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The Dynamics of a Top.

By A. G. GREENHII-L.
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A statement by Jacobi (Gesammelte Werke, t. n., p. 480) that the
general motion of a top or gyrostat, moving under gravity about a
fixed point in its axis, can be resolved into the relative motion of two
bodies moving1 a la Foinsot about the fixed point under no forces, has
attracted considerable attention of recent years, as testified by the
valuable and interesting articles on this subject by

Halphen, Comptes Rendus, t. c , 1885 ;

Darboux, in Note xx. to Despeyrous' Gours de Mecanique, t. n.,
p. 525 ;

Routh, Quarterly Journal of Mathematics, Vol. XXIIL, p. 34; and
Marcolongo, Annali di Matematica, Vol. xxn., 1894.

Dr. Routh commences with an investigation of these two associated
concordant states of motion under no forces, and shows afterwards
how they may be combined so as to give the motion of a top; but in
the present paper it is proposed to reverse this procedure, and to
start with the analysis of the motion of the top, and thence to derive
Jacobi's two associated states of motion; it is hoped that this new
procedure will help to throw light upon this interesting and impor-
tant theorem in Dynamics.

1. We begin, then, with the equations of motion of the axis of the
top, as given in Routh's Rigid Dynamics, following as closely as
possible the notation of the article in the Quarterly Journal of Mathe-
matics, Vol. xxm.

The equations connecting \[r, the azimuth of the axis OG, and 6, the
inclination of the axis to its highest vertical position 00, can then
be written

\AX (ft )' + U sin'0 ( g ) S = Wg (d-fccos*) (1),

s i n ' 0 ^ + C,^008 0 = 0 , (2).
at
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Take a point P in 00 at a distance I from 0, such that

Wh'

then P may be called the centre of oscillation, as in plane vibrations;
and put

p 4
HO that 2JT/?J seconds is the period of small plane oscillations.

The quantities employed in this paper, here and subsequently, are
expressed in Dr. Routh's notation by

h y Al 0 Ax 0

2AlWgh f 2^%/i f

Writing equations (1) and (2)

• 9 fl (Zi/' _ (r, — (7, n, cos

// A

and, eliminating —- ,

= 2?i2e (3),

suppose, where

To solve (3) we suppose O to be split up into three factors, such
that

9 = (cosfl—cosh 0,)(cos 0—cos 02)(cos 0—cos 0S) (5),

so that the inclination 0 of the axis oscillates between 02 and 0S,
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2. The solution of equation (3) by elliptic functions is given by

pu—ex — \Q (cos H—cosh 0,)'

(6),pu—e3 = £12 (cos 0 — cos fl2)

pu—et = £0 (cos 0—cos 08) .

the letter O being employed as the homogeneity factor so as to agree
with M. Darboux's notation (Despeyrous, t. n., p. 514) ; and now

or qt + ws (7)

for cos 9 to oscillate between cos 0s and cos 0S; and, since from (5)
and (6)

(S)1^®1 <«>•

therefore o' =

In Jacobi's notation, the modulus K and its complementary
modulus K' are given by

, ( 1 1 1 .
't _ c » ~ e 5 _ COBfla--COSfl,

fc ~̂" * ""• - - •*, * . . . . . , * . a* .
C1~"C8 C O S n 0\ — COS ̂ 8

/a — e i"" e a — C 0 8 n ^i — COS ̂ 3 , , n \
e, — e3 cosh Qx — cos 08

Denoting the real quarter period of Jacobi's functions by K, then
the time occupied while 6 grows from $t to 08 is

K K

seconds; and this is the fraction

1
4 V { \ (cosh0x—cos 08)}

of the complete period of the top when making plane oscillations, by
swinging through the angle

4 sin-'. = 4 sin-' /f cos^-cosg,
V \cosh 0,—cos P
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3. If u assumes the values vx and v2 when cos 6 is +1 and —1, then,
from (6),

pu-pva = f«(l+cos0) (13),

pVl-pu = i n ( l - c o s 0 ) (14),

so that pvl—pva=Q (15),

and, since

-co < — 1 < cos 08 < cos 6 < cos 0, < 1 < cosh 6l < a>,

we therefore take
vs = (16),

where p and r are real fractions.

Also, putting cos 0 = =F 1 in (4) and (9),

) 1 — § ^ ...(IT,,

and therefore, from (10),

G^nx __ __^ tp \ _G\zSL\?h- — ^PJh Q8)

Thus, if Gi — O^i is negative, we must suppose r negative, or put

u^wj—rwt • (19).

Adding and subtracting equations (18), making use of (15),

_ j
— *

j

</(AxWqli) pvx-pv% !

w=-*"•'-*'"•-«'('••^ (22)>
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4. We shall find that (Vol. xxv., p. 281)

219

makes

Writing

then

cos 0 = —
h

A

(24).

(25),

(26),

and this is the quantity denoted by r in Dr. Routh's article ; and
we find that (p. 281)

makes

so that, putting

u = vx + v2

cos $. = E. (27),

v—pu = ifi (E — cos 6)

pv — et = \Q (E—cos

p v—ret = £$) (E — cos 6S) d

pw—pu — f £2 I cos 6

p i c - e, = | P

- e% = ^0 / _ _

5. Writing equation (2) in the form

sin e ^ -v/e =
dti

L —cos6)v/G

(28),

.(29).

•(30),

i + g.n, f
2il1Wflffc) J

sin 9 dd

(30*),
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then \p is the sum of two elliptic integrals of the third kind, with
Jacobian parameters u, and t»,; and Legendre's theorem for the
addition of these parameters shows that these two integrals depend
upon a single integral, of the form

and we find, in fact (as is readily verified by a differentiation),

CXnx-Gx cos 0

6. To agree again with Darboux's notation, we put

riTS'T~X~\ ~ii i J J

so that, from (22) and (23),

V — —pvt-pvt—pv (34),

U3 = —pvi—pv^—pw (35),

V-l^-pxo-pv (35*).

Then, from equation (25),
ori

cosh 0, + cos 0, + cos 08 ss E+ - • (3G),

and, from (28), by addition, e

Spv = ?iQE-lQ (cosh ^ + 003 0, + cos 08)

= fii7-7ys (37),

so that, from (28), or (13) and (14),

fi cos B = QE—t2p v + 2p u

= 2pu-pvx-pvi (38);
and therefore

O cosh 0, = 1} -f p o + 2o,v

(30).
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Again, from (25),

cos 9., cos 08+coa 0S cosh 0, + cosh 0, cos 0,

= _ i . " i 0i»»i = _ i .

BO that, multiplying by 122, and employing (39),

. ? ̂ > ? « \ = Q« (1 + CoS 02 cos 08 + cos 08 cosh 0, + cosh 0, cos 0,)
/(i1TVr/7i)

~gf8 (40);

this relation is implied in Darboux's (18), Deapeyrous, ii., p. 515.

From (25), again, as well as (37),

Gxnx-GE n,I (JV = —1—-— »2»
p 2^(AWh)

so that, multiplying by Jy,

or Ufi = Ls + 3 ipv + i>'v (41*);

and therefore, from (40),

Ii1 + 3Z* + G L! p v + 3pV— gs = 4L\+ 12I1 p v + 4 Lip'v,

or O a = J/ + 6kVt? + 4E*yu-3p9t; + !7j

= (L2 + .Vw)8 + 4Li>'t;-2p"t; (42).

With this value of Cl we shall find

tanh Bx = 2 ~ L-^- r.*$ t .̂(P'̂ ??.-P!iz:?.il ( 4 3 ) f

tan0a = 2 ^ ^ ^ r ^ + ^ x r J ^ ; ^ - ^ (44),

tun0a = 2 . r - Z f P ^ t V ^ r P l l i F J ^ ) (45),

and the completo motion of the top can be made lo ('eA end upon
the constants e,, c.t, ea, pv, and L.
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7. When v is of the form

where P and ft are integers, the solution can be effected by the
associated pseudo-elliptic integral of order ft, which wo can write
in the form

'-1""' <*7)-

where (Proc. Lond. Math. Soc, Vol. xxv., p. 209)

S =s 4s (s + xy- {(y + 1) s+xyY

= 4(»-* I ) (« -O(«-O (48),

a — s — pv—pn = £fi(l£ —cos0) (49),

and where "2, denotes the value of S when s = a.

Then

r / . P M _

= _JL_ f «?J d?+^i* - „ tan-

^- ŵ  — « tan ' y

^ Uin1-Ol cos 0
or

„, = _„ tan- g**gm -lU+ OH)...(50),
Vlnl-Gl cos9 \ l /̂  / v y

80 that /ii/r, with the addition of the secular term

can now be expressed as an inverse circular function of 6.

The secular term can be made to disappear by taking

and then (sin6)" cos fi\p and (sin 0

are rational functions of cos 6, which can be determined by a
verification consisting of differontiation and squaring and adding.
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W r i t i n g av <r2, <r8 for a—s,, a—s.,, a—s8,

respectively, then equations (39), (41), (42) can bo written

X = I? — (Tl + (Tj -+• (T8 "*

223

12 coa ^3 = H + Ci — ffj—cr8.

(53),

There aro cnsps on the circle 0 — 6t when IU = w3; and then

a _ (1 _ Cr, _ H-COsh0, COHW8
C O S i/ti -•— - ' —• ~ji — —— i •

h C1nl l y + y

8. Thus, fo\* instance, with 2/x = 4, wo can take (Proc. Land. Math.
Snc, Vol. xxv., p. 212)

s, = (1+c)1, sa = c2, ss = 0, p = 2,

• (56),
and then

Tho secular term attached to 2\j/ is destroyed by taking L = — | ,
so that, putting

(58),

.(SO),
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AxW<jh o^ f t '+a ) ' AxWgh ~ (o»+2)*

and the cono doscribed by tlio axis of the top is given by

-B'f cos 0+ -•---?•-~j ^/(cnshA,—CO80.COS0J—cofi0)...(61).'

When a = 1 or c = h, thore are four cusps on the circlo

and the time occupied by the axis of the top in describing the four
loops is 4x3"* times the period when making plane oscillations
through an angle . .

4 sin"15.

0. So also with 2/i = 6, and the corresponding parameters

«' = «i + £»a. O1> <"i + fws>
we take «, = (1 — c)'\ «, = ca, .<?, = (0 — c2)8,

cr = 2 c ( l - c ) a , or 2f;
s-2cs,

p = 2 ( 2 - c ) ( l - 2 ( 0 , or 2 ( l + c)(l-2fl) (G2),

or 2c 2 ( l - c ) ( l + c)(l-LV) (62*),

and then the corresponding pseudo-elliptic integrals (1'ruc. Land.
Math. 80c, Vol. xxv., p. 218)

I(o>,+ Jwa) or i"(w, + jjws)

will servo to construct other solvable casos of top motion.

Putting S = 4 (•«—*,) (••>'—•s) (•*••""*':)))

those in tegra ls a ro

I( J)

{2c(i-cy-s}ys

= sin
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_ i f

~ 2 J
_ c o a

10. First, when v = wx + $«>it

and p=t<2(2-c)( l -2c) ,

the secular torm associated with 3«// is inado to vanish by puttin;

L = —lp=- i (2 -c ) ( l -2c ) ,

and now, from (42) aud (53),

81O3 = (1 + c)2 {27(l-c)8-2(l-4c + c1)8j,

912 cosh 0, = (l+c)(13-33c + 21c8-5c\),

912 cos 0j = — (5 —.

90 cos 08 = — I

From (39), (43), (44), (45),

312 Hinh 6l — 2, (1—ef)(2—c)

3f2 sin 0a = 2 (1—c + c")-/(l —2c.2c—c1),

The equation connecting 0 and v// can now bo writton in the form

sin8 0 cos 3^ = (Q cos 0—B) %/(cos 0a-cos 0),

or

sin80 sin3i^ = (cos20 —Ocos 0+ P) v/(cosh 6l—cos6 . cos 0 —cos0tt),

and, wo find by squaring and adding, that

0 = — £ (cosh 0, +cos 0a)

= _ 2(1-fO3fc2-c)(l-2iQ

VOL. XXVI. —so. 514. y
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- fie + 2

22G Mr. A. G. Greenhill on the [Jan. 10,

n - Q-fc)8(19-84c-fl41c8-160c3+141c4-84c8+19c(>)
8111*

n - 2V2(l +
«*"" (90)

p - 2x/2(l+c)8(2
""" " " " (90)8

and by a Ioganthmic differentiation, and comparison with (30),

T - -P.\ ^n. _ - _ 2-.5o + 2o'
"' ~2S'(A~W~h) 3 '

(r) 8c + ri^)
2712

A point on the axis OC now describes a closed splierical curve with
six loops or waves; and, when c = 2— v /3 , there are six cusps on
the circle 6 = (i., = §;r; and the time of describing the six loops is
IV times the poriod when making plane oscillations through an angle
of «0°.

11. Secondly, when v = u>, 4 |w,,

and p = 2 ( l + r ) ( l - 2 c ) ,

the secular term associated with 3i// disappears when

and now 8H22 = (2-c)2 {2(2-2c-c2)8 + 27r.9},

I)12 posh 0, = 10 - 20c + fir,8 + 4c1-.V,

012 cos $a = - (2-r)(4-Gr.-0cs—.W),

f>12 cos 0, = _- (2 - r) (4 - Or- - Or.1 + 13c8).

Tho equations connecting 0 and i// are now of the form
Kin80cos3</- = (Q cos0 —It) v/(cosh0,-cos6),

or
Km'0 sin :^ = (c.ns-9—f rns0 + 77) y(cos0a—cos0. cos5—cos6a),

and we find

C2-r)2 (8-2fr,f 48V

obtainuble from the preceding values by writing 1 —c for
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A point on the axis 00 describes a closed spherical curve with tlueo
loops or waves ; and, when

there are three cusps on the circle

0 = 02 = 7r-tan-' y 2

and the time of describing the three loops is

3
y-2) */(V4 + i)

times the period of plane oscillations through an anglo

4 t a n - 1 ( 2 - y 4 ) .

So also for higher values of 2^, namely, 8, 10, 12, 14, 16, 18, ... ;
the even values being taken because the resolution of tho cubic »S'
is required in these dynamical applications.

Jacobi's Theorems on the Motion of a Top.

12. So far the treatment of the motion of the axis of a top, ns
given in the Proc. Lond. Moth. Hoc,., Vol. xxv., p. 291, has been
amplified to a certain extent; but now we proceed to introduce
Jacobi's theorems (Gesammelte Werkc, Vol. n., p. 480).

Measure off a length OG along the npwai-d vertical from 0, i*cpre-
senting to an appropriate scale the dynamical quantity Gx; and
measure off OG along the axis of the top, to represent to tho samo
scalo the dynamical quantity Gx nx; draw the horizontal piano through
G perpendicular to OG, and call this the invariable plane of G; and
draw tho plane through 0 perpendicular to 00, and call it the
invariable plane of 0 (l^ig- 1).

Then, if the vector 0.7f represents to the samo scale the resultant
angular momentum of the system, the point II must lie in tho line of
intersection of the invariable planes of G and 0, because the com-
ponents of angular momentum about the vertical 0G and about the
axis 00 are Gx and Cxnx respectively.

If this line of intersection cuts the vertical plane GOG in K, then

CIP-Gn2=CKi-GKiz=z OG2-OC2 = G\-C\n\ (03).

Q 2
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13. The point IT moves in the invariable piano of 0 with velocity
equal to the moment of the impressed couple of gravity, and parallel
to the axis of this couple.

The velocity of 11 is therefore in the direction JJK, perpendicular
to the plane GOO, and equal to Wgh sin 6; and the moment of this
velocity about G is

RO that

Wgh sin B . GK - Wgh (00-00 cos 0) ....(64),

p » ^ = tf^/i (Cxn,-Gx cos6) (65),
(i't

if p, or denote the polar coordinates of H in the invariable plane
of G.

Fio. 1.

Again, in the notation of Itonth's Rigid Dynamics, w, and w, now
denoting components of the angular velocity,

= 2AxWg(d-hr^6)-f0\n\ (60),

BO Hint, from (26) and (28),

GTP = P
2 = 2/1, Wg (d-hcos 0) + C]n\-G\

- 2AlWgh(E-c.o*e)

AfA.Wqh ,
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Therefore, from (60),

dxs f7,n, — fr, cos fl

_ Gx Cxnx-GXE 1

W " ' + " '"'(2 J.M^A) J (B-cos

which, combined with (G7), give the well known relations of a
herpolhode; thus II describes a herpolhodo in the invariable plane
of 6, with parameter v; this is one of Jacobi's theorems.

14. A reference to (32) shows that the angle between the vertical
planes OOG and GO1I, or

xa—\p=z tan ' -y- v — ' • y-—«
C,n, —6r|-cos0

_ , y e,

_ c o s

BO that the herpolhode of 7/ is algebraical when \j/ is pseudo-olliptic,
and when the accompanying secular term is at the same time made
to vanish.

The tangent at II being perpendicular to the piano GOG, it follows
that this plane is stationary, as 11 passes through a point of inflexion
on the hoi'polhodo; tlio horpolhodo must therefore have points of
inflexion when the path of a point C on the axis of the top is looped.

Generally, the component velocity of C perpendicular to the plane
GOG is

C , n , sii.w —

= '/lM'<niW7c77C,

4Gxnxt^CGK= CK (70).
dt
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This vanishes, and the plane GOG is stationary, when G lies in
the invariable plane of (/, and is therefore coincident with K;
and the angle between the planes 6'00 and GOJI is then a right angle.

Fig. 1 shows immediately that tho angle between the planes GOG
and GOH, or

, -i GK _, C,n. — G. cos 6
fff ——\U — (j()u ' — (JOS - - - - -

Y " il " ^
Gil

because Gil2 = 2/1, Wyh (Jb'-cos $),.

and GK sin 0 = 0 C - OC eos 6 = 6f,n, - ^?, cos 6;

and therefore also

K1V = 2/1, Ŵ /t {E - cos 0) - i P ^ - ° i ^ y
sin'2^

r f , = ̂ ( f ) (71),
iir 6 \dt I

OW= Kll' + Ktf-A] { (S) + rin.«(#)} ...(7!.).

1T>. Similarly, the angle between the planes GOG and JfOG is

f.os-i UK _ r o s - i G}-0,n, eos 0

on putting y -1) (73);
fit

this property will enable us to prove the seeond of Jacobi's theorems,
which asserts that the path of 11 in the invariable piano of G is
another herpolhodc, and that its parameter is

vl-v.i = w

(GcsammcUc Wcrlcc, Vol. IT., Note 13, p. 47G).

Employing accented letters, p and «r', to denote the polar coordi-
nates of II in the invariable plane of 0, then, from (Q6) and (24),

p'* = ClP= Oil*-00*

= 2A,Wgh (J)-cos0)

••= - 'jj •' (pw-pn) (74).
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The angle VJ' being measured from a straight line OA} fixed in the
body at right angles to 00, and the angle between the planes AOO
and GOG being denoted, as in Muler's notation, by <f>, then the angle
between the planes 000 and 1100 is vs — <p; so that

«r '-* = cos-1 — _ -?mPj!h.«?" ? -
f sin 0^(2/1^/0 A-0-cos tf)

analogous to (69).

But, from Euler's relations,

d<t> a d\l>
~ = TO, — COStf —-
(it ' lit

so that, with

^ ^ + L cos ^- hl±S!}
dt dt dt 8m0y/(2AtW(jh)j(D-cos0)'

and, after reduction, we find

di V Aj l^2Al(D-cost))

or
^ 0,-0,n,J)^ , , ^ f Bi

V l 2^(2^W^fc) J (D-cos

(77),

which, combined with the value of p* in (74), proves the second part
of Jacobi's theorem, that JET describes in the invariable plane of C a
herpolhode of parameter

w = vl—vi
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16. By means of Euler's three angles 0, <p, »/>, the position of the
top as a solid body is completely determined, tho formulas being

u = qt + o)j, or qt + w8,

a i+cos0 pu—p\(v—w)

A = m'—sin"1 -

) ^ + 1 l o g ^ e

xl sin^v/(D—coB0) °O-(M-M>)

(79),
= w—sin '

17. Since the axis OJ of instantaneous rotation lies in the plane
IIOC, the direction of motion of 0 is perpendicular to this plane;
and therefore the path of G cuts the vertical plane GOO at an angle

tan" iffi--fli»iCO8fl _ c o a

/ ( 2 l W y 0 )
->

or it cuts tho horizontal circle through 0 at an angle vr' — <t>\ and this
is a right angle when the plane OOO is stationary.

As 11 passes through a point of inflexion of tho herpolhode in the
invariable plane of G, the pliine JIOO is stationary; and G at tho

same timo passes through a point of inflexion on its spherical path.

18. When tho momcntal ellipsoid at 0 becomes a sphere, or

thn axis 01 of instantaneous angular velocity w coincides with Oil,
and

OH-A.oi (82).

But in tho general case, when the momental ellipsoid at 0 is a
spheroid, take a fixed point F in OC, such that

ni = Ar (83),
00 C,

and call the plane through F perpendicular to OF the invariable
plane of F (Fig. ]).
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Now, if HI, drawn parallel to OC, cutB the invariable plane of F
in J, the vector 01 will represent Ax<a, or Ax times the resultant
angular velocity; and I describes a herpolhode in the invariable
plane of F equal and parallel to the herpolhode described by H in
the invariable plane of 0.

It can readily be proved now that the angle between the vertical
planes 00C and GOI is

_i M.cos'fl-f f7. sin2 0) «. — G.cos fl ,o<x

cos >--' '- - '- (o4t).
ifV{'MVfy/ (E 0) j

Bin0v/^2/l,Wf//i (Fi—cos 0) j

reducing to (69) when J4X = Cv

Darboux's Mechanical Representation of the Motion of the Axis of a Top.

19. M. t)arboux has shown, in Notes xviii. and xix. of Despeyrous'
Cours de Mccanique, how tho generating lines of an articulated
deformable hyperboloid can be employed to imitate the motion of
the axis of a top.

We begin with the consideration of the properties of the confocal
system of quadrics, given by

having the focal ellipso

and tho focal hyperbola

(85),

j + + = ,
We can now put, employing m as a homogeneity factor,

as + X = ms (e, —pt'2), /5S + X = mJ (c8—pr'2), A = w* ( e s -

a' + M = m9 (e , -p») , /32+/« =: m9 (e9—p?t), n — m3 ( e 8 -

a9 + v = m 2 ( e , - p r , ) , /35 + y = m ' ( e i - p r I ) , v — m 5 (e g -pr , ) .

(00),
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a8-/a*, a* e1—ei.el—ei

«• — fi' + A-ff'-f M.ft' + y _ ,l)2e2—py4- e%~pu.e%-pvx
if Ji5 3 ,'ii — 7"' ...(91),

where «a=pwj, for the ellipsoid,

n = wi + qt, for the hyperboloid of one sheet,

vx = Wj-f-ro/j, for the hyperboloid of two sheets ;

and now --- = •'i~ ? = <c8 ..(92),
« e,—ea

so that the modulus of the elliptic functions is the ratio of the axes
of the focal ellipse.

Then (Salmon, Solid Geometry, Chap, vni.)

= i)ii{^-pvi-pu—pvx (93),

and the squares of the semi-axes of the central section made by a
piano parallel to the tangent plane of the hyperboloid (86) are

(x—A. and /u — v;

so that, if 6 denotes the angle between the generating lines of the
hyporboloid of one sheet (86),

cos 0 = —-
» v — / t

and we notice that X = p or pn = pv%

makes cos 6 = — 1,

while p = v or pn s= pvx

makes cos 0 = 1 ,

as before, in the top; so that we can carry on with the previous
notation of § 3.
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Also, from (23) and (G6),

+ — o M~

4A,Wah
= — ] - J - (96),*•

BO that, with
A A fir .7

.(97),,, _
a

wo may take the point if at (aj, y, z) on tho hyperboloid of one sheet,
which is then moved so that one generating line through If is
vertical, and then the other generating line will keep parallel to tho
axis of tho top.

20. To hold this hyperboloid in position, M. Darboux employs a
Recond hyperboloid of half the size, two generating lines being co-
incident with those passing through H, and tho opposite pair being
the lines OQ and 00, passing through 0 (Fig. 2).

Tho generator OG being held vertical, any point H in the parallel
opposite generator ILJ will describe a horizontal plane ; and now, if
11 is guided along a herpolhode, always moving perpendicular to tho
plane GOO, that is, normally to tho hyperboloid, the generator 00
will imitate tho motion of the axis of a top.

21. Tho instantaneous axis of rotation will bo represented by tho
vector Of to a point I fixed in the generator through //, parallel to
OG ; and it has already been shown in § 18 that I describes a herpol-
hodo in the invariable plane of I''.

The point I can be joined to a certain fixed point G' on OG by a
generating lino IG' of fixed length, and I is therefore constrainod to
lie on a sphere, with centre G'; hence Parboux's theorem, that tho
motion of the top can be imitated by rolling tho herpolhode of I in
tho invariable plane of F on a fixed sphere, with centre in OG, the

'angular velocity being proportional to 01 (Despeyrous, u., p. 538).

22. To construct these hyperboloids in Henrici's manner, consider
them when flattened in the plane of tho focal ellipse, corresponding to

fX = 0 , U = Wj.
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The coordinates of II are now given by

a*—/3a

[Ja«. 10,

_ «

Off3 = x* + y* = m1 ( -pt>, -pv

and if 5, £' denote the foci of the focal ellipse,

8U. S'H = (p

2/

Fio. 2.

Drawing the tangents IIJ and III through II to the focal ellipse,
and the perpendiculars OY and OZ upon them from the centre 0 ;
drawing also the perpendicular 1IG and TIG upon the lines 00 and
OC through 0 parallel to the tangents IIJ and III, then we find that

O P = GI1% = f>8 = m8 (pv-ej (99),

OZ1 = CU* =p's=m»(^M;-e,) (100);
and therefore

OC8 = HZ% - vvi~po.-pv.r- pio) = vi*li* (102).

The coordinates of P and Q, the points of contact of the tangents
HJ and III, will be given by

_ - = J ? K -, a n ( j
e, —

• —- • • , a n d

.(103).

Any other two pairs of tangents to the focal ellipse will mark the
position of the requisite number of rods, to servo as generating
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lines connecting the opposite pairs HI, HJ and H'T, H'T\ and now
the design of the larger hyperboloid is complete ; the smaller hyper-
boloid of half the scale having HI, 17/and 00, 00 as opposite pairs
of generators.

23. When flattened in the plane of the focal ellipse, II is at its
maximum distance from 0, and the angle GOO is 05, the maximum
value of 0.

As the articulated model is gradually deformed, e8 must be re-
placed by the variable pu, and

(104),

07? = Cn^p'^m'ipw-iou) ....(1Q5),

but OG, 00, IIY, HZ remain constant.

When the model is flattened in the plane of the focal hyperbola,

n = w3, pn = e2,

and OH has its minimum value ; and the angle between OG and

00 becomes 02, tho minimum value of 6.

24. When 6?, = 0 or L =s 0, the point H must move to Y, a point
on tho pedal of tho focal ellipse with respect to the centre ; and then

p'a-p'b (106).

So, also, when (7|»i=0 or U = 0, as in tho spherical pendulum, then

pa~-p'h (107),

and the point II must move to Z, on the pedal of the focal ellipse;
wo thus obtain a geometrical interpretation of the equation

p'n = e (108),

discussed by.Halphen in his "Fondions elliptiques, t. l., p. 110.

Equation (41) shows that, in tho spherical pendulum,

I 3 + 3Lpu + j>'t; = 0 (109),

L={./(p*-^)-wy-1V/(PS-jp'2

and this is the condition that
d . * ( " + »») cUE-tn«

dn an av

should be a solution of Lame's equation for u = '2.
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This relation can also be written

--?- + -} + i + i = o,L W ( ^ ) W ( - . ) W ( )
in Darboux's notation (Halphen, F.E., n., p. 102), or

in Dr. Routh's notation.
Generally, in Darboux's notation,

JBQ = abch ( L- + - + - - 2

\ a o c ft

= h (be + ca + ah) — 2abc,

or h'Q = Qh-2R,

as in Darboux's equations (18), p. 515, or-(6), -p 531 (Despeyrous,
Cours de Mecauujue, t. II.).

25. Alonpf the generator 00 or IIJ the parameter

v, + v.t = v
is constant; while

v, —1;3 = ty

is constant along 00 or HI.

Starting with II at the point Y", when 6?| and L = 0, then, for any
other position of Y on the generator IIJ,

HY=mL (112),
and, from (38) and (42),

Ucosfl =

n- — (V + 3p v)2 + 4 Lip v - 2p"v,

and tho elimination of U'1 gives the relation connecting cos20 with

L or HY/m.

Tho hcrpolhodes for dilTcrent positions of II on IIK must receive
an appropriate constant angular velocity round 00 to reali/.o the
true motion; and the corresponding rolling quadrics are coufocal, in
accordance with Sylvester's theorem.

So also for the relation connecting HZ and the angle between the
generating lines for different positions of / /ou the generator /.//.
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26. We conclude, in accordance with the order of procedure in this
paper, with the investigation of the properties of the quadric sur-
faces which will trace out the herpolhodes described by 11 in tho
invariable planes of G and of 0, when rolled upon these planes, their
centre being fixed at 0.

If a quadric surface, coaxial with the deformable hyperboloid, is
to roll on the invariable plane of G, so that the points of contact
form the locus of 11 in this plane, then, denoting tho distance 00
by h, and by P,, P2, P8 the points in which the generating line 11J,
perpendicular to tho invariable plane of G, meets the principal planes,
it follows, by well-known theorems of Solid Geometry, that the
squares of the semi-axes'tof the rolling quadric are

S.IlPi, B.IH\, Z.HI'v

the line HJ being the normal at II to the i-olling quadric ; and theso
semi-axes are constant, since r> and tho lengths 21 Pi, 11 Pa, Ul\
remain constant while the hyperboloid is deformed.

27. Write the equations of the polhode on this rolling quadric,
with Dr. Ronth's notation, in the form

Au? +lhf +C* =DF (113),

/ i v + i ; ' y + C'V = OT (114),

where D=(P/T (115);

or, in M. Darboux's notation,

a b c

£ 4
a: h c

where, to identify the notations, we put.

x = vip, ii = vi fj, z = mr ;

and then Do1 =z vrT, T'o = viCr.

Then the squares of the semi-axes.of the rolling quadric are
1h"' = vvah, Dcn- = vi-bh, Ptf = vi*ch (118),
A Ii ('

while c2- = m'-/t3

D a l} h ]) - c
HI

KoihaL A= ir B-lr a



240 Mr. A. tt. Greenhill on the . [Jan. 10,

Darboux's a, b, c, and h, or the reciprocals of Routh'e At B, C, and
D, are thus proportional to

IIP,, IIPif HPa, and BY.

Now, when the hyperboloid is flattened in the plane of the focal
ellipse

. 4+4 = 1, ,=o,
u p*

corresponding to u = o»8) then (Fig. 2)

and 5a«=swl«cA

D c IIP

But, from a property of the ellipse,

"ihJ? •(?=£' = - ^ ^ ~ e - ^ ^ - e » ...(122),
3" pv e

so that ( £ 1 4 ' ' '» 7 }

or c — /I = , / —

with m = 77 =—!rr"^ (124),
n it

(125),

according as L is positive or negative.

Similarly, a-h =J(- ^J*) (126),

or (b-h)(c~h) =-ff, (128),

(c - / t ) (o - ;0 = -«r, (129),

/0 = - i r , (130).
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28. Denote by accented letters the corresponding quantities for
the coaxial quadric which rolls on the invariable plane of 0, and of
which HI, the other generating line through H of the deformable
hyperboloid, is the normal at H.

Then the locus of H on this quadric is the same polhode as before,
but now determined by the equations

+ CV =D'S'a (131),

(132),

or •*•- + -i-y + — = h (133),
a b c,

with ,r = mp, y = inq', z = ?nr,

If the generating line HI cuts the principal planes of the dcform-
aible hyperboloid in Qu Q,, Q3, then, as in § 27, the squares of the
semi-axes of this lulling quadric are

•P,P = m'a'h' - I'. EQX (135),
A

^ V = m W = I'. HQt (130),

] l (137),

so that Darboux's a', b', o, and h',

or the reciprocals of Routh's

A\ B', G\ and D' = G'2/T\

arc proportional to 1IQX, HQi, HQv and UZ,

where OZ is the perpendicular from 0 on the generating line III.

Denoting pw—e, by r.,

then, as for the first rolling quadric, we find

(138),
VOL. XXVI.—NO. SIT/ H
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(138*).

Thus, for instance, with the hyperboloid flattened in the plane of
tho focal ellipse, tho ratio of the squares of the corresponding axes of
the rolling quadrics

ci]±
pp r.h PII.2IY PII h '
0

because the triangles OPII, OQH are of equal area.

29. Also <rr/i
8 = r-f/i'» (140),-

the.se and tho other various relations connecting the quantities
A, ]!, 0, J), 3, and A', B1, G\ D\ o, or a, b, c, h, and a, b\ c, h', are dis-
cussed in the articles of M. Darboux and Dr. Iiouth, making use of
the algebraical relations; and from their equations some additional
results can be deduced, for instance,

h(b + c)-bc = h'(b' + c')-b'c (14-3),

or B'C

(h-a)(b-c) = (h'-a)(b'-c) (145),

± - ^ = - ^ . + 4- (146),
DC DC

A

h-Q = 2P'h'-Q'

tlhh'=Qh*-2Uh= Q'h'2-2H'h'

(147),

(148),

.(149),

12* = i 2 ' 2 = cf-
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= a similar expression with accented letters (!•>!)»

h' + h = [ ̂ ( - " i ) + ^(-T»)]< S«,+ v / r ^ A t A/r8)

and so forth.

30. But it will be instructive to bring out the geometrical inter-
pretation of these relations; and, first of all, we examine the
geometrical properties of the hcrpolhodc.

We notice that _if_

are constant during the deformation of the hyporboloid by variation
of /u ; and that wo can put

...(154),

lAa? - (B-C)(<ii+,*), VA's? = (U- C'

IBif = (C-A)((¥ + n), llhf = (C'-yl')

Wz* = {A - B) ix, I'C'z2 = {A'-B')

so that, in consequence of

a' + fx
we find

B~G

A

'A'

B

if

U

4'JTJI
&

ABG

'-A'
A'Jl'6'

and
BG B'O'

(G-A)(A-B)

GA C'A'

A'Ji'
(B-G)(G-A)

n 2
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Therefore (~~i~)J= [^r)%> &G- '>

and taking the square roots with opposite signs, because like signs
lead merely to the result

A-A\ B-JT, 0-0',

we find, as before, in (147),

A ~ A' ' '

and Z = ~Z' (156).

Also VDl%- (B-C)al + (0-4)/32 (157),

IDW = A(B-0) a' + B {O-A)(? (158),

,, , , (G-A)(B-D) n,tso that a* = ^ -J--\-- '• Do1.
A B O .

««-/3«= - t t z S ^ Z ? ) ^ (159).
' ABU

Fio. 3.

31. From the two equations (113) and (114) which give the
polhode, we deduce, by differentiation,

Ax dx _ _Bjif_ dy __ Oz dz
B^G dl ~~ O—A dt ~~ A-B It'

.(160),

and therefore, in the corresponding herpolhode described by H in the
invariable plane of G, the common tangent IIK of the polhode and
hcrpolhode at II is parallel to OE, the central radius of (113) which
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if* conjugate to the plane GOH, or parallel to the tangent line at F
in the plane EOF parallel to the invariable plane of G, OF being the
radius of the quadrie (113) which is parallel to Gil (Vig. 3).

This theorem can also be proved, in Poinsot's manner, from purely
geometrical conditions ; for, as the ellipsoid turns about Oil in rolling
on the plane GHK, the line OF is the ultimate intersection of the
plane OEF with its consecutive position in the body ; so that as Oil.
moves to OH' in the body, the plane 0TI1T is conjugate to OF, and
UH' is thus ultimately parallel to OE.

The throe radii OE, OF, OR of the quadrie (113) thus form a
conjugate system, and the plane OGK is perpendicular to UK; and
therefore, by tho theorems of Solid Geometry for conjugate dia-
meters (Salmon, Solid Geometry, §97),

0E\ OF*, sin9 EOF+ 0K\ OE* + OF\ OG2

OG*. OE2. OF2. s i n 2 E O F - j" - ; ., (1 03).

32. Putting GlT=p, GK = ]>, OG = 5,

then these equations give

OJF + OF1 = ( A + -1 + A ) D?-S>-,,>,

V _ ,

so that jf/. OE1 = I p- + . , , « ) o (104),

Alii)
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From (163), OE\ OF\& = ^ ,
p ABU

tf.OEKOF^^pY (166);

and therefore

A-D.B-D.O-J)Xi

/ . A-p.n-n.c-pyp
V ABC IABC

H b P ) ( p + ABO

(167),

and this is the relation connecting p and p in the herpolhode.

Thence

, A-D.B-n.C-D

where

(168),

and
rlrr is

+ ABC

the differential equation of the herpolhode, employed in the previous
investigations.
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33. But the relation connecting

pl + V and OK1 = jp'4 F

should be the same for both herpolhodes described by if, the one in
the plane of 0 and the other in the plane of G.

Putting, then,

fJ
> + ai = r1 and pJ + 22 = g2

for the moment, we find

where

= / — 4 JL+_L)z>»_2-^- (171),
\BO CA ABI ABO K '

ABC

_J2!_^L«^l+ 2-^- (172)
BO CA AB ABC v '

The expression in (170) should be unaltered when

A, B, C, D, and o

are replaced by the corresponding accented letters ; and therefore

&c.; (173),
B 0 BGI \B' V B'G'

or, forming the diffei'ences

each of them being in fact —/32, from (159).

Since (147) —-— = —,
A A
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this last relation (174) becomes

Am nt A'm> n>%

(§27) ~f«- y , (176),
with two similar relations, and these can be written

A(AT-G2) __ J^iP^-G^ __ _G_{CTzO'l)_ _ ABO
GP) ~ C(G"F-G*) A'lfC"

as required for the coincidence of the polhode cones

A (AT- G*) »2+ B (BT-CP) %*+ C (OT-GP) z* - 0,

A* (A'T'-G1*)a?+B'(B'T'-G'1)tf+ C(G'Tf-G'%)z>- 0.

So also the comparison of the two formB

HP=H'&'* (177)

and X^ = KT8 (178)

will lead to relations implied iu the preceding equations.

In Darboux's notation, with 3J =

m

( )

ttnd •

Eh* = (bc + ca + ab) h*-2abch= Qh*-2Rh

; (180),
while

Kh* = (h-a)(h-b)(h-c)(Qh-ll)-h*(Qh-2n)

= (B-PQ)hs+(Q1+PR)hi-2QR,h+Rt (181),

and this remains unaltered when the letters are accented, ns in (151).
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34. In Jacobi's notation, we put

(182),

and changing to the complementary modulus «/, the excentricity of
the focal, ellipse, we can put

« +A = aa
 v>> /32 + \ = a* a , . , , X = a1—j^—-, ...(183),
sn2jpR sn^plv sa'jpK

aJ + >> =s »c'2a2 snJ rK\ /33 + v = - icV en2 rK', v = — a* dn* rK .

...(184),
and the coordinates of M are

sn rK' ocnx»K'dnrK' /IQE\
a -^7, /3—-c-—-7— (185).

We now find that the excentric angles, measured from the minor
axis, of P and Q, the points of contact of the tangents drawn from
H to the focal ellipse, are

am {(1— p—r) R', *'} and am {(1— p + r) K', «'} ...(186),

while 01T and OZ make angles

am {(p + r) K', K'} and am {(p - r )K ' , K'} (187)

with the major axis, so that

08 a am {(p + r) K', K'} - a m { ( p - r ) K', K'} (188);

also OY— odn {(p+r) K', «'} (189),

r)K', K'} (190).

35. As an application, take p + r = £ a s i n § 8 ; then

OY = a dn iR' = a JK = J(aft) (191).

If at the same time the secular term attached to the azimuth \j/, or
to the angle rs in the herpolhode described by H in the invariable
plane of #, is made to vanish,

£ = - * (192),

and the algebraical herpolhode discussed by Halphen (Fonctions
elliptiqncs, n., p. 282) is obtained.
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We may write its equation, connecting the coordinates £, 9,

or

or

and

-l-262 = 2y(a4sin2

- ^ > p J > 2 ( a " - ^ ) ,

(193),

(194),

(195),

and it is produced by rolling the hyperboloid of two sheets

upon a fixed plane at a distance b from its centre.

The squared modulus K* is now equal to the anharmonic ratio of
the four quantities a2, h%, — b2, —a'; so that

= a/3,while

so that

and the equation of the focal ellipse is

Tlic oqiuition of tlic tangent IIP is

a; en |K.' + ?/ sn T\K.'

or

•(198),

(199),

.(200).

.(201),

•(202);

and therefore, at the point of contact P,
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At the point J7,

t
y*

_ cosh fl, +1 . cosh #i —-1 _ sinh* 0!
"~ cos03+1.1 — cos08 ~~ sinatfj

and from § 8, with the parameter a employed there (which must be
distinguished from a8 as employed here)

_ 2 a - l
* "

sinh2 g, _.

sothat

2a~l 7

and therefore at H, the point of intersection of OH with the
tangent HP,

Similarly, we find that, at Q,

Replacing the value of a in § 8 by —-^ so as to agree with tho

notation of this article, we find that the cone described by the axis
of the top is given by

(208),

but 0 is now measured from the downward vertical through 0.
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Thus, for instance, if
af = 26s, * = £ ;

the point Q is at an end of the minor axis of the focal ellipse, and
the spherical curve described by 0 has cusps.

If ai = Sb\ * = | ; ^

the curve of 0 has loops, and Halphen's herpolhode has points of
inflexion, where

.and 86l>pI>46s;

the coordinates of H are | y6 6, ]V3 6 ;

of Pare fV6&, fv/3fc;

of Q are £ / 6 6, VV3&;

the equation of the focal ellipse being

These give suitable dimensions for a model, like the one constiucted
by Chateau of Paris, according to M. Darboux's instructions.

36. The results for the motion of the top when

i>=wi + £o/8, and wi + §<«v

and when, in addition, the secular term associated with Sij/ is made to
disappear, as in §§ 10 and 11, so that the path of the axis OOis given
algebraically, may be stated here in conclusion^ expressed in tho
notation defined above.

With u = a/, + ita>8,

we must put h = — L = £ (2—c)(l— 2c) ;

- S£» = (2c-cs)8, - ^ 1 = (\-c)\ - £ ! £ = (l-2^)2,
(7, /T3 r78

and thus Darboux's a, 6, c (his c being replaced by [c] to distinguish
it) are given by

and for the rolling quadric

J)_a_J_f^ D_ b 1 _ 0 ! _ _
"yl ;*"~l-2c' />' /* (2-o;(L-2c)' (7 '/*' . 2-c'
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The herpolhode of H in the invariable plane of 0 is now an alge-
braical curve, given by (§ 9)

and fi3 = ma {2c ( l - c ) a - s } ;

BO that ( — ) coa 3BT

With v—ui + ̂ u^

we must put h = —L =s i ( l + c ) ( l — 2c),

and a = | ( l - c + c?), fe = - l c ( l + c), [c] =

For the rolling quadric

I) a _ 1-fi + c2

J) ft
Jl /t l - 2 c '

G h 1+c'

The algebraical herpolhode of H in the invariable plane of Q is
now given by T , , 2 N o

find • p* = m8 (2cJ-2c»-s) ;

so that

)sin3» =
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[37. We can utilize other results of the article on " Pseudo-Elliptic
Integrals," Vol. xxv.; thus, from p. 288, with

(r = c(l-c)8(l-2c)i l(l-2c + 2c2),

, = - Kl-2c)s(l-2c+2c!i)(l-4c+2c8),

ra = c (1-c)8 (l-2c+2cs)(l-4c + 2c2),

, / ( - 5 ) = c (1-c)8 (l-2c)8 ( l - 2

p = (3-8c+6c2)(l-4c + 2c

With v = o*i + fw8,

= c8 ( l - c ) ( l - 2 c + 2c2)(l -

The cone described by the axis of the top in the corresponding
states of motion will now have eight loops, given by equations of the

sin* 6 cos (4»// —pt)

= (P cos8 $ + Q cos2 6 + B cos 6 + #) y(cos 0 - cos 08),

sin*0 sin (4<|/—^)

with

38. Again, from p. 290, with

» = w, + -J-w8,
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and with v

p = (3c - l ) ( c a -4c - l ) ;

and the cone described by the axis of the top has ton loops, given
by equations of the form

sin60cos (54»—p£)

a—cos0),

sin8 0 sin (5\p—ft)

0 + J57cosO + F)y(cosh0l-cos6/.co.s0—cos«s),

P _ /o V __ + 10L
V n

• So also, with parameters of the form

u=wi + fa>8 or

Avhen the cone described by the axis will have five loops, given by
equations of the form

sin5 6 cos (5i£— pt)

= (P cos* d + Q cos8 6 + B cos2 6 + 8 cos 6+ T) v/(cosh ^, - cos 6),

sin5 6 sin (5i//—^)

= (cos40+Ccos80 + Dcoss0 +.Eeos0 + F)

39. It is readily proved that the angle between GH and the pro-
jection of Ox on the tangent plane GI1K (Fig. 3)

2=2. IE
-4 — D 8x

from (91), (119), and (123) ; so that, if pf(, w( denote the polar coor-
dinates of the projection on the in-variable plane of G of a point fixed
in Ox at a distance A;o from 0, then, from (68),

a B <LL + 1 f iP-llh± 4-tan-1 /f _P?Z^£!L=«.v P»3iir
2i4., )pv — pn \ \ pu—ea.pv — eb.pv—ee

2.-1, p v — i',, " J jy ( r — w,,) - j r i
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This is of the form

da2 1 p(v-u>a)—pn

while (•£-)' = sin*xOG = 1 - ~ ~ .

But, from (154),

and, from (168),
/ 7? 7"1\ ((~i T\\

p + _.̂ _ ^ = m (f l --p«), ... .

Also ^2 = ma (pv—pu),

so that, putting « = u, p2 = 0,

( B - - P ) f O - . P ) y = = r o , f a

and w* fp(«—w,,) — e,,} = - - ̂ -"- ~b'-

A-BG
•i

kal ~ * (G-A)(A-B)VW

pu—i

Therefore [ j£.) = ] - ~ ^ ̂  ^ _ ;^ 7^a

_p(v-ion)-pu

and (210), (211) prove that (pa, via) describes a herpolhode, denoted
by (fa in Poinsot's TJworie nouvelle de la rotation dcs corps, p. 127.

In the curve <r'a, described by the point A\ in which Ox cuts the
invariable plane of G,

A-xl

P _p_ p(v-u>a)-ea p_p
pu—ea




