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=TV (ay a5, ... am) V(—ay, ay, ... az)
000, (0,—ay) 8, (1y—a,) 6, (a,—a,) 6, (a,+4ay) ...
6, (1,—a,) 6, (a,+as)
6! a,6%,0%, ... O'q,,
X 6 (aytag+...+ay)0 (—a;—agta;+...+4a,,)
=0 (qy+ag+...+a3)0 (—a,—ay+ay+... +az,)
XV (ay, ay ... a3,) V(—a,, —ay ay, ... a3,).
And so we have, as before,

N (ay, a5, ... a3) = (—1)"'0 (o, + ag+ ... +a5,) V(a;, ay, a5, ... az,).
So that, when the law holds for an odd number, it holds for the
succeeding even number; and we have already shown that when it
holds for an even number, it holds for the succeeding odd number ; and
we have the law for the mumber 2. We have thus an mductmn
. showing that the law is generally true for positive integers.

X

On the Ooordinates of a Plans Qurve in Space.
By H. W. Lrovp Tanner, M.A.
[Read April 6th, 1882.]

In the following is proposed a theory of the Coordinates of a'Plane
Curve in Space, analogous to the six coordinates of a straight line or
the twenty-one coordinates of a conic in space. This theory is based
upon the use of the symbolical equation to a snrface which determines
the curve; viz., an equation of the form

(az+dy+cz+dw)* = 0.

The use of the equation for this purpose was snggested by a question
(6998), proposed by Mr. W. R. Westropp Roberts in the Educational
Times for February : and, the idea once suggested, the development was
_easy, especially as Mr. Spottlswoode s Paper *“On the Twenty-one
Coordinates of a Conio in Space,” and Professor Cayley’s addition
thereto (Proceedings of London Mathematical Society, Vol. x., pp. 185—
196) conld be utilized, not merely to verify results obtained, but also as
suggesting the course and methods of the research.

The outcome of the investigation is, that any plane curve is completely
defined by a certain number of “ coordinates.”” These coordinates are
the products of #» dimensions of six “ umbre,” which are analogous to
the coordinates of a right line. These, being linear homogeneous
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functions of the a, b, o, d above, are purely symbolical, except when
in products of n dimensions, such as the coordinates.

Of the coordinates there is a special group consisting of 2 (n*+3n—1)
coordinates and including as a particular case the eighteen coordinates
of & conic in space. This group seems to be sufficient ta determine the
curve completely. There is no doubt about this save in certain cases
in which some of the equations employed are illusory. Even in these
cases it seems probable that the *eighteen” group is sufficient to
distinguish the curve, but I have not succeeded in proving that this is
actnally the case. . .

The equations obtained have for the most part, a striking likeness to
that which expresses that two lines meet ; viz., to

mfy+ fia,+ bygy+ giby + 01y +hyey = 0.

Below is & brief statement of the contents, that may be convenient:—

§§ 1—5  Definitions, notation, and fundamental equations.

§§ 6—8 Identical relations between coordinates.

§9 Second process for deducing these.

§§ 10, 11 Fallacious method.

§§ 12 Group of mutually independent coordinates sufficient to
define the curve. '

§§ 138, 14 Algebraic treatment of same question,

§ 15 Determination of plane of curve.
§§ 16—19 Properties of curves, certain coordinates of which
vanish, '
§ 20 Are the 2 (n'+3n—1) coordinates sufficient to determine
a curve ?
§§ 21—28 Varions conditions expressed in terms of coordinates.
§ 29 Concerning the coordinates of the curve of intersection

of two surfaces.

1. A plane carve of the n** degree is determined by the intersection
of a plane
a3+ By+ys+dw =0 ...ovvvnreneercnnneninnnnnc(1)

with a surface of the n'* degree whose equation may be written
(az+by+oz+dw)® =0 ...onvriviirnnncneconans (2).

For the purposes of this paper, the symbols a, b, ¢, d have no meaning
except when they occur in snch combinations as a’d%¢"d’ where
p+qg+r+s=n. Inother words, only those combinations of a, b, ¢, d
are regarded as significant which occur in the expansion of the
expression on the left of (2). As to these it is assumed that the
coefficient of 2*y*z'w’ in (2) is equal to the corresponding coefficient
in the general equation of a surface of the n* degree: or,-what is the
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same thing, each combination a*b%¢'d' (p+g+r+s=n) is an
arbitrary number, and there is no relation whatever between such
symbols with different values of p, g, r, .

If A, B, ... be linear homogeneous functions of a, b, ¢, d, with ordinary
algebraio coefficients, then any product of 4, B, ... of n dimensions is
an algebraic expression, for it involves the symbols a, b, ¢, d in inter-
pretable combinations and in no other way.

2. From the two equations (1), (2), it is easy to eliminate each of
the four variables z, y, 2, w in tarn. The first equation gives #, for
example, in terms of y, #, w. Substituting in (2) and arrangiog, we
get {(ab—pa) y —(ya—ac) 2+ (ad —da) w}" = 0.

'To simplify this and its fellows, put
F = fc—vd, 4 = ad—da,
G = ya—ac, B = fd—db,
H=ab—pa, C = yd—do,
or, as it may conveniently be written,
F, G H A B 0=]aq@8,7v,39 l crerienneeesnnennesnsenens (8)
d

a, b, ¢,
- The equation above ‘obtained then becomes
(Hy—GQz+Aw)* =0,

and the system of four equations formed by eliminating z, y, 5, w in
tarn from (1), (2), may be written

{C . H —G 429,z w)}*=0...... 4)
-H, . F, B
Q,-F, . O
-4, —B, —0, .

Each of these equations represents a cone, the first having its vertex
at the point y = ¢ = w = 0, and similarly for the others. The curve is
completely defined by the intersection of the plane of the curve (1),
with any one of the cones, the vertex of which does not lie in that
plane; and, since the four vertices cannot lie in one plane, there is at
least one of the cones which with (1) suffices to determine the curve.
It will appear hereafter that, generally speaking, the plane (1) is
uniquely determined by the system (4), so that this system gives the
curve without ambiguity or irrelevant additions.

8. To form the equation to the cone passing through the curve (1,2
‘and having its vertex at any point (&, n, {, w), we write, as usual, @4\,
y+An, 2+ A, w+Aw for &, ¥, 3, win the equations (1), (2), and eliminate
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A. The equations from which A is to be removed are
az+By+yz+w+X (al+Pn+y{+dw) =0,
{az+bdy+cz+dw+A (ad+bn+c{+dw)}* = 0.

The former determines A as a scalar; and, by substituting this value in
the latter, we get the result of the elimination in the form

{ az+fy+ys+dw, al+fPn+yl+dw l }" =0.
az+by+cz+dw, af+bp+el+de

This may be written

{ a,d E,u|+ ﬂ,yl . ln,{|+|ﬁ,5|. Iv),ul
s d 2w b, ¢ y, 8 b, d Y, w
+{v,a]l.l1&E|+ 7,8]. (,wl-{- a,B|.l& 1 }"=0.
¢ a 2,z ¢ d 2z, w a, b 2,y

If herein we replace the first factor of each term by its equivalent in
(3), and the second factor from the system ’

LEndw I SRR ()
2, Y %W

abyof g, h=

the equation to the cone becomes
(4f+Fa+ Bg+Gb+Oh+Ho)* = 0 ...cccvennneee veeenns(6).

This equation includes (4) as particular cases, as it ought. For in-
stance, putting n = { = w = 0, we have

a=g=h=0,
bycyf’ =—Ez’ Ey, tw.

The substitution of these values in (6) reproduces the first equation of
the system (4), and the other three may be similarly obtained.

4. The quantities a, b, ¢, f, g, h are the coordinates of the straight
line through (£, n, ¢, w) and (%, ¥, s, w) (Salmon’s “ Geometry of Three
Dimensions,” 3rd edition, Art. 51), and the equations to the line are any
pair of .

( . b —galady,6,w)=0........ (7),
—h, f, b

8 "'fl .« C

—a, —b, —¢, .

since these, in virtue of (5), are identically satisfied when
z,y, 7, w=2+A y+An, 2+, wtAw.

It is obvious that they form a particular case of (4), viz.,, when n =1,
It may save some trouble to notice that the coordinates of a straight
liue as above defincd,are not the same as those used by Mr. Spottiswoode
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in his paper ““On the Twenty-one Coordinates of a Conio in Space.”
(Proceedings of London Mathematical Society, Vol. x., p. 186.) In fact
his a, b, ¢ are the f, g, h above, and vice versd. His notation of the
conic-coordinates is based upon the same system. Nevertheless it
seemed desirable, in the absence of any special reason to the contrary,
to revert to the original notation, especially as Prof. Cayley in his
_ addition to Mr. Spottiswoode's paper (loc. cif., p. 196), has set the
example,

5. It is convenient to bave a special name for the six symbols 4, B,
0, F, @, H which are defined by (3) and appear in the equations (4),
(6) ; we shall therefore refer to them as umbre. For the casen =1
the umbre become the coordinates. The umbre naturally divide into
pairs 4, F; B, @; C, H of conjujate umbre.

Since the umbrs are linear homogeneous functions of «, b, ¢, d, any
. product of # dimensions in the umbre is an algebraic expression in-
volving the coefficients of the general equation of the surface (2)
linearly, and the plane-coefficients a, 3, v, & in the »™ degree. Such a
product is called a coordinate of the curve. The number of these co-
ordinates, being the number of all the products of n dimensions that
can be formed from six letters, is

n+5!

Thaus in the case of & conic (n = 2) there are 21 coordinates, which is
right. All these coordinatés appear in the equation (6).

Two coordinates are conjugate when each is formed from the other
by the substitution i

(AF) (BG) (OH).
A special group of the coordinates is formed by those which appear
in the equations (4), and these are generally sufficient to characterize

the curve. To find the number of coordinates in this group, observe
that the number in each equation is

1 (n+1) (n+2),
for this is the number of products of n dimensions that can be made
with three letters. Each of the coordinates 4*, B*, C*, F*, G", H*
appears twice in the system, but no other coordinate is repeated. Hence
altogether there are
2(n+1) (n+2)—6,
=2m*+3n—1) ....cev.nee eetrerrecesataeens )

- coordinates in the special group. This includes as a particular case
the “eighteen coordinates ™ of a conic in space.
YOL. X1IL—No, 183, K
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For the sake of reference, we give here the coordinates of a conio in
terms of the six umbree. The expressions on the left of the following
equations are the conic-coordinates in Mr. Spottiswoode’s notation
(Proceedings of London Mathematical Society, Vol. x., p. 187) ; the letters
on the right are the umbre

¥ &, H F, @ H=A4A, B, BO,04, AB
4,B,0,—4', —B, —C = I*, @, H', GH, HF, FQ
P, —I, L= AF, AG, AH eeenr (10).
M, Q, —M = BF,BG, BH
-N, N, R=O0F 06 CH

It will be noticed that the coordinates in the first row are conjugate
to those in the second, each to each : while, in the square, the conjugates
are symmetrically disposed around P, @, R, each of which is self-
conjugate. The inversion of the first and second rows is due to the
circumstance noted at the end of §4.

6. The identical relations subsisting between the coordinates may be
derived from the identities

a f v 3|=0
a 3 y @
a b ec d
and a b c d|=0.
a B y o
a b-c d
The former gives the system
« . 0, —B, F{a,8,7,8)=0.....cc0.veeene.(11);
-0, . 48¢@
B, -4, . H
-F, -G, ~H, .

the latter leads to a similar system with a, b, ¢, d in the place of a,
v, 6. The two systems are equivalent to the definitions (8): but it
is unnecessary to take account of both sets, since we get the same resulta
by eliminating a, B, v, & from (11), or a, b, ¢, d from the corresponding
gystem.

The equations (11) are true, because, when expanded, the coefficients
of a, b, ¢, d vanish identically. Clearly, then, they are trne when multi-
plied by any quantity, P say; since the coefficients of aP, bP, &o.
vanish, If we take P to be & product of umbre of »—1 dimensions,
we obtain a system of equations connecting a, B, v, § with the coordi-
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nates of the curve. Hence, by the elimination of a, 3,7, 3, we get
relations such as .

OP,, —BP,, FP,|=0........r.....(12),
—CP, . AP, GP,
BP, —AP, . HP,

_F-Pv —GPU _HPn .
where P,, P,, P,, P, are products of n—1 umbr@. Other determinants

may be formed by repeating the rows of the matrix in (11) with
'different maultipliers. For instance, we have

OP, BP, FP,|=0,
CP,, BP,, FP,
0P, BP, TP,

and others which it is not necessary to specify. It will be convenient
at times to write C,, B,, &c., as abbreviations of CP,, BP,, &c.

7. Among the equations (12) there are some that are specially note-
worthy. If P, P,, P,, P, are identical, the determinant is skew,
and gives the identity ‘

" AP.FP4+BP.GP+(0P.HP =0.........ece0e..(18).

If three of the multipliers be equal, the same result is obtained. When
two multipliers are P and the other two are @, we get .an equation
which, by the help of (18), reduces to

AP.FQ+FP.AQ+BP.GQ+GP.BQ+CP.HQ+HP. 0Q=0...(14),
or, say, A, Fy+ F 4,4+ B,G,+G,B,+ C,H,+ H,C, = 0.

The case in which two of the multipliers are equal, the other pair
being unequal, is of some interest. When the determinant is developed,
each term is of the fourth degree, but by the help of (13) it can be
reduced to a form in which there is a factor common to every term.
The remaining cubic expression takes & neat form when we make use

- of the notation .

3 (HAF) = H A, F,— A, H,},—F 4, H,...............(15),
where H,, 4,, &c. are written for the coordinates HP,, AP,, &c. The
- lopsided function } (HAF') is, in fact, an unsymmetrical half of the
. determinant (H, 4, F,), consisting of the positive term containing H,,
and the negative terms that contain A4, and F, respectively. It is
easy to verify that
1 (HAF)—4 (HFA4) = (HATF).

Making use of this notation, the equation formed by supposing in (12)
P, to be equal to P,, may be written )

3 (HAF) +} (HB(?z)j-}(HOH) S N ¢ (:) )
" ,
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Similarly, supposing P, = P,, we get
3 (FAF)+} (FBG)+4} (FOH) = 0.

In fact, all the equations thus obtainable may be written down by
putting 4, B, 0, F, G, H in turn in the first places of the symbols
in (16).

8. There are also relations in which the coordinates are linearly
involved.

Now, let the first equation of (11) be multiplied by AP, the second
by BP, the third by OP, and the results added together; P being a
product of n—2 umbre. We thus get

(AFP+BGP+CHP)$ = 0.
The process may be indicated thus :—
(4P].+[BP],+[CP],=0, = (AFP+BGP+CHP) ¢
Here the quantities in square brackets indicate the multipliers, and the
subscripts show which equation of (11) is nsed, the” snbscript being
that one of the four quantities a, /3, ¥, § which does not appear in the

equation in question. This notation will be useful in the sequel.
The result shows that, unless § = 0, we have

AFP+BGP4+CHP =0 ...oovoeveeeann.n... (17);

and herein, since P is of n—2 dimensions in the ambrem, each term is a
coordinate of the curve. Similarly we get

[GP],— [FP],+[0P),=0, = — (AFP+BGP+CHP) v,

so that (17) must be true unless y = 0. And in the same way we may
infer that, unless a, B, v, & all vanigh, (17) is true. As a, §, v, & cannot
all vanish, (17) is unconditionally true.

The equation (17) may also be derived from the equations (12). Put

P, P, P, = AP, BP, CP,

and, for clearness, write @ instead of P,, which is left indeterminate.
Then (12) becomes, after some reductions,

{CAP.ABP.FQ+ABP.BCP.GQ+BCP.(0AP. HQ}
x {AFP+BGP+CHP} =0 .....ccreuvee...(18).
And we may form three other equations with the same second factor.
Each of these equations is a representative of
n+4!
n—1!5!
eqnations; for instance, in the one written above, Q may be any product

of n—1 dimensions formed from the six umbre. Now, if in any one
-of these equations the first factor does mot vanish, the equation (17)
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is proved. It will not be necessary to work out this, probably a
laborious task. A comparison with the investigation given above in-
dicates that the system

OAP.ABP.FQ+&c. =0,
corresponds to the assumption

This being so, it would follow that the vanishing of the first factors of
all the equations like (18) implies that a, 3, 7, & all vanish, and there-
fore that all the coordinates are zero.

The equation (17) may be deduced far more easily from the identity

AF 4+ BAHCH =0 ovreeeeeeereeeeean.n. a9),

by multiplying by any product of n—2 umbre. But it was desirable
to show that (17) was not & new relation, independent of those
derivable from (12).

Since P in (17) is of n—2 dimensions, it follows that there are

n+3!
n—215!
linear equations represented in (17). In the case of the counic there is
only one such equation, viz. (19); and, if we introduce Mr. Spottis-
woode'’s notation (see § 4), we get
P+Q+R =0,
which is his equation (8).

The formal likeness of the equations (13), (14), (16), (17) to the
identity (19) is worthy of note.

9. There is yet another way in which the equations (11) may be
treated. Hitherto each equation (11) has been multiplied by a factor
. such that the resulting equation is interpretable. We may, however,
maultiply by factors of less than n—1 dimensions in the umbrsm, and so
obtain equations which are not interpretable. From such equations it
is permissible to eliminate a, B, v, ¢; for elimination only requires the
operations of multiplication and addition. Now, the result of the
elimination may be interpretable, although the several equations, or
some of them, are not so. The question is, are any new identities thus
obtained ?

In the equation (12), suppose P,, P,, P,, P, are such that the pro-
duct P,P,P, P, is of n—4 dimensions, = @ suppose. Then (12) be-

comes (AF+BG+CH)*Q =0,
which, since @ is of n—4 dimensions in the nmbre, is linear in the co-

ordinates. But this is a consequence of (17), as may be seen by
writing AFQ, BGQ, CHQ in succession for P, and adding the results.
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If, again, in (12), we leave P, of n—1 dimensions, but take P, P,,
P, such that their product is of n—8 dimensions, we obtain another
consequence of (17). The coefficient of FP, in the result is

(AF+BG+CH) AP,P,P,,
which vanishes by (17) ; and so for the coefficients of GP,, HP,.

Suppose, next, that we treat two of the equations (11) in a similar
manner; for instance, :

(Pl.= OP,—BP,y+FP, 3 =0,
[Py)s == OPsa +APyy+GQP,3 = 0,

where thie product P, . P, is of n—2 dimensions. Eliminating y be-
tween these, we get

BCOP, Pya— ACP, P,— (AFP,P,+ BGP,P,) § = 0.

The coefficients of a, 3, 8 are of #» dimensions, and when the last is
reduced by means of (17), the resulting equation is

BCOP,Pya—AQP, P,+HCP,P,3 = 0,

or [CcP,P,],=0.
Similarly, by eliminating & between the two symbolic equations, we
should obtain [OP,P,], = 0.

Hence the two symbolic equations
[(P).=0, [R],=0,
are equivalent to the two algebraic equations
(CPP),=0, [OP,P,],=0.

The only case still remaining is that in which we take one equation
of (11), and multiply it by two factors whose united degrees amount
to n—2; say, the equations thas obtained are

[Pl]. = 09 _ [P!]. =0.
From such a pair no resalt can be obtained. Neither of the quantities
B, v, 3 can be eliminated separately, since every determinant such as
Cp, BP,|, = CP,BP,—BP,CP,
COP,, BP,
vanishes identically, the two terms in its expansion representing one
and the same coordinate.

Thus it appears that all the relations obtainable by the process of
this article, are included in those previously derived from (11).
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- 10. Allusion has a.lrea.dy been made to the second set of identities

« . 0, —B, FQa,b,c,d) =0.000e0e000..(20)s
-0, . . 4@
B, -4, . H
_-F’ -G’ _H’

By the elimination of a, b, ¢, d between the equations here implied, we
can only obtain the relations already derived by eliminating a, 8, v, 8
from the corresponding system (11). There is, however, a somewhat
seductive train of reasoning which leads to conclusions not other-
wise obtained.

The first equation of (20) raised to the n** power is

- (Ob—Be+Fad)* =0 ......ccovvnvrrennnnnn(81).
Comparing this with (2), it appears that the ideal point whose coordi-
nates are (0, C, —B, F) lies upon the surface (2). From the first
equation of (11) it follows that the same point lies in the plane (1).
That is, it is & point upon the curve. Hence, substituting in the first
equation of (4), (0, 0, — B, F) for , y, #, w, we have

(H.0+G.B+4.F)"=0.

The substitution may be made after the equation (4) is expanded, and
the development of the expression just written consists of terms each
of which is a product of two conjugate coordinates, one formed from
the umbre (H, @, 4), the other from (0, B, F).

The equation just found, and others similar to it, are not included in
.or implied by the relations of §§6, 7, 8 above. And a trial for the
case of the conic shows that they are not true. It is worth while to
point out the fallacy in the argument, as it is closely connected with
some matters that arise in the sequel.

11. The quantities a® a?4""? are real quantities, and their meaning
is determined without ambigunity by the definitions of §1. So also
the symbols a™, ™'} are real and free from ambiguity ; for the former
is expressible as.the product a™. a”, the latter as a".a"-!b, and in no
other way. But a symbol such as a*~*b* is not interpretable, without
independent information. It may represent the product a*.a"-?b*
ora”'b.a™'b; or, more generally, we may have .

A+p)a™ b = Aa*.a" *b+pa™'b. o',
and the ratio A : 4 must be determined in each case by considering the
manner in which the a™-*» was obtained. For other cases a still
greater complication arises. In tho instancesin which such expressions
occur hereiuafter, it is easy to interpret them by comparison with the
results of known algebraical methods; and these cases seem to indicate
the existence of comparatively simple rules of interpretation.
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The application of these remarks to the subject of § 10 is obvious.
The equation (21) is true because, when @, B, F are replaced by their
values in (3), every power and product of b, ¢, d has a vanishing
coefficient. The fallacy lies in the following step, in which it is tacitly
assumed that in the expansion of (21) the two real factors of each
term are formed in a particular manner, viz., one from (0, B, F) only,
the other from (3, ¢, d) only; or, say, that (21) is equivalent to

(0.b=B.c+F.d)y =0.

This is an unjustiied—and, as it appears, an unjustifiable—assumption.

The results proviously obtained are not affected by this source of
error, since in every case the symbolical expressions have been changed
into their algebraical equivalents when the transformation was free
from ambiguity. :

12. In discussing the question as to how many of the coordinates
are left independent after taking account of the relations already
established, it is not convenient to follow the lead given by Mr. Spottis-
woode for the case of a conic. The process adopted then was to show
that the eighteen coordinates were connected by nine equations num-
bered (7), (Proc. Lond. Math. Soc., Vol. x., p. 188), and that the re-
maining coordinates were expressible in terms of the eighteen.

In the general case there are 2 (n'+3n—1) coordinates of the
special group, viz., all the coordinates (4, @, H)", (F, B, H)", (F, G, O)"
and (4, B, 0)". The relations between these coordinates directly
deducible from (11) are not the only ones. Take, for exawmple, the
first equation of (11) (multiplied by a product of n—1 umbre to make
it interpretable). This is

[P,). = CP,—BP,y+ FP,5 = 0.
Now, if CP,, BP,, FP, are coordinates of the groups specified above,
we must have P, = 0", B*, or F*-},

so that there are only thres equations. And we may in like manner
infer that, from the four equations (11), we can only derive twelve
equations, composed exclusively of the special coordinates. Eliminating
the three ratios a : 8 : ¥ : &, we have nine relations between these co-
ordinates. Since this number. is insufficient, except when n = 2, it
follows that other relatious must be found by eliminating from the
equations implied by (11), not merely the ratios a : 8 : y : §, but also
the coordinates not included in the special group.

It seems preferable to substitute for this process one which is
suggested by geometrical considerations. Suppose for the present that
a, 3, v, & are known, so that the plane of the curve is given. The
ourve is then determined by at least one of the cones whose equations
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are given in (4). To avoid needless generality, we assume this cone to
+be the last, viz., (Az4+By+02)" =0..ccovvvrrvennvnnnnnnnn..(22).
The vertex of this cone being the point # = y = # = 0, it is assumed
hereby that this point does not lie in the plane (1) of the curve—in
other words, that 8 does not vanish. Should § = 0, we have only to
transform our equations by one of the substitutions

(& 0) (H,—B) (a, ¢) (a, d) (2, w)

(H, AY(F, —0) (8,8) (b, d) (g, w) } cevverrrenneenn.(28).

(F, B) (G, —4) (7,9) (¢, @) (2, w) )
These leave the defining equations (1), (2), (3) unchanged ; but they
transform (22) into the first, second, or third respectively of (4), and

effect the corresponding changes required in the concomitant equa-
tions.

Supposing, then, that a, 3, y, 3, and all the coordinates (4, B, C)"are
given, it is easy to determine the equation to a cone through the carve,
having its vertex at any given point. Comparing with (6), we are
enabled to evaluate all the coordinates. There is no restriction upon
the cone (22). Hence we learn that the coordinates (4, B, 0)* are
mutually independent, and that in terms of these and a, 0, v, & every
other coordinate may be expressed.

13. The same conclusion may be proved algebraically. We have

[P,), = BPja—AP,8+ HP,3 = 0.
Putting herein P,= (4, B, C)*",
and remembering that & does not vanish, we obtain all the coordinates
H (4, B, O)*},
since the first two terms contain only known quantities. Then, putting
P,=H(4, B, 0)*,
we obtain, in like manner, all the coordinates
H'(4, B, 0)*,
and, by continuing the process, we evidently can determine all the
coordinates (H, 4, B, O). )

. n+42!
To effect this we have used e EY SOOI (-2 ) |

equations, since P, has had all the forms
(H, 4, B, O)~,
If, now, in the equation

[P|]gE - O.P’G+BP’7+ GP’B = O,
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we write P,=(H, 4, B, O)~,

the first two terms are known. Hence all coordinates
G (H, 4, B, 0!

are found. By continuning the process, we obtain all the coordinates
(G» H, 4, B, 0)”)

and to do this we use nt3! SRR (1) ]

n—1141""
equations, since P, is any one of the forms
(G, H, 4, B, O)*\.
Lastly, by using the equations
[P,).= OP,—BP,y+FP,§ =0,

' ibi nt4!
and ascribing to P, the TTITE PPN L) B
forms (F, G, H, A, B, O)*},

we can obtain all the remaining coordinates.
In this process there has been no waste of power, each equation has
determined a new coordinate. For the number. of originally known

coordinates (4, B, O)
' _n42!

“al2l
Adding this to the number of equations used, we get

n+21! n+4+2! + n48! n+4! __n45!
n! 2! n—113!" n—1141" 2=1151" alsV

and this is the number of all the coordinates.

4

+

14. That the equations unused in the last article are merely conse-
quences of those that were used, may be proved by means of the iden-
tities 8[@P),= & [HP),~a[AP).—B[4P],—v[4P],

3[FP),=3[HP).+a [BP). +6 [BF],+y [BP],

3[FP], =3[GP).—a [OP).—B [OP],—y [0P],{ (D
[P}, =-—a[PL-B[P,~7[P),
which are easily verified. The first of these equations shows that the
equation : [GP],=0 .iverrirtinreernnecernenn. (28)

is a consequence of the equations
(EP), =0, [4P).=0, [4P],=0, [4P]), =0,
- since & by hypothesis does not vanish. If we'give to P such a value
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that the four equations last written are amongst those used in § 183,
that is, if we put P=(H, 4, B, O), '

(28) represents a set of equations not used in that paragraph. And,
continning the process step by step by means of the first three identi-
ties in (27), we prove that all the equations

[PL.=0, [P],=0, [P}, =0,
are consequences of those used in -§ 138. The last identity (27) then
shows that [Pli=0

is & necessary result of the same system. That is, after determining '
all the coordinates in terms of a, 3, v, § and (4, B, O)", there are no

independent equations left to give any identical relations between these
quantities.

15. It now remains to consider the equations by means of which
a, 3, v, 8 may be determined. In doing 80 we may omit the equations

[P 1=0,
since these are, by the last identity in (27), merely consequences of
the equations [Pl.=0, [P],=0, [P],=0.

If we solve three equations
(A)l.=0, [P, =0, [R]),=0,

woget a:—f:y:—3= OP,, —BP,, FP, | .........(29).
‘ —-0P,, . AP,, GP,
BP,, —AP,, . HP,
Or, we may take three equations, such as
Pl.=0, [P). =0, [Psls=0
which lead to (P y [Pa).=0, [P],=0,
« OP,, —BP,, FP,| ....cccer.. (30).

ai—=f:y:=8=

: OP,, —~BP,, FP,
—-0p, . AP, GP,
The results may be somewhat simplified by making two of the

multipliers equal. .We cannot make all equal, even in (29), for the
golution then becomes illusory, as might be expected from the identity
AP, .[P]. + BP,.[P]), + OP,.[P],=0........ (81).

If we put the P, = P, in (29), that is, if we eliminate from
[‘Pl]-=0’ ['Pl]ﬁ= O’ ['Pl]1=0 """""" ......;..(32),
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the result is

a:fB:y:8= AP,.HP,—-AP,.HP,
: BP,. HP,—BP, . HP,
: FP,.AP,+ GP,. BP,+OP,. HP,
: AP, . BP,—AP,. BP,
The same expression will be found by using the three equations

[Ps=0, [P,),=0, [P, =0.cc0ccreenecn.n(84),
which lead to a solation of the type (80). In fact, (34) differs from
(32) only by having [P,], in place of [P,],, aud by (81) the change is
indifferent since in each case we are given that [P,], vanishes. In
these results from (32), (84), it is assumed that the coordinate OP,,
which has been removed by division, does not vanish,

No difficulty arises with these formules, save in certain exceptional
cages in which groups of the coordinates vanish. It will be convenient

to consider briefly the meaning of groups of zero-coordinates, before
continuing the discussion of (29), (30), (88).

verens(88).

16. When all the coordinates containing 4 vanish—a statement
which may conveniently be abbreviated into “ when A vanishes,”’—we
get, from (4), (11), the reduced equations

(Hy—G@s)* =0, (By+02)*=0..ce0rrrernne.n(85),
C0a—@5=0, Bat+HI=0.....ccererrrr.(36).

For the moment we exclude the case in which a second umbra vanishes.
Then either of the equations (85) represents a series of planes through
the line y = 0, s = 0, and the curve becomes a number of straight
lines passing through the same point, viz., the point where the line
y =0, s = 0 meets the plane of the curve. Bat, if the plane of the
curve contains the line y = z = 0, the equations (35) are insufficient to
- determine the curve. In this case, supposing the equations (85) to
include p planes coinciding with the plane of the curve, the curve is
made up of & curve of the p™ order (not necessarily a proper curve),
and the straight line y = z = 0 counted n—p times.
Similar conclusions are obtained by the consideration of (86). These
equations are satisfied either when

a=204=0,
so that the curve-plane contains the line y =z =0, or by having
G—Pl = g—P’ ==-—§-—-P‘=-—E£’= e = —“-,
CP,  CP, BP, BP, 3

and this system expressocs that the plane.s given by one equation of
(35) are the same as those given by the other.
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17. If two conjugate umbrs vanish, say 4
and F, three cases arise. It is clear that the
plane of the curve canunot pass through both
of the non-intérsecting lines yz, zw. If it pass
through the former, the curve consists of a
pencil of straight lines passing through the X @=w=0
point zw in the plane. And, mutatis mutandis
this holds good when the curve-plane passes through the line zw. If
the plane of the curve contains neither of the lines yz, zw, the curve
reduces to the line joining the points where yz, 2w meet the plane. In
this case it is geometrically evident that the plane of the curve is in-
determinate.

If two non-conjugate umbre, say A and H, both vanish, the curve
must either lie in the plane z = 0, in which case its form is only re-
stricted by the coordinates (B, 0, F, G)"; or it consists of a pencil of
coplanar rays passing through the vertex X (y =2 =w=0). The
latter alternative is most simply deduced from the result of § 19 below,
by observing that, if # does not vanish, the coordinate G* must be zero,
g0 that each of the coordinates (4, G, H)" vanishes. Or the two cases
may be discussed by an analysis of the equations (4), (11), omitting
the terms involving 4 and H.

18. When three umbrm vanish, three cases arise. First, two of the
umbre may be conjugate. In this case the curve can only consist of
one of the edges of the tetrahedron of reference. Next, the three
vanishing umbree may be one of the groups (4, G, H), (F, B, H),
(F, G, 0) or (4, B, 0), which appear in (4). In this case the curve
lies in the plane # = 0, y = 0, 2 =0, or w = 0, respectively. Thirdly,
the umbre in question may be (F, B, 0), (4, @, 0), (4, B, H), or
(F, G, H), a grouping suggested by (11). Tbe information hence
derived is curiously small. Taking the first set, (F, B, C), (4) reduces

to (Hy—Gz+A4Aw)" =0 .....cooovnvenneee vee.(87),
H.e=0 .#=0 4".2°=0.

Hence, either 2 vanishes, or the three coordinates H*, G*, and 4" vanish.

- That is, either the curve lies in the plane @ = 0, or, since in the equa-

tion (87) y", 2*, w* do not appear, the cone with vertex X must pass

through the vertices Y, Z, W, and the curve must pass through three

fixed points, viz., the points where its plane is met by the lines XY,
XZ, XW (ie., s=w=0, y=w=0, y=2=0).

19. We will supposo now that the } (n+1) (n+2) coordinates given
by one of the forms

4, 6, H)", (T, B, H)", (F, G, 0)" or (4, B, 0y



142 . H. W. Lloyd Tanner on the [April 6,

vanish. This is, of course, a far less sweeping assumption than that
three, or even one, of the umbre should vanish. The discussion in
§ 138 shows that, if all the coordinates
(4, B, 0)" =0,
then either § = 0, or all the coordinates are evanescent, and the latter
alternative may safely be disregarded. Similarly, it may be inferred
that the equations
4,6, H" =0, (F,BH)'=0, (F,¢0)=0
imply respectively that
a=0, =0, y=0.
Or these results may be deduced by means of the substitations (23).

I have failed to deduce any property of the curve whose coordinates
such as (F, B, O)" all vanish.

20. The question—Are the coordinates (4, @, H)*, (F, B, H),
(F, @, 0)", and (4, B, 0)", which appear in the system (4), sufficient
to determine the plane of the curve P—may now be discussed.

The most obvious way of attacking the problem is to utilize the
equations (11) ; but the result is a failure. The equations are

[P].= OP,.B—BP,.y+FP,.3 =0,
[P)e=—0Py.a . +A4P, . y+GQP,.8=0,
[P],= BP,.a—4P,.8 . +HP,.3=0,

[Pl =—FP,.a~GP,.—HP,.y . =0,

If the coordinates herein involved are to be only those that occur in
the selection meuntioned above, then we must have

P, =0 B, or F*

and a corresponding choice for P,, P,, P,

But it is quite possible that the solutions obtained from these 12
equations may be illusory. This is the case, for instance, if all the co-
ordinates that occur in the equations vanish; as, for example, in the
case of & guartic curve lying in the plane w =0, and having three
nodes, one at each of the vertices X, Y, Z.

It must not, however, be inferred from this failure that the group
of coordinates (4, @, H)", &c. are iusufficient to determine the plane
of the curve. It is quite possible that, given these coordinates, we
may be able to determine others lying outside the group which will in
turn fix the values of a, 8, y, d. The analogous case discussed in § 12
tends to show the probability of this, and in the case of the particular
curve quoted above it is easily shown to be true. Of that curve all the
coordinates (4, @, H)" vanish, therefore by § 19 a = 0; the coordi-
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nates (F, B, H)", (¥, G, 0)" also vanish, therefore § =0,y =0. 8o
that by these coordinates the plane of the curve is, in fact, uniquely
determined. But I have not succeeded in showing generally that,
given all the coordinates of the * eightesn” group, the plaue is
"uniquely determinable.

21. Since a curve is completely determined by its coordinates as
above defined, any measurable property of the curve is expressible by
means of its coordinates, and the conditions of any geometrical relation
between a curve and other curves, points, or surfaces, may be similarly
expressed. Some of these have already been given. For instance, the
equations (4) are the conditions that a given curve should pass through
a given point. The system (11) may be regarded as the conditions
that a given curvq should lie in a given plane. The condition that a
-curve sbould intersect a straight line, both being glven by their co-
ordinates, is the equation (6),

(Af+ Fa+Bg+ Gb+Oh+ He)" = 0........ce.oeeon... (6),

and this includes Prof. Cayley’s equation (Proc. Lond. Math. Soc.,
Vol. x,, p. 196), the notation being changed by means of the
scheme (lO)

Before proceedmg to other relations, it will be convenieut to mention
some results in which straight lines only are concerned.

22. The condition that two lines should intersect is
afy+fiaat+bg+aibs+eby+he, =0,

which is indeed a particular case of (6), The same equation expresses
that the two lines are coplanar. In fact, to say two lines meet is only
another way of saying that they lie in the same plane. When, how-
ever, the question is about more than two lines, or about curves, the
statements are not equivalent.

Consider the three lines whose coordinates are (a,, ... f), ...),
(ay, ... £y, ...), (23 ... fy, ...). The equations

agfy+fy8 + bygy + g3by +shy +hye, = 0
afit v e e e e =03 Ll (88)
alf"*‘ oo oee o ses eee Y 0

express that the three lines either meet in a point or lie in & plane. To
distinguish the two cases, we may first seek the condition for inter-
section at one point by eliminating @, y, 2, w from the equatious to the
three lines. It is easy to show, however, that the extra conditions are
given by '

(agshy) =0, (fibhy) =0, (figics) =0, (abye;) =0 ......(39),
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where (#,gb,), &o. are determinants, and generally speaking any one
of these equations is sufficient. In fact, the equation to the plane
coptaining the first line and the vertex W is

as+by+ca=0 (40)
Hence the equation (€N XS T | RN (1)

expresses that the planes through W, containing the three lines, inter-
sect along a common line ; or that from Waline can be drawn to meet
the three given lines. Since, however, the lines meet two by two, it
follows that the three points of intersection must coincide, or two of
the planes (40) must be identical. In the latter case, we should have
one of the sets of equations

g:b i =8, b0 =8,:b; ! Cpuiniiirinennn (42),
and the conditions (41) are valueless.

If, however, all the equations (39) are satisfied, the lines must pass
through a point, in despite of disqualifying equations such as (42). To
take the worst case, let the plane through the lines 1, 2 contain three
of the vertices X, ¥, Z. Then the first three equations of (89) are
upavailable. If the third line does not pass throngh W, the last
equation of (89) is unimpeachable. If the third line does pass through
W, the last equation is disqualified; but then, since the lines are not
in one plane, we know by (88) that they must pass through ome
point.

The conditions that three lines should be coplanar are
(fibye;) =0, (mr4%) =0, (aybyhy) =0, (fig;hs) =0......(43),

in addition to (38), and generally one of these is sufficient. Any
algebraic proof of the conditions (39) may be changed into a proof of
(43) by replacing each coordinate by its conjugate, and starting from
(11) iunstead of (4).

If the conclusion is correct, the product of any of the determinants
(39) by any one of those in (43) ought to vanish in virtue of (38).
To show this it is only needful to examine the two typical cases of a
product of corresponding determinants, and one of non-corresponding
determinants. Of the first type we have

(9'18:}'!) - (£, by, c;)-

Mnltiplying‘these by the ordinary rule, the result is, by reason of (38),
a skew determinant, which being cubic vanishes. A product of the

second type is (mghy) . (a,830)-
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On development this is
= {(838s) by + (84 21) Byt (218s) by} { (8585) €1+ (83.81) €5+ (8 8y) €3}
- = ol (g o+ (G By (08) (mE) + e ‘
Replacing herein ¢, b,, ¢;b,+h,¢,, &e., from (38), and the identity -
af+bg+ch =0, ' ’
‘this becomes after a slight reduction

= (f18,8) (2.:8,85) + (b 2,) (2. 2,84)»
each term of which vanishes identically.

28. The conditions that two curves given by their coordinates shounld
lie in the same plane are easily obtained. We have merely to eliminate
the ratios @ : 8:y : & between a double set of equations formed from
(11) ; one set from the coordinates of each curve. In any particular
example care must be taken that the three equations selected for the
purpose for each curve are mutunally independent. Three conditions
are obtained, sinco from six equations we bave to eliminate three
ratios. Indicating the umbrm of the two curves by subscripts, we
may write the results in forms such as

4,P.F,Q+F,P.4,Q+B,P.G,Q
+G,P.B,Q+0,P.H,Q+H,P.C,Q =0,
C,P, B;P, F,P|=0,
0,Q, B\Q FQ|
CR, B,R, F,E
or, yet again, in the form of (16). Herein each constituent of the
determinant is a coordinate. _ S
In the case in which one curve is a straight line, there are only two
conditions to satisfy ; since the plane of the line may be any one of &
singly infinite series of planes. These two may consist of the equation
(6), and an equation such as
CP, BP, FP
CQ BQ, FQ
e, b f

24. The condition that two curves (4, ... F,...)* and (4, ... F, ...)*
should intersect is most simply obtained when the coordinates of the
line of intersection of their plane is given,—say, they ure (a,...f...).
The first qurve intersects this line in m points; the second in  points;
and we propose to give the condition that one point should be common
to the two sets. Upon the conditions that two or more points should
be common we do not tonch.

If z, y, 2, w be the.coordinates of any point common to the curves

VOL. xI1L—No, 189. L

=0.
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and to the line, we have
(4,2+B,y+0,2)" = 0,
(4y2+ By +0,2)* =0,
as + by + ¢z =0

Eliminating @, y, # from these, we have
(|4 By O
4, B, 0,
a, b, ¢

mn=0’

which may be compared with the last of (89); and the analogues of
the other three equations (89) may be similarly obtained. The ex-
pression is, in the absence of a canon of interpretation, of little value
except as a formula of vevification. In the case of m =n =2 the
problem has been worked out by Mr. Spottiswoode (Proc. Lond. Math.
Soc., Vol. x., p. 193), and a comparison has served to detect one slight
error, viz., in the coefficient of 4f’gh, (G&)(HH’) should be
2 (@) (HH), and a similar correction is required in the coefficients
of 4fg*h, 4fgh’, in the writing out of his equation. The process used
above was suggested by his.

25. If, however, we do not employ the coordinates of the line of in-
tersection of the two planes, we may use the equations of four cones,
two belonging to each curve, to eliminate @, y, 2z, w. By various selec-
tions we produce results similar in form to those of §§ 6, 7. The
simplest form is obtained by using four equations, such as

« . Hy—Giz+Aw)" =0,
(—Hiz . +Fz+Bw)*=0,
( Gz-Fy . +0w) =0,
( 4,2+By+0z . ) =0.
The result of the elimination takes the form
{0,H,(4,F,+4,F,+B,G,+...)}"™ =0,
which may be compared with the equations (88), (6).

26. Given two curves in the same plane, required the condition that
one should form a portion of the other. To determine this we utilize
the equation (6), expressing the condition that an arbitrary right line
meets a curve. The coordinates of the one curve being (4, ... F;...)",
and the smaller curve (4, ... F;...)", every line that meets the latter
must meet the former. Hence, whenever '

(4,f+ Fya+Byg+...)" =0,
we must also have (4,f+F,a+B,g+...)" =0.
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The required condition therefore is that
(4f+Fat..)" = (4f+ Fat...)" . (df+ Fat...)""...(44),
where 8, b, ¢, f, g, h are only subject to the relation
af+bg +ch = 0.

When the two curves are not coplanar, the condition (44) cannot be
satisfied for all values of a ... b ..., but it is satisfied by the coordinates
of a doubly infinite set of lines. If among these a set pass through
one point not in the plane of either curve, then the carve (4, ... F;...)"
is" in perspective with a portion of (4, ..)™ To complete the dis-
cussion, we should replace s, b, &c., by their values given in (5),
£ 0, {, © being the coordinates of the come-vertex. The results ob-

tained are not of obvious interest.

28. The problem of the last article suggests another :—to find the
equation to the surface generated by a right line meeting three plane
director curves. . .

Let the directors and any one of the generators be (4, ...)", (4, ...)"
(4,...)", and (a...).. We have the equations

(4,f+B,g+ O, h-+ Fia+ G, b+ Hyc)™ = 0,
4,84+ ... e )" =0,
(484 ... e F =0
Also, if the coordinates of any point in the generator be =, y, z, w,
. —zg+yh+wa . . =0,
#f£ . —zh . 4wb . =0,
—yi‘-l-wh N . we=0.

The last equation is introduced mstea.d of eliminating one of the co-
ordinates (a, ...) by means of the 1dent1ty

af+bg+ch = 0.
Eliminating the six coordinates (s, ...) from the six equations, we get
. ( Al! -Bh Ch Fn Gn Hl )mup = 0'
4, B, C, F, G, H,
As’ st Cﬂ’ FS’ GS’ -H;
—=z, ys w, . .
2, . —, .w,

-, z, . . .ow

On development the factor w™* divides out. It is irrelevant, and was

introduced by the sixth equation. It is unnecessary to work this out,

for the result is practically given in Salmon’s * Geometry of Three
- L2
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Dimensions,” 8rd edition, p. 79. It may be noted that, when two of
the director curves are right lines, the above equation is immediately
ihterpretable..

29, It may be worth notice that the coordinate system of representa-
tion is applicable to the intersection of two sarfaces. Suppose these
are (az+by+ecz+dw)™ = 0,
and (a2 +by+cz+dw)* = 0.

Adopting Prof. Cayley’s method, we form the equation to the cone
passing through the intersection of these surfaces and having its vertex
at {, n, {, w. This equation is, when the same notation as before is
utilized, (4f+ Fa+ Bg+ Qb+ Ch+ Ho)™ = 0.

In this case the difficulties of interpretation begin with the fundamental
equation iteelf.

In Salmon’s “ Geometry of Three Dimensions,” 3rd edltlon, Art. 217,

8 particnlar case (m =n = 2) is given, and the result given above is
consistent therewith.

On Polygons circumscribed about a Cuspidal Oubic.
By Mr. R. A. Roserrs, M.A. -

[Read April 6th, 1882.]

I propose to consider some cases in which an infinite number of
closed polygons can be circumscribed about a cuspidal cubic and in-
scribed in another curve. In all the cases which I shall consider, the
curve circumscribing the polygon is unicursal.

The equation of a cuspidal cubic being reduced to the form y* = o',
we may take 1, 9, 9* as the coordinates of a point on the curve, and
the equation of the tangent at the point 3 is then 23%—3%y+s = 0.
Taking two tangents, we have, for the point #, y, s of their intersection,

20=1, 8y=1t+u, 2= .c.cceeerernrnrnnn (1),

where 4 = $%,+3,, and t = — 5'2125- is the parameter of the third tan-
gent drawn from z, y, %. 1+
Suppose we have ¥ = -;’,—"—, where f,,, fu are rational functions of ¢ of

the m™ and n* degrees respectively ; then the locus of @, y, # is & uni-
cursal curve whose degree ‘is equal to the greater of the numbers n+1,



