
High-Throughput Crowdsourcing
Mechanisms for Complex Tasks

Guido Sautter 1, Klemens Böhm1

1 KIT, Am Fasanengarten 5, 76128 Karlsruhe, Germany
{guido.sautter, klemens.boehm}@kit.edu

Abstract. Crowdsourcing is popular for large-scale data processing endeavors
that require human input. However, working with a large community of users
raises new challenges. In particular, both possible misjudgment and dishonesty
threaten the quality of the results. Common countermeasures are based on
redundancy, giving way to a tradeoff between result quality and throughput.
Ideally, measures should (1) maintain high throughput and (2) ensure high
result quality at the same time. Existing work on crowdsourcing mostly focuses
on result quality, paying little attention to throughput or even to that tradeoff.
One reason is that the number of tasks (individual atomic units of work) is
usually small. A further problem is that the tasks users work on are small as
well. In consequence, existing result-improvement mechanisms do not scale to
the number or complexity of tasks that arise, for instance, in proofreading and
processing of digitized legacy literature. This paper proposes novel result-
improvement mechanisms that (1) are independent of the size and complexity
of tasks and (2) allow to trade result quality for throughput to a significant
extent. Both mathematical analyses and extensive simulations show the
effectiveness of the proposed mechanisms.

Keywords: Crowdsourcing, Data Quality, Throughput

1 Introduction

Recently, crowdsourcing has become popular for tasks that require human input to
increase data quality. Crowdsourcing distributes small pieces of a large effort to many
users who make small contributions, usually over the Internet. Crowdsourcing has
been used successfully for many tasks, e.g., image labeling [4, 10], double-keying
individual words for OCR correction [11], grading the relatedness of word pairs for
ontology construction [3, 7], or word sense disambiguation [8]. Crowdsourcing poses
a number of challenges. In particular, there is no guarantee that user inputs are
correct. Here, an input is correct if it is identical to what respective experts would
agree on [3]. There are several reasons for incorrect inputs. We distinguish:
- Users can accidentally make mistakes due to sloppiness or misjudgment, even if

they contribute solely because of interest in the project, like in [2, 4].
- Especially if they receive some reward for their inputs, users may cheat to reduce

their effort. In particular, they may contribute arbitrary random input instead of

working thoughtfully. Especially if the reward is external, e.g., monetary, like in
[3, 8, 11], gathering the reward might well be the only motivation. [3] has
observed users following this strategy.

To ease presentation, we introduce several notions: A Task T is the unit of work
assigned to contributors. Each task consists of Decisions D1 … Dd the user is sup-
posed to take. In [11], for instance, a task consists of two decisions, namely on the
correct transcriptions of two words from images. In [3] in turn, tasks consist of 12
decisions, on the relatedness of 12 term pairs. The original state of a task is its status
before any user has worked on it. Further, the final status, i.e., after a crowdsourcing
system regards the task as completed, is its result. Finally, inputs are the contribu-
tions of individual users who work on a task. We formalize these notions in Section 2.

In our context, it is important that incorrect inputs occurring for different reasons
(see above) exhibit different properties and require different countermeasures. The
crowdsourcing projects mentioned before have developed different respective
strategies. One countermeasure against mistakes is redundancy, i.e., to obtain
contributions of several users for each task. However, redundancy severely reduces
throughput. A mechanism to discourage cheating is to probe users with tasks the
system already knows the correct result for, e.g. CAPTCHAs [9].

The tasks crowdsourced in previous projects were relatively simple, e.g., double-
keying words [11], grading the relatedness of word pairs [3], or finding meaningful
labels for images [10]. If tasks consist of more than one decision, like in [3, 8], the
individual decisions are mutually independent and can be freely combined into tasks.
Tasks in other applications are much more complex. An example is the generation of
semantic markup for legacy documents. In general, the tasks consist of multiple
decisions that belong together, or decisions are very complex. In Distributed Proof-
readers [5] for instance, decisions are transcriptions of entire document pages, inclu-
ding both the word level and the structure of the page. Tasks of similar complexity
arise in the Madagascar Project [6]. Because of the complex decisions and the high
level of redundancy, throughput is low in Distributed Proofreaders, around 18,000
documents in 10 years. A more promising approach would be to use a mechanism like
reCAPTCHA [11] for the word level transcription and to proofread the page structure
separately (we argue). Even if structuring a page can be broken into several decisions,
these decisions still form a unit that a user should work on as a whole.

This calls for crowdsourcing mechanisms that (1) effectively counter errors and
thus enforce data quality, (2) yield a high throughput, and (3) work with large tasks.
Previous crowdsourcing projects have mostly addressed (1), but not in combination
with (2) or (3). In particular, they have not addressed the tradeoff between data
throughput and result quality. In this paper, we therefore study generic quality-
enforcement techniques that are independent of the nature of the tasks and counter
both mistakes and cheating:
- v-Voting counters mistakes. For each task, it obtains inputs from several users and

aggregates them to the overall result. Unlike static redundancy, it uses a voting
mechanism (controlled by parameter ‘v’), which reduces the number of inputs
required.

- Vote Boosting builds upon v-Voting, to further increase throughput. It increases
the weight of inputs from users who are known from prior observations to make
few mistakes, thus reducing the number of answers required. If a reward system is

in place, the reward can be specified to increase with the weight of the vote. We
expect this to foster high-quality inputs.

These mechanisms assume that most users contribute useful inputs, an assumption
common to crowdsourcing projects. If most inputs were arbitrary, there would be no
chance of obtaining any meaningful data at all. Note that the mechanisms ensure data
quality in the presence of cheating, but do not prevent or discourage dishonest user
behavior in itself. This would require some sort of user probing mechanism, e.g. one
akin to CAPTCHA.

To assess the effectiveness of our mechanisms, we have conducted a thorough
evaluation, considering both mistakes and cheating. It comprises theoretical analyses
of the expected throughput and result quality, as well as simulations. The results are
that v-Voting and Vote Boosting serve their respective purpose well; in particular,
they yield the same result quality as static redundancy with fewer inputs.

This paper is part of a larger effort that will also cover user experiments. Since
such experiments are expensive even when covering only few points in the parameter
space, it is mandatory to study the alternatives with other methods beforehand. This
paper reports on the respective results.

Paper Outline. Section 2 introduces formal notions required for our analysis.
Section 3 reviews related work. Section 4 provides an in-depth explanation and
mathematical assessment of the data-quality-enforcement mechanisms. Section 5
features simulation results, Section 6 concludes.

2 Formal Notions

To facilitate formal analysis of crowdsourcing, this section formalizes some notions.

2.1 Decisions, Tasks & Functions

Definition: A Decision D is an atomic parameter set by a user. □
For instance, a decision is to classify a named entity, or to specify if a given

paragraph belongs to a document’s main text or is a page header or a caption.
Notation: Opts(D) := {O1, …, Oo} denotes the options available for D. N ∉
Opts(D) denotes the null option, which models the case that D is undecided. □

For instance, the options for a decision can be the classes available for named
entities or the paragraphs types. Note that Opts(D) can be large. In particular, this is
the case when users have to type words into a text field, like in [10, 11].

At every point of its time of residence in the crowdsourcing system, a decision D
has an option S(D) ∈ Opts(D) ∪ {N} assigned to it. We refer to S(D) as the state of
D. There are several dedicated states to be distinguished:
Notation: SO(D) ∈ Opts(D) ∪ {N} is the original state of D, i.e., the state assigned
to D when it enters the crowdsourcing system. SI,U(D) ∈ Opts(D) denotes the state a
user U has assigned to D in his input, i.e., the option this user has selected. An input
state cannot be N. SR(D) ∈ Opts(D) ∪ {N} is the result of D, i.e., the state of D when
leaving the system. A null result, i.e., SR(D) = N, indicates that the system could not

determine a meaningful result for D. SC(D) ∈ Opts(D) is the correct state of D, i.e.,
the outcome respective experts would agree on. Input(D) = (SI,U1(D), …, SI,Uu(D)) is
the input list of D, containingthe inputs that users U1, …, Uu have contributed to D. □

For instance, the original state can be the class an NLP tool has assigned to a
named entity.
Definition: A Task T = (D1, …, Dd) is the unit of work assigned to users, consisting
of one or more decisions D1, …, Dd. □

The individual decisions that make up a task can be connected or independent. In
the first case, a crowdsourcing system cannot modify tasks by adding or removing
decisions. In the latter case, the system can freely put together decisions to tasks.

At any point of its time of residence in the crowdsourcing system, a task T has a
state S(T). The state of a task is the composition of the states of the individual
decisions it consists of, namely S(T) = (S(D1), …, S(Dd)). Analogously to individual
decisions, we make the following distinctions:
Notation: SO(T) = (SO(D1), …, SO(Dd)) is the original state of T. SI,U(T) = (SI,U(D1),
…, SI,U(Dd)) is the input of U to T. SR(T) = (SR(D1), …, SR(Dd)) is the result of T,
i.e., its state after all user interactions. SC(T) = (SC(D1), …, SC(Dd)) is the correct
state of T. Input(T) = (SI,U1(T), …, SI,Uu(T)) is the input list of T, comprising the
inputs that users U1, …, Uu have contributed to T. □
Definition: An abstract input-aggregation function Result(Input(T)) is a function
of type Input(T) → {∅, SR(T)} that computes the result of T from Input(T). □

A crowdsourcing system successively obtains inputs from users and adds them to
Input(T). It evaluates Result(Input(T)) after the addition of each input; once
Result(Input(T)) does not return ∅, T is complete, and no further input is required.
Notation: Work(T) denotes the expected value of |Input(T)| at the moment the input-
aggregation function returns a non-empty result. □

In other words, Work(T) is the expected number of inputs to collect.

2.2 Types of Errors

This section investigates which errors can occur in the inputs that users contribute to
crowdsourced tasks. Note that it is not our goal to enable crowdsourcing systems to
distinguish between these errors. In general, this is not possible. This is because an
error typically does not reveal the motivation of the user who incurred it. However,
errors occurring for different reasons differ in their statistical nature, i.e., follow
different patterns of occurrence. They thus require specific countermeasures.

In general, there is an error in a decision D if S(D) ≠ SC(D). We are interested in
the prevention of errors in the result of D, namely that SR(D) ≠ SC(D). Orthogonal to
the distinction discussed below, there are two types of errors: (1) Miss Errors are
errors that remain undetected; formally, a miss error exists if SO(D) ≠ SC(D), and
SR(D) ≠ SC(D). (2) Added Errors are errors introduced by users; i.e., SO(D) = SC(D),
and SR(D) ≠ SC(D).

Accidental Errors are errors in the inputs of benevolent users incurred by mistake,
be it out of sloppiness, lack of focus, or erroneous judgment. We assume that
accidental errors occur randomly. Further, errors resulting from sloppiness tend to be
miss errors, while the ones resulting from misjudgments can be of both types.

Notation: P(’accidental miss’) is the average probability across all users that some
user accidentally misses an error in a decision D of a task T. P(’accidental add’) is
the average probability that some user accidentally adds an error in a decision D. □

Cheating Errors occur because users do not bother to contribute thoughtful input.
If the original state of a task SO(T) is a valid input, we assume that cheating users
simply submit SO(T) as their input because this is the least effort possible. If the
original state of a task consists of null values, like the initially empty text fields in
[10, 11], we assume cheating users to randomly select an option from Opts(D) as their
input. In the former case, adding an error requires making a change to the original
state of a task. So submitting the original state as an input without changing anything
cannot add any error. Thus, cheating errors generally are miss errors in this case.
Notation: P(’cheat’) is the average probability that some user cheats on a task T and
thereby contributes an input with miss errors for all errors in SO(T). □

Combined Error Probability. To simplify subsequent computations, we aggre-
gate the individual error probabilities.
Notation/Observation: P(’miss’) is the average probability of a miss error in a single
input. This happens if a user cheats on T, or if he does not cheat and misses the error
in some decision D∈ T by mistake, namely:

P(’miss’) = P(’cheat’) + (1-P(’cheat’)) · P(’accidental miss’)
P(’add’) is the average probability of an add error in a single input. This happens if

a user does not cheat and adds an error in some decision D by mistake, namely:
P(’add’) = (1-P(’cheat’)) · P(’accidental add’) □

2.3 Parameters & Figures

This section lists the exogenous and endogenous parameters of crowdsourcing
systems and describes the optimization goals.

The exogenous parameters are: (1) The nature of the tasks, i.e., the number of
decisions they consist of, the number of options in the decisions, and whether the
decisions are connected or not. (2) The accuracy of the initial states of the tasks, or, in
other words, the number of errors to correct in each task. (3) The probabilities of users
to make accidental errors and to cheat on tasks.

The sole endogenous parameter is the answer-aggregation function in use and its
parameterization.

The numbers to optimize are: (1) the expected accuracy of task results, namely
P(‘SR(T) = SC(T)’), and (2) the expected number of inputs required to achieve this
accuracy, i.e., the expected value of |Input(T)|. The latter is particularly important
when using third-party crowdsourcing platforms that require a fixed monetary reward
per input, like the Amazon Mechanical Turk [1].

3 Related Work

This section discusses recent crowdsourcing projects, the mechanisms used to enforce
data quality, and some experiences.

3.1 r-Redundancy

Many projects [3, 4, 8] use a simple input-aggregation function, namely r-Redundan-
cy, where r is the parameter specifying the number of inputs required. r-Redundancy
means that, once r inputs are given for a task T, the most frequently given input in
Input(D) becomes the result of D, for each Decision D in T. r usually is an odd
number. r-Redundancy is suboptimal with regard to throughput. This is because a task
always takes r inputs to complete, even if the first (r+1)/2 inputs agree completely.

Eckert et al. [3] use a 5-redundant approach to arrange terms into a concept
hierarchy. Each task consists of 12 independent decisions. Each decision was to
compare a pair of terms with regard to relatedness and relative generality. To detect
inputs of low quality, each task included two very easy decisions P and Q. If users got
them wrong, this served as an indicator for them not paying attention. With this
mechanism, [3] achieved a degree of data quality comparable to that of a concept
hierarchy constructed from the same terms by domain experts. However, embedding
decisions with known results like P and Q in every task only works with independent
decisions that a crowdsourcing system can freely bundle into tasks. It is impossible to
use with tasks that consist of connected decisions.

Snow [8] successfully used 10-Redundancy based crowdsourcing for detail level
NLP tasks like word sense disambiguation, achieving a result quality similar to [3].
All tasks consist of 30 independent decisions bundled randomly. The system did not
include any mechanisms to detect or filter inputs of low quality.

3.2 Agreement Games

Agreement Games synchronously obtain inputs from two random users, referred to as
U and V. Each task T usually consists of a single decision D, and usually SO(D) = N.
If the two inputs agree, they count as correct, and both users get a reward.

Von Ahn has successfully used this approach for image labeling [10]. OntoGame
[7] has shown that it also works well for ontology construction and alignment, and for
named entity disambiguation. However, the agreement approach is unlikely to work
well for tasks with multiple decisions. This is because such tasks make it much harder
for users to make inputs that agree in all decisions – a single mistake in one input
renders both inputs useless.

3.3 Other Approaches

ReCAPTCHA [11] is a crowdsourcing project that double-keys images of document
pages in a word-by-word fashion. The CAPTCHAs users have to solve consist of two
random word images. One of them is the crowdsourcing task T, a single decision D
on the correct transcription of the given word image. The other one is the actual
CAPTCHA, referred to as C in the following, a word image whose correct
transcription SC(C) is already known to the system. The presence of the CAPTCHA C
that is indistinguishable from the actual task T (= {D}) counters cheating well.

ReCAPTCHA considers an input for D only if the CAPTCHA is solved, i.e., SI(C) =
SC(C). A task is complete as soon as there are 3 agreeing inputs.

However, reCAPTCHA tasks are tiny. Tasks that take more time are impractical as
CAPTCHAs. Furthermore, insisting on agreeing inputs is impractical with regard to
throughput if tasks consist of multiple decisions, as we will show.

Another crowdsourcing project related to the digitization of legacy documents is
Distributed Proofreaders [5]. Its purpose is to correct OCR errors by means of
redundancy. Tasks consist of one very large decision, namely the transcript of an
entire page. Data throughput has been low so far, around 18,000 works in roughly
eight years. A more sophisticated process separating the pages into smaller chunks
might be more promising, e.g., using reCAPTCHA on the word level.

The GalaxyZoo [4] project had over a million galaxy images classified into six
basic categories by over 10.000 volunteers in less than 200 days. Their system
presented each user randomly selected images. However, this approach requires the
whole set of tasks to be available from the start, which is not a given in digitization
efforts. In addition, GalaxyZoo computed results only in the very end, using a
centrality measure to weight the inputs of individual users.

4 High-Throughput Crowdsourcing

To facilitate crowdsourcing of large numbers of complex tasks like proofreading
digitized documents, this section now introduces respective data-quality-enforcement
mechanisms. To ease presentation, we first investigate a base case that assumes a
single input to complete a task. We then present our mechanisms and evaluate them.

We use the following running example: Think of a task T = {D1, D2, D3, D4}. Di is
determining the type of the i-th paragraph in a page. Further suppose that

Opts(Di) = {‘page header’, ‘main text’, ‘caption’, ‘footnote’},
SO(T) = (‘main text’, ‘main text’, ‘caption’, ‘footnote’), and
SC(T) = (‘page header’, ‘main text’, ‘main text’, ‘main text’).

This corresponds to only 25% accuracy in automated classification, a very low
value. We chose this below-standard value for presentation purposes.

For our analysis, we use conservative, yet realistic figures. Namely, we assume that
on average, for an individual decision D in a generic task T

P(‘SO(D) = SC(D)’) = 80%, P(’miss’) = 10%, and P(’add’) = 5%.

4.1 Base Case

As the baseline for assessing the effectiveness of individual countermeasures, we first
formalize the base case (‘BC’), i.e., that exactly one user contributes to each task.

Then, the probabilities PBC(’miss’) of a miss error and PBC(’add’) of an add error
occurring in a decision D are

PBC(’miss’) = P(’miss’), PBC(’add’) = P(’add’)
This results in the following probability of a correct result:
PBC(’SR(D)=SC(D)’) = 1 - P(‘SO(D)=SC(D)’) · PBC(’add’) - P(‘SO(D)≠SC(D)’) · PBC(’miss’)

Note that always WorkBC(T) = 1, representing the optimal throughput. With the
values from the running example, we obtain

PBC(‘SR(D)=SC(D)’) = 0.94 and PBC(‘SR(T)=SC(T)’) ≈ 0.7807.

4.2 v-Voting

v-Voting (‘V’) is a means to counter accidental errors. As r-Redundancy, it does so by
obtaining and aggregating several inputs for each task. As opposed to r-Redundancy,
it uses an agreement-based input-aggregation function. That is, there is a fixed level
of agreement to reach, but no fixed number of inputs to obtain. [11] uses this
technique for individual words, with a fixed v = 3. We generalize it here to a
parametric level of agreement, referred to as v, and for any multi-decision task.
Notation: ResultV(Input(T)) is the input-aggregation function for v-Voting.
RV(Input(D)) is an auxiliary function that computes if there is an agreed-upon result
for a decision D. Formally, this is:

□
Note that ResultV(Input(T)) avoids the ambiguous cases that can occur with r-

Redundancy. Another advantage of ResultV(Input(T)) is that it requires fewer inputs
than r-Redundancy for the same expected result quality. Further note that
ResultV(Input(T)) computes the result decision-wise and does not require whole
inputs to agree, in contrast to [11].

Example 1. Suppose that v = 2, that three users U1, U2, and U3 contribute inputs to
the task T from the running example, and that the inputs are as follows:
 SI,U1(T) = (‘page header’, ‘main text’, ‘main text’, ‘footnote’)
 SI,U2(T) = (‘main text’, ‘main text’, ‘main text’, ‘main text’)
 SI,U3(T) = (‘page header’, ‘main text’, ‘caption’, ‘main text’)
Even though no two inputs are equal, and all deviate from SC(T) in one decision, at
least two inputs agree for each decision. Namely, the agreed-upon overall result SR(T)
is (‘page header’, ‘main text’, ‘main text’, ‘main text’), which is equal to SC(T), even
though none of the users actually provided this input. Had users U1 and U2 given the
same overall input, U3 would not have been asked to contribute an input to T at all. ■

Decision-wise voting can considerably decrease the number of inputs required for
an agreed-upon result, as illustrated in the example. The larger the number of
decisions a given task comprises, the higher the advantage.

Formal Analysis. What is the overall probability of a correct result for a task T,
i.e., PV(‘SR(T) = SC(T)’)? We compute this in the following. For ease of presentation,
we assume v = 2. To keep the computation simple, we further assume the worst case
that, if several inputs contain add errors on a decision D of a task T, these errors are
identical and become part of the result of T. This actually holds only for binary
decisions, i.e., |Opts(D)| = 2. In non-binary decisions like the task from the running
example, the assumption heavily increases the probability of an error. It helps us
because it restricts |Input(T)| and thus reduces the number of cases to consider. Our

simulations will show that |Input(T)| barely increases for |Opts(D)| > 2, in the range of
a few percent, over a wide range of values for the other exogenous parameters.
Notation: PV(’miss’) and PV(’add’) denote the probabilities of a miss error and an
add error occurring in the result of a decision D ∈ T, respectively. □

Informally, an error in the result of a decision D occurs if the first two inputs are
erroneous, and if one of the two first and the third input are erroneous. Formally,
PV(’miss’) and PV(’add’) are as follows:

PV(’miss’) = 3·P(’miss’)2 - 2·P(’miss’)3
PV(’add’) = 3·P(’add’)2 - 2·P(’add’)3

The overall probability for a decision D ∈ T to be correct in the result then is:
PV(‘SR(D) = SC(D)’)= 1 - P(‘SO(D)=SC(D)’) · PV(’add’) - P(‘SO(D)≠SC(D)’) · PV(’miss’)

The overall probability to obtain a correct result for a task T consisting of d
decisions D1…Dd, is:

PV(‘SR(T) = SC(T)’) = PV(‘SR(D) = SC(D)’)d
Example 2. To illustrate the above, we compute the probability of a correct result

for the task from the running example, with the exogenous parameters given there:
PV(‘SR(D) = SC(D)’) = 0.9886 and PV(‘SR(T) = SC(T)’) ≈ 0.9552

In the base case, the respective values are 0.94 and 0.7807. With no user input at
all, the probability of a correct result would be, just for comparison: 0.84 = 0.4096 ■

Discussion. In Example 2, 2-Voting increases the probability of a correct result for
the example task T to about 96% from about 78% in the base case. This corresponds
to a reduction of error by a factor of about 6, for the at most threefold effort.

Note that accuracy, for instance that of classifiers, is usually measured for
individual objects. This corresponds to the individual decisions of a task. In this
example, 2-Voting increases the probability of a correct final result for a decision D
of a task T from 94% to about 99%. This corresponds to a reduction of error by a
factor of almost 6 compared to the base case, again, for at most three times the effort.

The following notions are auxiliary; we use them to formally derive our main
results, the computation of the expected throughput WorkV2(T).
Notation: P(‘SI,U1(D)=SI,U2(D)’) is the probability that the first two inputs SI,U1(D)
and SI,U2(D) agree for a decision D. □
Informally, this is the probability that either none or both SI,U2(D) and SI,U2(D) are
erroneous in some way. Formally, it is as follows:

P(‘SI,U1(D)=SI,U2(D)’) = P(‘SO(D)=SC(D)’) · (P(‘add’)2 + (1-P(‘add’))2)
 + P(‘SO(D)≠SC(D)’) · (P(‘miss’)2 + (1-P(‘miss’))2)

Notation: P(‘SI,U1(T) = SI,U2(T)’) denotes the probability that the first two inputs
SI,U1(T) and SI,U2(T) agree for an entire task T. □

Formally, this is: P(‘SI,U1(T) = SI,U2(T)’) = P(‘SI,U1(D) = SI,U2(D)’)|T|
Throughput. The actual increase in effort in comparison to the base case depends

on the probability P(‘SI,U1(T)=SI,U2(T)’) of the first two inputs to agree on all
decisions in T, namely:

WorkV2(T) = 2 · P(‘SI,U1(T) = SI,U2(T)’) + 3 · P(‘SI,U1(T) ≠ SI,U2(T)’)
Further, WorkV2(T) / WorkBC(T) is the overhead 2-Voting incurs in comparison to

the base case. Likewise, 1 - WorkV2(T) / WorkR(T) is the reduction in effort 2-Voting
yields in comparison to 3-Redundancy.

Example 3. With the values from the running example, the probability of the first
two inputs to agree and the expected number of inputs required are:

P(‘SI,U1(T) = SI,U2(T)’) = 0.6162 and thus WorkV2(T) = 2.3838
Compared to the reduction in error, the overhead over the base case is relatively

low. The reduction in effort, as compared to 3-Redundancy, is 21%, corresponding to
a 26% increase in throughput, at no increase of the probability of errors at all. ■

Discussion. Note that in reality both P(’miss’) and P(’add’) will be far lower than
the pessimistic values from our example computations. Further, the probability of a
correct original state P(‘SO(D)=SC(D)’) is often higher, resulting in a higher
probability of the first two inputs to agree P(‘SI,U1(D)=SI,U2(D)’). On the other hand,
tasks can comprise far more decisions, so the exponent in the computation of
P(‘SI,U1(T) = SI,U2(T)’) increases, resulting in lower values. Depending on the actual
numbers, the effect can go either way:

Example 4. If P(‘SI,U1(D)=SI,U2(D)’) is 99% in a task with 20 decisions,
P(‘SI,U1(T)=SI,U2(T)’) is 82%; in a task with 50 decisions in turn, it drops to 61%. ■

4.3 Vote Boosting

Vote Boosting (‘VB’) increases the weight of inputs of users who make few mistakes. It
exploits that presumably not all users make mistakes with the same probability, and that
v-Voting allows to observe the frequency of mistakes for each user U. If U has made
few mistakes recently, Vote Boosting gives higher weight to an input from U in the
aggregation function. Thus, it reduces the number of inputs required to compute a result.
Definition: CoinFlip(c) is a random function that returns 1 with a probability of c
and 0 with a probability of (1-c). □
Notation: BoostProb(U,T) is the function that computes the probability that the input
SI,U(T) of a user U for a task T receives a vote boost (referred to as the boost
probability in the following). □

We derive a formula for this probability below.
Definition: ResultVB(Input(T)) is the input-aggregation function for Vote Boosting,
as follows:

□
With this definition of ResultVB(Input(T)), with a probability of BoostProb(U,T),

SI,U(T) immediately becomes the result of T, bypassing the v-Voting mechanism. This
reduces WorkVB(T) to 1, the baseline level, completely eliminating the overhead.
However, it also abandons the error-prevention functionality of v-Voting. Thus,
BoostProb(U,T) may return a boost probability considerably above 0 only for users
who are very unlikely to make mistakes. We formalize BoostProb(U,T) as follows:
Notation: C denotes the minimum probability required for the result of a task T to be
correct, i.e., the required result quality. P(‘SI,U(D)=SC(D)’) is the probability that a
user U contributes a correct input to a decision D, the respective probability for a task
T is P(‘SI,U(T)=SC(T)’) = P(‘SI,U(D)=SC(D)’)|T|. Further, Correct(U) denotes the
observed number of correct inputs from user U since his last erroneous input. m

denotes the maximum probability the system accepts for user U to receive a vote
boost for a task T even though actually P(‘SI,U(T)=SC(T)’) < C. □

The actual value of P(‘SI,U(T)=SC(T)’) is unknown, but we can estimate it with high
certainty from Correct(U). In particular, we can compute BoostProb(U,T) by means
of a significance test for accepting the hypothesis “P(‘SI,U(T)=SC(T)’) ≥ C” based on
Correct(U) correct observed inputs. This hypothesis states that user U has a suffi-
ciently high probability of providing correct input for T to be eligible for a vote boost.
We derive an upper bound b for BoostProb(U,T) from a significance test, namely the
highest value b for which the hypothesis is true at a significance level of m / b:

Note that b increases exponentially with Correct(U) / |T|. To prevent voting to be

completely deactivated for any user (i.e., his boost probability rises to 1), we use (1 -
m) as an additional upper bound. Further, we want BoostProb(U,T) to be 0 for
Correct(U) = 0 and therefore subtract m.
Definition:

 □
Example 5. This example illustrates how the boost probability increases as a user

gives more and more correct inputs: Suppose that a given task T consists of 3 deci-
sions. Further, suppose user U has contributed a correct input to the previous
Correct(U) = 100 decisions. Finally, let m = 1%, and C = 99%. Then the probability
of boosting the vote of U is:

For the boost probability to exceed 50% for the given T, m, and C, Correct(U) has

to exceed 1173. This means that U has to contribute inputs to 391 tasks without any
mistake for this to happen. After increasing Correct(U) to 1374, i.e., after 458 tasks
the size of T, the boost probability finally reaches its upper limit of (1 - m) = 99%. ■

5 Evaluation

To evaluate our mechanisms, we have run extensive simulations. We have tested
many variations of input-aggregation functions.

5.1 Experimental Setup

The sets of tasks used here have two parameters: the number of options per decision,
and the accuracy of the initial states. We generated 9 sets of 1,000,000 tasks, with 2,
3, or 4 options per decision and 80%, 90%, and 95% as the accuracy for the original
states. Each task consists of 5 to 10 decisions, normally distributed over that interval.

The user populations tested have two parameters: their mean probabilities of
cheating and of mistaking. We used values of 1%, 4%, and 15% for both, generating
populations of 1000 users for each of the resulting 9 combinations. For the individual
users, the probabilities of cheating and of making errors by mistake were
exponentially distributed over [0,1] around the respective mean values.

We have implemented users as follows: In case of an add error on a decision with
more than two options, a user selects one of the erroneous options at random. Users
take a fixed time t per decision when contributing thoughtfully. Changing the state of
a decision increases this time to 2·t. Cheating decreases it to t/2. At runtime, each user
is a separate thread, so users are independent of each other and work concurrently.

In all, we ran simulations for 46 input-aggregation functions: One is the base case,
i.e., each task receives one input. The other 45 are as follows: r-Redundancy with r =
3,5,7, v-Voting with v = 2,3,4, combined with 14 different parameter combinations
for Vote Boosting, one being to deactivate it.

5.2 Results

From a total of 14,661 simulated scenarios, we report only on the four analyses we
deem the most interesting, to save space.

v-Voting vs. r-Redundancy. Table 1 shows the average result quality and the ave-
rage number of answers per task for v-Voting and r-Redundancy. For fairness, the
numbers for v-Voting exclusively come from input-aggregation functions that do not
use Vote Boosting. All numbers are aggregated over all user populations and task
sets. Clearly, v-Voting yields better throughput than r-Redundancy. This substantiates
the results of the analysis. Interestingly, result quality also improves slightly with 2-
Voting and 3-Voting in comparison to 3-Redundancy and 5-Redundancy, respec-
tively. We figure that this is because v-Voting avoids ambiguous decisions.

Table 1. Inputs per task and remaining error

 Base
Case 3-Red. 2-Voting 5-Red. 3-Voting 7-Red. 4-Voting

Remaining Error (in %) 4,25 1,11 1,01 0,48 0,46 0,27 0,27

Inputs per Task 1 3 2,36 5 3,57 7 4,75

Vote Boosting. Figure 1 visualizes the impact of Vote Boosting, namely the
increase in throughput and in errors. The effect of changes to C and m is similar for
all three values of v we have tested: The more liberal the parameter settings, the
higher the increase in throughput, but also the number of errors. The dependency
seems almost linear for both. For a given result quality required, this predictable
behavior allows for tuning to achieve the highest throughput possible.

Cost of High-Quality Results. Table 2 shows the average number of inputs
required for each task to achieve at least 99.5% accuracy in the result, broken up
across the 9 different user populations. The accuracy actually achieved is given in
brackets, with the parameters of the input-aggregation function listed beneath. The
input-aggregation function always uses v-Voting (parameter v), mostly with Vote
Boosting (parameters m and C). A value of 0 for m indicates that Vote Boosting has

not been used. These results point out the correlation between the capability and
honesty of contributing users and crowdsourcing throughput; the latter translates
directly into the per-task cost in scenarios with a per-input payoff, e.g., the Amazon
Mechanical Turk. With low probabilities for both mistakes and dishonesty, 1.14
inputs per task are sufficient to achieve the desired accuracy. This number increases
sharply if either of the two probabilities increases. With pessimistic values for both,
even 5.38 inputs per task are not enough to reach the goal. This highlights the
importance both of fostering high-quality inputs and of deterring users from cheating.

Figure 1. Effects of Vote Boosting

Crowdsourcing Strategy. As our simulations have shown, the best-suited strategy
to achieve a desired result quality at a high throughput depends on the exogenous
parameters. These parameters are hardly predictable at the start of a crowdsourcing
project. Thus, we recommend starting out on pessimistic assumptions, i.e., favoring
result quality over throughput. Then, experts can assess the quality achieved (e.g.,
from a sample of task results) and deduce values of the exogenous parameters.
Afterwards, the endogenous parameters can be adjusted to optimize throughput.

Table 2. Inputs required to achieve 99.5% result accuracy

Mean Prob. of Mistakes
Cheating 1% 4% 15%

1% 1.14 (99.51%)
v=2 m=8% C=92%

1.78 (99.63%)
v=2 m=4% C=96%

3.78 (99.55%)
v=3 m= 2% C=98%

4% 1.42 (99.57%)
v=2 m=4% C=96%

1.93 (99.51%)
v=2 m=4% C=96%

4.48 (99.51%)
v=4 m=4% C=96%

15% 3.94 (99.65%)
v=4 m=2% C=98%

4.6 (99.61%)
v=4 m=2% C=98%

not achieved
5.38 (98.62%) v=4 m=0

6 Conclusions

Crowdsourcing is popular for large-scale data processing endeavors that require hu-
man input. However, both potential inability and dishonesty of users threaten the qua-
lity of the results. This causes a tradeoff between data throughput and result quality.

In this paper, we have studied mechanisms that enforce data quality with an impact
on throughput as small as possible, independent of the actual tasks. In particular, v-
Voting increases throughput over static redundancy based approaches. Vote Boosting
further increases throughput by capitalizing on especially capable users.

Extensive simulations over a wide range of exogenous parameters have confirmed
the suitability of the mechanisms, substantiating our findings from theoretical analy-
ses. In particular, simulation results show (1) that v-Voting yields higher result quality
than r-Redundancy with fewer inputs per task, and (2) that Vote Boosting allows
trading off result quality in favor of throughput in a predictable fashion.

References

1. The Amazon Mechanical Turk, http://www.mturk.com
2. Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A.,

Baker, D., Popovic, Z. Predicting protein structures with a multiplayer online game.
Nature 466, 2010.

3. Eckert, K., Niepert, M., Niemann, C., Buckner, C., Allen, C., Stuckenschmidt, H.:
Crowdsourcing the assembly of concept hierarchies. In: Proceedings of JCDL 2010,
Brisbane, Australia, 2010.

4. Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick,
M. J., Nichol, R. C., Szalay, A., Andreescu, D., Murray, P. and Vandenberg, J. Galaxy
Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky
Survey. Monthly Notices of the Royal Astronomical Society, 389, 2008. doi:
10.1111/j.1365-2966.2008.13689.x

5. Newby, G. B., Franks, C. Distributed proofreading. In Proceedings of JCDL 2003.
Houston, TX, USA, 2003. doi: 10.1109/JCDL.2003.1204888

6. Sautter, G., Agosti, D., Böhm, K., Klingenberg, C. Creating Digital Resources from
Legacy Documents - an Experience Report from the Biosystematics Domain, in
Proceedings of ESWC, Heraklion, Greece, 2009.

7. Siorpaes, K., Hepp, M. OntoGame: towards overcoming the incentive bottleneck in
ontology building. In Proceedings OTM 2007, Vilamoura, Portugal, 2007.

8. Snow, R., O’Connor, B., Jurafsky, D., Ng, A. Y. Cheap and fast—but is it good?:
evaluating non-expert annotations for natural language tasks. In EMNLP 2008,
Morristown, NJ, USA, 2008.

9. Von Ahn, L., Blum, M., Hopper, N., Langford, J. CAPTCHA: Using Hard AI Problems
for Security. Advances in Cryptology - EUROCRYPT 2003. Springer Berlin /
Heidelberg, 2003. doi: 10.1007/3-540-39200-9_18

10. Von Ahn, L., Games with a Purpose. IEEE Computer, 2006. 29(6): p. 92-94.
11. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M. reCAPTCHA: Human-

Based Character Recognition via Web Security Measures. Science 321 (5895), 2008.
doi:10.1126/science.1160379

