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Abstract. In the present work, a numerical model is developed to predict 
the Young’s modulus and shear modulus of nanocrystalline materials using 
a Finite Element Analysis. The model is based on Representative Volume 
Elements (RVE) in which the microstructure of the material is described 
using the Voronoi tessellation algorithm. The use of the Voronoi particles 
was based on the observation of the morphology of nanocrystalline materials 
by Scanning Electron and Transmission Electron Microscopy. In each RVE, 
three-dimensional modelling of the grain and grain boundaries as randomly-
shaped sub-volumes is performed. The developed model has been applied to 
pure nanocrystallline copper at grain volume fractions of 80%, 90% and 
95% taking also into account the parameters of grain size and grain boundary 
thickness. The elastic moduli of nanocrystalline copper have been computed 
by loading the RVE in tension. The numerical results reveal that the elastic 
moduli of nanocrystalline copper increase with increasing the grain volume 
fraction. On the other hand, for a given grain volume fraction, the results 
showed no effect of the grain size. The model predictions have been 
validated successfully against numerical results from the literature and 
predictions of the Rule of Mixtures and the Mori-Tanaka analytical model. 

1 Introduction 
Nanocrystalline (NC) metals have attracted considerable interest over the past two decades 
due to their unique mechanical properties [1]. One of the features of these materials, which 
is best examined and described, is their mechanical behavior [2]. It is commonly known that 
compared with their microcrystalline counterparts, nanomaterials are characterized by higher 
values of the yield stress, tensile strength, and hardness, whereas their plasticity and fracture 
toughness are lower [3]. Another basic parameters which describe the mechanical behavior 
of materials are their modulus of elasticity – E and Shear Modulus – G. In the case of 
nanomaterials there are however some problems with determining the elastic moduli. The 
possible relation between the value of this modulus and the structure of nanomaterials is 
difficult to describe. This is so since these materials are fabricated by various methods, 
various types of samples are prepared for their examinations, and various methods are 

                                                 
* Corresponding author: kitserpes@upatras.gr 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 188, 02006 (2018)  https://doi.org/10.1051/matecconf/201818802006
ICEAF-V 2018



employed for measuring their properties. 
However, whichever is the production technique, nanocrystalline materials undergo grain 

coarsening which is a thermodynamic driven process. Due to the monotonic reduction of the 
Gibbs free energy versus the grain size, nanocrystalline materials exhibit advanced 
mechanical behaviour, which, however, is prone to thermodynamic instability at elevated 
temperatures. The most promising production technique is the High Energy Ball Milling in 
which the grain size decrease with the milling time down to a constant value which varies 
with the melting temperature of the material. This phenomenon implies a balance between 
defect creation and recovery during deformation. Provided the problems of contamination 
during the milling process (by attritors or absence of inert gas environment) and powder 
consolidation without coarsening are solved, mechanical attrition could be used for 
producing nanocrystalline materials in notable quantities. Additional problems in the 
production of nanocrystalline materials are the high energy consumption and the time-
consuming process. 

From the above, it becomes evident that experimental characterization of the mechanical 
behavior of nanocrystalline materials is a very difficult task due to the inability of the research 
community to produce enough material for test specimens. On the other hand, these 
technological limitations have been the impetus for the development of models capable of 
correlating the material structure (grain size, volume fraction of each phase, etc) with the 
mechanical properties of nanocrystalline materials. 

In the present work, a numerical model is developed to predict the Young’s modulus and 
Shear modulus of nanocrystalline materials using a Finite Element Analysis. The model is 
based on Representative Volume Elements (RVE) in which the microstructure of the material 
is described using the Voronoi tessellation algorithm and its results are in compliance with 
several scientific publications. 

2 Analytical approaches 

2.1 Rule of mixtures  

The following model is presented in its general formulation. The basic idea (Fig. 1) of the 
model assumes that NC material is a composite consisting of two distinct phases: the grain 
core or crystallite (inclusions) and the grain boundaries (matrix). In addition, a perfect 
bonding between the two phases is assumed. To simplify the analysis, grain boundary triple 
junctions are incorporated in the grain boundaries in terms of volume. This simplification 
should not have a major influence on the results for materials with a grain size greater than 
10 nm since the volume. 

 

Fig. 1. Illustration of Rule of Mixture approach 

Nanocrystalline materials generally refer to the class of materials whose average grain 
size is below 100 nm. As many atoms reside in the grain boundary regions in this case the 
volume fraction of the grain-boundary phase is not zero. In terms of the grain size (diameter) 
d and grain-boundary thickness t , the volume fraction of the grains can be approximated by 
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(𝑑𝑑 + 𝑡𝑡)3 (1) 

and that of the grain-boundary phase by 𝑉𝑉𝑉𝑉𝑔𝑔𝑔𝑔 = 1 − 𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐.  In addition, the inclusion phase 
(crystallite) will also be considered homogeneous. In a coarse-grained material we have 
𝑡𝑡/𝑑𝑑 → 0; the whole polycrystal is then fully occupied by the grains and its elastic behavior 
is simply the averaged behavior of these crystallites. But for a nanocrystalline material, for 
instance at d = 20 nm and t=1 nm, the volume fraction of the grain-boundary phase is about 
14% and its contribution to the overall elastic behavior presents some fluctuations. 

Fig. 1 shows a schematic of the phase mixture model in an NC material. A cubic unit cell 
of the NC material consists of a crystallite (grain interior) and grain boundaries. It was shown 
[4] that the results of the finite element calculations for the analysis of plastic deformation in 
NC materials are almost the same as those obtained using the rule of mixtures. Therefore, in 
this study, the following simple rule of mixtures based on the volume fractions of the 
components is used for the analysis of deformation behaviour: 

𝐸𝐸 = 𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐𝐸𝐸𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑉𝑉𝑔𝑔𝑔𝑔𝐸𝐸𝑔𝑔𝑔𝑔  (2) 

where the subscripts cr and gb refer to crystallite and grain boundary, respectively. The stress 
in each of the two components of the ‘composite’  is calculated using the assumption that the 
strains in both phases are the same and are equal to the macroscopic applied strain. 

2.2 Mean-field homogenization approach (MFH) 

The purpose of mean-field homogenization (MFH) is to compute approximate but accurate 
estimates of the volume averages of the stress and strain fields, both at the RVE level (macro 
stresses and strains) and in each phase. It is important to emphasize that MFH does not solve 
the RVE problem in detail, and therefore does not compute the detailed micro stress and 
strain fields in each phase. 

In the current work, we study simple two-phase composites made of a matrix material 
reinforced with a number of identical inclusions (I), having all the same material, shape and 
orientation. We use subscripts 0 for the matrix and 1 for the inclusions phase. The volume 
fractions in the two phases are such that 𝑉𝑉𝑉𝑉0 + 𝑉𝑉𝑉𝑉1 = 1. The volume averages of the strain 
field over the RVE, the matrix phase and the inclusion phase are related as follows: 

〈𝜀𝜀〉𝜔𝜔 =  𝑉𝑉𝑉𝑉0〈𝜀𝜀〉𝜔𝜔𝜔𝜔 +  𝑉𝑉𝑉𝑉1〈𝜀𝜀〉𝜔𝜔1 (3) 

Actually, this identity holds for any micro field (e.g., stress field). Any MFH model can 
be defined by so-called strain concentration tensors such that: 

〈𝜀𝜀〉𝜔𝜔1 = 𝛣𝛣𝜀𝜀: 〈𝜀𝜀〉𝜔𝜔𝜔𝜔  ,   < 𝜀𝜀 >𝜔𝜔1= 𝛢𝛢𝜀𝜀: 〈𝜀𝜀〉𝜔𝜔 (4) 

The volume average of strain over all inclusions is related to the volume average of strain 
over the matrix phase via the first tensor, and to the volume average of strain over the entire 
RVE (macro strain) with the second tensor. The two strain concentration tensors are not 
independent. Indeed, the second one can be computed from the first one: 

𝛢𝛢𝜀𝜀 = 𝛣𝛣𝜀𝜀: [ 𝑉𝑉𝑉𝑉1𝛣𝛣𝜀𝜀 + (1 −  𝑉𝑉𝑉𝑉1)𝐼𝐼]−1 (5) 

These results are valid for any material model for either phase. For any homogenization 
model defined by a strain concentration tensor, the macro stiffness (sub. 0 for matrix and 1 
for inclusions) is 
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𝐶𝐶̅ = [ 𝑉𝑉𝑉𝑉1 𝐶𝐶1: 𝛣𝛣𝜀𝜀 + (1 −  𝑉𝑉𝑉𝑉1) 𝐶𝐶0]: [ 𝑉𝑉𝑉𝑉1𝛣𝛣𝜀𝜀 + (1 −  𝑉𝑉𝑉𝑉1)𝐼𝐼]−1 (6) 

2.2.1 Mori-Tanaka approach 

An infinite solid body is subjected to linear displacements on its boundary corresponding to 
a uniform remote strain E. The body is made of a matrix phase of uniform stiffness C0 in 
which is embedded a single ellipsoidal inclusion (I) of uniform stiffness C1  (Fig.2 ). 

Using Eshelby’s solution, this problem can be solved in closed form. It is found that the 
strain inside the inclusion (I) is uniform and related to the remote strain as follows: 

𝜀𝜀(𝑥𝑥) = 𝐻𝐻𝜀𝜀(𝐼𝐼, 𝐶𝐶0, 𝐶𝐶1): 𝐸𝐸 (7) 

where 𝐻𝐻𝜀𝜀 is the single inclusion strain concentration tensor, defined as follows: 

𝐻𝐻𝜀𝜀(𝐼𝐼, 𝐶𝐶0, 𝐶𝐶1) = {𝐼𝐼 + 𝜁𝜁(𝐼𝐼, 𝐶𝐶0): 𝐶𝐶0
−1: [𝐶𝐶1 − 𝐶𝐶0]}−1 (8) 

Another tensor which plays an important role is Hill’s (polarization) tensor defined as: 

𝑃𝑃𝜀𝜀(𝐼𝐼, 𝐶𝐶0) = 𝜁𝜁(𝐼𝐼, 𝐶𝐶0): 𝐶𝐶0
−1 (9) 

The solution of the single inclusion problem is the cornerstone of well-known and successful 
MFH models. 

 

Fig. 2. Single inclusion embedded in an infinite body. 

 
Fig. 3. Illustration of the Mori-Tanaka (M-T) model. 

This model was proposed by Mori and Tanaka [5]. The derivation is based on an 
approximate use of Eshelby’s solution. It is found that the strain concentration tensor relating 
the volume average of strain over all inclusions to the mean matrix strain is given by: 

𝛣𝛣𝜀𝜀 = 𝐻𝐻𝜀𝜀(𝐼𝐼, 𝐶𝐶0, 𝐶𝐶1) (10) 

which is exactly the strain concentration tensor of the single inclusion problem. This led 
Benveniste [6] to give the following simple interpretation of the Mori-Tanaka (M-T) model. 
Each inclusion in the real RVE behaves as if it was isolated in the real matrix. The body is 
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Benveniste [6] to give the following simple interpretation of the Mori-Tanaka (M-T) model. 
Each inclusion in the real RVE behaves as if it was isolated in the real matrix. The body is 

infinite and subjected to the average matrix strains in the real RVE as the far field (remote) 
strain. This is illustrated in above figure 3. The M-T model is very successful in predicting 
the effective properties of two-phase composites. In theory, it is restricted to moderate 
volume fractions of inclusions (less than 25%) but in practice it can give good predictions 
well beyond this range. 

3 Numerical approach 
Atomistic simulation methods provide unprecedented insight into the structural behaviour of 
NC materials. However, their exploitation for predicting the respective mechanical properties 
is very difficult due to inherent restrictions of the methods. Therefore, a numerical model of 
NC materials aims to provide a tool for the design-by-analysis of the essential NC material 
microstructural features in order to obtain the desired mechanical behaviour.  

The proposed approach is based on the development of Representative Volume Elements 
(RVE) of the NC material. RVE is the smallest material volume from the simulation of which 
a macro-structural material property can be estimated. Due to the small size of RVEs (in the 
case of NC materials they are about 100nm edge cubes) detailed morphology of materials 
microstructures using different types of algorithms can be modeled. Observation of NC 
materials SEM/TEM [7] images (Fig. 4) from several publications revealed that NC materials 
consist of randomly polyhedral shaped grains. In order to represent the realistic 
microstructure of NC materials into RVE, the micro-structure geometry has been developed 
using Voronoi tessellation algorithm. In each RVE, detailed three-dimensional modelling of 
the grain and grain boundaries as randomly-shaped sub-volumes is performed (Fig. 5). As 
considered volume fraction of grains and grain boundaries play a significant role on the 
overall calculated mechanical behaviour, these volume fractions can be parametrically 
defined in the NC model. 

 
Fig. 4. A TEM bright-field image of the NC Copper [7] 

  

Fig. 5. Unmeshed Voronoi Tesselation Fig. 6. Representative RVE of a NC material 
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The RVE geometrical model is meshed using tetrahedral finite elements (Fig. 6), proper 
material laws at each sub-volume are assigned and the RVE is loaded under representative 
loading conditions. The mechanical parameters assumed in the computations are summarized 
in Table 1. 

Table 1. Mechanical properties assumed in the computations. 

 Young modulus [GPa] Poisson number 
Grain interiors 120 0.336 

Grain boundaries 0.8*120 0.336 
 

The elastic modulus of the grain boundaries, Egb , was 80% of the value for the grain 
interiors, Ecr. The assumption of the lower value of the grain boundary elastic constant was 
based on the results of ab initio computations reported in [8]. 

The elastic moduli of the material (Young's Modulus of Elasticity and Shear Modulus) 
can be numerically predicted without the need to perform an extensive mechanical test 
campaign. For validation purposes, a limited number of experiments is necessary. The 
developed methodology will provide the means to design the essential NC material 
microstructure based on the required material properties. 

4 Results and discussions  
Three-dimensional Voronoi particle RVE models were randomly created using the 

technique of Christoffersen [9] grain algorithm. Several investigations were made in order to 
determine the influence of the size of the Voronoi particles (grains) on the effective material 
properties of these composite-like materials (NC materials) and the influence of grain 
boundary thickness. The results showed that the influence of the size of the Voronoi particles 
on the effective material properties was not significant in the linear elastic case. Taking this 
fact into consideration and, using different sizes of the Voronoi particles, the effective 
material properties of these composites were obtained for up to 95% volume fractions.  

The results of the numerical approach were compared with different analytical methods 
which are Mori–Tanaka estimates (M-T) and Rule of Mixtures Method (ROM). Also several 
investigations were made to determine the effect of the grain boundary thickness on the 
effective material properties of these materials. 
 

       

Fig. 7. The numerical and analytical results of nanocrystalline materials for Young’s Modulus (a) and 
Shear Modulus (b) taking the grain boundary thickness as a constant value of 1nm. 

Different studies were made to determine the effect of the size of the Voronoi particles 
on effective material properties of these NC materials. Fig. 7 explains the effect of the size 
of the Voronoi particles on the effective material properties. Here the thickness of the grain 
boundary remains constant and by varying the size of the particles, effective material 
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Different studies were made to determine the effect of the size of the Voronoi particles 
on effective material properties of these NC materials. Fig. 7 explains the effect of the size 
of the Voronoi particles on the effective material properties. Here the thickness of the grain 
boundary remains constant and by varying the size of the particles, effective material 

properties were obtained at 83% - 95% volume fraction. From Fig.7 , it can be observed that 
there were no significant variations by changing the size of the Voronoi particles on the 
effective material properties. 

Although slight variations can be observed in the effective material properties with 
change in the size of the particles, these might be due to greater number of particles inside 
the RVE by reducing its size for the same volume fraction. 

Fig 7. shows also the comparison between the effective material properties of the 
numerical homogenization techniques and Mori-Tanaka approximations for the assumption 
that grains have been simulated like spherical particles. Furthermore, the results of Rule of 
Mixtures have been shown accompanied with the aforementioned comparison, but this 
analytical method does not take into consideration the shape of RVEs’ inclusions. 

 

  

Fig. 8. The numerical and analytical results of NC materials for Young’s Modulus (a) and Shear 
Modulus (b) taking the volume fraction of grains as a constant value of 80%, 90% and 95% 
respectively. 

From Fig. 8, in which RVEs consist of 80%, 90% and 95% constant volume fraction of 
grains respectively, it can be observed that the differences of the numerical effective material 
properties were very small between the analytical methods. From these studies it can be 
concluded that the effective material properties of the Voronoi particle reinforced composites 
(NC materials) depend only on the volume fraction. The size of the particles has not a 
significant influence on the effective material properties in the linear elastic case. The above 
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numerical and analytical results are in absolute compliance with the numerical results of the 
[10] which are named in the Fig.8 as “Reference Paper”. 

5 Conclusions 
The numerical homogenization tool has been developed for the evaluation of the effective 
material properties of Voronoi particles reinforced materials. The elastic moduli of the 
Voronoi particle reinforced composites obtained using these tools were compared with the 
results of different analytical methods. Our numerical predictions were close to the results of 
Mori-Tanaka and Rule of Mixture approximations. Several investigations were made to 
determine the influence of the size of the Voronoi particles on the effective material 
properties. The results showed that the effective material properties depend mainly on the 
volume fraction. There were no significant variations with respect to the change in size of 
the particles. This statement is valid for linear elastic case for the evaluation of the effective 
material properties only. There may be some influence in non-linear case, de-bonding and 
damage predictions. Further investigations have to be carried out to determine the influence 
of the size of the Voronoi particles on the elastic-plastic behavior of nanocrystalline materials 
at macro-level. A generalized procedure has been developed to calculate different effective 
coefficients for all desired volume fractions based on the Digimat Software ©. This tool 
reduces the workload and time and can be used as a template to evaluate the effective 
coefficients of randomly distributed Voronoi particle reinforced composites. 
 
The ICARUS project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 713514. 
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