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Abstract. In the present work, a numerical model is developed to predict 
the mechanical properties of nanocrystalline materials using a Finite 
Element Analysis. The model is based on Representative Volume Elements 
(RVE) in which the microstructure of the material is described using the 
Voronoi tessellation algorithm. The use of the Voronoi particles was based 
on the observation of the morphology of nanocrystalline materials by 
Scanning Electron and Transmission Electron Microscopy. In each RVE, 
three-dimensional modelling of the grain and grain boundaries as randomly-
shaped sub-volumes is performed. The developed model has been applied to 
pure nanocrystallline copper taking into account the parameters of grain size 
and grain boundary thickness. The mechanical properties of nanocrystalline 
copper have been computed by loading the RVE in tension. The numerical 
results gave a clear evidence of grain size effect and the Hall–Petch 
relationship, which is a consequence of macroscopic strain being 
preferentially accumulated at grain boundaries. On the other hand, for a 
given grain volume fraction, the results for elastic moduli showed no effect 
of the grain size. The model predictions have been validated successfully 
against numerical results from the literature and predictions of the Rule of 
Mixtures and the Mori-Tanaka analytical model. 

1 Introduction 
Nanocrystalline (NC) metals have pulled a considerable interest in the course of the last two 
decades because of their exceptional mechanical properties [1]. One of the features of these 
materials, which is best examined and described, is their mechanical behaviour [2]. It is 
commonly known that contrasted to their microcrystalline materials, nanomaterials are 
characterized by higher values of the yield stress, tensile strength, and hardness, whereas 
their plasticity and fracture toughness are lower [3]. Another essential parameters which 
depict the mechanical behaviour of materials are their modulus of elasticity – E and Shear 
Modulus – G. In the case of nanomaterials there are however some problems with 
determining the elastic moduli. The conceivable connection between the estimation of this 
modulus and the structure of nanomaterials is hard to depict. This is so since these materials 
are manufactured by different methods, various types of samples are prepared for their 
examinations, and various methods are employed for measuring their properties. 

However, whichever is the production technique, nanocrystalline materials undergo grain 
coarsening which is a thermodynamic driven process. Due to the monotonic reduction of the 
Gibbs free energy versus the grain size, nanocrystalline materials exhibit advanced 
mechanical behaviour, which, however, is prone to thermodynamic instability at elevated 
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temperatures. The most promising production technique is the High Energy Ball Milling in 
which the grain size decrease with the milling time down to a constant value which varies 
with the melting temperature of the material. This phenomenon implies a balance between 
defect creation and recovery during deformation. Provided the problems of contamination 
during the milling process (by attritors or absence of inert gas environment) and powder 
consolidation without coarsening are solved, mechanical attrition could be used for 
producing nanocrystalline materials in notable quantities. 

From the above, it becomes evident that experimental characterization of the mechanical 
behaviour of nanocrystalline materials is a very difficult task due to the inability of the 
research community to produce enough material for test specimens. On the other hand, these 
technological restrictions have been the impetus for the development of numerical models 
capable of correlating the material structure (grain size, volume fraction of each phase, etc) 
with the mechanical properties of nanocrystalline materials. 

In the present work, a numerical model is created to predict the mechanical properties of 
nanocrystalline materials utilizing a Finite Element Analysis. The model is based on 
Representative Volume Elements (RVE) in which the microstructure of the material is 
described using the Voronoi tessellation algorithm and its results are in consistence with 
several scientific publications. 

2 Analytical approach  

The following model is presented in its general formulation. The essential idea (Fig. 1) of the 
model assumes that NC material is a composite containing of two discrete phases: the grain 
core (inclusions) and the grain boundaries (matrix). Additionally, a perfect bonding between 
the two phases is assumed. To simplify the analysis, grain boundary triple junctions are 
incorporated in the grain boundaries in terms of volume. This simplification should not have 
a major influence on the results for materials with a grain size greater than 10 nm since the 
volume. 

 
Fig. 1. Illustration of Rule of Mixture approach 

Nanocrystalline materials generally refer to the class of materials whose average grain 
size is below 100 nm. As many atoms reside in the grain boundary regions in this case the 
volume fraction of the grain-boundary phase is not zero. Regarding the grain size (diameter) 
d and grain-boundary thickness t , the volume fraction of the grains can be approximated by 

𝑉𝑉𝑉𝑉�� =
𝑑𝑑�

(𝑑𝑑 𝑑 𝑑𝑑)� (1) 

and that of the grain-boundary phase by 𝑉𝑉𝑉𝑉�� = 1 − 𝑉𝑉𝑉𝑉��. Moreover, the inclusion phase 
(crystallite) will also be considered homogeneous. In a coarse-grained material we have 
𝑑𝑑𝑡𝑑𝑑 𝑡 𝑡; the whole polycrystal is then fully occupied by the grains and its elastic behaviour 
is simply the averaged behaviour of these crystallites. However, for a nanocrystalline 
material, for instance at d = 20 nm and t=1 nm, the volume fraction of the grain-boundary 
phase is about 14% and its contribution to the overall elastic behaviour presents some 
fluctuations. 

Fig. 1 demonstrates an illustration of the phase mixture model in an NC material. A cubic 

unit cell of the NC material comprises of a grain interior and grain boundaries. It was 
indicated [4] that the results of the finite element calculations for the analysis of plastic 
deformation in NC materials are almost the same as those obtained using the rule of mixtures. 
Therefore, in this study, the following simple rule of mixtures based on the volume fractions 
of the components is used for the analysis of deformation behaviour: 

𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸��𝐸𝐸�� + 𝐸𝐸𝐸𝐸��𝐸𝐸�� (2) 

where the subscripts cr and gb refer to crystallite and grain boundary, respectively. The stress 
in each of the two components of the ‘composite’  is calculated using the assumption that the 
strains in both phases are the same and are equal to the macroscopic applied strain. 

3 Numerical approach 
Atomistic simulation methods provide exceptional insight into the structural behaviour of 
NC materials. However, their exploitation for predicting the respective mechanical properties 
is very difficult due to inherent restrictions of the methods. In this manner, a numerical model 
of NC materials aims to provide a tool for the design-by-analysis of the essential NC material 
microstructural features in order to obtain the desired mechanical behaviour.  

The proposed approach relies on the development of Representative Volume Elements 
(RVE) of the NC material. Owing to the small size of RVEs (in the case of NC materials they 
are about 100nm edge cubes) detailed morphology of materials microstructures using 
different types of algorithms can be modeled. Observation of NC materials SEM/TEM [5] 
images (Fig. 2) from several publications revealed that NC materials consist of randomly 
polyhedral shaped grains. In terms of the realistic microstructure of NC materials into RVE, 
the micro-structure geometry has been developed using Voronoi tessellation algorithm. In 
each RVE, detailed three-dimensional modelling of the grain and grain boundaries as 
randomly-shaped sub-volumes is performed (Fig. 3). As considered volume fraction of grains 
and grain boundaries play a significant role on the overall calculated mechanical behaviour, 
these volume fractions can be parametrically defined in the NC model. 

 
 

Fig. 2. A TEM bright-field image of the NC 
Copper [5] 

 
 

 
Fig. 3. Unmeshed Voronoi Tesselation 

 
Fig. 4. Representative RVE of a NC material 

 
The RVE geometrical model is meshed utilizing tetrahedral finite elements (Fig. 4), 

proper material laws at each sub-volume are assigned. 
The size of individual grains was described by the equivalent diameter, d, defined as the 

diameter of a circle with an area equal to the area of a given grain. The model structures were 
characterized by the average grain diameter, D, which ranged from 10 to 100 nm.  
In order to reflect a significant fraction of atoms residing at the grain boundaries in 
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temperatures. The most promising production technique is the High Energy Ball Milling in 
which the grain size decrease with the milling time down to a constant value which varies 
with the melting temperature of the material. This phenomenon implies a balance between 
defect creation and recovery during deformation. Provided the problems of contamination 
during the milling process (by attritors or absence of inert gas environment) and powder 
consolidation without coarsening are solved, mechanical attrition could be used for 
producing nanocrystalline materials in notable quantities. 

From the above, it becomes evident that experimental characterization of the mechanical 
behaviour of nanocrystalline materials is a very difficult task due to the inability of the 
research community to produce enough material for test specimens. On the other hand, these 
technological restrictions have been the impetus for the development of numerical models 
capable of correlating the material structure (grain size, volume fraction of each phase, etc) 
with the mechanical properties of nanocrystalline materials. 

In the present work, a numerical model is created to predict the mechanical properties of 
nanocrystalline materials utilizing a Finite Element Analysis. The model is based on 
Representative Volume Elements (RVE) in which the microstructure of the material is 
described using the Voronoi tessellation algorithm and its results are in consistence with 
several scientific publications. 

2 Analytical approach  

The following model is presented in its general formulation. The essential idea (Fig. 1) of the 
model assumes that NC material is a composite containing of two discrete phases: the grain 
core (inclusions) and the grain boundaries (matrix). Additionally, a perfect bonding between 
the two phases is assumed. To simplify the analysis, grain boundary triple junctions are 
incorporated in the grain boundaries in terms of volume. This simplification should not have 
a major influence on the results for materials with a grain size greater than 10 nm since the 
volume. 

 
Fig. 1. Illustration of Rule of Mixture approach 
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size is below 100 nm. As many atoms reside in the grain boundary regions in this case the 
volume fraction of the grain-boundary phase is not zero. Regarding the grain size (diameter) 
d and grain-boundary thickness t , the volume fraction of the grains can be approximated by 
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and that of the grain-boundary phase by 𝑉𝑉𝑉𝑉�� = 1 − 𝑉𝑉𝑉𝑉��. Moreover, the inclusion phase 
(crystallite) will also be considered homogeneous. In a coarse-grained material we have 
𝑑𝑑𝑡𝑑𝑑 𝑡 𝑡; the whole polycrystal is then fully occupied by the grains and its elastic behaviour 
is simply the averaged behaviour of these crystallites. However, for a nanocrystalline 
material, for instance at d = 20 nm and t=1 nm, the volume fraction of the grain-boundary 
phase is about 14% and its contribution to the overall elastic behaviour presents some 
fluctuations. 

Fig. 1 demonstrates an illustration of the phase mixture model in an NC material. A cubic 

unit cell of the NC material comprises of a grain interior and grain boundaries. It was 
indicated [4] that the results of the finite element calculations for the analysis of plastic 
deformation in NC materials are almost the same as those obtained using the rule of mixtures. 
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where the subscripts cr and gb refer to crystallite and grain boundary, respectively. The stress 
in each of the two components of the ‘composite’  is calculated using the assumption that the 
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NC materials. However, their exploitation for predicting the respective mechanical properties 
is very difficult due to inherent restrictions of the methods. In this manner, a numerical model 
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nanograined metals, it was assumed that grain boundaries have a non-zero thickness of 1 nm. 
This thickness concurs well with estimates provided by ab initio computations [6].  
It was assumed that grain boundaries and grain interiors exhibit the elastic–plastic properties 
described by the following relationships: 
 

𝜎𝜎����� = 𝛦𝛦�����𝜀𝜀 𝑓𝑓𝑜𝑜𝑜𝑜 𝜀𝜀 𝑜 𝜀𝜀� (3) 
𝜎𝜎����� = 𝛦𝛦�����𝜀𝜀� + 𝜃𝜃����� (𝜀𝜀 𝜀 𝜀𝜀�) 𝑓𝑓𝑜𝑜𝑜𝑜 𝜀𝜀 𝑜 𝜀𝜀� (4) 

 
where e0 is the elastic strain at the yield point, E is the Young’s modulus and h  is the work-
hardening coefficient. It was further assumed that the flow stress of grain interiors is 
governed by the Hall–Petch relationship: 

𝜎𝜎�� = 𝜎𝜎� + 𝐾𝐾(𝐾𝐾)�� (5) 
where d is the equivalent diameter of a given grain. It should be noted that m = 1/2 is 
consistent with the Hall–Petch dependence as such. 
 The plasticity of grain boundaries was approached based on the Hill criterion [7], which 
in general accounts for differences in the yield strength in orthogonal directions. The 
equivalent stress can be described as: 

𝜎𝜎�� = (12 �𝜎𝜎𝜎
�[𝛭𝛭𝑀�𝜎𝜎𝜎 𝜀 1

3 �𝜎𝜎𝜎
��𝐿𝐿𝜎)�� (6) 

where [M] is a matrix of yield stress variations with orientation and {L} describes the 
difference between tension and compression of yield strengths: 

[𝑀𝑀𝑀 = 𝑀

⎣
⎢
⎢
⎢
⎢
⎡𝑀𝑀�� 𝑀𝑀�� 𝑀𝑀�� 0 0 0
𝑀𝑀�� 𝑀𝑀�� 𝑀𝑀�� 0 0 0
𝑀𝑀�� 𝑀𝑀�� 𝑀𝑀�� 0 0 0
0 0 0 𝑀𝑀�� 0 0
0 0 0 0 𝑀𝑀�� 0
0 0 0 0 0 𝑀𝑀��⎦

⎥
⎥
⎥
⎥
⎤

𝑀𝑤𝑤𝑤𝑤𝑤𝑜𝑜𝑤𝑤𝑀𝑀𝑀�� =
𝐾𝐾

𝜎𝜎 + 𝜎𝜎𝜎𝜎�� , 𝜎𝜎 = 1𝑗 𝑗 𝑗𝑗 

�𝐿𝐿𝜎 = [𝑀𝐿𝐿�𝑀𝐿𝐿�𝑀𝐿𝐿� 0 0 0𝑀, 𝐿𝐿� = 𝑀𝑀���𝜎𝜎�� 𝜀 𝜎𝜎���, 𝜎𝜎 = 1𝑗 𝑗3 

(7) 

where 𝜎𝜎�� and 𝜎𝜎�� are tensile and compressive yield strengths in the direction j, j= x, y, z, 
xy, yz, xz. The mechanical parameters assumed in the computations are summarized in Table 
1. The value of σ0  in Eq. (5) was 33 MPa in all cases. The value of k was 0.135 MPa*m1/2 

and the work-hardening coefficient 𝜃𝜃� is equal to 315 MPa from the indicative material 
parameters of Hollomon’s equation. These values are representative for copper [8] and for 
d=10nm they result in the same value of macroscopic flow stress. 
 

Table 1. Mechanical properties assumed in the computations. 
 Young 

modulus 
[GPa] 

Poisson 
ratio 

Yield strength [MPa] Work 
hardening 
coefficient 

[MPa] 

Grain 
interiors 120 0.336 

σi=σ0+ky(d)1/2 
σ0=33[ΜPa] 

ky=0.135[MPa m1/2] 
 

315 

Grain 
boundaries 96 0.336 

𝜎𝜎��� =σ0Rej where j=xy,xy 
Rex=15, Rey=25, Rexy=15 

𝜎𝜎��� , 𝜎𝜎��� : yield flow for direction parallel and 
perpendicular to the grain boundary 

𝜎𝜎����: yield flow for shearing of grain boundary 
 

252 

 
The elastic modulus of the grain boundaries, Egb , was 80% of the value for the grain interiors, 
Ecr  and the work-hardening coefficient for the grain boundaries, θgb , was 5% of θcr. The 
assumption of the lower value of the grain boundary elastic constant was based on the results 
of ab initio computations reported in [9] and experimental data published in [10]. The yield 
flow of the grain boundaries were constant and equal to 500 MPa for shearing and elongation 
along the grain boundaries plane, and 825 MPa for deformation in the perpendicular 
direction. These values have been selected in order to model the situation in which the 
transition from grain boundary strengthening to grain boundary softening is relatively 
smooth. For lower values of the grain boundary flow stresses, nearly entire plastic 
deformation is accommodated at the grain boundaries and these stresses determine the 
macroscopic flow stress of the polycrystalline aggregate [11]. 

FEM computations were performed utilizing ANSYS software with SOLID 185 
elements. Such elements permit non-linear elastic–plastic and anisotropic characteristics and 
modelling of relatively large deformations. Each phase of the RVE (grain interiors and grain 
boundaries) have been simulated by using the bilinear isotropic hardening approach (BISO). 
In the simulations, it was assumed that the modelled structure is subjected to tensile straining. 

Moreover, the resulting displacement at the surface of the unit volume has been 
normalized by its length in the vertical direction to obtain the macroscopic strain, em. In an 
uniaxial tensile test, boundary conditions applied for the microstructure model are shown in 
Fig. 5. 

 
Fig. 5. Applied boundary conditions in the tensile test. 

The elastic moduli of the material (Young's Modulus of Elasticity and Shear Modulus) can 
be numerically predicted without the need to perform an extensive mechanical test campaign. 
For validation purposes, a limited number of experiments is necessary. The developed 
methodology will provide the means to design the essential NC material microstructure based 
on the required material properties. 

4 Results and discussions  
Three-dimensional Voronoi particle RVE models were randomly created utilizing the 

technique of Christoffersen [12] grain algorithm. Numerical investigations were made so as 
to determine the influence of the size of the Voronoi particles (grains) on the effective 
material properties of these composite-like materials (NC materials). The results 
demonstrated that the influence of the size of the Voronoi particles on the effective material 
properties was not noteworthy in the linear elastic case. On the other hand, the influence of 
the grain size has been appeared to be prevailing in the non-linear case by showing evidently 
the importance of the Hall-Petch effect at the nanoscale. Taking this fact into consideration 
and, using different sizes of the Voronoi particles, the effective material properties of these 
composites were acquired for up to 95% volume fractions for the investigation of the elastic 
moduli. The determination of the yield stress has been made by using a constant volume 
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nanograined metals, it was assumed that grain boundaries have a non-zero thickness of 1 nm. 
This thickness concurs well with estimates provided by ab initio computations [6].  
It was assumed that grain boundaries and grain interiors exhibit the elastic–plastic properties 
described by the following relationships: 
 

𝜎𝜎����� = 𝛦𝛦�����𝜀𝜀 𝑓𝑓𝑜𝑜𝑜𝑜 𝜀𝜀 𝑜 𝜀𝜀� (3) 
𝜎𝜎����� = 𝛦𝛦�����𝜀𝜀� + 𝜃𝜃����� (𝜀𝜀 𝜀 𝜀𝜀�) 𝑓𝑓𝑜𝑜𝑜𝑜 𝜀𝜀 𝑜 𝜀𝜀� (4) 

 
where e0 is the elastic strain at the yield point, E is the Young’s modulus and h  is the work-
hardening coefficient. It was further assumed that the flow stress of grain interiors is 
governed by the Hall–Petch relationship: 

𝜎𝜎�� = 𝜎𝜎� + 𝐾𝐾(𝐾𝐾)�� (5) 
where d is the equivalent diameter of a given grain. It should be noted that m = 1/2 is 
consistent with the Hall–Petch dependence as such. 
 The plasticity of grain boundaries was approached based on the Hill criterion [7], which 
in general accounts for differences in the yield strength in orthogonal directions. The 
equivalent stress can be described as: 

𝜎𝜎�� = (12 �𝜎𝜎𝜎
�[𝛭𝛭𝑀�𝜎𝜎𝜎 𝜀 1

3 �𝜎𝜎𝜎
��𝐿𝐿𝜎)�� (6) 

where [M] is a matrix of yield stress variations with orientation and {L} describes the 
difference between tension and compression of yield strengths: 

[𝑀𝑀𝑀 = 𝑀

⎣
⎢
⎢
⎢
⎢
⎡𝑀𝑀�� 𝑀𝑀�� 𝑀𝑀�� 0 0 0
𝑀𝑀�� 𝑀𝑀�� 𝑀𝑀�� 0 0 0
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⎥
⎥
⎥
⎥
⎤

𝑀𝑤𝑤𝑤𝑤𝑤𝑜𝑜𝑤𝑤𝑀𝑀𝑀�� =
𝐾𝐾

𝜎𝜎 + 𝜎𝜎𝜎𝜎�� , 𝜎𝜎 = 1𝑗 𝑗 𝑗𝑗 

�𝐿𝐿𝜎 = [𝑀𝐿𝐿�𝑀𝐿𝐿�𝑀𝐿𝐿� 0 0 0𝑀, 𝐿𝐿� = 𝑀𝑀���𝜎𝜎�� 𝜀 𝜎𝜎���, 𝜎𝜎 = 1𝑗 𝑗3 

(7) 

where 𝜎𝜎�� and 𝜎𝜎�� are tensile and compressive yield strengths in the direction j, j= x, y, z, 
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and the work-hardening coefficient 𝜃𝜃� is equal to 315 MPa from the indicative material 
parameters of Hollomon’s equation. These values are representative for copper [8] and for 
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Fig. 5. Applied boundary conditions in the tensile test. 

The elastic moduli of the material (Young's Modulus of Elasticity and Shear Modulus) can 
be numerically predicted without the need to perform an extensive mechanical test campaign. 
For validation purposes, a limited number of experiments is necessary. The developed 
methodology will provide the means to design the essential NC material microstructure based 
on the required material properties. 

4 Results and discussions  
Three-dimensional Voronoi particle RVE models were randomly created utilizing the 

technique of Christoffersen [12] grain algorithm. Numerical investigations were made so as 
to determine the influence of the size of the Voronoi particles (grains) on the effective 
material properties of these composite-like materials (NC materials). The results 
demonstrated that the influence of the size of the Voronoi particles on the effective material 
properties was not noteworthy in the linear elastic case. On the other hand, the influence of 
the grain size has been appeared to be prevailing in the non-linear case by showing evidently 
the importance of the Hall-Petch effect at the nanoscale. Taking this fact into consideration 
and, using different sizes of the Voronoi particles, the effective material properties of these 
composites were acquired for up to 95% volume fractions for the investigation of the elastic 
moduli. The determination of the yield stress has been made by using a constant volume 
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fraction model by varying only the grain size.  
The results of the numerical approach were compared with different analytical methods 

which are Mori–Tanaka estimates (M-T) and Rule of Mixtures Method (ROM) for the elastic 
case. 

 
Fig. 6. The computed stress–strain curves for 
nanocrystals with grain size of 54nm and Young’s 
Moduli for grain interiors and grain boundaries, 
110GPa and 45GPa respectively [4]. 
 

 
Fig. 7. The computed stress–strain curves for 
nanocrystals with grain size of 54nm and 
Young’s Moduli for grain interiors and grain 
boundaries, 120GPa and 96 GPa respectively 
[11]. 

For validation purposes, the proposed numerical approach has been compared with an 
experimental result from open literature [13]. The presented numerical approach has been 
compared with the aforementioned experimental results by varying only the elastic 
parameters in order to investigate the numerical sensitivity based on input values of one 
additional numerical approach [10]. 

In [4], a research project was focused on the numerical investigation of a 
nanocrystalline copper .The elastic modulus E of the grain boundary phase could not be 
calculated from the available experimental data. Grain boundaries had been considered, as a 
first approximation, to have a random atomic distribution similar to the amorphous structure. 
For calculation purposes, it was assumed that the grain boundary behaves like an amorphous 
phase. It is generally accepted that the yield stress of amorphous alloys is between E/50 and 
E/80 while E is 60-75% that of the corresponding equilibrium crystalline alloy [14]. 

From Fig. 6, in which RVE consists of elastic moduli of 110GPa and 45GPa for grains 
and grain boundaries respectively, it can be observed that the differences of the numerical 
effective elastic properties were very small between the numerical approach and the 
experimental test. On the other hand, the plastic region seems to have a divergence on the 
yield strength point and the overall plastic curve compared with the experimental plastic 
region. This may be caused by the bilinear isotropic hardening approach of the elastoplastic 
behavior of each input numerical phase (grain and grain boundaries), which does not allow 
to approximate the experimental curve with lower deviation. In case of implementation of a 
sophisticated multilinear hardening approach, the aforementioned numerical approach may 
present more efficient results, closer to the experimental stress-strain curve. 
  In Fig. 7, the data of the Table 1 have been applied on the numerical approach. The 
numerical stress-strain curve has a deviation from the experimental curve in the elastic region 
but it approximates adequately the plastic region due to the implementation of lower yield 
strength of grain boundaries’ phase. The definition of the aforementioned yield strength value 
is based on the plastic anisotropic coefficients [11]. 

Different studies were made to determine the effect of the size of the Voronoi particles 
on effective material properties of these NC materials. Fig. 8 explains the effect of the size 

of the Voronoi particles on the effective material properties. Here the thickness of the grain 
boundary remains constant and by varying the size of the particles, effective material 
properties were obtained at 83% - 95% volume fraction. From Fig. 8, it can be observed that 
there were no significant variations by changing the size of the Voronoi particles on the 
effective material properties. 
 

Although slight variations can be observed in the effective material properties with 
change in the size of the particles, these might be due to greater number of particles inside 
the RVE by reducing its size for the same volume fraction. 

Fig 8. shows also the comparison between the effective material properties of the 
numerical homogenization techniques and Mori-Tanaka approximations for the assumption 
that grains have been simulated like spherical particles. Furthermore, the results of Rule of 
Mixtures have been shown accompanied with the aforementioned comparison, but this 
analytical method does not take into consideration the shape of RVEs’ inclusions. The above 
numerical and analytical results are in absolute compliance with the numerical results of the 
[10] which are named in the Fig.8 as “Reference Paper”. 

  From these studies it can be concluded that for a given grain volume fraction, the 
results for elastic moduli showed no effect of the grain size. On the other hand, the numerical 
results gave a clear evidence of the Hall–Petch effect, which is a consequence of macroscopic 
strain being preferentially accumulated at grain boundaries. 

5 Conclusions 
The numerical homogenization tool has been developed for the prediction of the mechanical 
properties of Voronoi particles reinforced materials. Our numerical predictions were close to 
the results of Mori-Tanaka and Rule of Mixture approximations in the elastic case. Several 
investigations were made to determine the influence of the size of the Voronoi particles on 
the effective material properties. There were no significant variations with respect to the 
change in size of the particles.  

It should be noticed that the model used in the present study accurately captures the 
properties of nanocrystalline metals. Specifically, there is clear evidence of  the Hall–Petch 
effect, which is a result of macroscopic strain being preferentially accumulated at grain 
boundaries. 
This grain boundary accumulation of strain is inherent to two-phase models, which assume 
a composite-like structure of nanometals. Based on this approach, such metals can be viewed 

 
 

 
 

 
 

 
 

Fig. 8. The numerical and analytical results of nanocrystalline materials for Young’s Modulus (a) and 
Shear Modulus (b) taking the grain boundary thickness as a constant value of 1nm. 
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fraction model by varying only the grain size.  
The results of the numerical approach were compared with different analytical methods 

which are Mori–Tanaka estimates (M-T) and Rule of Mixtures Method (ROM) for the elastic 
case. 
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Fig. 8. The numerical and analytical results of nanocrystalline materials for Young’s Modulus (a) and 
Shear Modulus (b) taking the grain boundary thickness as a constant value of 1nm. 
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as high volume fraction particulate systems; more precisely, as a system of variable strength 
particles joined by a thin boundary layer. The response of such a system to loads in the plastic 
strain regime cannot be estimated by a simple averaging of the response of its constituents 
because of strain partitioning. 

Hence, an assumption of Hall–Petch law for the flow stress of grain interiors does not 
imply the Hall–Petch formula applies to the aggregate. In fact, in a future work, it will  be 
demonstrated by the mere existence of critical grain size below which one can observe grain 
size softening.  

In conclusion, it should be pointed out that the results of simulations conducted here 
demonstrate that the Hall–Petch relationship holds well for a two-phase model of 
nanocrystalline metals with variable-sized grains and they are validated utilizing 
experimental results. 
  
The ICARUS project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 713514. 
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