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1. The representation of a binary quintia here attended to is that
by five coplanar points in association with the unique conic which passes-
through all of them. The connectors of the points and any origin on
the conic, and any projections of these connectors, have for Cartesian
equations with regard to axes through., their intersection the results of
making zero linear transformations of the quintic. Covariants of the
quintic are marked by sets of points on. the conic, in projective association
with the five points of such a character as to be symmetrical in its
reference to the five—i.e.., as not to have reference only to the five
arranged in some particular order or in an order chosen from a sub-
group oj possible orders. Conversely, a set of points on the conic, thus
associated with the five, which can be linearly constructed or exactly
specified as the intersections of a conic with conies or cubics themselves
rationally specified by means of the five points, will have for connectors
with the chosen origin on the conic sets of lines with equations rational
in the coefficients of the quintic, and will mark covariants of the quintic^
In linear constructions it will not be necessary to regard the conic as
drawn, the five given points being all that pure geometry needs in order
to obtain desired second intersections, poles, and polars.

It is to be remarked that the quintic stands alone among binary
quantics in being exactly specified by its appropriate number 5 of points
taken at will in a plane. The five points uniquely determine the conic
which has to be taken with them. Four points do not; and to specify
a quartic, we have to specify four marking points and a chosen conic
through them. On the other side, six points are too many to be chosen
at will and lie on a conic; so that to specify a sextie, we must choose six
marking points through which a conic passes.

It will often be convenient to take as standard case, from the facts
in which the general statement of facts can be deduced by projection, that
in which the conic has been projected into the parabola x—y2. With
this reference the quintic points have coordinates (tu t^, (t2, t^}, ..., (t5, £5) ;
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and the quintic pencil may be taken as whichever is most convenient
of the two:

IL(x-ty) = 0, IL(y-t) = 0,
i I

which connect the points with the vertex and the point at infinity on the
axis respectively.

Linear covariants of the quintic have special interest. What points
on the conic have, taken singly, symmetrical projective relationship to
the five points, and also rational specifiability by means of them ? Any
point whatever on the conic has the desired symmetrical relationship:
for, by Pascal's theorem, we can pass from any point P on the conic to
the same point again by the following linear construction, in which
ABCDE mean the quintic points arranged in any order whatever:—Let
PA, CD meet in X, AB, DE in 7, and BC, XY in Z: then EZ passes
through P. Accordingly there is a certain propriety in the statement
that every point on the conic marks a linear covariant of the quintic : but
the question of the geometrical specification of such points as mark
rational linear covariants remains open.

One fact is at once clear: that, if we can construct three, we have
the means of specifying geometrically an infinite number. For there will
be a fourth having with the three, arranged in a definite order, any
anharmonic ratio we like to assign as a number or an absolute in-
variant ; and this fourth, like the three, regards the quintic points
symmetrically. If the anharmonic ratio is that of the elements in order
of any given range or pencil, the fourth can be linearly constructed.

Of course, when two only are constructed, we have the certification
that an infinite number, algebraically specified, exist. Express the two
as of the same degree in the coefficients by invariant factors; for instance,
if (7, 1), (11,1) are the two, take (11, 1) and (4, 0)(7, 1). The infinite
system is, for that case,

(11, 1)+X(4, 0)<7, 1)

for numerical values of X. The marking points densely cover every arc
of the conic, however small : indeed, if we allow irrational as well as
rational values of X, they cover the whole conic continuously.

To realize the importance of rational specifiability in general, consider
a sextic instead of a quintic. Any point on the conic will have sym-
metrical projective relationship to sets of any five whatever of the six
marking points, abstracting the sixth altogether, and so to the six points;
i.e., but for the requirement of rationality, it marks a linear covariaut of
the sextic. Now we know that a sextic has no rational linear covariants.
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2. In any complete list of twenty-three irreducible concomitants of
a quintic. (1, 5) there have to figure three quadratic covariants (2, 2), (6, 2),
(8, 2), and four linears (5,1), (7,1), (11,1), (13,1). Of the linears, the
first two are unique, but two (11, l)'s which differ by a numerical multiple
of (4,0) (7,1) are equally allowable, and so are two (13, l)'s which differ by
an invariant multiple of (5, 1). By (m, n) is always meant a covariant
of ordern, with coefficients of degree m in the coefficients of (1, 5).

A problem which has long, interested geometers is that of the construc-
tion, of four points ort the conic, .which, severally mark (5, 1), (7, 1), an
(11, 1), and a (13, 1).

The construction:of. (7,1) and. (5,1) has been effected by Prof. Morley.*
If PiPzPa.PiPs are the points marking the quintic, he first shows with
remarkable ingenuity that the connector of the two points on the conic—
imaginary points if the P's are all real—which mark the unique (2r 2),
may be obtained as follows. Construct (linearly, by use of two of the
line-pair conies through P^PgPiP^) the point Qi which is conjugate to Px

(any one of the five quintic points) with regard to all conies through the
other four: then construct (also linearly) the polar of Qx with regard to
the harmonic triangle of the quadrangle P2P3PiP5: this line and the
tangent at Px intersect on the required connector, which is accordingly
given by any two of five constructible^ points, the colinearity of which
is an interesting geometrical fact. After this he, in effect, specifies two
points which, mark linear covariants of a given quintic and quadratic,
obtaining a linear construction for them which is real in a case, such as
the one on which he is going to fix attention, when the quintic points
are real and the quadratic points imaginary on a real connector. The
construction which I give below (§ 3) is based on his, but is perhaps
easier to grasp. The marking points of the (7, 1) and the (5, 1) of the
quintic PiP2P3PiP5 he thus obtains as those linear covariant points of that
quintic (1, 5) and its (2r 2) which are afforded by his construction.

In connexion, with the first of Morley's succession of constructions,
it is interesting to notice incidentally a fact as to a quartic. He shows
that what he calls the conjugate polar, of Px with regard to the quadrangle
P2P3PAP5—i.e., the polar of Qlt found as above, with, regard to the
harmonic triangle of P2P3PiP5—is, wherever Pl be, the polar of Px with,
regard to a certain, conie associated with the quadrangle. This conic, is
the imaginary" one with regard to which the pencils of four lines at the
vertices of the harmonic triangle, in the figure of the complete quadrangle,
reciprocate into the ranges of four points on the opposite sides respec-

* "A Construction by the Ruler only of a Point Covariant with Five given PoihtB,"
Math. Ann., Bd. XLIX., S. 496.



1908.] THE PROJECTIVE GEOMETRY OF SOME COVARIANTS OF A BINARY QUINTIC. 227

tively of that triangle in the figure. It can be shown that the four
imaginary points in which that conic cuts the conic through P.jPgPjPg
and a chosen origin are the points which mark for that origin, or any
origin on its conic, the Hessian of the quartic marked by P2P3P.|P5.
A second (imaginary) quadrangle P2P3P4P5 on the conic has the same
Hessian quadangle as P2P3P4P5, and is apolar with P.2P^P^P5.

Morley anticipated that the next step towards the construction of an
(11, 1) and a (13, 1) must be the construction of the marking points of
the canonizant cubic (3, 3). It seems more practicable to look either for
another quadratic covariant or for a quintic one, and, having found either,
to apply the construction for linear covariants of a quintic and quadratic
to the new quintic or quadratic and the old quadratic or quintic.

Two quadratics at once suggest themselves as ready at hand, viz.,
the quadratic (5, 1) (7, 1) itself, and the quadratic of common harmonic
conjugates of this pair and (2, 2). Taken with (1, 5), however, they pro-
vide linear covariants which present themselves with high degrees in the
coefficients, 25 and 37 in the one case and 29 and 43 in the other, which
it is not easy to examine.

We shall see, however, that a quintic covariant of the needful simplicity
is available.

3. Before obtaining and applying this quintic, let us exhibit a con-
struction, alternative to Morley's, for his two linear covariant points of
a quintic marked by P^P^P^P^P^ and a quadratic marked by AB on the
conic through these points—on the P-conic, let us say. Take C the
pole of AB for the conic. A conic passes through and is determined by
GP2PsPiP5. If A, B are real, as well as the P's, the points D, E,
where CA, GB meet this conic again, can be linearly constructed, as we
know C and four other points on the conic ; and so can F, the pole of
DE, with regard to this conic. If, on the other hand, as happens in the
cases of most importance, A, B are imaginary on a real connector with
a real pole G for the P-conic, we can still find F by a real linear con-
struction : for, through G we can linearly construct any number of pairs
of conjugate lines with regard to the P-conic—two pairs suffice, e.g.,
construct the conjugates of CP2, GP3 — and these meet the conic
(CP2P3P4P5) in pairs of an involution, also constructible ; and the pole
of this involution is F. Now, having F, in either case, take Qv where
GPX meets again the P-conic, and let FQl meet this conic again in Q.
This point and P, where GQ meets the P-conic again, are the two co-
variant points required on that conic.

The directly obtained geometrical theorem is that the Q and P thus
Q 2
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obtained from Px and (CP2P3P4P5) are equally obtained in the same way
from P2 and (CP^gPaPg), and from the other three separations of the
five P's into one and four.

Notice the further geometrical conclusion involved in the identical
character of the passage from Px to P with that from P to Pv Not
only is P the second covariant.point of AB and P1P2P3P4P5, but every
one of the six points PP1P%P3P,iP5 is the second covariant point of AB
and the quintic marked by the other five.

In the first of the two figures drawn, A, B are taken real and at
infinity. In the second they are taken imaginary and nearly on a directrix
of the P-conic.

To prove the construction, we project the tangent at B to infinity,
and AB and the tangent at A into rectangular axes, so that xy is the

5

quadratic and x = y2 is the P-conic, the quintic being IL(x—ty) = O,

as in § 1. The collineations being always the same, the apparent treat-
ment of the quadratic points as real is immaterial. The two linear
covariants are

^ - * ) and

Tf the former is x—ry, the latter is x-\-ry ; and the two are harmonic
conjugates with regard to xy, i.e., are reflections of one another in the
axis, r is the ratio of the sum of the products of tlt t2, tH, ti} t5 three
together to the sum of the products of them two together ; and, if
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*i> -S2> S3> S4 denote-the sums of the products of a chosen four of them,
â» ̂ 8> ̂ 4> ̂ 5» one, two, and three together, this fact may be written

s3+(*i~T)s2—*IT«I = 0,

an equality of which one interpretation is that the point (s3lslt sjsj lies
on the connector of the points r and — tx on the parabola. If then the
point (s3/sx, s2/

si) can be constructed, the connector of it with the point
—tlt i.e., with the reflection of the point tlf i.e., of Pv in the axis y = 0,
will determine the first covariant point T as its second intersection with
the parabola. Reflection in the axis will then give the second covariant
point —T.

Now the conic through t2, ts, tit t5 on the parabola and C the point
at infinity on the tangent at the origin, i.e., the pole of the axis AB, is

x2—slxy-t-s2x—s32j+si = 0;

and the polar of (s3/si, s2/si) with regard to this is

s3x— s^ay+Hi — 0.

But the equation of the conic may be written

(sax — SjSgy + s^^rc+Sg) = (S3+S1S4 — SxS.^x ;

so that sHx—slssy-\-sA = 0 is the line joining the points where CA
(x =0) and CB (the line at infinity) are cut by the conic, as well as at C.

Accordingly, the geometry generalized by projection at the outset of
this article is justified.

Of the two linear covariants constructed, r, i.e., Q, is of degrees 1 in
the.coefficients of the quintic and 2 in those of the quadratic, while —T,
i.e., P, is of degrees 1 and 3. Applying the construction to a quintic
(1, 5) and its covariant (2, 2), the Q obtained is then the unique (5, 1), and
the P the unique (7,1), of (1, 5).

4. With a view to further constructions it is desirable to look first
for covariants which can be broken up into linear factors rational in the
roots of our quintic (1, 5). The marking points of such covariants we
may hope to be able to construct.

A linear factor of a covariant of order CT which has this property, and
is not a product of other rational covariants, must have for the coefficient
of a; in it a function of the differences of tlt t2, ..., t5 which is revalued
for permutations of those letters.

Now no functions exist which are lower than 5-valued for permutations
of five letters, except one-valued or symmetric functions. It is useless,
then, to look for covariants of orders between 1 and 5 with the property
in question.
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One of order 6 will be introduced presently. For our immediate
purpose, one of odd order is desired; and one of order 5 is at once
obtained from the 5-valued function

(t1-t2)(t1-g(t1-ti)-\-(t1-t2)(tl-t3)(tl-t5)

+(t1-t2)(tl-ti)(t1-t5)+(tl-t3)(it1-ti)(t}-g,

which is — (atl+Sbil+Sct+d),
a

if (a, b, c, d, e,f)(x, ijf is the quintic (1, 5).
The linear covariant of the five linear forms tlt t2, ..., tR which this

leads, viz.,

a factor of the quintic covariant of (1, 5) which we are investigating, is
the linear polar of tx with regard to the other four. The product of the
five such, being of order 5 with leading coefficient of weight 15, is of
degree A(2.15 + 5) = 7, and is accordingly

a2 A (at?+3bt?+3ct+d).
I

To identify it, let us find the terms free from c, d in its expression
in terms of the coefficients. These are given by

a2f[ (af+Sbt2) = f It (at+3b) = — f(a, b, 0, 0, e,/)(36, -a ) 5

i i «

= f(-aif+l5asbe-162b5).

In terms, then, of the complete system of concomitants exhibited in my
Algebra of Qualities, § 235, for the semi-canonical form

(a, b,0,0,e,f)(x,y)5,

the novariant specified is

81(7, 5)-(4, 0)(3, 5) + 22(2, 2) (5, 3).

It has just as much right to be taken as the irreducible covariant of
degree 7 and order 5 in a complete system of irredueibles as has the
more usual (7, 5) itself.

The marking points of the linear factors of the (7, 5) thus found can
be easily constructed as follows. Construct the harmonic conjugate of
the tangent at Px with regard to PiP2» -Pi^V a nd also that with regard

, to P1P4, P1P5: then construct the harmonic conjugate of the same tan-
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gent with regard to these two harmonic conjugates, and let it cut the
conic in Bv Similarly construct B2, Ba, E4, B5 from P2, P3, P4, P5 and
the other sets of five, taken in pairs in any way in each case. BlB2B3BiB5

marks the covariant specified.
To prove this, project the conic into a parabola with Pl at infinity, thus

getting oo, t2, t's, t\, t'5 for tv t2, t3, t4, t5. The tx factor of the covariant
becomes A

4a;
which cuts x = y2 on y = \(t'2-\-t'z-\-t[-\-t'5),

i.e., on the parallel to the axis through the centroid of P*, P'3, Pl, P'-o; and
a construction for this has been given in projective form above.

Bi is also the point of contact of the second tangent to the conic from
the point Qv constructed as in § 1, which is conjugate to P1 with regard
to every conic through P2P3P4P5.

5. By Morley's construction, or that of § 3, we can now find the two
marking points Q', P' of two linear covariants of the (7, 5) which has
been constructed and the (2, 2). The degrees of these linear covariants
in the coefficients of (1, 5) will be 7 + 2 . 2 = 11 for Q', and 7 + 3 .2 = 13
for P'. The two are harmonic conjugates with regard to (2, 2). We need
to be sure that Q' and P' do not coincide with the P and Q before ob-
tained, respectively: they cannot coincide respectively with Q and P, for
coincidence would mean algebraical identity but for an invariant factor,
and no invariant of degree 6 exists. When we have shown either that
the (11, 1) marked by Q' is not merely (4, 0)(7, 1), or that the (13, 1)
marked by P' is not merely an invariant multiple of (5, 1), the other fact
will follow, and we shall know that Q, P, Q', P' mark four linear co-
variants which are entitled to places in a complete system of twenty-
three irreducible concomitants of the quintic.

For the examination of such questions there is great convenience in
the use of Hammond's* so called (a, b, c) canonical form of a quintic.
This canonical form is the one arrived at when we apply such a linear
transformation to the quintic as to reduce the canonizant (3, 3) of the
quintic to the ordinary canonical form k («3+?/3). As the canonizant and
the quintic are apolar forms, the latter must assume such a form as to be
annihilated by (d/dy)B—{dldx)3. Whence d = a, e = b, f = c.

The forms in Hammond's complete system of concomitants (loc. cit.)

* Proc. London Math. Soc, Vol. xxvn., p. 393.



232 PROF. E. B. ELLIOTT [March 12,

are not in all cases quite the same as those of Cayley* and Salmon, or as
those of the list referred to in my Algebra of Quantics; and it is necessary
to have before us a partial table of equivalences in the three notations.

CAYLEY.

(4,0)

(8,0)

(12, 0)

(18, 0)

(5,1)

(7,1)

(11, 1)
(13, 1)

(2, 2)

(6,2)

(8,2)

(3,3)
(5,3)
(3,5)

(7, 5)

ELLIOTT.

(4, 0)t
(8,0)

(12, 0)

- (18 , 0)

(5,1)

(7, 1)

- ( 1 1 , 1)
-6(13 , l ) -2 (8 , 0)(5, 1)

(2,2)

(6,2)
(8,2)

(3,3)
(5,3)
(3, 5)

(7, 5)-(2,2)(5, 8)

HAMMOND.

- 9 (4, 0)

-27 (8 , 0)
-27(12, 0)

729 (18, 0)

9 (5, 1)

-27 (7 , 1)

-81 (11 , 1)

486(13, 1)

- 3 ( 2 , 2 )

9 (6, 2)
27 (8, 2)

(3, 3)

9 (5, 3)
- 3 ( 3 , 5 )

- 9 ( 7 , 5)+ 27 (2, 2)(5, 3)

Thus the (7, 5) constructed in the last article is, in Hammond's notation,
after division by —27,

27(7, 5) + (4, 0)(8, 5)+ 22(2, 2)(5, 3).

For his canonical form

(1, 5) = {a, b, c, a, b, <$(x, y)5,

the expressions for those of Hammond's concomitants which we require
are, writing a', b', c', k for be—a2, ca—b2, ab—c2, Sabc—a^—b^—c3

respectively,

* Salmon, Higher Algebra, 4th ed., p. 237. Cayley's Collected Works, Vol. n. , p. 2S2.
t Algebra of Quantics, p. 309. On p. 307 the sign is different, and a coefficient has dropped

out. Read there (af-3be + 2cd)--i (ae-4bd+3c*)(bf-4ce + M-).
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(4, 0) = 4a'c'-b'2,

(8, 0) = k*b',

(12, 0) = k\

(18, 0) = A;4 (a'3—c'3),

(5, 1) = k (a'x+c'y),

(7,1) = k {-I

(11, 1) = i

(13, 1) = i

(2, 2) = c'x2-b'xy+a'if,

(6, 2) = Vxy,

(5, 3) = k(b'xs-2alx2y+Q,c'xy2—b'y3),

(3, 5) = (2a'3/-fe'a;)(a, 6, c, a, b)(x, yf-^c'x-b'y)^ c, a, b, c)(x, y)\

(7, 5) = k2 (ax5+3bx4y+2cxy—2ax2if-dbxi/-cif).

6. The Q', P' to the construction of which we have been led mark
respectively the (11, 1) obtained by operating with (2, 2)2 on, and the
(18, 1) obtained by operating on (2, 2)3 with, the quintic

27(7, 5)+ (4, 0)(3, 5) + 22(2, 2)(5, 3),

the operator in each case having 3/3?/, —d/dx in it for x and y. We seek
first the latter, P', by use of Hammond's canonical form.

After some tedious simple algebra we find that the coefficient of x in
(7, 5) on (2, 2)3 is 360&3(2c'2—a'b'), while that of y is the result of inter-
changing a and c in this. Thus 27 (7, 5) on (2, 2)3 is

27.360 {2(13, l ) - ( 8 , 0)(5, 1)[.

Again, (3, 5) on (2, 2)3 is

(a, b, c, a, b) (•§-, - ^-V \ - 3 (4, 0) xic'x'-b'xy+a'if)2]
\oy oxl

+ (6, c, a, b, c) ( | - , - J-V ) - 3 (4, 0) y(c'x2-b'xy+a'y2)2\,
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which can only be a numerical multiple of (4, 0)(5, 1). To find what
numerical multiple it suffices to compare the coefficients of any particular
term. The coefficient of (4, 0) a5x is that in

- 3 ( 4 , 0)(a, 0, 0, a, 0)(^-, — S) W .
\dy dxl

i.e., it is — 3 . 4 . 3 . 2 . 1 = — 7 2 , while in (4, 0) k(a'x+c'y) it is + 1 .
Thus (4, 0)(3, 5) on (2, 2)3 is - 7 2 (4, 0)2 (5, 1).

Lastly, (2, 2) on (2, 2)8 is 9 (4, 0)(2, 2)2; and the leading coefficient of
(5, 8) on (2, 2)2 is that in

/ill

i.e., it is <kka'(4a'c' — b'*), which leads 4(4, 0)(5,1). Thus 22(2, 2)(5, 3)
on (2, 2)3is 2 2 . 9 . 4 ( 4 , 0)2 (5, 1).

It follows that the constructed (13, 1), P', is

27.360]2(13, l ) - (8 , 0)(5, 1)}—72(4, 0)2 (5, l) + 22.36(4, 0)a(5, 1),

•i.e., after division by 360,

54(13, l ) - 2 7 ( 8 , 0)(5, l )+2 (4, 0)2(5, 1). (F)

The constructed (11,1), Q', has its expression obtained by writing down
the harmonic conjugate of this with regard to (2, 2). In the canonical
notation used it is at once given by

- {27A;26'-2(4aV-6'2)2[ * (a'£—c'( ' V oy

in which the coefficient of x is

4- -a^-) - {27A;6-2(4aV-6)[ * (a£—c2-6y ox) ( ' V oy dx

X(c'x*-b'xy+a'x2),

Le.,

from which the invariant 4<x'c' —6'2 = (4, 0) divides out, as it should, and
the other factor is minus the leading coefficient in

27(11, l ) - 2 (4,0)(7,1), (QO

which is accordingly the harmonic conjugate Q' required.
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In Cayley's notation the expressions for P' and Q', affected by suitable
numerical factors, are respectively

811(13, l)+(8,0)(5, l )}+2(4, 0)2(5, 1),

and 81(11, 1)4-2(4, 0)(7,1).

7. There is a quite different procedure by which we can construct a
(13, 1) of a given (1, 5). We are able to construct the linear polar of a
linear form with regard to a given sextic. The following is an immediate
method: another has been described by Mr. C. F. Russell (see reference
below).

We want the polar one point of a given point A on a conic with regard
to six given points Blt B2, ..., Be on that conic. Construct the pole G of
the tangent at A with regard to the triangle BXB2B3: this is merely a
matter of joining points and finding harmonic conjugates. Also construct
H the pole of the same tangent with regard to the triangle EiB5B&.
Then construct AB the harmonic conjugate of the same tangent with
regard to AG and AH. The point B where this meets the conic again
is the polar point required.

To prove this, consider the tangent at A to have been projected to
infinity, so that, x = y2 being the conic, we want the linear polar of
y = 0 with regard to a given sextic pencil

o5 °
This is •*r§IL(x — ty) = O,

i.e., it is 6x—(t1-\-t2-\-...-\-tG) y = 0,

which meets x = y2 on 6?/ = ^ + ^ + • • • + h>

i.e., on the parallel to y = 0 through the centroid of Bu B2, ..., .R6>
i.e., on the parallel to the axis through the middle point of the connector
of the centroids of B1B2B3, E4i?5E6.

It may be remarked that always the construction of the linear polar of
a linear form for a binary n-ic is obtained by expressing projectively a
construction for the line in a given direction which passes through the
centroid of n points.

Now we have ready for use a constructed sextic covariant of a given
quintic PlP2P3PiP5. I have shown* how to construct by points an im-

• " A Pascalian Theorem as to Pentagons," Quarterly Journal, Vol. xxxvin., p. 265.
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portant (6, 6), reducible in Hammond's notation as 9 (1, 5)(5,1) —25(3, 3)2,
which is that of which the leading coefficient is the product of the roots
of the sextic resolvent of the quintic equation. Let P2P5, -P3P4 meet in
Yv and Y1P1 cut the conic again in P{: this can be found linearly in
virtue of Pascal's theorem. Cyclically let P3PV P4P5 meet in Y2, and
Y2P2 cut the conic again in P'2. Further, let PxP^, P'iP'2 meet in Z, and
ZP4 cut the conic again in Xv This and the five other points constructed
in like manner, taking the P's in the cyclical arrangements 12453, 12534,
12543, 12435, 12354, are the marking points Xlt X*, ..., Z6 of the
(6, 6).

The linear polar of (5, 1) with regard to this (6, 6) can be constructed
as above. We proceed to exhibit it as a (13, 1). What we need is the
result of operating with (5, I)5 on

9(1, 5)(5, l ) -25 (3 , 3)2.

Since (5,1) as an operator annihilates (5, l),the result of operating with
(5, I)5 on (1, 5)(5,1) is only an invariant multiple of (5, 1). This multiple
is, in Hammond's canonical form,

a' ^ c'^) (a, b, c, ar b, c)(x, yf,
oy ex)

•i.e., it is 120 times

= k4 |a'2(a'3-10c'3)(a'6'-c'2)-5a'c'(a'3-c/3)(a'c'-62)

+ c'2(10a'3-c'3)(b'c' -a'*)\

= ki(a'3-c'3)\a'2(afb'-c'i)—5a'c'(a'ct-b'2)-H'2(b'c-a'2)-9a'2cr2\

= A;4(a'3-c'3)l -k2b'—(4a'c'—b'y\

= - ( 1 8 , 0)|(8f 0)+(4, 0)2}.

Again the result of operating with (5, I)5 on (3, 3)2 is

k1 (a' J- - c ' J-V(x6-|-2rcV+i/c) = 720&V3-c'3)(c'2z-hi'2y)
V cy ox/

= 720(18, 0)(18, 1).

Rejecting then the invariant factor —360(18,0), the linear covariant
which we have just constructed is

50(13, l ) + 8 -I (8, 0)+(4, 0)2| (5, 1). (P")
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The harmonic conjugate of this (13, 1) with regard to (2, 2) is not an
(11, 1) but a (15, 1), namely, as ascertained by the method of § 6,

25 (4, 0)(ll, 1) —{28 (8, 0)+3 (4, 0)af (7, 1). (Q")

In fact every (11,1) is included in

(11, 1) + X (4,0(7,1),

for some numerical value of X; and those (13, l)'s which are harmonic
conjugates of (11, l)'s with regard to (2, 2) form the restricted system

2 (13,1)- (8,0)(5, 1)-X (4, 0)2 (5,1).

8. There is a way, independent of Morley's at its outset, by which
linear covariants of a quintic can be constructed, which I have not
followed out in detail, but to which I will now allude.

Mr. C. F. Russell* has indicated a finite succession of linear processes
by which we can arrive at the point of a conic which accompanies n—1
given points in forming a system apolar with n other given points: in
other words, he has shown that we can construct a linear covariant of an
(n—l)-ic and an n-ia—one of partial degrees 1, 1 in the coefficients of the
(n—l)-ic and n-ic. In'particular a linear covariant of a quintic and sextic
is thus given. There would be failure of the construction if the quintic
and sextic were themselves apolar forms, but this case does not arise
when, for instance, we take (1, 5) and my (6, 6) of the last article.
Taking them we arrive at the linear (7, 1). Again, taking the (7, 5) of
§ 4 and the same (6, 6), we are led to the construction of a (13, 1).

To proceed from these to (5, 1) as a companion of (7, 1), and to a
companion of the constructed (13, 1), which may prove to be an (11, 1) or
a (15, 1), the natural course is to proceed with Morley and construct
(2, 2), then obtaining the harmonic conjugates with regard to it of (7, 1)
and the (13, 1).

However, the sextic made use of being 9 (1, 5)(5,1) — 25 (3, 3)2, and
(1, 5) and (3, 3)2 being readily seen to be apolar forms, Mr. Russell's
point for the sextic and (1, 5) is also his point for (1, 5) (5, 1) and (1^ 5).
Thus, algebraically, (7,1) is obtained by operating with (1, 5) on (1, 5) (5,1).
It is also true that (5, 1), multiplied by an invariant, is given by operating
with (1, 5) on (1, 5) (7, 1); and, in fact, using Hammond's canonical form,
it is easy to see that the result of operating with (1, 5) on the product oi

* " On the Geometrical Interpretation of Apolar Binary Forms," Proc. London Math. Soc,
Ser. 2, Vol. 4, p . 342.
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(1, 5) and any linear form is the harmonic conjugate of that form with
regard to (2,2). Assuming, then, that in Russell's sequence of constructions
no indeterminateness presents itself when his five points are also five of
his six points, or, as will no doubt be the case, that a determinate and
simplified sequence Qf constructions will be applicable under such circum-
stances, we have a means, without the construction of (2, 2), for obtaining
the (5, 1) point when the (7, 1) point is known, and the (11, 1) or (15, 1)
point which is the conjugate of the (13, 1) point when this is available.

9. I will conclude with a few remarks on the geometrical grouping of
related quadratic and linear covariants. Geometrically, as well as in the
algebraical theory of irreducibles, quadratic covariants of a given quintic
form triads, and linear covariants tetrads associated with these triads. It
seems a desirability to exhibit a fundamental triad and tetrad having an
association of the greatest possible geometrical simplicity. It is an in-
teresting, and perhaps a remarkable, fact that algebraical irreducibility
and geometrical simplicity of relationship do not go together. The (2, 2),
(6, 2) and (8, 2) of an irreducible system have not the compactness as a
geometrical triad, and the symmetrical relationship to a tetrad of linears,
which are possessed, for instance, by (2, 2), (8, 2) and the (10, 2) which is
reducible as (4, 0)(6, 2) —(8, 0)(2, 2), or by (6, 2), (8, 2) and the (14, 2)
reducible as (8, 0)(6, 2)+ (12, 0)(2, 2). Each of these last two triads con-
sists of three pairs of elements of which every two pairs are harmonically
conjugate. Associated with every such triad a best tetrad of linears to fix
upon consists of either (5, 1) or (7, 1) and its harmonic conjugates with
respect to the three pairs of the triad. We then have the figure of an
inscribed quadrangle and its harmonic triangle. With the first of the
two self-conjugate triads named above there thus goes the tetrad of
linears (5, 1), (7, 1), (13, 1) and the (15, 1) which is reducible as

(4, 0)(ll, l ) - ( 8 , 0)(7, 1);

and with the second goes, for instance, the tetrad (5, 1), (11, 1), (13, 1)
and the reducible (8, 0)(ll, l) + (12, 0)(7, 1). Hammond's canonical
orms for this second triad and tetrad have marked simplicity, being

k2xy, k(a'x-\-c'y),

k2(c'x2-a'y\ k3(a'x-c'y),

ki(c'x2+a'y2), k3(cl2x+a'2y),

k5(cl2x-a'2y).

Having any tetrad of linears we construct the associated triad
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of quadratics by drawing the sides of the harmonic triangle of the
quadrangle of marking points of the tetrad, the intersections of these
with the conic being the pairs of marking points of the quadratics. This
can be applied to tetrads of linears which we have constructed. For
instance, with the tetrad of linears (5, 1), (7, 1), Q', P' goes the triad of
quadratics ,o o.

K"t A),

2 |(12, 0)-(8, 0)(4, 0)[ {27(6, 2)-2(4, 0)(2, 2)}+27(8, 0)(5, I)2,

54(18, 0)(2r 2)—27(4, 0)(5, 1,)(11, l)+2(4, 0)2(5, 1)(7, 1),

the notation being Hammond's, as it has been throughout where the
contrary has not been, stated.


