this seg-
ment a part free from points of the system (i), and, by what has
just been proved, parts of that part will be free from points of the
system (ii).

13. (iii.) Let a system of points P,,, be defined by the equation
& = 1 + —1—<+ -1~, where ay, a,, ... a,,, are positive integers. Assnm-

a o Gy

ing (what has just been proved for s=2) that the system P, is in loose
order over the whole interval from 0 to 1, we shall prove the same
thing for the system P,,;. Lete=IL,, =14 be any two cousecutive
points of the systom P,; and consider as before the interval

("L"H" L ) If the point P,,,, or = =;zl—+—]i +... 1, lics on this
1

+1"’ @& e
interval we must have, besides the inequality
__1_+_}_+”_ +_1_2PLI+L2,
M o = p+l
the 841 inequalities included in the formula
i1, +L<n+ ],
@ (] Qg = a;

because no puint of the system P, can be between L and L;. Theso

inequalitieg give ;< = LQ_E, t=1,2,3..8+1,

whence we may infer, precisely as in the case in which s=2, that the

points P,,, are in loose order over the whole of interval from 0 to 1.
14. Let f () be a function, which coincides with a given continuous

function ¢ (2) for all values of =z between 0 and 1, except at the points

P,..; and let the difference between f (z) and ¢ (x) at those points not
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exceed the finite quantity ¢. It may be shown that f (z) is integrable
between the limits 0 and 1, and that

ﬂ F(2) do = J':.p (@) d.

For, take any small interval from O to §; the points P, which lie out-
side it, between & to 1, are finite in number and at finite distances from
one another. Let there be 4, of them ; from each of them measure a
space &, to the right; the number of points P, lying outside of the
measured spaces 0+ 4,4, is necessarily finite; and these points are at
finite distances from one another. Let their number be 4, and mecasure
a distance J; to the right of each of them. Proceeding in this way, we
shall obtain measured spaces amounting in all to
8+AIEI+A282+ veenes +Anlanl = H.
Let € be any given quantity however small; and in the preceding con-
struction let
€ € € €

3< 3(s+2)’ b < 3(s+2)a, 3(s+2)a, 3(s+2)A,..°
we shall thus have H < Je. Let d be the least of the spaces §,d,,
83 .. 8,,1; it may be shown that, in any division of norm d, the sum
of the segments containing points P,,, cannot exceed 3H. For all
the points P,,, lie on the measured spaces; and supposing (which is
the most unfavourable case) that one of those spaces begins and ends
with a point P,,,, we can at most triple it, by imagining a segment equal
to d placed on each side of it. Thus, in every division of norm d, the
sum of the segments containing the points of discontinuity is less

G <<y s 0 <

1
than e¢; whence we infer, by Riemann’s theorem, that j J(z)dx has the
0
1

same value asj ¢ (2) da.

0

15. (iv.) Let = bo any given integral number greater than 2.
Divide the interval from 0 to 1 into m equal parts; and exempt the
last segment from any subsequent division. Divide each of the remain-
ing m~—1 segments into m ecqual parts; and cxempt the last segment
of each from any subsequent division. If this ogeration be continued
ad infinitum, we shall obtain an infinite number of points of division P
upon the line from 0 to 1. These points are in loose ovder: for if ¢ be
any segment liowever small, situnted anywhere in the interval from 0

to 1, we may take an index % which satisfies the iucqunlity;,—ll— <3d;

and then determine a segment of the type ()-%,,, (—L—):-E}) lying eutirely
on the segment d. But this segment is either itself an exempted seg-
ment or its m*™ part is so. It will bo seen that, after & operations, the

L3
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]
sum of the exempted segments amounts to'1— ( 1—%) ; 80 that, as %

increases withont limit, the points of division P occur npon segments
which occupy only an infinitesimal portion of the interval from 0 to 1.
And it may be inferred that a function, having any finite disconti-
nuities at the points P, would be integrable. For, if d be any given
small quantity, let the index % be determined by the inequalities

1 1

i d> T the number N of excepted segments which surpass '%,-

is 1+(m-1)+(m—1)*+...... + (m—~1)*1;
and the sum of the remaining segments is

1\*-!
(1-3) "
It is evident that in any division of norm d, the sum of the segments
containing points P cannot exceed

(1 - %@)"H ONd.

k-
But, as d decreases, and % increases, without limit, ( - %) ' and

2Nd, which is less than iz—N,-, both decrease without limit; t.e., in

any division of norm d, the sum of the segments containing points of
discontinuity diminishes without limit with d; and the function is
integrable.

16. (v.) Let us now, as in the last example, divide the interval from
0 to 1 into m equal parts, exempting the last segment from any further
division; let us divide each of the remaining m—1 segments by m?,
exempting the last segment of each segment; let us again divide each
of the remaining (m —1)(m*—1) segments by m*, exempting the last
segment of each segment ; and 50 on continuully. After k—1 opera-
tions we shall have
N=1+m—=1)+m-=1)2-1)+ ... +(m—=1)(m*—1)...(m*-2=1)
exempted segments, of which the sum will be

- (1-2)(1-4). (1)

This sum, when % is increased without limit, approximates to the finite
. 1y 1y . , > 1
limit 1-E (;;;) ; where E(m) is the Eulerian product [11 (1 - ”?), and
is certainly different from zero. The points of division Q exist in loose
order over the whole interval. For, if d be any small segment of that
a_ a+l
=1 g EST)
pe found lying entirely on the segment d, and this segment is either

interval, and if ;n‘ﬂlrm;< 14, a segment of the type ( )can
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itself exempted, or its ('nl_tr) part is exempted. But a fnnctlon having
finite discontinuities at the pomts Q would be incapable of mtegrahon

1
For, if d be any norm, and 3 < —,—m—:ﬁ < d, in the division

S+ lk(k iy 0=0,1,23, ...

(which is a division of norm d), the sum of the segments containing
points of discontinuity is

(1_%) (1—;1,) ...... (1—"—1;17,)'*',',}1?_;-71’

which approximates to the finite limit E(};) ‘when d is diminished, and

k is increased without limit.

17. The result obtained in the last example deserves attention, be-
cause it is opposed to a theory of discontinuous functions, which has
received the sanction of an eminent geometer, Dr. Hermann Hankel,
whose recent death at an early age is a great loss to mathematical
science. In an interesting memoir (* Untersuchungen ueber die unend-
lich oft oscillirenden und unstetigen Functionen,” Tiibingen, 1870), Dr.
Hankel has laid down the distinction, here adopted from him, between
a system of points which complctely fill a segment, and a system of
points which do not completely fill any segment, but lie in loose order.
[The term employed by Dr. Hankel is * zerstreut”; the use of the equi-
valent English words “ dispersed” or *scattered” has been avoided in
the present note, because they might seem to exclude tho sort of con-
densation in the vicinity of a finite or infinite number of points, which,
as we have seen in the examples (i.), (ii.), (iii.), may preseut itself in the
case of systems of points in loose order.] Dr. Hankel then asserts (see
p. 26) that, when a system of points is in loose order on a line, the line
may be so divided as to make the sum of the segments containing the
points less than any assignable line. The proof of this assertion is, in
effect, as follows :—Divide the line into segments, of which each con-
tains a point of the system, and imagine each segment to be diminished
to its n** part, yet so as still to have upon it the point of the system
which it contained before. The sum of the segments can thus be made
less than the #'" part of the whole line; ¢.e., less than any line that
can be assigned, because we may suppose n as great as we please. It
must be conceded that this demonstration is rigorous, if the number of
points in the system is finite; but the construction indicated ccases to
convey any clear image to the mind, as soon as the number of points
becomes infinite. If we are allowed to divide the line from 0 to 1, in
example (iii.), in such a manner as to include every point (P,,,;) in & seg-
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ment of its own, these segments, in the vicinity of the points P,, will
have to be less than any line that can be nssigned ; and, if such & mode
of division is admissible, it is difficult to see why it should not also be
considered admissible so to divide the line as to include every rational
point in a segment of its own: in which case Dr. Hankel’s proposition
would extend to systems of points in close order, as wellas to systems in
loose order. But whether we do or do not admit the truth of Dr. Hankel’s
proposition, the nse which he makes of it (p. 31) to establish the ap-
plicability of Riemann’s criterion to a ceriain class of functions wounld
seem to be erroneons. To prove that Riomann’s condition of integra.
bility is satisfied for a given discontinuous function, we have to show
that, given any finite quantity d, however small, the sum of the seg-
meants, which, in any division whatever of norm d, contain the points of
discontinuity, is evanescent with d. And it is evident that this cannot
be shown, if wo confine ourselves to considering modes of division in
which some of the segments are from the very beginning assumed to
be less than any quantity that can be assigned.

‘While, therefore, we may safcly admit the theorem that no fanction
can be integrable which has discontinuities, surpassing a given quan-
tity o, at an infinite number of points forming a system in close order;
the converso assertion that, when the system of points of discontinuity
is in loose order, the function is integrable, would seem to be estab-
lished by no satisfactory demonstration, and to be negatived by the
result obtained in example (v.)

18. Another proposition, contained in the same memoir (p. 28),
appears open to a similar objection. It may be admitted that a function
J (@) baving discontinuitics, which surpass a given quantity ¢ how-
ever small, only at points which form a system in loose order, is neces-
sarily continuous over finite portions of any interval however small.
But it would seem to be untrue that such a function is necessarily con-
tinuous in the vicinity of any one of its points of discontinuity. If, for
example, f ( —‘-ll- + zlz) =1, and f (z) = 0, for every other value of z,

1 2 .
it is evident that, however small the given quantity e may be, the

difference f(-‘%- + e) -f( i + 5) oscillates an infinite number of
1 1
times between the values 0 and 1, as & decrcases from € to 0; .e., the

function f (=) is discontinuous in the vicinity of tho point ?11— to the
1

right.
19. We add a few remarks which may serve still farther to illustrate

the meaning and use of Riemann’s theorem.
(i.) The problem, “ Given a system of points upon an interval (a, b),
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to find, among all divisions of norm d, that in which the segmonts con-
taining the points have the maximum sum,” is perfectly determinate.
We may say that a point of the system is isolated, when it is separated
from the next preceding and next following point by a distance > 2d.
Similarly a group of points may be said to be isolated, when the dis-
tance between any two consecutive points of the group is less than 2d,
but the distance between the extreme points of the group, and those
which immediately precede and follow it, is greater than 2d. Itis
ovident that, for any given value of d, the given system of points
resolves itself into a finite number of isolated groups. The first and
last point of each group determine a segment; on either side of each
of these segments, and on either side of each isolated poinf, we may
place a segment cqual to d. The sum of the segments thus obtained
is the maximum sum required.

It will be observed that iu this solution each point of the system is
regarded as double; <.e., as capable of affecting two segments at once,
ono on each side of it. If the discontinuity of & function at any point
can be removed by changing the value of the function at that point
only, for example, if f(z—0)=a, f(2) =a+os, f(z+0)=a, the
point must be regarded as single (its contribution to the difference ©
of Art. 2 would be only ¢ xd). But if the values of the function pre-
ceding and following the point of discontinuity are different (i.e., if
J(@—=0) =q, f(+0) = a+0), the point of discontinuity produces a
double effect, its contribution to the difference @ being 2¢ Xd. Simi-

larly, in the case of functions which, like cos (-’Z;—) in tho vicinity of

the origin, admit of an infinite number of maxima and minima within
a finite interval, the contribution to © of each point at which there is a
maximum, or minimum, is two-fold. For the practical application of
Riemann’s criterion, the distinction between points producing a one-fold
effect and those producing a two-fold effect is immaterial.

20. (ii.) When a function, which is discontinuouns but never infinite,
does not admit of integration between the limits ¢ and 2, the symbol

f J(z) de becomes indeterminate. But the maximum and minimum

values attributable to that symbhol are perfectly determinate; and if it
should become advisable to attribute a definite value to the symbol, we
might select for that purpose the arithmetical mean between these two
extreme values. If, for continually decreasing values of d, we calculate
the corresponding maximum values of the summ S of Art. 2, theso values
will, as shall now be shown, converge to a determinate limit A. And
similarly tho successive minimnum values of S will converge to a de-
terminate limit B, differcnt from A in the case under consideration.
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The difference A—B is, of course, the limit of the successive dif-
ferences ©.
From the two sets of inequalities

A(d)>A() >AW) > ...,
B(d) <B(d) <B@d)<......,

combined with the inequality A (d,) > B(d,), which bolds for any
value of n however great, we infer that each of the two series,

A(d)—A(d), A(d)—A(d), A(h)—A(d), ... ,

B (dl) -B (dl)’ B (d,) -B (di)’ B (dl) -B (da), ------ ]
consists of positive terms, and that, however many terms of either series
wo add together, we can never surpass A (d,)—A (d_) in the first, and
B(d_ )—B(d,) in the second; t.e., in neither of them can we ever
surpass A (d;)—B (d;). But if a series of positive terms be such that
the sum of any number of its terms, however great, can never surpass
a given finite quantity, the sum of the first #» terms of the series con-
verges tu a finite and determinate limit, when » is increased without
limit (see Riemann, Vorlesungen, pp. 39,40). The sums A(d,)—A(d,),
B (d,) - B (1), therefore converge to finite and determinate limits;
or, which is the same thing, the two series of terms

A(d), A(d), A(d), ...... ,
B(d), B(d), B(d), ...... ,

converge to finite and determinate limits.

If, for example, the function f(z) bave the value o, at every point
of the system considered in Art. 16, example (v.), and the value ¢, < o,
at every other point; we shall find

B=o¢, A=0,4(0,—0,)XE (%)

21. (iii.) Riemann’s criterion of integrability is applicable to the
case of any multiple integral extended over a finite space. For ox-
ample, in the case of & triple integral, we must imagine the whole
space of the integration divided into small spaces: such that any one of
them could be comprehended within a sphere of a diameter d ; and any
such division into spaces is a division of norm d. The criterion of in-
tegrability, then, is that, in any division whatever of norm d, the sum
of the spaces in which the ordinate-differences surpass & given quan-
tity o, must diminish without limit with d. The ordinate-difference of
any space is, of course, the differcnce between the greatest and least
values of the function within the space.

Considering, for simplicity, the case of two dimensions only, we observe
that the space of integration may not only contain points of discon-
tinuity finite or infinite in number, but may be intersected by curves
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of discontinuity. The function may have values differing by a finite
quantity on either side of such a curve; or its values at points along
the carve may be discontinuous, or both of these kinds of discontinuity
may be combined at the same curve. If L (o), the total length of the
curves at which the discontinuities surpass o, be finite, the function
can be integrated over the given space; since, if we draw curves
parellel to the curves of discontinuity and at a distance d from them on
either side, the area of the channel-like spaces thus obtained will be
2dL (¢), and will surpass the greatest sum of spaces, including the
curves in any division of norm d. But the function may be integrable
even if the total length of the curves of discontinuity is infinite; be-
cause an infinite number of contiguous curves may be enclosed in one -
and the same channel. And, provided that the carves can all be in-
cluded in channels of which the length is L, and of which the breadth
¢ is comminuent with d, the condition that L x ¢ should be comminuent
with &, will suffice to ensure the integrability of the function.*

On the Higher Singularities of Plane Curves.

By H. J. StepHEN SwmitH, Savilian Professor of Geometry in the
' University of Oxford. ’

[Communicated (in part).Feb. 13¢h, 1873 ; supplemented by a Note, April 9th, 1874 ;
and presented to the Society, Jan. 1876.]

TaE ordinary singularities of a plane curve are its double points and
double tangents, its stationary points and stationary tangents; or, as
they have been also called, its nodes and links, its cusps and inflexions.
The fundamental theorem, that any of the so-called higher singularities
of a plane curve may be regarded as equivalent to a certain number of
ordinary singularities of each of these four kinds, has been enunciated
by Professor Cayley, who has also given a method for determining in
every case the four indices 3, r, «, ¢, proper to any given singularity.

Several enquiries, which appear to possess some interest, are sug-
gested by this theorem. Among them we may mention the two fol-
lowing—

(1). It is important to prove that the indices of singularity, as de-
fined by Professor Cayley, satisfy the equations of Pliicker; and that
the “genus” or “deficiency” of the plane curve is correctly given by
these indices.

¢ This Paper, though it was not read, was offered to the Society and accopted in
the usual manner.



