
G. A. MinnEa. Multiple holomorphs of a group. 133 

On the  mul t ip l e  holomorphs  of a group. 

By 

G. A. Mm~ER of Urbana, U. S. A. 

If any group K is represented-as a regular substitution group its 
holomorph H has been defined as the group composed of all the 
possible substitutions which transform K into itself and involve no 
letters except those found in K. The holomorph has also been defined 
as the abstract group which is simply isomo~hic with this substitution 
group. In the present article the former of these two definitions will be 
employed. If H is invariant under a larger substitution group on the 
same letters all the substi~tions of this group which are not in H must 

�9 ~ransform K into another invariant subgroup Under /t. Moreover, if 
H involves an invariant subgroup which is similar to K without being 
identical with K,  the substitutions which transform K into this invariant 
subgroup transform H into itself. In this case K is said to have a 
multiple holomorph, the degree of multiplicity being the number of the 
different invariant subgroups of H which are similar to K. 

Since all the substitutions*) which are commutative with every sub- 
s~itution of the regular group K constitute a group K' similar to K, it 
follows that any non-abelian group has a mhltiple holomorph. Any sub- 
stitution which transforms K into K '  must also transform K'  into K 
since each of these subgroups contains all the substituts which are 
commutative with the other. Hence such a substitution transforms H 
into itseff and has its square in H. The group generated by all the 
substitutions which transform K either into itself or into K '  has been 
called the double holomorph of the non-abelian group K. The object of 
the present paper is to examine the abelian groups with respect to 
multiple holomorphs. We shall prove that if an abelian group has a 
multiple holomorph the degree of multiplicity is either 2 or 4. In 

*) It is assumed throughout this article t]aa~ the substitutions under consider- 
ation involve no letters besides those found in K. 
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particular, we shall prove that an abelian group whose order is not 
divisible by 8 cannot have a multiple holomorph. From this it follows 
that the assumption made by Burnside*)  that an abelian group of odd 
order be a characteristic subgroup of its holomorph is unnecessary. 

From the known fact that the group of isomorphisms of an abelian 
group is the direc~ product of the groups of isomorphisms of its Sylow 
subgroups, it follows that the holomorph of an abelian group is the direct 
product of the holomorphs of its Sylow subgroups. It is l~nown that 
the holomorph of a cyclic group of odd order is a complete group and 
that the holomorph of the cyclic group K of order 2 "~ contains jus~ one 
other invariant subgroup which is similar to K,  whenever m > 2. Hence 
it follows that the necessary and sufficient condition that a cyclic group 
has a multiple holomorph is that its order is divisible by 8. If its order 
is divisible by 8 it has a double holomorph, and the degree of multiplicity 
of the holomorph of a cyclic group cannot exceed 2. 

w 

Abelian groups of odd order. 

Let K be an abelian group of odd order and suppose that its ho- 
lomorph H involves another invariant abelian subgroup ~Y1 which is 
of the same type as K. Since the substitutions which are common to 
K and K 1 form a characteristic subgroup of K they cannot involve any 
of the operators of highest order in K**). The group J which is 
composed of all the substitutions of H which omit a given letter is 
simply isomorphic with the group of isomorphisms of K and it involves 
an invariant substitution i o which transforms each operator of K into 
its inverse and hr is of order 2. As i 0 h'ansforms K 1 into itself and 
is not commutative with any substitution of H except those of J it 
follows that each division of K 1 with respect to the substitutions which 
it has in common with K must involve a substitution of or since i ~ 
transforms each of these divisions into itself and the division involves 
an odd number of substitutions. 

The commutator subgroup of the group {K, K1} generated by K 
and K 1 is composed of invariant operators under {K, K 1 }. Hence any 
operator of J which is also in {K, K1} is of the same order as some 
commutator of {K, K1} and therefore its order divides the order of 
some operator which is common to K and K 1. As the order of the 

*) Theory of groups of finite order, 1897, p. 238. 
**) American Journal of Mathematics, vol. 27 (1905), p. 15. 
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product of such an operator into an operator of K which is not of 
highest order could not be equal to that of an operator of highest order 
in K, it follows that some operators of K 1 must be the product of an 
operator of J~ and an operator of highest order in K. As i o would trans- 
form such a product into itself multiphed by an operator of highest order 
in K while K and K 1 "cannot have an operator of highest order in 
common, we have arrived at a contradiction by assuming that H involves 
another invariant subgroup which, is of the same type as K. Hence K 
is a characteristic subgroup of H and we have proved the theorem that 
the holomorph of any abelian group of odd order is a complete group. In 
particular, an abelian group of odd order cannot have a multiple holomorph 
and as the groups of orders 2 and 4 do not have a multiple holomorph 
it results that i f  an abelian grou2 has a multiple holomorph its order is 
divisible by 8, and there is at least one abelian group of order 8k, 
k being an arbitrary integer, which has a multiple holomorph. 

w 

Abelian groups of  order 2 ~ which involve only one independent. 
generator of highest order. 

When K involves only one independent generator t of highest 
order 2 ~ all its operators of this order may be obtained by multiplying t 
by operators of lower order in K and t can be transformed into all its 
conjugates under H by means of substitutions of J which are commutative 
with each one of the other independent generators of K*). Suppose 
that H contains another invariant subgroup K 1 which is similar: to K 
and let i be an operator of J which transforms the operators of K in 
the same way as an operator of highest order in K 1. The commutator 
subg~'oup C of {K, •1 } is composed of operators which are common to 
K and K~, and these are invariant uffder { K, K1}. It is easy to prove 
that C cannot involve any operator of order 4 whenever r ~ 3. If an 
operator of order 2 ~ in K 1 may be obtained by multiplying i into an 
operator of highest order in K this product is transformed by i 0 into 
itself multiplied by the square of an operator of highest order in K. 
In this case the common operators of K, K 1 include the .square of all 
the operators of K since they constitute a characteristic subgroup and 
include the square of one operator of highest order in K. As the 
square of every operator of K 1 would be in K and the commutators are 
invariant, C must be composed of operators of order 2 in this case. 

*) Annals of Mathematics, vol. 6 (1904), p. 1. 
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If an operator of highest order in K 1 can be obtained by multiplying 
i into an operator of order 2 ~-1 in K this operator is transformed by i 
into itself multiplied by an operator of order 2 ~-1 in C. As C is a 
characteristic subgroup of K and involves an operator of order 2 ~-l, i t  
involves the fourth power of every operator of K. It must therefore 
also involve the fourth power of every operator of K 1. Hence 2~-~<  28; 
i.e. ~ < 4. In other words, when a > 3 it" is not possible to obtain 
operators of order 2 ~ by multiplying i into operators of order 2 ~-1 in K. 
As the products of i into the operators of lower order in K cannot be 
of order 2 ~ it has been proved that C does not involve any operator of 
order 4 whenever r > 3. In what follows it will be assumed that a 
satisfies this condition. 

It will now be proved that C is of order 2. Suppose that t was 
so selected that t~ is in K 1 and that i transforms some operator of K 
into iteelf multiplied by a non-characteristic operator of order 2. There 
is an operator in J which is commutative with t and also with every 
operator of the quotient group of {K,/{1} with respect to the squares 
of all the operators of K, while this operator transforms any given 
noncharacteristic operator of order 2 which is common to K and K~ 
into itself multiplied by the characteristic operator of order 2 in K. 
This operator must therefore be non-commutative with i. As t has as 
many conjugates under 3 ~ as ti can have and none of the operators of ] 
are commutative with ti unless they are commutative with both t and i 
it follows tha~ J cannot contain an operator which is commutative with 
t but not with i. Hence i cannot transform an operator of K into 
itself multiplied by a non-characteristic operator and we have proved 
the theorem: I f  an abelian group K of order 2" contains only one largest 
invariant exceeding 2 s and i f  its holomorph H contains another invaritmt 
subgrou~ X 1 which is similar to K then will K and K 1 generate a group 
whose commutator suhgrou~ is of order 2. 

Since ti can be transformed into all its conjugates under H by ope- 
rators of J which t;ransform into themselves all the independent genera- 
tors of K besides t it follows that all the operators of highest order 
in K i transform the operators of X which are not of highest order in 
the same manner and hence each of the operators which is not of highest; 
order in .K~ is commutative with every operator of K which is not of  
highest order. The operat.ors of K~ whose order is less than 2 ~ must  
therefore eitsher be commutative with all the operators of K or transform 
each of these operators into its 2~-l-f  - 1 power. In the former case there 
is always one K 1 which has just haft of its operators in common wi th  
K. The latter case can present itself only when K contains a characteristic 
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subgroup of one-fourth its own order, which includes t 2. This is possible 
only when the group generated by the remaining independent generators 
of t~he group composed of all the operators of K whose orders divide 
2 ~-1 has a characteristic subgroup of half its order; i. e. this group can 
have only one independent generator of highest order. When this con- 
dition is satisfied H contains exactly three subgroups which can be used 
for K 1 since the operators of highest order in K 1 may transform the 
operators of highest order in K in ~wo distinct ways. Hence the theorem: 
I f  an abelian group K contains only one largest invariant equa~ to 2 ~ but 
more than one second largest invariant its hoIomorph contains only one 
other invariant subgroup which is similar to K. When K contains only 
one largest invariant equal to 2 ~ and only one second largest invariant its 
holomorph contains three other invariant subgroups which are similar to K. 

This theorem may also be expressed as follows: If an abelian group 
contains only one largest invariant equal to 2 ,  but more than one 
second largest invariant its holomorph is the ho]omorph of just one other 
similar subgroup and hence this holomorph is invariant under a group 
of ~wiee its order on the same letters but under no larger group. When 
it contains only one largest and only one second largest invariant its 
holomorph is the holomorph of three other similar subgroups and it is 
invariant under a group of four times its own order on the same letters 
but under no larger group. Under this multiple holomorph the four 
similar subgroups in question are transformed according to the non-cyclic 
transitive group of order four. The operators which are common to 
these four similar subgroups are composed of the squares ot~ all their 
el)craters together with all their operators whose orders are less than 
the second largest invariant. These four subgroups may be divided 
into two pair, each pair having a subgroup of half the order of the 
group in common. 

w 

Abelian groups of order 2 m in which all the invariants are equal 
to each other. 

We begin with the case when K contains only two independent 
generators of' order 2~ a > 3. From the proof in the preceding section 
it follows that if the holomorph of K contains a second invariant sub- 
group K1 similar to K the common operators of K,  K1 are aUthe opera- 
tors of K whose orders divide 2 ~-1. With respect to these common 
operators K o the quotient group of JY is evidently the four-group. 
Hence the substitutions of {K,  iY1} may be written as follows: 
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Ko + Kot  + Kot  + Kot  + + + 
where t~, t~, t~ are operators of order 2 ~ in K and i l ,  i~, i s are com- 
mutative operators of order 2 in J. Suppose that il, i~, i8 have been 
so selected as to satisfy the following conditions: 

i l  = t ,  = t ,  = 

. ~ -  ~ $ ~  1 
i~ t i i  ~ -~ t~t~ ~ - ~ ,  i~t~i2 t~t~ 2~-~, i2t~i~ i~tl , 

iat~ia = t ~ t ~  ~ - ~ ,  latvia = t~tt ~ - t ,  i~tai~ = t~ta ~ - ~  

is abelian 

Hence it is similar to K. 

The four-group 1, i l ,  i~, i s is invariant and the three operators i l ,  i2, i s 
are conjugate under or.. The group 

t~ il  . t~ i ,  = t~ i~ . t~ i ,  = t~ t~ t8 ~ -  ~ i 8 . 

It is invariant under H since 

is composed of all the operators of order 2 ~ in Ki~ which are both 
transformed into their 2 ~-i  -~ 1 powers by operators of order 2 ~ in K 
and also transform these operators into the same powers. Hence it has 
been proved that the holomorph of K contains at least one other in- 
variant subgroup which is similar to K. That is, the holomorph of K 
is also the holomorph of K'.  We proceed to prove that H does not 
contain another invariant subgroup which is similar to K. 

There are 15 operators of order 2 in or which transform each operator 
of K 0 into itself and the remaining operators of K either into themselves 
or into themselves multiplied by an operator of order 2 in K o. Three 
of these have been considered and it has been proved that they give rise 
to at least one invariant subgroup K '  which can be used for K 1. That 
they cannot lead to more than one such subgroup follows from the fact 
that J contains operators which transform t~ into itself and transform i 1 
into i s. Hence t~i 1 has more conjugates under J" than t~ has. Similarly 
it may be observed that t3i 1 has more conjugates under J than t 8 has. 
That is: i l ,  i2, i 8 lead to only one invarian~ subgroup which is similar 
to K and not identical with K. If three others would lead to such an 
invariant subgroup they would form a complete set of conjugates under or.. 
It is readily seen that no such set exists; for 6 of them are separately 
commutative with half the opera~ors of K and transform half of the 
remaining operators of K into their 2 ~ - 1 +  1 powers. As these form 
a complete set of conjugates they may be directly rejected. 
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Three of the remaining 6 operators of J are separately commutative 
with half the operators of K and transform the remaining operators of 

into themselves multiplied by the 2 ~  1 power of one of these invariant 
operators of order 2 ~. If we call these operators il, is, is, the operators 
of the group generated by them and K can be arranged in exactly the 
same way as in the case considered above, and there is again one invariant 
subgroup which is conformal with K while the other two are conjugate 
under J. As this invariant subgroup is non-abelian these three conjugate- 
operators of J do not give rise to a group which may be used for K. 

Twelve of the possible 15 operators have now been considered. 
As one of the remaining ones is invariant under 3 ~ there cannot be 
another set of three conjugates under J and we have therefore proved 
the following theorem: The holomorph of an abelian group K generated 
by two independent operators of order 2 ~ a > 3, contains one and only 
one other invariant subgroup which is similar to K. Hence the holomorph 
of K is invariant under a substitution group of twice its own order 
but not under any larger group on the same letters. 

Having disposed of the case when K contains 2 equal invariants we 
proceed to the consideration of the general case when K contains n > 2 
such invariants and begin with the hypothesis that some operator of order 
2 ~ in K 1 is commutative with no operator of K except those of Ko; 
i. e., the operators whose orders are less than 2 ~. The operator of J" 
which transforms the operators of K in the same manner as the given 
operator of K1, will be denoted by i. As the group K / K  o is composed 
of operators of order 2 besides the identity, the isomorphisms under con- 
sideration may be associated with the isomorphisms of the abelian group 
of order 2 n and of type (1, 1, 1, - . . ) ,  the operator of J which transforms 
every operator of K into the same power corresponding to the identity. 
If /if1 exists it must correspond to a system of 2 n -  1 conjugates which 
form a complete system under the group of isomorphisms (J0) of the 
group of type (1, 1, l , . - . )  and of order 2 ~. It  is therefore only necessary 
to prove that Jo cannot have such a complete system of conjugates when 
n > 2 .  

To prove this theorem we may first observe that J0 cannot have a 
complete system of 2 " - - 1  operators of odd order. If such a system 
existed each of its operators would be invariant under a Sylow subgroup 
of order 2 ~ in J0. Such a Sylow subgroup is .composed of one transitive 
constituent of each of the orders 2, 2 ~', 23, . .  ., 2 "-1. As a substitution s 
cannot be commutative with every substitution of a transitive ~ o u p  on 
the same letters whose order is a power of a prime unless the order of s 
is a power of the same prime, and as the transitive constituents of the 
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Sylow group under consideration cannot be permuted, it has been proved 
that every operator of odd order in Jo has an even number of conjugates 
under Jo. To complete the proof of the theorem under consideration it  
is only necessary to prove that every operator of order 2 has more than 
2 ~ -  1 conjugates under Jo- This follows ahnost directly from the fact 
that such an operator must be commutative with more than 2 operators 
of the group of type (1, 1, 1 , . . . )  since J0 is positive, being simple. 
The opera, or must therefore have more than 2 n -- 1 conjugates under Jo 
since the number of subgroups of order 2 ~, 1 < r  in a group of 
the given type is greater than 2 n -  1. If  this operator of order 2 is 
commutative with 2 ~-~ operators of the given group it evidently has 
more than 2 ~ -  i conjugates. 

It remains to consider the cases when i is commutative with some 
operator of order 2 ~ in K. When i is commutative with two or more 
independent generators these could be selected in at least 2 n -  1 ways 
and as this selection would not determine i it would have more than 
2 ~ - - 1  conjugates under J. Similarly i would have more than 2 ~ -  1 
conjugates if it were commutative with only one of the independent 
generators of K. Hence we have established the theorem: I f  an abdian 
grou~ K of order 2 ~ @ generated by n > 2 independent operators of order 
2~ c~ > 3, its holomorph cannot involve another invariant subgroup which 
is similar to K. 

w 
Conclusion.  

When K contains two equal largest invariants which are equal to 
2 ~, ~ > 3, together with one or more smaller invariants it may be proved 
just as in w 2 that the commutator subgroup of { K, K 1 } is the characteristic 
subgroup of order 4 in K. If K 0 represents all the operators which are 
not of highest order in K, the considerations employed at the beginning 
of the preceding section prove that H contains at least one subgroup 
which may be used for K 1. To prove that  it cannot contain more than  
one such subgroup it is only necessary to observe that the operators of 
J which would transform the operators of K in the same manner as 
those of highest order in such a subgroup, could not form a complete 
set of conjugates under 3:. This statement follow, s almost directly f rom 
the fact that an operator, of order 26 in K can be transformed into 
one-third of the operators of order 2 ~ by means of operators of J which  
are commutative With each of the independent generators of K except 
those of order 2 ~ and are also commutative with each operator of the  
chtrracteristic subgroup of order 4 in K. 
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In what precedes it was assumed that the largest invariant in K 
exceeds 8. It is not difficult to prove that all of the results are true 
even when the largest invariant is 8. In fact, the reason for assuming 
this largest invariant greater than 8 was to make it easier to prove that 
each of the commutators of {K, Ki} must be of order 2 if it is not 
the identity. We shall now prove that the order of such a commutator 
could not exceed 2 even when the largest invariaht in K is 8. In this 
case the J of K would involve only two invariant operators whose degree 
is equal to the order of K diminished by 2. One of these transforms 
each operator of K into its inverse while the other transforms each of these 
operators into its third power. As an operator which transforms K into 
K1 may be so selected as to ~'ransform J into itself, and, as J is also 
the group of isomorphisms of Ki,  it follows that the two given invariant 
operators of Jr are either commutative with this operator or are trans: 
formed among themselves by it. ks  each of these invadant operators 
os J transforms operators of order 8 in K into themselves multiplied 
by operators of order 4 while it transforms operators of order 4 in K 
into themselves multiplied by operators of order 2, it must have the 
same effect on the operators of K 1. Hence it results that an operator 
os order 8 in i~ 1 is obtained by multiplying an operator of J" into an 
operator of order 8 in K. That is, the square of every operator of K 
and of K 1 is among the common operators of K and K 1 and hence all 
the commutators of {K, Ki} are of order 2. 

It remains yet to consider the case when K contains operators of 
order 4 but of no higher order. In this case J contains only one in- 
variant operator i o and hence i o must also transform each operator of 
K 1 into its inverse. As i o has exactly as many conjugates under H as 
there are independent generators of order 4 in K, it-follows that the 
operators of K and Ki have the same squares. Since the common 
operators of {K, K1} are of order 2, besides the identity, the operators 
of J contained in {K, K1} are all of order 2. Let i be such an operator 
and suppose that  ti is in K1, t being an operator of order 4 in K. _A_s 
i 0 is not commutative with ti it must transform it into its inverse. That 
is, ti is of order 4 and t - l i= ( t i )  - i = i t  -1. Hence t and i are com- 
mutative. Moreover, all the operators of order 4 in K 1 are obtained by 
multiplying some i into an operator of order 4 in K. 

When K has independent generators of order 2 it contains two 
characteristic subgroups besides the identity but it contains only one such 
subgroup when it does not involve any independent generator of order 2*). 

*) American Journal of Mathematics, vol. 27 (1905), p. 15. 
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As the common operators of K and K1 form a characteristic subgroup 
of K and as i is commutative with an operator of order 4 it follows 
~hat the common operators of K, K1 cannot involve all the operators of 
order 2 in K when K contains only one highest invariant. Moreover, it 
follows from the preceding section that 2~ could not contain two or more 
invariants equal to 4 and that the operators of order 2 in K 1 are com- 
mutative with the operators of this order in K. These results lead to 
the theorem: I f  an abelian group K of order 2"* involves no operators 
whose orders exceed 4 its holomorph cannot involve any other invariant sub. 
group which is similar to K except whe~ K is of type (2, 1). In this 
special case / t  contains only one subgroup which can be used for K 1. 
There is another invariant subgroup in :H~ which is of the same type 
as  :K but it does not occur in the form of a regular group and hence 
is not similar to K as a substitution group. 

If we bear in mind that the holomorph of any abelian group is ~he 
direct product of lhe holomorphs of its Sylow subgroups and that the 
holomorph of an abelian group of odd order is a complete group we may 
state the preceding resultss as follows: If the holomorph of any abelian 
group K contains four invariant subgroups which are similar to K then 
the Sylow subgroup of order 2" in K contains just one invariant equal 
~o 2 ~, a > 2, and just one second largest invariant. The holomorph of 
K cannot contain more than four invariant subgroups which are similar 
to K nor can i~ contain exactly three such subgroups. The holomorph 
of K contains exactly one other invariant subgroup similar to K when 
one of the following conditions is satisfied: 1) The Sylow subgroup of 
order 2" in 2~ is of type (2, 1); 2) This Sylow subgroup is cyclic and 
m > 2; 3) The Sylow subgroup of order 2 m contains only one largest 
invariant exceedin~ 4 but more than one second largest invariant; 4) This 
Sylow subgroup contains exactly two largest invariants which exceed 4. 
In all other cases the holomorph of K contains no subgroup which is 
invariant and similar to K except K itself. 


