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CHIC Hyper-Modeling in CHIC

Hyper-modeling has been defined as the “general theory and practice of linking system models and their components” [2].
Here, a hyper-model represents a disease model which emerges from the composition of multiple component models, each
of which captures existing knowledge about a portion of the process and operates at characteristic space-time intervals.

The Computational Horizons in Cancer (CHIC) [1] project
addresses the challenge of personalised clinical decision
support for cancer treatment, based on the integration of
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In CHIC, five mechanistic compon-
ent models are used. The main
model outcomes refer to the cell /
tissue scale and are influenced by
processes on molecular and tissue
/ body scale.
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Cancer is a complex condition involving a large variety of o)

processes on different length and time scales. Challenges
related to the development, validation and maintenance of
suitable multi-scale models are addressed through hyper-
modeling.
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Biomechanical Simulator Pre-processing Simulation Tool

The Biomechanical Simulator (BMS) is a component
model for the simulation of bio-mechanical aspects of

A pre-processing pipeline automates the model configura-
tion process, including the assignment of body-site spe-
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cell proliferation and treatment effects, the Onco-Simulator
(OS) [4]. Simulation involves two processes:

1. Pre-processing: Creation of personalised FEM model.
2. lterative coupled execution with model of tumour
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- Computation of elements’ growth from cell concentration c: 1. Tumour cell concentration in OS domain (tumour only, regular grid).
c\1/3 2. OS domain mapped into BMS domain (tumour and surrounding healthy tissue)
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simulation of tumour mass-effect & healthy tissue
invasion as mechanically-coupled reaction-diffusion
model.

Simulator improvements:

accuracy of parameter exchange between models,
remeshing in case of large deformations.

- Simulator adaptable to different body-sites,
provided segmentations and estimates for bio-
mechanical parameters.

- Uncertainty in parameter assumptions, boundary g
conditions and minimum size of simulation domain for
most body-sites.
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