The Dynamics of a Top.

By A. G. Greenhill.

Read January 10th, 1895. Received February 4th, 1895.

A statement by Jacobi (Gesammelte Werke, t. II., p. 480) that the general motion of a top or gyrostat, moving under gravity about a fixed point in its axis, can be resolved into the relative motion of two bodies moving à la foinsot about the fixed point under no forces, has nttracted considerable attention of recent years, as testified by the valuable and interesting articles on this subject by

Halphen, Comptes Rendus, t. c., 1885 ;
Darboux, in Note xx. to Despeyrous' Cours de Mécanique, t. Ir., p. 525 ;

Routh, Quarterly Journal of Mathematics, Vol. xxiri., p. 34; and Marcolongo, Annali di Matematica, Vol. xxir., 1894.

Dr. Routh commences with an investigation of these two associated concordant states of motion under no forces, and shows afterwards how they may be combined so as to give the motion of a top; but in the present paper it is proposed to reverse this procedure, and to start with the analysis of the motion of the top, and thence to derive Jacobi's two associated states of motion; it is hoped that this new procedure will help to throw light upon this interesting and important theorem in Dynamics.

1. We begin, then, with the equations of motion of the axis of the top, as given in Routh's Rigid Dynamics, following as closely as possible the notation of the article in the Quarterly Journal of Mathematics, Vol. xxim.

The equations connecting ψ, the azimuth of the axis $O C$, and θ, the inclination of the axis to its highest vertical position $O G$, can then be written

$$
\begin{array}{r}
\frac{1}{2} A_{1}\left(\frac{d \theta}{d t}\right)^{2}+\frac{1}{2} A_{1} \sin ^{2} \theta\left(\frac{d \psi}{d t}\right)^{2}=W g(d-h \cos \theta) \ldots \ldots \ldots(1) \\
A_{1} \sin ^{2} \theta \frac{d \psi}{d t}+C_{1} n_{1} \cos \theta=G_{1} \ldots \ldots \ldots \ldots \ldots \ldots(2)
\end{array}
$$

'Take a point P in $O O$ at a distance l from O, such that

$$
l=\frac{A_{1}}{W h}
$$

then P may be called the centre of oscillation, as in plane vibrations; and put

$$
\frac{g}{l}=\frac{W g h}{A_{1}}=n^{2},
$$

so that $2 \pi / n$ seconds is the period of small plane oscillations.
The quantitics employed in this paper, here and subsequently, are expressed in Dr. Routh's notation by

$$
\begin{gathered}
n^{2}=2 f^{2}, \quad \frac{d}{h}=\frac{L}{f^{2}}, \quad E=r, \quad \frac{G_{1}}{A_{1}}=2 \frac{I^{\prime}}{G^{2}}=2 e, \quad \frac{C_{1} n_{1}}{A_{1}}=2 \frac{T^{\prime}}{G^{\prime}}=2 e^{\prime}, \\
\\
\frac{G_{1}^{2}}{2 A_{1} W g h}=\frac{e^{2}}{f^{2}}, \quad \frac{C_{1}^{2} n_{1}^{2}}{2 A_{1} W g h}=\frac{e^{\prime 2}}{f^{2}} .
\end{gathered}
$$

or

Writing equations (1) and (2)

$$
\begin{gathered}
\left(\frac{d \theta}{d t}\right)^{2}+\sin ^{2} \theta\left(\frac{d \psi}{d t}\right)^{2}=2 n^{2}\left(\frac{d}{h}-\cos \theta\right) \\
\sin ^{2} \theta \frac{d \psi}{d t}=\frac{G_{1}-C_{1} n_{1} \cos \theta}{A_{1}}
\end{gathered}
$$

and, eliminating $\frac{d \psi}{d t}$,

$$
\begin{align*}
\sin ^{4} \theta\left(\frac{d \theta}{d t}\right)^{2} & =2 n^{2}\left(\frac{d}{h}-\cos \theta\right)\left(1-\cos ^{2} \theta\right)-\left(\frac{G_{1}-C_{1} n_{1} \cos \theta}{A_{1}}\right)^{2} \\
& =n^{2} \theta \ldots \tag{3}
\end{align*}
$$

suppose, where

$$
\begin{equation*}
\theta=\left(\frac{d}{h}-\cos \theta\right)\left(1-\cos ^{2} \theta\right)-\frac{\left(G_{1}-O_{1} n_{1} \cos \theta\right)^{2}}{2 A_{1} W g h} . \tag{4}
\end{equation*}
$$

To solve (3) we suppose 0 to be split up into three factors, such that

$$
\begin{equation*}
\theta=\left(\cos \theta-\cosh \theta_{1}\right)\left(\cos \theta-\cos \theta_{2}\right)\left(\cos \theta-\cos \theta_{3}\right) . \tag{5}
\end{equation*}
$$

so that the inclination θ of the axis oscillates between θ_{2} and θ_{3},

$$
\theta_{2}<\theta<\theta_{s} .
$$

2. The solution of equation (3) by elliptic functions is given by

$$
\left.\begin{array}{l}
\wp u-e_{1}=\frac{1}{2} \Omega\left(\cos \theta-\cosh \theta_{1}\right) \tag{6}\\
\wp u-e_{3}=\frac{1}{2} \Omega\left(\cos \theta-\cos \theta_{y}\right) \\
\wp u-e_{8}=\frac{1}{2} \Omega\left(\cos \theta-\cos \theta_{3}\right)
\end{array}\right\}
$$

the letter Ω being employed as the homogeneity factor so as to agree with M. Darboux's notation (Despeyrous, t. II., p. 514) ; and now

$$
\begin{equation*}
u=q t+\omega_{\mathrm{s}} \quad \text { or } \quad q t+\omega_{\mathrm{s}} \tag{7}
\end{equation*}
$$

for $\cos \theta$ to oscillate between $\cos \theta_{2}$ and $\cos \theta_{3}$; and, since from (5) and (6)

$$
\begin{array}{r}
\sin ^{2} \theta\left(\frac{d \theta}{d t}\right)^{2}=\frac{4 \rho^{\prime 9} u}{\Omega^{2}}\left(\frac{d u}{d t}\right)^{2} \cdots \cdots \cdots \cdots \\
2 n^{2} \theta=\frac{16 n^{2}}{\Omega^{3}}\left(\wp u-e_{1}\right)\left(\wp u-e_{2}\right)\left(\wp u-e_{3}\right)=\frac{4 n^{2}}{\sqrt{2^{3}}} \wp^{\prime 2} u \tag{9}
\end{array}
$$

therefore

$$
\begin{equation*}
q^{2}=\left(\frac{d u}{d t}\right)^{2}=\frac{n^{2}}{\sqrt{2}} \tag{10}
\end{equation*}
$$

In Jacobi's notation, the modulus κ and its complementary modulus a^{\prime} are given by

$$
\begin{align*}
\kappa^{2} & =\frac{e_{3}-e_{3}}{e_{1}-e_{3}}=\frac{\cos \theta_{3}-\cos \theta_{8}}{\cosh \theta_{1}-\cos \theta_{3}} . \tag{11}\\
\kappa^{\prime 2} & =\frac{e_{1}-e_{3}}{e_{1}-e_{3}}=\frac{\cosh \theta_{1}-\cos \theta_{2}}{\cosh \theta_{1}-\cos \theta_{3}} . \tag{12}
\end{align*}
$$

Denoting the real quarter period of Jacobi's functions by K, then the time occupied while θ grows from θ_{2} to θ_{g} is

$$
\frac{K}{q \sqrt{ }\left(c_{1}-e_{s}\right)}=\frac{K}{n \sqrt{ }\left\{\frac{1}{2}\left(\cosh \theta_{1}-\cos \theta_{3}\right)\right\}}
$$

seconds; and this is the fraction

$$
\frac{1}{4 \sqrt{ }\left\{\frac{1}{2}\left(\cosh \theta_{1}-\cos \theta_{3}\right)\right\}}
$$

of the complete period of the top when making plane oscillations, by swinging through the angle

$$
4 \sin ^{-1} \kappa=4 \sin ^{-1} \sqrt{ }\left(\frac{\cos \theta_{2}-\cos \theta_{A}}{\cosh \theta_{1}-\cos \theta_{n}}\right)
$$

3. If u assumes the values v_{1} and v_{2} when $\cos \theta$ is +1 and -1 , then, from (6),

$$
\begin{align*}
\wp u-\wp v_{9} & =\frac{1}{2} \Omega(1+\cos \theta) \tag{13}\\
\wp v_{1}-\wp u & =\frac{1}{2} \Omega(1-\cos \theta) \tag{14}
\end{align*}
$$

\qquad
so that

$$
\begin{equation*}
\wp v_{1}-\wp v_{2}=\Omega \tag{15}
\end{equation*}
$$

and, since

$$
-\infty<-1<\cos \theta_{s}<\cos \theta<\cos \theta_{2}<1<\cosh \theta_{1}<\infty
$$

we therefore take

$$
\begin{equation*}
v_{8}=p \omega_{3}, \quad v_{1}=\omega_{1}+r \omega_{s} \ldots \tag{16}
\end{equation*}
$$

where p and r are real fractions.
Also, putting $\cos \theta=\mp 1$ in (4) and (9),

$$
\begin{equation*}
\left(\frac{G_{1}+\left(O_{1} n_{1}\right.}{A_{1}}\right)^{2}=-\frac{4 q^{2}}{\Omega^{2}} 8^{\prime 2} v_{2}, \quad\left(\frac{G_{1}-C_{1} n_{1}}{A_{1}}\right)^{2}=-\frac{4 q^{3}}{\Omega^{2}} \delta^{\prime 2} v_{1} \tag{17}
\end{equation*}
$$

and therefore, from (10),

$$
\begin{equation*}
\frac{G_{1}+C_{1} n_{1}}{\sqrt{ }\left(A_{1} W g h\right)}=-\frac{2 i \wp^{\prime} v_{2}}{\Omega^{\frac{1}{2}}}, \quad \frac{G_{1}-C_{1} n_{1}}{\sqrt{ }\left(A_{1} W g h\right)}=\frac{2 i \wp^{\prime} v_{1}}{\Omega_{\overline{3}}} . \tag{18}
\end{equation*}
$$

Thus, if $G_{1}-C_{1} n_{1}$ is negative, we must suppose r negative, or put

$$
\begin{equation*}
v_{1}=\omega_{1}-r \omega_{8} \tag{19}
\end{equation*}
$$

Adding and subtracting equations (18), making use of (15),

$$
\begin{align*}
& \frac{F_{1} \sqrt{ } \Omega}{\sqrt{ }\left(A_{1} W g h\right)}=i \frac{\wp^{\prime} v_{1}-\wp^{\prime} v_{2}}{\wp v_{1}-\wp v_{3}} . \tag{20}\\
& \frac{C_{1} n_{1} \sqrt{ } \Omega}{\sqrt{ }\left(A_{1} W g h\right)}=-i \frac{\wp^{\prime} v_{1}+\wp^{\prime} v_{2}}{\wp v_{1}-\wp v_{2}} . \tag{21}
\end{align*}
$$

or

$$
\begin{align*}
\frac{G_{1}^{2} \Omega}{4 A_{1} W g h} & =-\wp v_{1}-\wp v_{2}-\wp\left(v_{1}+v_{2}\right) \tag{22}\\
\frac{C_{1}^{2} n_{1}^{2} \Omega}{4 A_{1} W g h} & =-\wp r_{1}-\wp r_{2}-\wp\left(r_{1}-v_{2}\right) \tag{23}
\end{align*}
$$

4. We shall find that (Vol. xxv., p. 281)
makes

$$
\begin{align*}
& u=v_{1}-v_{2} \\
& \cos \theta=\frac{d}{h} \tag{24}
\end{align*}
$$

Writing

$$
\begin{equation*}
\theta=(E-\cos \theta)\left(1-\cos ^{2} \theta\right)-\frac{\left(C_{1} n_{1}-A_{1} \cos \theta\right)^{2}}{2 A_{1} W g h} . \tag{25}
\end{equation*}
$$

then

$$
\begin{equation*}
E=\frac{d}{h}-\frac{G_{1}^{2}-C_{1}^{2} n_{1}^{2}}{2 A_{1} W g h} \tag{26}
\end{equation*}
$$

and this is the quantity denoted by r in Dr. Routh's article; and we find that (p. 281)
makes

$$
\begin{align*}
& u=v_{1}+v_{2} \\
& \cos \theta=E . \tag{27}
\end{align*}
$$

so that, putting

$$
\left.\begin{array}{c}
v_{1}+v_{3}=v, \\
v_{1}-v_{2}=w, \\
\wp v-\wp u=\frac{1}{2} \Omega(E-\cos \theta) \\
\wp v-e_{1}=\frac{1}{2} \Omega\left(E-\cosh \theta_{1}\right) \\
\wp v-e_{2}=\frac{1}{2} \Omega\left(E-\cos \theta_{2}\right) \\
\wp v-e_{3}=\frac{1}{2} \Omega\left(E-\cos \theta_{8}\right)
\end{array}\right\}
$$

5. Writing equation (2) in the form

$$
\begin{array}{r}
\sin \theta \frac{d \psi}{d \theta} \sqrt{ } \theta=\frac{-O_{1} n_{1} \cos \theta+G}{\sqrt{ }\left(2 A_{1} W g h\right)} \ldots \ldots \ldots \ldots \ldots(30) \\
\psi=\frac{G_{1}-O_{1} n_{1}}{\sqrt{ }\left(2 A_{1} W g h\right)} \int \frac{\sin \theta d \theta}{(1-\cos \theta) \sqrt{ } \theta}+\frac{G_{1}+O_{1} n_{1}}{\sqrt{ }\left(2 A_{1} W g h\right)} \int \frac{\sin \theta d \theta}{(1+\cos \theta) \sqrt{ } \theta} \tag{30*}
\end{array}
$$

then ψ is the sum of two elliptic integrals of the third kind, with Jacobian parameters v_{1} and v_{9}; and Legendre's theorem for the addition of these prameters shows that these two integrals depend upon a single integral, of the form

$$
\begin{gather*}
C_{1} n_{1}-Q_{1} E \tag{31}\\
2 \sqrt{ }\left(2 A_{1} W g h\right)
\end{gather*} \int \frac{\sin \theta d \theta}{(E-\cos \theta) v^{\prime} \theta}
$$

and we find, in fact (as is readily verified by a differentiation),

$$
\begin{align*}
\psi=\frac{G_{1} t}{2 A_{1}} & -\tan ^{-1} \frac{\sqrt{ }\left(2 A_{1} W g h\right) \sqrt{ } \theta}{C_{1} u_{1}-G_{1} \cos \theta} \\
& +\frac{C_{1} n_{1}-G_{1} E}{2 \sqrt{ }\left(2 A_{1} W g h\right)} \int \frac{\sin \theta d \theta}{(E-\cos \theta) \sqrt{ } \theta} \tag{32}
\end{align*}
$$

6. To agree again with Darboux's notation, we put

$$
\begin{equation*}
\frac{a_{1}^{2} \Omega}{4 A_{1} W g \bar{W}}=I^{3}, \quad \frac{C_{i}^{2} n^{2} \cdot \Omega}{4 A_{1} \dot{W} g h}=B^{2} \tag{33}
\end{equation*}
$$

so that, from (22) and (23),

$$
\begin{align*}
I^{8} & =-\wp v_{1}-\wp v_{2}-\wp v . \tag{34}\\
B^{3} & =-\wp v_{1}-\wp v_{8}-\wp w . \tag{35}\\
L^{3}-B^{3} & =\wp v-\wp v \ldots \ldots \ldots . . \tag{35*}
\end{align*}
$$

Then, from equation (25),

$$
\begin{equation*}
\cosh \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=E+\frac{2 I^{2}}{\Omega_{2}} . \tag{36}
\end{equation*}
$$

and, from (28), by addition,

$$
\begin{align*}
3 \rho v & =\frac{3}{2} \Omega E-\frac{1}{2} \Omega\left(\cosh \theta_{1}+\cos \theta_{2}+\cos \theta_{8}\right) \\
& =\Omega E-I^{2} \quad \ldots \tag{37}
\end{align*}
$$

so that, from (28), or (13) and (14),

$$
\begin{align*}
\Omega \cos \theta & =\Omega E-2 \wp v+2 \xi u \\
& =L^{2}+8 v+2 \wp u \\
& =2 \wp u-\wp v v_{1}-8 v_{2} . . \tag{38}
\end{align*}
$$

and therefore

$$
\left.\begin{array}{l}
\Omega \cosh \theta_{1}=L^{2}+\wp v+2 e_{1} \tag{39}\\
\Omega \cos \theta_{2}=L^{2}+\wp v+2 c_{3} \\
\Omega \cos \theta_{3}=L^{2}+\wp v+2 \rho_{3}
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { Again, from (25), } \\
& \qquad \begin{aligned}
& \cos \theta_{3} \cos \theta_{3}+\cos \theta_{3} \cosh \theta_{1}+\cosh \theta_{1} \cos \theta_{2} \\
&=-1+\frac{A_{1} C_{1} n_{1}}{\bar{A}_{1} W g h}=-1+\frac{2 L C_{1} n_{L}}{\sqrt{ }\left(\Omega A_{1} W g h\right)},
\end{aligned}
\end{aligned}
$$

so that, multiplying by Ω^{2}, and employing (39),

$$
\begin{align*}
\frac{2 L(\cdot, r, \Omega 2}{\sqrt{ }\left(\Lambda_{1} W g h\right)} & =\Omega^{2}\left(1+\cos \theta_{2} \cos \theta_{3}+\cos \theta_{3} \cosh \theta_{1}+\cosh \theta_{1} \cos \theta_{3}\right) \\
& =\Omega^{3}+3 L^{4}+6 L^{2} \wp v+3 \wp^{2} v-g_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots(\tag{40}
\end{align*}
$$

this relation is implied in Darboux's (18), Despeyrous, 11., p. 515 .
From (25), again, as well as (37),

$$
\begin{aligned}
i \wp^{\prime} v & =\frac{C_{1} n_{1}-G E}{2 \sqrt{ }\left(A_{1} W g h\right)} \Omega \\
& =\frac{C_{1} n_{1} \Omega}{2 \sqrt{ }\left(A_{1} W g h_{1}\right)}-I \Omega E \\
& =\frac{a_{1} n_{1} \Omega}{2 \sqrt{ }\left(A_{1} W g h\right)}-L^{8}-3 I \rho v,
\end{aligned}
$$

so that, multiplying by I,
or

$$
\begin{align*}
& \frac{L \sigma_{1} n, n^{2}}{2_{\nu}\left(A_{1} W V_{j / 2}\right)}=L^{4}+3 L^{2} \rho v+L i \rho^{\circ} v \tag{41}\\
& B \Omega=L^{3}+3 L \wp v+i \wp^{\prime} v \tag{41*}
\end{align*}
$$

\qquad
and thereforo, from (40),
or

$$
\begin{align*}
& \Omega^{2}+3 L^{4}+6 L^{9} \wp v+3 \wp^{2} v-g_{2}=4 L^{4}+1 \varrho L^{2} \wp v+4 L i \wp^{\prime} v, \\
& \Omega^{9}=L^{4}+6 L^{9} \wp v+4 L i \wp^{\prime} v-3 \wp^{9} v+g_{2} \\
&=\left(L^{2}+3 \wp v\right)^{2}+4 L i \wp^{\prime} v-2 \wp^{\prime \prime} v \ldots \ldots \ldots \ldots \ldots \tag{42}
\end{align*}
$$

With this value of Ω we shall find

$$
\begin{align*}
& \tanh \theta_{1}=2=L \sqrt{ }\left(e_{1}-\beta v\right)+\sqrt{ }\left(\rho v=e_{2} \varphi v-e_{2}\right) \tag{43}\\
& \tan \theta_{2}=2 \quad I \cdot \sqrt{ }\left(\rho v-e_{2}\right)+\sqrt{ }\left(e_{1}-\rho v \cdot \rho v-e_{1}\right) \tag{44}
\end{align*}
$$

anl the complete motion of the top can be made to de. end upon the constants $c_{1}, c_{2}, e_{3}, \wp_{0}$, and L.
7. When v is of the form

$$
\begin{equation*}
v=\omega_{1}+\frac{P \omega_{3}}{\mu} \tag{46}
\end{equation*}
$$

where P and μ are integers, the solution can be effected by the associated pseudo-elliptic integral of order μ, which we can write in the form

$$
\begin{align*}
I\left(\omega_{1}+\frac{P \omega_{s}}{\mu}\right) & =\frac{1}{2} \int \frac{\rho(\sigma-s)-\mu \sqrt{ }(-\Sigma)}{(\sigma-s) \sqrt{ } S^{\prime}} d s \\
& =\frac{1}{2} i \log \left\{\frac{\sigma(u+v)}{\sigma(u-v)}\right\}^{\mu} e^{-(\rho i+2 \mu \cdot v) u} \tag{47}
\end{align*}
$$

where (Proc. Lond. Math. Soc., Vol. xxv., p. 209)

$$
\begin{align*}
S & =4 s(s+x)^{3}-\{(y+1) s+x y\}^{2} \\
& =4 \cdot\left(s-s_{1}\right)\left(s-s_{1}\right)\left(s-s_{3}\right) \ldots \ldots \ldots \tag{48}\\
\sigma & -s=\wp v-\wp u=\frac{1}{2} \Omega(E-\cos \theta) . \tag{49}
\end{align*}
$$

and where Σ denotes the value of S when $s=\sigma$.
Then

$$
\begin{aligned}
I\left(\omega_{1}+\frac{P \omega_{3}}{\mu}\right) & =\frac{1}{2} \rho \int \frac{d s}{\sqrt{ } S}-\mu \frac{C_{1} n_{1}-C_{1} E}{2 \sqrt{ }\left(2 A_{1} W g h\right)} \int \frac{\sin \theta d \theta}{(E-\cos \theta) \sqrt{ } \theta} \\
& =\frac{\rho}{2 \sqrt{ } \Omega} \int \frac{\sin \theta}{\sqrt{ }(2 \theta)}+\frac{\mu}{2 A_{1}}-\mu \tan ^{-1} \frac{\sqrt{ }\left(2 A_{1} W g h \theta\right)}{C_{1} n_{1}-G_{1} \cos \theta}-\mu \psi \\
& =\frac{\rho+2 \mu I_{1}}{2 \sqrt{ } \Omega} n t-\mu \tan ^{-1} \frac{\sqrt{ }\left(2 A_{1} W g h \theta\right)}{O_{1} n_{1}-G_{1} \cos \theta}-\mu \psi,
\end{aligned}
$$

or

$$
\begin{equation*}
\mu \psi-\frac{\rho+2 \mu L}{2 \sqrt{ } \Omega} n t=-\mu \tan ^{-1} \frac{\sqrt{ }\left(2 A_{1} W g h \theta\right)}{\left(C_{1}^{\prime} n_{1}-G_{1} \cos \theta\right.}-I\left(\omega_{1}+\frac{P \omega_{s}}{\mu}\right) \ldots \tag{50}
\end{equation*}
$$

so that $\mu \psi$, with the addition of the secular term

$$
\begin{equation*}
-\frac{\rho+2 \mu L}{2 \sqrt{ } \Omega} n t \tag{51}
\end{equation*}
$$

can now be expressed as an inverse circular function of θ.
The secular term can be made to disappear by taking

$$
\begin{equation*}
L=-\frac{\rho}{2 \mu} \tag{52}
\end{equation*}
$$

and then $\quad(\sin \theta)^{\mu} \cos \mu \psi$ and $(\sin \theta)^{\mu} \sin \mu \psi$
are rational functions of $\cos \theta$, which can be determined by a verification consisting of differentiation and squaring and adding.

Writing

$$
\sigma_{1}, \sigma_{2}, \sigma_{3} \text { for } \sigma-s_{1}, \sigma-s_{2}, \sigma-s_{3},
$$

respectively, then equations (39), (41), (42) can be written

$$
\left.\begin{array}{c}
\Omega \cosh \theta_{1}=L^{2}-\sigma_{1}+\sigma_{2}+\sigma_{8} \\
\Omega \cos \theta_{2}=L^{8}+\sigma_{1}-\sigma_{2}+\sigma_{3} \\
\Omega \cos \theta_{3}=L^{2}+\sigma_{1}-\sigma_{2}-\sigma_{3} \tag{55}
\end{array}\right\} \ldots \ldots \ldots \ldots \ldots .
$$

There are cusps on the circle $\theta=\theta_{2}$ when $v=\omega_{3}$; and then

$$
\cos \theta_{2}=\frac{d}{h}=\frac{G_{1}}{C_{1} n_{1}}=\frac{1+\cosh \theta_{1} \cos \theta_{3}}{\cosh \theta_{1}+\cos \theta_{3}} .
$$

8. Thus, for instance, with $2 \mu=4$, we can take (Proc. Lond. Math. Soc., Vol. xxv., p. 212)

$$
\begin{align*}
s_{1}=(1+c)^{2}, & s_{2}=c^{2}, \quad s_{3}=0, \quad \rho=\Omega, \\
\sigma=c+c^{2}, & \sqrt{ }(-\Sigma)=2\left(c+c^{2}\right) \ldots \ldots \tag{56}
\end{align*}
$$

and then

$$
\begin{align*}
I\left(\omega_{1}+\frac{1}{2} \omega_{8}\right) & =\frac{1}{2} \int \frac{2\left(c+c^{2}-s\right)-4\left(c+c^{2}\right)}{\left(c+c^{2}-s\right)} d s \\
& =\cos ^{-1} \frac{\sqrt{ } s}{c+c^{2}-s}=\sin ^{-1} \frac{\sqrt{ }\left\{(1+c)^{2}-s \cdot c^{2}-s\right\}}{c+c^{2}-s} \tag{57}
\end{align*}
$$

The secular term attached to 2ψ is destroyed by taking $L=-\frac{1}{2}$, so that, putting

$$
\begin{align*}
& c=\frac{1}{2}(2 a-1), \quad 1+c=\frac{1}{2}(2 a+1), \\
& \Omega^{2}=a^{2}\left(a^{2}+2\right) \tag{58}\\
& \cosh \theta_{1}=\frac{a+2}{\sqrt{ }\left(a^{3}+2\right)}, \quad \sinh \theta_{1}=\sqrt{ }\left(\frac{4 a+2}{a^{2}+2}\right) \\
& \cos \theta_{2}=\frac{a-2}{\sqrt{\left(a^{2}+2\right)}}, \quad \sin \theta_{2}=\sqrt{\left(\frac{4 a-2}{a^{2}+2}\right)} \tag{59}\\
& \cos \theta_{\mathrm{a}}=-\frac{2 a^{2}+1}{2 a \sqrt{ }\left(a^{2}+2\right)}, \quad \sin \theta_{3}=\stackrel{1}{2} \sqrt{1} \sqrt{ }\binom{4 a^{2}-1}{a^{2}+2}
\end{align*}
$$

$$
\begin{array}{r}
\frac{G_{1}^{2}}{A_{1} W g h}=\frac{1}{a \sqrt{ }\left(a^{4}+2\right)}, \quad \frac{C_{1}^{2} n_{1}^{2}}{A_{1} W g h}=\frac{9 n}{\left(a^{2}+2\right)} \\
I^{9}=\frac{1}{4}, \quad B^{2}=\frac{9 a^{2}}{4\left(a^{2}+2\right)} \cdots \cdots \cdots \cdots . \tag{*}
\end{array}
$$

and the cone doseribed by the axis of the top is given by

$$
\begin{align*}
& \sin ^{2} \theta c^{2 \psi i}=\frac{2 \sqrt{ } 2}{\left(a^{2}+2\right)^{2}} \sqrt{ }\left(\cos \theta-\cos \theta_{8}\right) \\
&+i\left\{\cos \theta+\frac{a}{\sqrt{ }\left(a^{4}+2\right)}\right\} \sqrt{ }\left(\cosh \theta_{1}-\cos \theta \cdot \cos \theta_{2}-\cos \theta\right) . \tag{61}
\end{align*}
$$

When $a=1$ or $c=\frac{1}{2}$, there are four cusps on the circle

$$
\theta=\theta_{3}=\cos ^{-1}\left(-\frac{1}{3} \sqrt{ } 3\right) ;
$$

and the time occupied by the axis of the top in describing the four loops is 4×3^{-4} times the period when making plime oscillations through an angle

$$
4 \sin ^{-1} \frac{1}{3} .
$$

9. So also with $2 \mu=6$, and the corresponding parameters
we take

$$
\begin{gathered}
v=\omega_{1}+\frac{1}{j} \omega_{3}, \quad \text { or } \quad \omega_{1}+\frac{2}{j} \omega_{3}, \\
s_{1}=(1-c)^{2}, \quad s_{2}=c^{3}, \quad s_{3}=\left(c-c^{2}\right)^{2}, \\
\sigma=2 c(1-c)^{2}, \quad \text { or } \quad 2 c^{2}-2 c^{3}, \\
\rho=2(2-c)(1-2 c), \quad \text { or } \quad 2(1+c)(1-2 c) \\
\sqrt{ }(-\Sigma \mathbf{Z})=2 c(1-c)^{2}(2-c)\left(1-e_{2}(),\right.
\end{gathered}
$$

or

$$
\begin{equation*}
2 c^{2}(1-c)(1+c)(1-2 c) \tag{62*}
\end{equation*}
$$

and then the corresponding pseudo-elliptic integrals (Proc. Come. Math. Soc., Vol. xxv., p. 218)

$$
I\left(\omega_{1}+j \omega_{3}\right) \quad o r \quad I\left(\omega_{1}+\frac{1 \omega_{3}}{}\right)
$$

will serve to construct other solvable cases of top motion.
Putting

$$
S=4\left(s-s_{1}\right)\left(s-v_{2}\right)\left(s-s_{3}\right),
$$

these integrals aro

$$
\begin{aligned}
& I\left(\omega_{1}+{ }_{j}^{1} \omega_{3}\right) \\
& =\frac{1}{2} \int \frac{2(2-c)(1-2 c)\left\{2 c(1-c)^{2}-s\right\}-6 c(1-c)^{2}(1-c)(1-2 c)}{\left\{2 c(1-c)^{2}-s\right\} \sqrt{S}} d s \\
& =\sin ^{-1} \frac{\left\{s-(1-c)^{2}\left(2-3 c+2 c^{2}\right)\right\}}{\left\{2 c\left(1-c^{2}\right)-s\right\}^{3}} \frac{\sqrt{ }\left(c^{2}-s\right)}{\{\cdots} \\
& =\frac{\cos ^{-1}(2-c)(1-2 c) \sqrt{ }\left\{(1-c)^{2}-s . s-\left(c-c^{2}\right)^{2}\right\}}{\left\{2(1-c)^{2}-s l^{1}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \quad I\left(\omega_{1}+\frac{2}{3} \omega_{\mathrm{s}}\right) \\
& =\frac{1}{2} \int \frac{2(1+c)(1-2 c)\left(2 v^{2}-2 s^{3}-s\right)-6 c^{2}(1-c)(1+c)(1-2 c)}{\left(2 c^{2}-2 c^{3}-s\right) \sqrt{ } s^{-}} d s \\
& =\cos ^{-1} \frac{\left(s-c^{2}+c^{3}-2 c^{4}\right) \sqrt{ }\left\{(1-c)^{2}-s\right\}}{\left(2 c^{4}-2 c^{8}-s\right)^{\frac{3}{3}}} \\
& =\sin ^{-1} \frac{(1+c)(1-2 s) \sqrt{ }\left\{c^{3}-s \cdot s-\left(c-c^{2}\right)^{2}\right\}}{\left(2 c^{2}-2 c^{-3}-s\right)^{\frac{3}{3}}} .
\end{aligned}
$$

10. First, when

$$
\begin{gathered}
v=\omega_{1}+\frac{1}{3} \omega_{s}, \\
\rho=\rho(2-c)(1-2 c),
\end{gathered}
$$

and
the secular torm associated with 3ψ is mado to vanish by putting

$$
L=-\frac{1}{b} \rho=-\frac{1}{3}(2-c)(1-2 c),
$$

and now, from (42) and (53),

$$
\begin{aligned}
& 81 \Omega^{3}=(1+c)^{2}\left\{27(1-c)^{0}-2\left(1-4 c+c^{2}\right)^{8}\right\} \\
& 9 \Omega \cosh \theta_{1}=(1+c)\left(13-33 c+21 c^{3}-5 c^{8}\right) \\
& 9 \Omega \cos \theta_{2}=-\left(5-16 c+12 c^{2}-1\left(6 c^{3}+5 c^{4}\right)\right. \\
& 9 \Omega \cos \theta_{s}=-(1+c)\left(5-21 c+33 c^{3}-13 c^{8}\right) .
\end{aligned}
$$

From (39), (43), (44), (45),

$$
\begin{aligned}
& 3 \Omega \sinh \theta_{1}=2\left(1-c^{2}\right)(2-c) \sqrt{ }(1-2 c), \\
& 3 \Omega \sin \theta_{2}=2\left(1-c+c^{2}\right) \sqrt{ }\left(1-2 c .2 c-c^{2}\right), \\
& 3 \Omega \sin \theta_{8}=2\left(1-c^{2}\right)(1-2 c) \sqrt{ }\left(2 c-c^{2}\right) .
\end{aligned}
$$

The equation comecting θ and ψ can now be writton in the form

$$
\sin ^{3} \theta \cos 3 \psi=(Q \cos \theta-R) \sqrt{ }\left(\cos \theta_{y}-\cos \theta\right)
$$

or

$$
\sin ^{8} \theta \sin 3 \psi=\left(\cos ^{2} \theta-C \cos \theta+D\right) \sqrt{ }\left(\cosh \theta_{1}-\cos \theta \cdot \cos \theta-\cos \theta_{8}\right),
$$

and, we find by squaring and adding, that

$$
\begin{aligned}
\sigma & =-\frac{1}{2}\left(\cosh \theta_{1}+\cos \theta_{8}\right) \\
& =-\frac{2(1+c)^{2}\left(\frac{2-c)(1-2 c)}{1 / 2}\right.}{}
\end{aligned}
$$

vul. sxyi. \cdots xu. 514.
$D=\frac{(1+c)^{2}\left(19-84 c+141 c^{2}-160 c^{3}+141 c^{4}-84 c^{5}+19 c^{6}\right)}{81 s 2^{2}}$,
$Q=\frac{2 \sqrt{ } 2(1+c)^{2}\left(2-5 c+2 c^{2}\right)\left(5-8 c+5 c^{2}\right)}{(9 \Omega)^{2}}$,
$\pi=-\frac{2 \sqrt{ } 2(1+c)^{2}\left(2-5 c+2 c^{2}\right)\left(7-12 c-3 c^{2}+32 c^{3}-3 c^{4}-12 c^{5}+7 c^{6}\right)}{(9 \bar{\Omega})^{\frac{3}{3}}} ;$
and by a logarithmic differentiation, and comparison with (30),

$$
\begin{aligned}
& L=\frac{G_{1} \sqrt{ } \Omega}{2 \sqrt{ }\left(A_{1} W g h\right)}=-2-5 c+2 c^{2} \\
& B=\frac{C_{1} n_{1} \sqrt{ } \Omega}{9 \sqrt{ }\left(\Lambda_{1} W g h\right)}=\frac{(1+c)^{3}\left(2-5 c+2 c^{9}\right)\left(5,8 c+5 c^{2}\right)}{27 \Omega \Omega} .
\end{aligned}
$$

A point on the axis $O C$ now describes a closed spherical curve with six lonps or waves; nud, when $c=2-\sqrt{ } 3$, there are six cusps on the circle $\theta=\theta_{2}=\frac{2}{3} \pi$; and the time of describing the six loops is 3^{3} times the period when making plane oscillations through an angle of 60°.

$$
\text { 11. Seemudly, when } \quad v=\omega_{1}+\frac{2}{3} \omega_{3}
$$

and

$$
\rho=2(1+c)(1-2 c),
$$

the secular term associated with 3ψ disappears when

$$
L=-{ }_{a}^{1} \rho=-\frac{1}{3}(1+c)(1-2 c) ;
$$

and now

$$
\begin{aligned}
& 81 \Omega 2^{2}=(2-c)^{2}\left\{2\left(2-2 c-c^{2}\right)^{3}+27 c^{0}\right\} \\
& 9 \Omega 2 \cos { }^{0} \theta_{1}=10-20 c+6 c^{2}+4 c^{3}-5 c c^{4} \\
& 9 \Omega \cos \theta_{2}=-(2-c)\left(4-6 c-6 c^{2}-5 c^{3}\right), \\
& 9 \Omega 2 \cos \theta_{3}=-(2-c)\left(4-6 c-6 c^{2}+13 c^{3}\right) .
\end{aligned}
$$

The equations connecting θ and ψ are now of the form
or $\begin{aligned} \sin ^{8} \theta \cos 3 \psi & =(Q \cos \theta-R) \sqrt{ }\left(\cosh \theta_{1}-\cos \theta\right), \\ \sin ^{8} \theta \sin 3 \psi & =\left(\cos ^{2} \theta-C \cos \theta+D\right) \sqrt{ }\left(\cos \theta_{2}-\cos \theta \cdot \cos \theta-\cos \theta_{3}\right),\end{aligned}$ and we find

$$
\begin{aligned}
& 1=-\frac{1}{2}\left(\cos \theta_{2}+\cos \theta_{3}\right)=2(1+c)(2-c)^{2}(1-2 c), \\
& n=-(2-c)^{2}\left(8-24 c+48 c^{2}-20 c^{3}-6 c^{4}+30 c^{3}-19 c^{0}\right), \\
& 0=\quad \ldots \quad \ldots \quad n=\quad \ldots
\end{aligned}
$$

whtainable from the preeding values by writing $1-c$ for $\mathrm{c}_{\text {- }}$

A point on the axis $O C$ describes a closed spherical curve with threo loops or waves; and, when

$$
c=\sqrt[3]{4}-\sqrt[3]{2}
$$

there are three cusps on the circle

$$
\theta=\theta_{2}=\pi-\tan ^{-1} \sqrt[3]{2} ;
$$

and the time of describing the three loops is

$$
\frac{3}{\sqrt[3]{2} \sqrt{ }(3-\sqrt[3]{2}) \sqrt[4]{(\sqrt[3]{4}+1)}}
$$

times the period of plane oscillations through an anglo

$$
4 \tan ^{-1}(2-\sqrt[3]{4})
$$

So also for higher values of 2μ, namely, $8,10,12,14,16,18, \ldots$; the even values being taken because the resolution of tho cubic S is required in these dynamical applications.

Jacobi's Theorems on the Motion of a T'ip.

12. So far the troatment of the motion of the axis of a top, as given in the Proc. Lond. Math. Soce., Vol. xxv., p. 291, has beon amplified to a certain extent; but now we proceed to introduce Jacoli's theorems (Gesammelte Werke, Vol. i., p. 480).
Measure off a length $O G$ along the upward vertical from O, representing to an appropriate scale the dynamical quantity G_{1}; and measure off $O C$ along the axis of the top, to represent to the same scalo the dynamical quantity $C_{1} n_{1}$; draw the horizontal plane through G perpendicular to $O G$, and call this the invariable plane of G; and draw the plane through C perpendicular to $O C$, and call it the invariable plane of C (Fig. 1).

Then, if the vector OII represents to the same scale the resultant angular momentum of the system, the point H must lie in the line of intersection of the invariable planes of G and C, because the components of angular momentum about the vertical $O G$ and about the axis $O C$ are G_{1} and $C_{1} n_{1}$ respectively.

If this line of intersection cuts the vertieal plane $G O C$ in K, then

$$
\begin{gathered}
C I^{2}-G H^{2}=C K^{2}-G K^{2}=O G^{2}-O C^{2}=G_{1}^{2}-C_{1}^{2} n_{1}^{2} \ldots \ldots(i ; 3) . \\
Q 2
\end{gathered}
$$

13. The point I moves in the invariable plane of G with velocity equal to the moment of the impressed couple of gravity, and parallel to the axis of this couple.

The velocity of I is therefore in the direction ΠK, perpendicular to the plane $G O C$, and equal to $W g h \sin \theta$; and the moment of this velocity about G is

$$
\begin{equation*}
W g h \sin \theta \cdot G K=W g h(O C-O G \cos \theta) \tag{64}
\end{equation*}
$$

кo that

$$
\begin{equation*}
\rho^{2} \frac{d \pi}{d t}=W g h\left(C_{1} n_{1}-G_{1} \cos \theta\right) \tag{65}
\end{equation*}
$$

if ρ, w denote the polar coordinates of H in the invariable plane of \boldsymbol{G}.

Fin. 1.
Again, in the notation of Routh's Rigid Dynamics, ω_{1} and $\omega_{\text {, }}$ now denoting components of the angular velocity,

$$
\begin{align*}
O \Pi^{2} & =\Lambda_{1}^{2}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)+C_{1}^{2} n_{1}^{2} \\
& =\Lambda^{2}\left(\frac{d \theta^{2}}{d t^{2}}+\sin ^{2} \theta \cdot \frac{d \psi^{2}}{d t^{2}}\right)+C_{1}^{2} n_{1}^{2} \\
& =2 \Lambda_{1} W g(d-h \cos \theta)+C_{1}^{2} n_{1}^{2} \tag{66}
\end{align*}
$$

an that, from (26) and (28),

$$
\begin{align*}
G I^{2}=\rho^{2} & =2 A_{1} W g(d-h \cos \theta)+C_{1}^{2} n_{1}^{2}-C_{1}^{2} \\
& =2 A_{1} W g h(E-\cos \theta) \\
& =\frac{4 A_{1} W g h}{\Omega}(\wp n-\wp n) \ldots \ldots \ldots \ldots \tag{67}
\end{align*}
$$

Therefore, from (65),

$$
\begin{align*}
& \frac{d \sigma}{d t}=\frac{\theta_{1} n_{1}-\left(\theta_{1} \cos \theta\right.}{2 \Lambda_{1}(E-\cos \theta)} \\
& =\frac{G_{1}}{2} \frac{C_{1} n_{1}-G_{1} E}{2} \frac{1}{E-\cos \theta}, \\
& \omega=\frac{G_{1} t}{2 \Lambda_{1}}+\frac{C_{1} n_{1}-G_{1} \theta}{2 \sqrt{\left(2 \Lambda_{1} W g h\right)}} \int \frac{\sin \theta}{(E-\cos \theta)} d \theta \\
& =\frac{G_{1} t}{2 \Lambda_{1}}+\frac{1}{2} i \int_{8 v-\wp u}^{\wp^{\prime} v d u} \tag{68}
\end{align*}
$$

which, combined with (67), give the well known relations of a herpolhode; thus II describes a herpolhodo in the invariable plane of G, with parameter v; this is one of Jacobi's theorems.
14. A reference to (32) shows that the angle between the vertical planes GOC and GOII, or

$$
\begin{align*}
\pi-\psi & =\tan ^{-1} \frac{\sqrt{ }\left(2 A_{1} W g h^{\prime} \theta\right)}{U_{1} n_{1}-G_{1}^{\prime} \cos \theta} \\
& =\sin ^{-1} \frac{\sqrt{\prime} \theta}{\sin \theta \sqrt{ }(H-\cos \theta)} \\
& \left.=\cos ^{-1} \frac{C_{1} n_{1}-G_{1} \cos \theta}{\sin \theta \sqrt{ }\left(2 A_{1}\right.} \overline{W g}\right) \sqrt{ }\left(L_{1}-\cos \theta\right) \tag{69}
\end{align*}
$$

so that the herpolhode of I is algebraical when ψ is pseudo-elliptic, and when the accompanying secular term is at the same time made to vanish.

The tangent at II being perpendicular to the plane $G O C$, , it follows that this plane is stationary, as 11 passes through a point of inflexion on the herpollinde; the herpolhole must therefore have points of inflexion when the path of a point C on the axis of the top is looped.

Generally, the componeut velocity of C perpendicular to the plane $G O C$ is

$$
\begin{align*}
C_{1} n_{1} \sin \theta \frac{d \psi}{d t} & =\frac{C_{1}^{2} n_{1}^{2}}{\Lambda_{1}} \frac{C_{1}-C_{1}^{\prime} n_{1} \cos \theta}{C_{1} n_{1} \sin \dot{\theta}} \\
& =\frac{C_{1}^{2} n_{1}^{2}}{A_{1}} \tan C G K, \\
A_{1} \sin \theta \frac{d \psi}{d t} & =C_{1} n_{1} \tan C G K=O K \tag{70}
\end{align*}
$$

This vanishes, and the plane $G O O$ is stationary, when C lies in the invarialble plane of $(G$, and is therefore coincident with K; and the angle between the planes $G O O$ and $C O H$ is then a right angle.

Fig. 1 shows immediately that the angle between the planes GOC and GOII, or

$$
\varpi-\psi=\cos ^{-1} \frac{(Y K}{U_{i} I}=\cos ^{-1}-\frac{C_{1} n_{1}-G_{1} \cos \theta}{\left.\sin \theta \sqrt{(2} \overline{A_{1}} \overline{W g h}\right)} \cdot
$$

because

$$
a I^{2}=2 \Lambda_{1} W!h h(L-\cos \theta),
$$

and

$$
G K \sin \theta=O C-O G \cos \theta=C_{1} n_{1}-G_{1} \cos \theta ;
$$

and therefore also

$$
\begin{align*}
& K l l^{2}=2 A_{1} W g h\left(\pi_{1}-\cos \theta\right)-\frac{\left(C_{1} n_{1}-G_{1} \cos \theta\right)^{3}}{\sin ^{2} \theta} \\
& =2 \Lambda_{1} W!/ h \underset{\sin ^{2} \dot{\theta}}{\Theta}=A_{1}^{2}\binom{d \dot{H}}{\overline{d \dot{t}}}^{2} \tag{l}\\
& \left(!I^{2}=K I^{2}+K J^{\prime 2}=A_{1}^{2}\left\{\binom{d \theta}{d t}^{2}+\sin ^{2} \theta\binom{d \psi}{d t}^{2}\right\}\right. \tag{*}
\end{align*}
$$

15. Similarly, the angle between the planes $G O C$ and $I I O C$ is

$$
\begin{array}{r}
\cos ^{-1} \frac{(1}{U}=\cos ^{-1} \frac{A_{1}-C_{1} n_{1} \cos \theta}{\sin \theta \sqrt{ }\left(2 \lambda_{1} W g h\right) \sqrt{ }(\eta-\cos \theta)} \\
\frac{d}{h}=D \ldots \ldots
\end{array}
$$

this property will enable us to prove the second of Jacobi's theorems, which asserts that the path of 11 in the invariable plane of C is another herpolhode, and that its parameter is

$$
v_{1}-v_{2}=w
$$

(Gcsammelte Werke, Vol. ir., Note B, p. 476).
Employing accented letters, ρ^{\prime} and σ^{\prime}, to denote the polar coordinates of I in the invariable plane of C, then, from (66) and (24),

$$
\begin{align*}
\rho^{\prime 2} & =C I I^{2}=O I^{2}-O C^{2} \\
& =2 A_{1} W g(d-h \cos \theta) \\
& =2 \Lambda_{1} W g h(D-\cos \theta) \\
& =\underset{S}{4 \Lambda_{1} W g h}(\wp w-\wp u) \tag{74}
\end{align*}
$$

The angle a' being measured from a straight line $0 A$, fixed in the body at right angles to $O C$, and the angle between the planes $A O C$ and GOC being denoted, as in Luler's notation, by ϕ, then the angle between the planes $G O C$ and $H O O$ is w' $-\phi$; so that

$$
\begin{align*}
\varpi^{\prime}-\phi & =\cos ^{-1} \frac{G_{1}-C_{1} n_{1} \cos \theta}{\sin \theta \sqrt{ }\left(2 \overline{\left.A_{1} W g h\right)} \sqrt{ }(\bar{D}-\cos \theta)\right.} \\
& =\sin ^{-1} \sin \theta \sqrt{ }(D-\cos \theta) \tag{75}
\end{align*} \cdots \cdots \ldots \ldots . .
$$

anulogous to (69).
But, from Euler's relations,

$$
\begin{aligned}
\frac{d \phi}{d t} & =n_{1}-\cos \theta \frac{d \psi}{d t} \\
& =\left(1-\frac{C_{1}}{A_{1}}\right) n_{1}+\frac{C_{1} n_{1}-G_{1} \cos \theta}{A_{1} \sin ^{2} \theta}
\end{aligned}
$$

so that, with

$$
\begin{gathered}
\frac{d \cos \theta}{d t}=-\sqrt{\left(\frac{2 W g h}{A_{1}}\right) \sqrt{ } \theta} \\
\frac{d \sigma^{\prime}}{d t}=\frac{d \phi}{d t}+\frac{d}{d t} \cos ^{-1} \sin \theta \sqrt{\sqrt{ }\left(2 A_{1}-\left(y_{1} n_{1} \cos \theta\right) \sqrt{ }(\bar{D}-\cos \theta)\right.}
\end{gathered}
$$

and, after reduction, we find

$$
\begin{align*}
\frac{d \sigma^{\prime}}{d t} & =\left(1-\frac{C_{1}}{A_{1}}\right) n_{1}+\frac{G_{1}-C_{1} n_{1} \cos \theta}{2 \Lambda_{1}(D-\cos \theta)} \\
& =\left(1-\frac{1}{2} \frac{C_{1}}{A_{1}}\right) n_{1}+\frac{G_{1}-C_{1} n_{1} D}{2 \Lambda_{1}} \frac{1}{D-\cos \theta} \tag{76}
\end{align*}
$$

or

$$
\begin{align*}
\varpi^{\prime} & =\left(1-\frac{1}{2} \frac{O_{1}}{A_{1}}\right) n_{1} t+\frac{A_{1}-C_{1} n_{1} D}{2 \sqrt{ }\left(2 \Lambda_{1} W g h\right)} \int \frac{\sin d \theta}{(D-\cos \theta) \sqrt{ } \theta} \\
& =\left(1-\frac{1}{2} \frac{C_{1}}{A_{1}}\right) n_{1} t+\frac{1}{2} i \int \frac{\wp^{\prime} w d u}{\rho^{\prime} w-\wp u} \cdots \ldots \tag{77}
\end{align*}
$$

which, combined with the value of ρ^{2} in (74), proves the second part of Jacobi's theorem, that $I I$ describes in the invariable plane of C a herpolbode of parameter

$$
w=v_{1}-v_{2}
$$

16. By menns of Euler's three angles θ, ϕ, ψ, the position of the top as a solid body is completely determined, the formulas being

$$
\begin{gather*}
u=q t+\omega_{8} \text { or } q t+\omega_{8}, \\
\tan ^{2} \frac{1}{2} \theta=\frac{1-\cos \theta}{1+\cos \theta}=\frac{\wp \frac{1}{2}(v+w)-\wp u}{\wp u-\wp \frac{1}{2}(v-w)} . \tag{78}
\end{gather*}
$$

$\phi=\sigma^{\prime}-\sin ^{-1} \frac{\sqrt{ } \theta}{\sin \theta \sqrt{ }(\bar{D}-\cos \theta)}$
$=\left(1-\frac{1}{2} \frac{C_{1}}{A_{1}}\right) n_{1} t-\sin ^{-1} \frac{\sqrt{ } \theta}{\sin \theta \sqrt{ }(D-\cos \theta)}+\frac{1}{2} i \log \frac{\sigma(u+w)}{\sigma(u-w)} e^{-2 u t w}$
$\psi=w-\sin ^{-1} \frac{\sqrt{ } \theta}{\sin \theta \sqrt{(k-\cos \theta)}}$
$=\frac{Q_{1} t}{2 \Lambda_{1}}-\sin ^{-1} \frac{\sqrt{ } \theta}{\sin \theta \sqrt{ }(\bar{B}-\cos \theta)}+\frac{1}{3} i \log \frac{\sigma(u+v)}{\sigma(u-v)} e^{-2 u t v}$
17. Since the axis $O I$ of instantaneous rotation lics in the plane IOC, the direction of notion of O is perpendicular to this plane; and therefore the path of C cuts the vertical plane $G O O$ at an angle

$$
\begin{equation*}
\tan ^{-1} \frac{G_{1}-C_{1} n_{1} \cos \theta}{\sqrt{ }\left(2 \cdot I_{1} W g h 0\right)}=\cos ^{-1} \frac{\sqrt{ } \theta}{\sin \theta \sqrt{ }(D-\cos \theta)} \tag{81}
\end{equation*}
$$

or it cuts the horizontal circle through C at an angle $\omega^{\circ}-\phi$; and this is a right angle when the plane $G O O$ is stationary.

As II passes through a point of inflexion of the herpolhode in the invarinble plane of O, the plane $H O O$ is stationary; and C at the samo time passes through a point of inflexion on its spherical path.
18. When the momental ellipsoid at O becomes a sphere, or

$$
O_{1}=A_{1}
$$

the axis $O I$ of instantaneous angular velocity ω coincides with $O I I$, and

$$
\begin{equation*}
O H=A_{1} \omega \tag{82}
\end{equation*}
$$

But in the general ense, when the momental ellipsoid at O is a spheroid, take a fixed point F^{\prime} in $O C$, such that

$$
\begin{equation*}
\frac{O F}{O O}=\frac{A_{1}}{C_{1}} \tag{83}
\end{equation*}
$$

and call the plane through F perpendicular to $O F$ the incariable plane of \boldsymbol{F} (Fig. 1).

Now, if $H I$, drawn parallel to $O C$, cuts the invariable plane of F in I, the vector $O I$ will represent $A_{1} \omega$, or A_{1} times the resultant angular velocity; and I describes a herpolhode in the invariable plane of F equal and parallel to the herpolhode described by H in the invariable plane of O.

It can readily be proved now that the angle between the vertical planos GOC and GOI is
reducing to (69) when $A_{1}=C_{1}$.

Darboux's Mechanical Representation of the Motion of the Axis of a Top.
19. M. Datboux has shown, in Notes xviii. and xix. of Despeyrous' Cours de Mécanique, how the generating lines of an articulated deformable hyperboloid can be employed to imitate the motion of the axis of a top.

We hegin with the consideration of the properties of the confocal system of quadrics, given by

$$
\begin{align*}
& \frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{\beta^{2}+\lambda}+\frac{z^{2}}{\lambda}=1 \tag{85}\\
& \frac{x^{2}}{a^{2}+\mu}+\frac{y^{3}}{\beta^{2}+\mu}+\frac{z^{9}}{\mu}=1 \tag{86}\\
& \frac{x^{2}}{a^{2}+\nu}+\frac{y^{2}}{\beta^{2}+\nu}+\frac{z^{9}}{\nu}=1 \tag{87}
\end{align*}
$$

having the focal ellipso

$$
\begin{equation*}
\frac{x^{2}}{a^{3}}+\frac{y^{2}}{i^{2}}+\frac{z^{2}}{0}=1 \tag{88}
\end{equation*}
$$

and the focal hyperbola

$$
\begin{equation*}
\frac{x^{2}}{a^{2}-\beta^{2}}+\frac{y^{2}}{0}+\frac{z^{2}}{-\beta^{2}}=1 . \tag{89}
\end{equation*}
$$

We can now put, employing m as a homogencity factor,

$$
\left.\begin{array}{lll}
a^{2}+\lambda=m^{2}\left(e_{1}-\wp v_{2}\right), & \beta^{2}+\lambda=m^{2}\left(e_{2}-\wp v_{2}\right), & \lambda=m^{2}\left(e_{3}-\wp v_{2}\right) \\
a^{2}+\mu=m^{2}\left(e_{1}-\wp u\right), & \beta^{2}+\mu=m^{8}\left(e_{2}-\wp u\right), & \mu=m^{2}\left(e_{8}-\wp u\right) \\
a^{2}+\nu=m^{2}\left(e_{1}-\wp r_{1}\right), & \beta^{2}+\nu=m^{2}\left(e_{4}-\wp r_{1}\right), & \nu=m^{2}\left(e_{8}-\wp r_{1}\right)
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
x^{2}=\frac{a^{2}+\lambda \cdot a^{2}+\mu \cdot a^{2}+\nu}{a^{2}-\beta^{3} \cdot a^{2}}=m^{2} \frac{e_{1}-\wp v_{2} \cdot e_{1}-\wp u \cdot e_{1}-\wp v_{1}}{e_{1}-e_{2} \cdot e_{1}-e_{3}} \\
y^{2}=\frac{\beta^{2}+\lambda \cdot \beta^{2}+u \cdot \beta^{3}+\nu}{\beta^{2}-u^{2} \cdot \beta^{2}}=m^{2} \frac{e_{2}-\wp v_{2} \cdot e_{2}-\wp u \cdot e_{2}-\wp v_{1}}{e_{2}-e_{3} \cdot e_{2}-e_{1}} \tag{91}\\
z^{2}=\quad \frac{\lambda u \nu}{a^{4} \beta^{2}} \quad=m^{2} \frac{e_{3}-\wp v_{2} \cdot e_{3}-\wp u \cdot e_{8}-\wp v_{1}}{e_{3}-e_{1} \cdot e_{3}-e_{3}}
\end{array}\right\}
$$

where $\quad v_{9}=p \omega_{s}, \quad$ for the ellipsoid,
$u=\omega_{s}+q t$, for the hyperboloid of one sheet,
$v_{1}=\omega_{1}+r \omega_{\mathrm{s}}$, for the hyperboloid of two sheets;
and now

$$
\begin{equation*}
\frac{\beta^{2}}{a^{2}}=\frac{e_{3}-e_{3}}{e_{1}-e_{3}}=\kappa^{2} . \tag{92}
\end{equation*}
$$

so that the modulus of the elliptic functions is the ratio of the axes of the focal ellipse.

Then (Salmon, Solid Geometry, Chap. var.)

$$
\begin{align*}
x^{2}+y^{3}+z^{2} & =a^{2}+\lambda+\beta^{3}+\mu+\nu \\
& =m^{2}\left(-\wp v_{2}-\wp u-\beta v_{1}\right. \tag{93}
\end{align*}
$$

and the squares of the semi-axes of the central section made by a plane parallel to the tangent plane of the hyperboloid (86) are

$$
\mu-\lambda \text { and } \mu-v ;
$$

so that, if θ denotes the angle between the generating lines of the hyporboloid of one sheet (86),

$$
\begin{align*}
& \qquad \tan ^{2} \frac{1}{2} \theta=-\frac{\mu-\lambda}{\mu-\nu} \ldots \ldots \ldots \ldots \tag{94}\\
& \cos \theta=\frac{\lambda-2 \mu+\nu}{\lambda-\nu}=\frac{2 \rho u-\wp v_{1}-\wp v_{2}}{\wp v_{i}-\wp v_{3}} \tag{95}\\
& \text { nnd we notice that } \quad \lambda=\mu \text { or } \wp u=\wp v_{2} \\
& \text { makes } \\
& \text { while } \\
& \text { mnkes } \quad \cos \theta=-1, \\
& \mu=\nu \text { or } \wp u=\wp v_{1} \\
& \cos 0=1,
\end{align*}
$$

makes
while
mnkes
as before, in the top; so that we can carry on with the previous notation of § 3 .

Also, from (23) and (66),

$$
\begin{align*}
O H^{2}= & \frac{4 A_{1} W g h}{\Omega}\left\{\wp\left(v_{1}-v_{3}\right)-\wp u\right\} \\
& +\frac{4 A_{1} W g h}{\Omega}\left\{\rho v_{1}-\wp v_{2}-\left\{\rho\left(v_{1}-v_{y}\right)\right\}\right. \\
= & \frac{4 A_{1} W g h}{\Omega}\left(-\wp v_{1}-\wp u-\wp v_{2}\right) \ldots . . \tag{96}
\end{align*}
$$

so that, with

$$
\begin{equation*}
m^{s}=\frac{4 A_{1} W!\underline{ } l}{\Omega} \tag{97}
\end{equation*}
$$

we may take the point H at (x, y, z) on the hyperboloid of one sheet, which is then moved so that one generating line through II is vertical, and then the other generating line will keep parallel to the axis of the top.
20. To hold this hyperboloid in position, M. Darboux employs a second hyperboloid of half the size, two generating lines being coincident with those passing through H, and the opposite pair being the lines $O G$ and $O O$, passing through O (Fig. 2).

I'he generator $O G$ being held vertical, any point H in the parallel opposite generator $I J J$ will describe a horizontal plane; and now, if II is guided along a herpolhode, always moving perpendicular to the plane $G O O$, that is, normally to the hyperboloid, the generator $O O$ will imitate the motion of the axis of a top.
21. The instantaneons axis of rotation will be represented by the vector $O I$ to a point I fixed in the generator through $I I$, parallel to $O C$; and it has already been shown in $\S 18$ that I describes a herpolhode in the invariable plane of F.

The point I can be joined to a certain fixed point G^{\prime} on $O G$ by a generating line $I G^{\prime}$ of fixed length, and I is therefore constrained to lie on a sphere, with centre G^{\prime}; hence Darboux's theorem, that the motion of the top can be imitated by rolling the herpolhode of I in the invariable plane of F on a fixed sphere, with centre in $O G$, the - angular velocity being proportional to OI (Despeyrous, II., p. 538).
22. To construct these hyperboloids in Henrici's manner, consider them when flattened in the plane of the focal ellipse, corresponding to

$$
\mu=0, \quad u=\omega_{s} .
$$

The coordinates of H are now given by

$$
\begin{gathered}
x^{3}=\frac{a^{2}+\lambda \cdot a^{9}+\nu}{a^{3}-\beta^{3}}=m^{2} \frac{e_{1}-\wp v_{9} \cdot e_{1}-\wp v_{1}}{e_{1}-e_{2}}, \\
y^{2}=\frac{\beta^{3}+\lambda \cdot \beta^{9}+\nu}{\beta^{3}-a^{9}}=m^{9} \frac{e_{2}-\wp v_{q} \cdot e_{9}-\wp v_{1}}{e_{2}-e_{1}}, \\
O H^{2}=x^{9}+y^{9}=m^{2}\left(-\wp v_{1}-\wp v_{8}-e_{8}\right),
\end{gathered}
$$

and if S, S^{\prime} denote the foci of the focal ellipse,

$$
\begin{equation*}
S H \cdot S^{\prime} H=m^{8}\left(\wp v_{1}-8 v_{2}\right)=m^{2} \Omega=4 \dot{A_{1}} W g l \tag{98}
\end{equation*}
$$

Fia. 2.
Drawing the tangents $I I J$ and $I I I$ through $I I$ to the focal ellipse, and the perpendiculars $O Y$ and $O Z$ upon them from the centre O; drawing also the perpendicular IIC and IIC upon the lines $O(G$ and $O C$ through O parallel to the tangents $I I J$ and $I I I$, then we find that
and therefore

$$
\begin{align*}
& O Y^{2}=G H^{2}=\rho^{2}=m^{2}\left(\wp v-e_{3}\right) . \tag{90}\\
& O Z^{3}=C H^{2}=\rho^{2}=m^{2}\left(\wp w-e_{3}\right) \tag{100}
\end{align*}
$$

$$
\begin{align*}
& O G^{3}=\Pi Y^{r_{3}}=m^{2}\left(-\wp v_{1}-\wp v_{2}-\wp v\right)=m^{2} L^{2} \tag{101}\\
& O C^{2}=\Pi Z^{3}=m^{9}\left(-\wp v_{1}-\wp v_{1}-\wp: v\right)=m^{2} L^{9} \tag{102}
\end{align*}
$$

The coordinates of P and Q, the points of contact of the targents $H J$ and $U I$, will be given by

$$
\begin{align*}
& \left.\frac{x^{2}}{a^{2}}=\frac{e_{1}-e_{8}}{e_{1}-e_{2}} p v-e_{4}, \text { and } \frac{e_{1}-c_{3}}{e_{1}-e_{3}} \wp v v-e_{2}, e_{3}\right) \tag{103}
\end{align*}
$$

Any other two pairs of tangents to the focal ellipse will mark the position of the requisite number of rods, to serve as generating
lines connecting the opposite pairs $H I, H J$ and $H^{\prime} I^{\prime}, H^{\prime} J^{\prime}$; and now the design of the larger hyperboloid is complete; the smaller hyperboloid of half the scale having $H I, H J$ and $O C, O G$ as opposite pairs of generators.
23. When flattened in the plane of the focal ellipse, $I I$ is at its maximum distance from O, and the angle $G O O$ is θ_{3}, the maximum value of θ.
As the articulated model is gradually deformed, e_{3} must be replaced by the varinble $\wp u$, and

$$
\begin{align*}
& O Y^{3}=G U^{2}=\rho^{2}=m^{2}(\wp v-\wp u) \\
& O Z^{2}=C H^{2}=\rho^{\prime 3}=m^{2}(\wp v-\wp u) \tag{105}
\end{align*}
$$

but $O G, O O, I I Y, I Z$ remain constant.
When the model is flattened in the plane of the focal hyperbola,

$$
u=u_{3}, \wp u=e_{2}
$$

and $O H$ has its minimum value; and the angle between $O G$ and $O C$ becomes θ_{2}, the minimum value of θ.
24. When $G_{1}=0$ or $L=0$, the point II must move to Y, a point on the perlal of the focal ellipse with respect to the centre; and then

$$
\begin{equation*}
\wp^{\prime} a=\beta^{\prime} b \tag{106}
\end{equation*}
$$

\qquad
So, also, when $C_{1} n_{1}=0$ or $B=0$, as in the spherical pendulum, then

$$
\begin{equation*}
\wp^{\prime} a=-\wp^{\prime} b \tag{107}
\end{equation*}
$$

and the point I must move to Z, on the pedal of the focal ellipse; wo thus obtain a geometrical interpretation of the equation

$$
\begin{equation*}
\wp^{\prime} u=e \tag{108}
\end{equation*}
$$

discussed by Halphen in his Fonctions elliptiques, t. 1., p. 110.
Equation (41) shows that, in the spherical pendulum,

$$
\begin{equation*}
L^{3}+3 L \wp v+i \wp^{\prime} v=0 . \tag{109}
\end{equation*}
$$

or $\quad L=\left\{\sqrt{ }\left(\wp^{n}-\frac{1}{4} \wp^{\prime 2}\right)-\frac{1}{8} i \wp^{\prime}\right\}^{\prime}-\left\{\sqrt{ }\left(\& \rho^{3}-\frac{1}{4} \wp^{\prime 2}\right)+\frac{1}{2} i \wp^{\prime}\right\}^{\prime} \ldots(110)$,
and this is the condition that

$$
\frac{d}{d u} \cdot \frac{\sigma(u+v)}{\sigma u \sigma v} e^{(i l \cdot \cdot(v) u}
$$

should be a solution of Lamés equation for $u=2$.

This relation can also be written
or (§ 27)

$$
\begin{equation*}
\frac{2}{h}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \tag{111}
\end{equation*}
$$

in Darboux's notation (Halphen, F.E., II., p. 102), or

$$
2 \frac{G^{2}}{I^{\prime}}=2 D=A+B+C,
$$

in Dr. Routh's notation.
Generally, in Darboux's notation,

$$
\begin{aligned}
B \Omega & =a b c h\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{2}{h}\right) \\
& =h(b c+c a+u b)-2 a b r, \\
h^{\prime} \Omega & =Q h-2 h,
\end{aligned}
$$

ns in Darboux's equations (18), p. 515, or •(6), p 531 (Despeyrons, Cours de Mécanique, t. in.).

25. Along the generator $O G$ or $I I J$ the parameter

is constant; while

$$
\begin{aligned}
& v_{1}+v_{2}=v \\
& v_{1}-v_{2}=v
\end{aligned}
$$

is constant along $O O$ or HII.
Starting with $I I$ at the point Y, when G_{1} and $L=0$, then, for any other position of Y on the generator IIF,

$$
\begin{equation*}
l \Gamma Y=m I \tag{112}
\end{equation*}
$$

and, from (38) and (42),

$$
\begin{gathered}
\Omega \cos \theta=L^{2}+\wp v+2 \xi \Omega, \\
\Omega^{9}=\left(L^{2}+3 \delta v\right)^{2}+4 L i \delta^{\prime} v-2\left\{\xi^{\prime \prime} v,\right.
\end{gathered}
$$

and the elimination of Ω^{2} gives the relation connecting $\cos ^{2} \theta$ with Lo or $11 Y / m$.
The herpolhodes for different positions of $I I$ on TLK must receive an appropriate constant angular velocity round $O G$ to realizo the true motion; and the corresponding rolling quadrics are confocal, in aceordanee with Sylvester's theorem.

So also for the relation comecting $1 I \%$ and the angle between the generating lines for different positions of $I I$ on the generator III.
26. We conclude, in accordance with the order of procedure in this paper, with the investigation of the properties of the quadric surfaces which will trace out the herpolhodes described by $I I$ in tho invariable planes of G and of C, when rolled upon these planes, their centre being fixed at 0 .

If a quadric surface, coaxial with the deformable hyperboloid, is to roll on the invariable plane of G, so that the points of contact form the locus of H in this plane, then, denoting the distance $O P$ by δ, and by $P_{1}, P_{2}, P_{\mathrm{s}}$ the points in which the generating line Il., , perpendicular to the invariable plane of G, meets the principal planes, it follows, by well-known theorems of Solid Geometry, that the squares of the semi-axes iof the rolling quadric are

$$
\delta . H P_{1}, \quad \delta . I I P_{2}, \quad \delta . I I I_{\mathrm{s}}^{\prime}
$$

the line $H J$ being the normal at $I I$ to the rolling quadric; and these semi-axes are constant, since δ and tho lengths $H P_{1}, H P_{2}, ~ H I_{3}$ remain constant while the hyperboloid is deformed.
27. Write the equations of the polhode on this rolling quadric, with Dr. Rontle's notation, in the form

$$
\begin{align*}
& A x^{2}+B y^{2}+C z^{2}=D \delta^{2} \tag{113}\\
& A^{2} u^{2}+I^{2} y^{2}+C^{2} z^{2}=D^{2} \dot{\delta}^{2} \tag{114}
\end{align*}
$$

where

$$
\begin{equation*}
D=G^{2} / L^{\prime} \tag{115}
\end{equation*}
$$

or, in M. Darboux's notation,

$$
\begin{align*}
& r_{u}^{2}+\eta^{2}+\frac{r^{2}}{c}=h \tag{116}\\
& \frac{p^{2}}{u^{2}}+\frac{q^{2}}{b^{2}}+\frac{r^{2}}{c^{2}}=1 \tag{il7}
\end{align*}
$$

where, to identify the notations, we put

$$
\begin{gathered}
a=m p, \quad y=m q, \quad z=m r ; \\
I \dot{o}^{2}=m n^{\prime} l^{\prime}, \quad \text { lio }=m(\gamma .
\end{gathered}
$$

and then
Then the squares of the semi-axes of the rolling quatric are

$$
\begin{equation*}
{\underset{A}{D}}_{\delta^{2}=m^{2} a h, \quad D_{i} \dot{\delta}^{2}=m^{2} b h, \quad{ }_{;}^{\eta} \delta^{2}=m^{2} c h} \tag{118}
\end{equation*}
$$

while

$$
\begin{equation*}
\dot{c}^{2}=m \iota^{2} \iota^{2} \tag{119}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{I}{A}=\frac{a}{h}, \frac{\eta}{B}=\frac{b}{h}, \frac{p}{\ddot{O}}=\frac{c}{i} \tag{120}
\end{equation*}
$$

Darboux's a, b, c, and h, or the reciprocals of Routh's A, B, C, and D, are thus proportional to

$$
H P_{1}, H P_{2}, H P_{3}, \text { and } H Y
$$

Now, when the hyperboloid is flattened in the plane of the focal ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{j^{2}}=1, \quad z=0,
$$

corresponding to $u=u_{s}$, then (Fig. 2)

$$
H P_{\mathrm{s}}=H P
$$

$$
\frac{D}{\tilde{\sigma}^{2}}=m^{2} c h=H Y \cdot H P,
$$

or

$$
\begin{equation*}
\underset{C}{D}=\stackrel{c}{\dddot{h}}=\frac{\Pi P}{M Y} \tag{121}
\end{equation*}
$$

But, from a property of the ellipse,

$$
\begin{equation*}
P Y^{2}=\frac{a^{2}-\delta^{2}}{\delta^{2}} \cdot i^{2}-\beta^{2}=-m^{2} \frac{. p v-e_{1} \cdot p v-e_{1}}{8 v-e_{3}} \tag{122}
\end{equation*}
$$

or

$$
\begin{equation*}
c-h=\sqrt{ }\left(-\frac{\sigma_{1} \sigma_{4}}{\sigma_{3}}\right) \tag{123}
\end{equation*}
$$

with

$$
\begin{align*}
& m^{8}=\frac{\delta^{2}}{h^{2}}=\frac{4 A_{1} W_{!} h}{\sqrt{2}} \tag{124}\\
& h^{2}=L^{2}, \quad h= \pm L \tag{125}
\end{align*}
$$

\qquad
according as L is positive or negative.
Similarly,

$$
\begin{align*}
& a-h=\sqrt{ }\left(-\frac{\sigma_{3} \sigma_{3}}{\sigma_{1}}\right) . \tag{126}\\
& b-h=\sqrt{ }\left(-\frac{\sigma_{3} \sigma_{1}}{\sigma_{2}}\right) . \tag{127}
\end{align*}
$$

or

$$
\begin{align*}
& (b-h)(c-h)=-\sigma \\
& \text {.....................(128), } \\
& (c-h)(a-h)=-\sigma_{y} \tag{129}\\
& (a-h)(b-h)=-\sigma_{3} \tag{130}
\end{align*}
$$

28. Denote by accented letters the corresponding quantities for the coaxial quadric which rolls on the invariable plane of C, and of which $H I$, the other generating line through H of the deformable hyperboloid, is the normal at H.

Then the locus of H on this quadric is the same polhode as before, but now determined by the equations
or

$$
\begin{align*}
& A^{\prime} x^{2}+B^{\prime} y^{2}+C^{\prime} z^{2}=D^{\prime} \delta^{\prime 2} \tag{131}\\
& A^{\prime 2} x^{2}+B^{\prime \prime} y^{2}+C^{\prime 2} z^{2}=D^{\prime 2} \delta^{\prime 2} \tag{132}\\
& \frac{x_{i^{\prime}}^{2}}{a^{\prime}}+\frac{\eta^{2}}{b^{\prime}}+\frac{r^{2}}{c^{\prime}}=h \\
& \text { (133), } \\
& \frac{p^{3}}{c^{3}}+\frac{q^{3}}{b^{2}}+\frac{r^{2}}{c^{2,2}}=1 \tag{134}
\end{align*}
$$

with

$$
\begin{aligned}
& x=m p, \quad y=m q, \quad z=m r, \\
& D^{\prime} \delta^{\prime \prime}=m^{2} I^{\prime}, \quad D^{\prime} \delta^{\prime}=m f^{\prime} .
\end{aligned}
$$

If the generating line $H I$ cuts the principal planes of the deformable hyperboloid in Q_{1}, Q_{2}, Q_{s}, then, as in $\S 27$, the squares of the semi-axes of this rolling quadric are

$$
\begin{align*}
& D_{\prime}^{\prime} \delta^{\prime 2}=m^{2} a^{\prime} h^{\prime}=\delta^{\prime} \cdot H Q_{1} \tag{135}\\
& {D^{\prime}}^{\prime} \tag{136}\\
& H^{\prime} \delta^{\prime 2}=m^{2} b^{\prime} h^{\prime}=\delta^{\prime} \cdot H Q_{2} \tag{137}\\
& H_{\prime}^{\prime \prime} \delta^{\prime 2}=m^{2} c^{\prime} h^{\prime}=\delta \cdot H Q_{5} \\
& a^{\prime}, \quad b^{\prime}, c^{\prime}, \text { and } h^{\prime},
\end{align*}
$$

no that Darboux's
or the reciprocals of Routh's

$$
A^{\prime}, \quad B^{\prime}, \quad C^{\prime}, \quad \text { and } \quad D^{\prime}=G^{\prime 2} / T^{\prime},
$$

are proportional to $H Q_{1}, H Q_{3}, H Q_{3}$, and $H Z$,
where $O Z$ is the perpendicular from O on the generating line ΠI.
Denoting
$\wp_{\rho} w-e_{0}$ by $\tau_{\text {e }}$,
then, as for the first rolling quadkic, we find

$$
\begin{equation*}
a^{\prime}-h^{\prime}=\sqrt{ }\binom{-\frac{\tau_{2} \tau_{y}}{\tau_{1}}}{\tau_{1}}, \quad b^{\prime}-h^{\prime}=\sqrt{ }\left(-\frac{\tau_{s} \tau_{1}}{\tau_{2}}\right), \quad c^{\prime}-h^{\prime}=\sqrt{ }\left(-\frac{\tau_{1} \tau_{2}}{\tau_{s}}\right) \tag{138}
\end{equation*}
$$

and

$$
\left.\begin{array}{r}
\left(b^{\prime}-h^{\prime}\right)\left(c^{\prime}-h^{\prime}\right)=-r_{1} \tag{138*}\\
\left(c^{\prime}-h^{\prime}\right)\left(a^{\prime}-h^{\prime}\right)=-r_{3} \\
\left(a^{\prime}-h^{\prime}\right)\left(b^{\prime}-h^{\prime}\right)=-r_{3}
\end{array}\right\} .
$$

Thus, for instance, with the hyperboloid flattened in the plane of the focal ellipse, the ratio of the squares of the corresponding axes of the rolling quadrics
or

$$
\begin{align*}
& \frac{D^{\prime} \delta^{\sigma^{\prime}}}{\frac{C^{\prime}}{I}}=\frac{c^{\prime} h^{\prime}}{c} \frac{Q H . H Z}{C}=\frac{Q H}{P I I . I Y}=\frac{Q H}{P I I} \frac{h^{\prime}}{h} \\
& \frac{c^{\prime}}{c}=\frac{Q H}{P I}=\frac{O Y}{O Z}=\sqrt{\frac{\sigma_{s}}{\tau_{s}}} \ldots \ldots . \tag{139}
\end{align*}
$$

hecruse the triangles $O P I I, O Q H$ are of equal area.
29. Also

$$
\begin{equation*}
\sigma+h^{2}=\tau+h^{\prime 2} \tag{140}
\end{equation*}
$$

these and the other various relations connecting the quantities A, B, C, D, δ, and $A^{\prime}, B^{\prime}, O^{\prime}, D^{\prime}, \delta^{\prime}$, or a, b, c, h, and $a^{\prime}, b^{\prime}, c^{\prime}, h^{\prime}$, are discussed in the articles of M. Darboux and Dr. Ronth, making use of the algebraical relations; and from their equations some additional results cim be deduced, for instance,

010

$$
\begin{align*}
& \lambda=-\left(\sqrt{\frac{\tau_{1}}{\sigma_{1}}}+\sqrt{\frac{\tau_{2}}{\sigma_{2}}}+\sqrt{\frac{\tau_{3}}{\sigma_{3}}}\right) \tag{141}\\
& \frac{a^{2}}{a^{\prime 2}}=\frac{a}{a^{\prime}}=\frac{\tau_{1}}{\sigma_{1}}, \& c . \tag{142}\\
& h(b+c)-b c=h^{\prime}\left(b^{\prime}+c^{\prime}\right)-b^{\prime} c^{\prime} \tag{143}\\
& T\left(\frac{1}{B}+\frac{1}{C}\right)-\frac{G^{2}}{B \bar{C}}=T^{\prime}\left(\frac{1}{B^{\prime}}+\frac{1}{O^{\prime}}\right)-\frac{G^{\prime 2}}{B^{\prime} C^{\prime}} \tag{144}\\
& (h-a)(b-c)=\left(h^{\prime}-a^{\prime}\right)\left(b^{\prime}-c^{\prime}\right) \tag{145}\\
& \frac{a}{b}-\frac{a}{c}=-\frac{a^{\prime}}{b^{\prime}}+\frac{a^{\prime}}{c^{\prime}} . \tag{146}\\
& \frac{B-C}{A}=-\frac{B^{\prime}-O^{\prime}}{A^{\prime}} \\
& 2 P^{\prime} h-Q=2 P^{\prime} h^{\prime}-Q^{\prime} \tag{148}\\
& \Omega h h^{\prime}=\left(2 h^{2}-2 h h=Q^{\prime} h^{2}-2 R^{\prime} h^{\prime}\right. \tag{149}\\
& \Omega^{2}=\Omega 2^{\prime 2}=Q^{2}-4 R(P-h)=l^{\prime 2}-4 R^{\prime}\left(P^{\prime}-h^{\prime}\right) \tag{150}
\end{align*}
$$

$0 r$

$$
\left(P(Q-R) h^{3}-\left(Q^{2}+P R\right) h^{2}+2 Q R h-R^{2}\right.
$$

$=\mathrm{a}$ similar expression with accented letters \qquad

$$
\begin{align*}
& h^{\prime}+h=\frac{\left[\sqrt{ }\left(-\sigma_{1}\right)+\sqrt{ }\left(-\tau_{1}\right)\right]\left(\sqrt{ } \sigma_{2}+\sqrt{ } \tau_{2}\right)\left(\sqrt{ } \sigma_{3}+\sqrt{ } \tau_{8}\right)}{\sigma=\tau} \ldots(152), \tag{152}\\
& h^{\prime}-h=-\frac{\left[\sqrt{ }\left(-\sigma_{1}\right)-\sqrt{ }\left(-\tau_{1}\right)\right]\left(\sqrt{ } \sigma_{2}-\sqrt{ } \tau_{2}\right)\left(\sqrt{ } \sigma_{8}-\sqrt{ } \tau_{3}\right)}{\sigma=\tau} \ldots(15,3),
\end{align*}
$$

and so forth.
30. But it will be instructive to bring out the geometrical interpretation of these relations; and, first of all, we examine the geometrical propertics of the herpolhode.

$$
\text { We notice that } \quad \frac{x^{2}}{a^{2}+\mu}, \frac{y^{2}}{\beta^{2}+\mu}, \frac{z^{2}}{\mu}
$$

aro constant during the deformation of the hyperboloid by variation of μ; and that we can put

$$
\left.\begin{array}{ll}
l A x^{2}=(B-C)\left(a^{2}+\mu\right), & l^{\prime} A^{\prime} x^{2}=\left(l^{\prime}-C^{\prime}\right)\left(a^{2}+\mu\right) \tag{154}\\
l B y^{2}=(C-A)\left(\beta^{2}+\mu\right), & l^{\prime} B y^{2}=\left(C^{\prime}-A^{\prime}\right)\left(\beta^{2}+\mu\right) \\
l C z^{2}=(A-B) \mu, & l^{\prime} C^{\prime} z^{2}=\left(A^{\prime}-B^{\prime}\right) \mu
\end{array}\right\}
$$

so that, in consequence of

$$
\frac{x^{2}}{a^{2}+\mu}+\frac{y^{2}}{j^{2}+\mu}+\frac{z^{2}}{\mu}=1,
$$

we find

$$
\begin{gathered}
l=\frac{B-C}{A}+\frac{C-A}{B}+\frac{A-B}{U}=-(B-C)(C-A)(A-B) \\
l^{\prime}=\frac{B^{\prime}-C^{\prime}}{A^{\prime}}+\frac{C^{\prime \prime}-\Lambda^{\prime}}{B^{\prime}}+\frac{\Lambda^{\prime}-B^{\prime}}{C^{\prime}}=-\left(B^{\prime}-U^{\prime}\right)\left(C^{\prime}-\Lambda^{\prime}\right)\left(\Lambda^{\prime}-B^{\prime}\right),
\end{gathered}
$$

and

$$
\left.\begin{array}{rl}
\frac{a^{2}}{a^{2}+\mu} & =-\frac{B C}{(C-A)(A-B)}=-\frac{B^{\prime} O^{\prime}}{\left(C^{\prime}-A^{\prime}\right)\left(\Lambda^{\prime}-B^{\prime}\right)} \\
\frac{y^{2}}{\beta^{\prime}+\mu} & =-\frac{C A}{(\Lambda-B)(B-C)}=-\frac{C^{\prime} A^{\prime}}{\left(\Lambda^{\prime}-I^{\prime}\right)\left(B^{\prime}-C^{\prime}\right)} \tag{1,5}\\
\frac{z^{2}}{\mu} & =-\frac{A B}{(B-(B)(C-\Lambda)}=-\left(I^{\prime}-A^{\prime} B^{\prime}\right)\left(U^{\prime}-A^{\prime}\right)
\end{array}\right\}
$$

1: 2

Therefore $\quad\left(\frac{B-C}{A}\right)^{2}=\left(\frac{B^{\prime}-C^{\prime}}{A^{\prime}}\right)^{2}$, \&c. ;
and taking the square roots with opposite signs, because like signs lend merely to the result

$$
A=A^{\prime}, \quad B=B^{\prime}, \quad \sigma=\sigma^{\prime},
$$

we find, as before, in (147),

$$
\frac{B-C}{A}=-\frac{B^{\prime}-C^{\prime}}{\Lambda^{\prime}}, \& \varepsilon .,
$$

and

$$
\begin{equation*}
l=-l^{\prime} . \tag{156}
\end{equation*}
$$

Also

$$
\begin{align*}
& l D \delta^{2}=(B-C) a^{2}+(C-A) \beta^{2} \ldots \ldots \ldots \ldots \tag{157}\\
& l D^{2} \delta^{2}=A(B-C) a^{2}+B(C-A) \beta^{2} \ldots \ldots \ldots \ldots
\end{align*}
$$

so that

$$
\begin{align*}
a^{2} & =\frac{(C-A)(B-D)}{A B C} D \delta^{2}, \\
\beta^{2} & =-\frac{(B-C)(A-D)}{A B O} D \delta^{2}, \\
a^{2}-\beta^{2} & =-\frac{(A-B)(C-D)}{A B U} D \delta^{2} . \tag{159}
\end{align*}
$$

Fig. 3.
31. From the two equations (113) and (114) which give the polhode, we deduce, by differentiation,

$$
\frac{A x}{\bar{B}-\bar{C}} \frac{d x}{\vec{d} t}=\frac{B y}{C-A} \frac{d y}{d t}=\frac{C z}{A-\bar{B}} \frac{d z}{d t} .
$$

and therefore, in the corresponding herpolhode described by H in the invariable plane of G, the common tangent IIK of the polhode and herpolhode at $I I$ is parallel to $O E$, the central radius of (113) which
is conjugate to the plane $G O H$, or parallel to the tangent line at F in the plane $E O F$ parallel to the invariable plane of $G, O F$ being the radius of the quadric (113) which is paiallel to GlI (lig. 3).

This theorem can also be proved, in Poinsot's manner, from purcly geometrical conditions; for, as the ellipsoid turns about OII in rolling on the plane $G H K$, the line $O F$ is the ultimate intersection of the plane $O E F$ with its consecutive position in the body; so that as $01 I$. moves to OIF' in the body, the plane OILII' is conjugate to OF, and $H I L^{\prime}$ is thus ultimately parallel to OFI.

The three radii ON, OF, OH of the quadric (113) thins fom in conjugate system, and the plane $O G K$ is perpendicular to $11 K$; and therefore, by the theorems of Solid Geometry for conjugate diameters (Salmon, Solid Geometry, §97),

$$
\begin{equation*}
O E^{y}+O F^{2}+O I^{2}=\left(\frac{1}{\Lambda}+\frac{1}{B}+\frac{1}{U}\right) D \delta^{2} . \tag{1.61}
\end{equation*}
$$

$O E^{2} \cdot O F^{2} \cdot \sin ^{2} E O F+O K^{2} \cdot O \mathcal{E}^{2}+O F^{2} \cdot O G^{2}$

$$
\begin{align*}
& =\left(\frac{1}{\bar{B} \bar{C}}+\frac{1}{\bar{C} \bar{A}}+\frac{1}{A \bar{B}}\right) D^{2} D^{4} \tag{162}\\
& O G^{2} \cdot O F^{2} \cdot O F^{\prime 2} \cdot \sin ^{2} E O F^{\prime}=\begin{array}{l}
D^{3} B^{n} \\
A B C^{i}
\end{array} \tag{163}
\end{align*}
$$

32. Putting $\quad G I I=\rho, \quad G K=p, \quad O G=\delta$,
then these equations give

$$
O E^{2}+O F^{2}=\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right) D i^{2}-\dot{\delta}^{2}-\rho^{2},
$$

so that

$$
\begin{align*}
& \left.p^{2} \cdot O E^{2}=\left(\rho^{2}+\Lambda-J\right) \cdot B-D \cdot C-D D \delta^{2}\right) \dot{\partial}^{2} \tag{164}\\
& p^{2} . O F^{\prime 2}=\left\{\left(\frac{1}{A}+\frac{1}{J}+\frac{1}{C}\right) D \delta^{2}-i^{2}-\rho^{2}\right\} p^{2} \\
& -\frac{\Lambda-1) \cdot b-p \cdot C-1)}{\Lambda 1 / C} \delta^{2}-\delta^{2} \tag{16.5}
\end{align*}
$$

From (163),

$$
O E^{2} \cdot O F^{2} \cdot \frac{p^{2}}{\rho^{2}}=\frac{J^{3} \delta^{4}}{A B C},
$$

$$
\begin{equation*}
p^{4} . O E^{2} . O F^{2}=\frac{D^{8} \delta^{4}}{A B O} p^{4} \rho^{2} . \tag{166}
\end{equation*}
$$

and therefore

$$
\begin{aligned}
& \frac{D^{2} \delta^{4}}{A B O} p^{2} \mu^{2}=\left[\left\{\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{O}\right) D \delta^{2}-\delta^{2}-\rho^{2}\right\} p^{2}\right. \\
& \left.-\frac{A-D \cdot B-D \cdot C-D}{A B O} \delta^{4}-\dot{\delta}^{2} \rho^{2}\right] \\
& p^{2}=\frac{\left(\rho^{2}+\frac{A-D \cdot B-D \cdot O-D}{A B C} \delta^{2}\right) \delta^{2},}{\left\{\left(\begin{array}{l}
A \\
D
\end{array}+\frac{B 3}{D}+\frac{C}{D}-1\right) \delta^{2}-\rho^{2}\right\}\left(\rho^{2}+\frac{A-D \cdot B-D . U-D}{A B C} \delta^{2}\right)-\frac{D^{3} \delta^{2} \rho^{2}}{A B C}}
\end{aligned}
$$

and this is the relation comecting p and ρ in the herpolhode.
Thence

$$
\begin{align*}
\left(\frac{\rho^{2} d \sigma}{d \rho^{2}}\right)^{2} & =\frac{1}{4} \tan ^{2} G H K=\frac{1}{4} \frac{p^{2}}{p^{2}-\rho^{2}} \\
& =\frac{\left(\rho^{2}+\frac{\Lambda-D \cdot B-D \cdot C-D}{A B C} \delta^{2}\right)^{2} \delta^{2}}{R} . \tag{168}
\end{align*}
$$

where

$$
\begin{array}{r}
R=-4\left(\rho^{2}+\frac{B-D \cdot C-D}{B U} \delta^{2}\right)\left(\rho^{2}+\frac{C-D \cdot A-D}{C \bar{A}} \delta^{2}\right) \\
\times\left(\rho^{2}+\frac{A-D \cdot B-D}{A B} \delta^{2}\right)
\end{array}
$$

and
the differential equation of the herpolhode, employed in the previous investigations.
33. But the relation connecting

$$
O H^{2}=\rho^{2}+\delta^{2} \text { and } O K^{2}=p^{2}+\lambda^{3}
$$

should be the same for both herpolhodes described by H, the one in the plane of G and the other in the plane of C.

Putting, then,

$$
\rho^{2}+\delta^{2}=r^{2} \text { and } p^{2}+\dot{c}^{2}=q^{2}
$$

for the moment, we find

$$
\begin{equation*}
\frac{q^{2}}{r^{2}-q^{2}}=\frac{H r^{2}+K \delta^{2}}{\frac{1}{4} R} \delta^{4} \tag{170}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{1}{4} R=-\left\{r^{2}-\left(\frac{D}{\bar{B}}+\frac{D}{\bar{O}}-\frac{D^{2}}{\bar{B} \bar{C}}\right) \delta^{2}\right\}\left\{r^{2}-\left(\frac{D}{C}+\frac{D}{\bar{A}}-\frac{D^{3}}{\bar{C} \bar{A}}\right) \delta^{2}\right\} \\
& \times\left\{r^{2}-\left(\frac{C}{A}-\frac{D}{B}-\frac{D^{2}}{A \bar{B}}\right) \delta^{2}\right\}, \\
& H=\left(\frac{1}{B O}+\frac{1}{C A}+\frac{1}{A B}\right) D^{2}-2 \frac{H^{8}}{A B O} . \tag{171}\\
& K=\left(1-\frac{D}{A}\right)\left(1-\frac{D}{B}\right)\left(1-\frac{D}{C}\right)\left(\frac{D^{2}}{B C}+\frac{D^{3}}{C A}+\frac{D^{2}}{A} \bar{B}-\frac{D^{8}}{A B C}\right) \\
& -\frac{D^{2}}{B C}-\frac{D^{2}}{C A}-\frac{D^{2}}{A B}+2 \frac{D^{3}}{A B C} \tag{172}
\end{align*}
$$

The expression in (170) should be unaltered when

$$
A, B, \quad C, \quad D, \text { and } \delta
$$

are replaced by the corresponding accented letters; and therefore

$$
\begin{equation*}
\left(\frac{D}{B}+\frac{D}{O}-\frac{D^{2}}{B C}\right) \delta^{2}=\left(\frac{D^{\prime}}{\bar{B}^{\prime}}+\frac{D^{\prime}}{C^{\prime}}-\frac{D^{\prime 2}}{B^{\prime} U^{\prime}}\right) \delta^{\prime 2}, \& c \ldots \tag{173}
\end{equation*}
$$

or, forming the differences

$$
\begin{equation*}
\frac{(B-C)(A-D)}{A B C} D \delta^{2}=\frac{\left(B^{\prime}-O^{\prime}\right)\left(A^{\prime}-D^{\prime}\right)}{A^{\prime} B^{\prime} C^{\prime}} D^{\prime} \delta^{\prime 2} \tag{174}
\end{equation*}
$$

each of them being in fact $-\beta^{2}$, from (159).
Since (147)

$$
\frac{B-O}{A}=-\frac{B^{\prime}-C^{\prime}}{A^{\prime}}
$$

this last relation (174) becomes
or (§ 27)

$$
\begin{align*}
\frac{A-D}{B C} D \delta^{2} & =-\frac{A^{\prime}-D^{\prime}}{B^{\prime} O^{\prime}} D^{\prime} \delta^{\prime 3} \tag{175}\\
\frac{A T-G^{s}}{B C} & =-\frac{A^{\prime} T^{\prime}-G^{\prime 2}}{B^{\prime} C^{\prime}} \ldots \tag{176}
\end{align*}
$$

with two similar relations, and these can be written

$$
\frac{A\left(A T-G^{2}\right)}{A^{\prime}\left(A^{\prime} T^{\prime}-G^{\prime 2}\right)}=\frac{B\left(B T-G^{2}\right)}{B^{\prime}\left(B^{\prime} T^{\prime}-G^{\prime 2}\right)}=\frac{C\left(C T-G^{2}\right)}{C^{\prime}\left(C^{\prime} T^{\prime}-G^{\prime 2}\right)}=-\frac{A B O}{A^{\prime} B^{\prime} C^{\prime}}
$$

as required for the coincidence of the polhode cones

$$
\begin{aligned}
A\left(A T-G^{2}\right) x^{2}+B\left(B T-G^{2}\right) y^{9}+C\left(C T-G^{2}\right) z^{2} & =0 \\
A^{\prime}\left(A^{\prime} T^{\prime}-G^{2}\right) x^{2}+B^{\prime}\left(B^{\prime} T^{\prime}-G^{2}\right) y^{2}+C^{\prime}\left(C^{\prime} T^{\prime}-G^{\prime 9}\right) z^{2} & =0
\end{aligned}
$$

So also the comparison of the two forms

$$
\begin{equation*}
H \delta^{\gamma}=H^{\prime} \delta^{\prime 4} \tag{177}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{K} \delta^{\prime}=K^{\prime} \delta^{\prime \prime} \tag{178}
\end{equation*}
$$

will lead to relations implied in the preceding equations.
In Darboux's notation, with $\delta^{2}=m^{2} h^{2}$,

$$
\frac{q^{2}}{r^{2}-q^{2}}
$$

$$
\begin{equation*}
=\frac{H h^{4} \frac{r^{2}}{m^{2}}+K h^{6}}{-\left\{\frac{r^{2}}{n^{2}}-(b+c) h+b c\right\}\left\{\frac{r^{2}}{m^{2}}-(c+a) h+c a\right\}\left\{\frac{r^{2}}{m^{2}}-(a+b) h+a b\right\}} \tag{179}
\end{equation*}
$$

and

$$
\begin{align*}
H h^{4} & =(b c+c a+a b) h^{2}-2 a b c h=Q h^{3}-2 R h \\
& =\Omega h h^{\prime}=Q^{\prime} h^{\prime \prime}-2 R^{\prime} h^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots . . \tag{180}
\end{align*}
$$

while

$$
\begin{align*}
K h^{0} & =(h-a)(h-b)(h-c)(Q h-R)-h^{8}(Q h-2 R) \\
& =(R-P Q) h^{8}+\left(Q^{2}+P R\right) h^{2}-2 Q R h+R^{8} \ldots . \tag{181}
\end{align*}
$$

and this remains unaltered when the letters are accented, as in (151).
34. In Jacobi's notation, we put

$$
\begin{equation*}
v_{9}=p \mathrm{~K}^{\prime} i, \quad v_{1}=\mathrm{K}+r \mathrm{~K}^{\prime} i \tag{182}
\end{equation*}
$$

and changing to the complementary modulus s^{\prime}, the excentricity of the focal ellipse, we can put

$$
\begin{align*}
& a^{2}+\lambda=a^{8} \frac{1}{\operatorname{sn}^{2} p \mathrm{~K}^{\prime}}, \quad \beta^{2}+\lambda=a^{2} \frac{\mathrm{dn}^{2} p \mathrm{~K}^{\prime}}{\operatorname{sn}^{2} p \mathrm{~K}^{\prime}}, \quad \lambda=a^{2} \frac{\mathrm{cn}^{2} p \mathrm{~K}^{\prime}}{\operatorname{sn}^{2} p \mathrm{~K}^{\prime}} \ldots(1 \tag{183}\\
& a^{2}+\nu=\kappa^{\prime 2} a^{2} \operatorname{sn}^{2} r \mathrm{~K}^{\prime}, \quad \beta^{2}+\nu=-\kappa^{\prime 2} a^{2} \mathrm{cn}^{2} r \mathrm{~K}^{\prime}, \quad \nu=-a^{y} \mathrm{dn}^{2} r \mathrm{~K} \tag{184}
\end{align*}
$$

and the coordinates of H are

$$
\begin{equation*}
a \frac{\operatorname{sn} r K^{\prime}}{\operatorname{sn} p K^{\prime}}, \quad \beta \frac{\operatorname{cn} p K^{\prime} d n r K^{\prime}}{\kappa \operatorname{sn} r K^{\prime}} \tag{185}
\end{equation*}
$$

We now find that the excentric angles, measured from the minor axis, of P and Q, the points of contact of the tangents drawn from H to the focal ellipse, are

$$
\begin{equation*}
\text { am }\left\{(1-p-r) \kappa^{\prime}, \kappa^{\prime}\right\} \text { and am }\left\{(1-p+r) \kappa^{\prime}, \kappa^{\prime}\right\} \tag{186}
\end{equation*}
$$

while $O Y$ and $O Z$ make angles

$$
\begin{equation*}
\text { am }\left\{(p+r) \mathrm{K}^{\prime}, \kappa^{\prime}\right\} \text { and am }\left\{(p-r) \mathrm{K}^{\prime}, \kappa^{\prime}\right\} \tag{187}
\end{equation*}
$$

with the major axis, so that
also

$$
\begin{equation*}
\theta_{s}=\mathrm{am}\left\{(p+r) \mathrm{K}^{\prime}, \kappa^{\prime}\right\}-\mathrm{am}\left\{(p-r) \mathrm{K}^{\prime}, \kappa^{\prime}\right\} \tag{188}
\end{equation*}
$$

$$
\begin{align*}
& O Y=a \mathrm{dn}\left\{(p+r) \mathrm{K}^{\prime}, \kappa^{\prime}\right\} \ldots \ldots \ldots \ldots \ldots . . . \tag{189}\\
& O Z=a \operatorname{dn}\left\{(p-r) \mathrm{K}^{\prime}, \kappa^{\prime}\right\} \ldots \ldots \ldots \ldots \ldots \ldots . .
\end{align*}
$$

35. As an application, take $p+r=\frac{1}{2}$ as in $\S 8$; then

$$
\begin{equation*}
O Y=a \operatorname{dn} \frac{1}{2} K^{\prime}=a \sqrt{ } \kappa=\sqrt{ }(a \beta) . \tag{191}
\end{equation*}
$$

If at the same time the secular term attached to the azimuth ψ, or to the angle $\boldsymbol{\sigma}$ in the herpolhode described by H in the invariable plane of G, is made to vanish,

$$
\begin{equation*}
L=-\frac{1}{2} \tag{192}
\end{equation*}
$$

and the algebraical herpolhode discussed by Halphen (Fonctions elliptiques, II., p. 282) is obtained.

We may write its equation, connecting the coordinates ξ, η,

$$
\begin{equation*}
\left(\xi^{2}+b^{2}\right)\left(\eta^{2}+b^{2}\right)=a^{4} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{193}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{4} \mu^{4} \sin ^{2} 2 \varpi+b^{2} \rho^{2}+b^{4}-a^{4}=0 \tag{194}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho^{2} \sin ^{2} 2 \sigma+2 b^{2}=2 \sqrt{ }\left(a^{4} \sin ^{2} 2 \sigma+b^{4} \cos ^{2} 2 \pi\right) \tag{195}
\end{equation*}
$$

and

$$
\frac{a^{4}-b^{4}}{b^{2}}>\rho^{2}>2\left(a^{x}-b^{3}\right)
$$

and it is produced by rolling the hyperboloid of two sheets

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{-b^{2}}+\frac{z^{2}}{-a^{2}}=1 \tag{196}
\end{equation*}
$$

upon a fixed plane at a distance b from its centre.
The squared modulus a^{9} is now equal to the anharmonic ratio of the four quantities $a^{2}, l^{2},-b^{2},-a^{2}$; so that

$$
\begin{equation*}
\kappa^{2}=\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)^{2}=\frac{\beta^{2}}{a^{2}} \tag{197}
\end{equation*}
$$

while

$$
\begin{equation*}
\frac{a^{4}-b^{4}}{b^{2}}=a \beta \tag{198}
\end{equation*}
$$

so that

$$
\left.\begin{array}{l}
a^{2}=\frac{\left(a^{2}+b^{3}\right)^{2}}{b^{2}}=b^{2}\left(\frac{a^{2}}{b^{2}}+1\right)^{2} \tag{199}\\
\beta^{2}=\frac{\left(a^{2}-b^{2}\right)^{2}}{b^{2}}=b^{2}\left(\frac{a^{2}}{b^{2}}-1\right)^{2}
\end{array}\right\} .
$$

and the equation of the focal ellipse is

$$
\begin{equation*}
\frac{a^{2}}{b^{2}\left(\frac{a^{2}}{b^{2}}+1\right)^{2}}+\frac{y^{2}}{b^{2}\left(\frac{a^{2}}{b^{2}}-1\right)^{2}}+\frac{z^{2}}{0}=1 \tag{200}
\end{equation*}
$$

The equation of the tangent IIP is

$$
\begin{equation*}
x \operatorname{cn} \frac{1}{2} \mathrm{~K}^{\prime}+y \operatorname{sn} \frac{1}{2} \mathrm{~K}^{\prime}=\sqrt{ }(\mu \beta) \tag{201}
\end{equation*}
$$

or

$$
\left.\begin{array}{l}
x \sqrt{ }\left(\frac{\kappa}{1+\kappa}\right)+y \sqrt{ }\left(\frac{\kappa}{1+\kappa}\right)=\sqrt{ }(a \beta) \tag{202}\\
x \sqrt{ }\left(\frac{a^{2}-b^{2}}{2 a^{2}}\right)+y V^{\prime}\left(\frac{a^{2}+b^{2}}{2 a^{2}}\right)=\sqrt{ }\left(\frac{a^{4}-b^{4}}{b^{2}}\right)
\end{array}\right\} .
$$

and therefore, at the point of contact P,

$$
x^{2}=\frac{b^{1}}{2 n^{2}}\left(\begin{array}{l}
n^{2} \tag{20:3}\\
i^{2}
\end{array}+1\right)^{3}, \quad y^{2}=\frac{b^{4}}{2, i^{2}}\binom{a^{2}}{i^{2}}^{y}
$$

At the point H,

$$
\begin{align*}
\frac{x^{2}}{y^{2}} & =-\frac{a^{2}+\lambda \cdot a^{2}+\nu}{\beta^{2}+\lambda \cdot \beta^{2}+\nu} \\
& =\frac{e_{1}-\rho v_{2} \cdot e_{1}-\wp v_{1}}{e_{2}-\wp v_{2} \cdot \wp v_{1}-e_{3}} \\
& =\frac{\cosh \theta_{1}+1 \cdot \cosh \theta_{1}-1}{\cos \theta_{2}+1 \cdot 1-\cos \theta_{2}}=\frac{\sinh ^{2} \theta_{1}}{\sin ^{2} \theta_{2}} . \tag{204}
\end{align*}
$$

and from §8, with the parameter a employed there (which must be distinguished from a^{2} as employed here)
so that

$$
\begin{align*}
\kappa & =\frac{2 a-1}{2 a+1}, \\
\frac{\sinh ^{2} \theta_{1}}{\sin ^{2} \theta_{2}} & =\frac{2 a+1}{2 a-1}=\frac{1}{\kappa}, \\
\frac{x^{9}}{y^{2}} & =\frac{a^{2}+b^{3}}{a^{2}-b^{4}} \ldots \ldots . \tag{205}
\end{align*}
$$

and therefore at H, the point of intersection of $O H$ with the tangent $H P$,

$$
\begin{equation*}
x^{2}=\frac{a^{2}}{2}\left(\frac{a^{2}}{b^{2}}+1\right), \quad y^{2}=\frac{a^{2}}{2}\left(\frac{a^{3}}{b^{4}}-1\right) \tag{206}
\end{equation*}
$$

Similarly, we find that, at Q,
$x^{3}=\frac{b^{8}}{2 a^{6}}\left(\frac{a^{2}}{b^{2}}+1\right)^{3}\left(\frac{a^{2}}{b^{3}}-2\right)^{2}, \quad y^{8}=\frac{b^{8}}{2 a^{6}}\left(\frac{a^{9}}{b^{2}}-1\right)^{8}\left(\frac{a^{9}}{b^{2}}+2\right)^{2}$
Replacing the value of a in $\S 8$ by $\frac{a^{2}}{2 b^{2}}$, so as to agree with tho notation of this article, we find that the cone described by the axis of the top is given by

$$
\begin{align*}
\sin ^{2} \theta \cos 2 \psi= & 4 \sqrt{ } 2 \frac{a b^{2}}{\left(a^{4}+8 b^{4}\right)^{2}} \sqrt{ }\left\{\frac{a^{4}+2 b^{4}}{a^{2} \sqrt{ }\left(a^{4}+8 b^{4}\right)}-\cos \theta\right\} \\
\sin ^{2} \theta \sin 2 \psi= & \left\{\frac{a^{i}}{\sqrt{ }\left(a^{4}+8 b^{4}\right)}-\cos \theta\right\} \\
& \times \sqrt{ }\left\{\frac{a^{2}-4 b^{2}}{\sqrt{ }\left(a^{4}+8 b^{4}\right)}+\cos \theta \cdot \frac{a^{2}+4 b^{2}}{\sqrt{ }\left(a^{4}+8 b^{4}\right)}+\cos \theta\right\} \tag{208}
\end{align*}
$$

but θ is now measured from the downward vertical through 0 .

Thus, for instance, if

$$
a^{4}=2 b^{2}, \quad \kappa=\frac{1}{3} ;
$$

the point Q is at an end of the minor axis of the focal ellipse, and the spherical curve described by O has cusps.

If $\quad a^{9}=3 b^{2}, \quad k=\frac{1}{2}$;
the curve of C has loops, and Halphen's herpolhode has points of inflexion, where

$$
\begin{gathered}
\rho^{2}=\frac{18}{9} b^{2}, \\
8 b^{2}>\rho^{2}>4 b^{2} ; \\
\frac{1}{2} \sqrt{ } 6 b, \frac{1}{2} \sqrt{ } 3 b ; \\
\frac{4}{3} \sqrt{ } 6 b, \frac{2}{3} \sqrt{ } 3 b ; \\
\frac{4}{6} \sqrt{ } 6 b, \quad \frac{12}{6} \sqrt{ } 3 b ;
\end{gathered}
$$

and
the coordinates of H are $\frac{1}{2} \sqrt{ } 6 b, \frac{1}{2} \sqrt{ } 3 b$;
of P are
of Q are
the equation of the focal ellipse being

$$
\begin{equation*}
\frac{x^{2}}{16 b^{2}}+\frac{y^{2}}{4 b^{2}}=1 \tag{209}
\end{equation*}
$$

These give suitable dimensions for a model, like the one constructed by Chateau of Paris, according to M. Darboux's instructions.
36. The results for the motion of the top when

$$
v=\omega_{1}+\frac{1}{3} \omega_{8}, \quad \text { and } \quad \omega_{1}+\frac{2}{3} \omega_{3},
$$

and when, in addition, the secular term associated with 3ψ is made to disappear, as in $\S \S 10$ and 11 , so that the path of the axis $O O$ is given algebraically, may be stated here in conclusion, expressed in the notation defined above.

With

$$
v=\omega_{1}+\frac{1}{3} \omega_{8}
$$

we must put

$$
h=-L=\frac{1}{3}(2-c)(1-2 c) ;
$$

$$
-\frac{\sigma_{2} \sigma_{3}}{\sigma_{1}}=\left(2 c-c^{2}\right)^{2}, \quad-\frac{\sigma_{s} \sigma_{1}}{\sigma_{2}}=(1-c)^{4}, \quad-\frac{\sigma_{1} \sigma_{9}}{\sigma_{s}}=(1-2 c)^{2},
$$

and thus Darboux's a, b, c (his c being replaced by [c] to distinguish it) are given by

$$
\begin{aligned}
a & =\frac{1}{3}(1+c)(2-c), \\
b & =-\frac{1}{3}\left(1-c+c^{3}\right), \\
{[c] } & =-\frac{1}{3}(1+c)(1-2 c),
\end{aligned}
$$

and for the rolling quadric

$$
\underset{A}{D}=\frac{a}{h}=\frac{1+c}{1-2 c}, \quad \underset{B}{D}=\frac{b}{h}=-\frac{1-c+c^{2}}{(2-c)(1-2 c)}, \quad \stackrel{D}{C}=\stackrel{[c]}{h}=-\frac{1+c}{2-c} .
$$

The herpolhode of H in the invariable plane of G is now an algebraical curve, given by (§ 9)

$$
I\left(\omega_{1}+\frac{1}{8} \omega_{8}\right)=3 \pi
$$

and

$$
\rho^{2}=m^{2}\left\{2 c(1-c)^{2}-s\right\} ;
$$

so that $\left(\frac{\rho}{m}\right)^{8} \cos 3 \pi$
$=\left(2-5 c+2 c^{2}\right) \sqrt{ }\left\{(1-c)^{2}(1-2 c)+\frac{\rho^{2}}{m^{2}} \cdot(1-c)^{2}\left(2 c-c^{9}\right)-\frac{\rho^{2}}{m^{2}}\right\}$, $\left(\frac{\rho}{m}\right)^{s} \cos 3 \boldsymbol{\sigma}$
$=\left\{(1-c)^{2}\left(2-5 c+2 c^{2}\right)+\frac{\rho^{2}}{n^{2}}\right\} \sqrt{ }\left\{-c\left(2-5 c+2 c^{2}\right)+\frac{\rho^{2}}{m^{2}}\right\}$
With

$$
v=\omega_{1}+\frac{3}{3} \omega_{8},
$$

we must put

$$
h=-L=\frac{1}{8}(1+c)(1-2 c)
$$

$$
-\frac{\sigma_{2} \sigma_{8}}{\sigma_{1}}=c^{4}, \quad-\frac{\sigma_{n} \sigma_{1}}{\sigma_{2}}=\left(1-c^{2}\right)^{2}, \quad-\frac{\sigma_{1} \sigma_{3}}{\sigma_{8}}=(1-2 c)^{2}
$$

and

$$
a=\frac{1}{3}\left(1-c+c^{2}\right), \quad b=-\frac{1}{8} c(1+c), \quad[c]=\frac{1}{8} c(1-2 c) .
$$

For the rolling quadric

$$
\begin{aligned}
& \frac{D}{A}=\frac{a}{h}=\frac{1-c+c^{2}}{(1+c)(1-2 c)}, \\
& \frac{1)}{B}=\frac{b}{h}=-\frac{c}{1-2 c}, \\
& \frac{J)}{C}=\frac{[c]}{h}=\frac{c}{1+c} .
\end{aligned}
$$

The algebraical herpolhode of H in the invariable plane of G is now given by

$$
I\left(\omega_{1}+\frac{2}{3} \omega_{3}\right)=3 \pi,
$$

nnd

$$
\rho^{2}=m^{2}\left(2 c^{2}-2 c^{8}-s\right) ;
$$

so that

$$
\begin{aligned}
& \left(\frac{\rho}{m}\right)^{3} \cos 3 \sigma=\left\{c^{2}(1+c)(1-2 c)-\frac{\rho^{2}}{m^{2}}\right\} \sqrt{ }\left\{\left(1-c^{2}\right)(1-2 c)+\frac{\rho^{2}}{m^{2}}\right\}, \\
& \left(\frac{\rho}{m}\right)^{s} \sin 3 \sigma=(1+c)(1-2 c) \sqrt{ }\left\{-c^{2}(1-2 c)+\frac{\rho^{2}}{m^{2}} \cdot c^{2}\left(1-c^{2}\right)-\frac{\rho^{2}}{m^{4}}\right\} .
\end{aligned}
$$

[37. We can utilize other results of the article on " Pseudo-Elliptic Integrals," Vol. xxv.; thus, from p. 288, with

$$
\begin{aligned}
v & =\omega_{1}+\frac{1}{4} \omega_{3}, \\
\sigma & =c(1-c)^{9}(1-2 c)^{2}\left(1-2 c+2 c^{2}\right), \\
\sigma_{1} & =-\frac{1}{4}(1-2 c)^{3}\left(1-2 c+2 c^{2}\right)\left(1-4 c+2 c^{2}\right), \\
\sigma_{2} & =c(1-c)^{8}\left(1-2 c+2 c^{2}\right)\left(1-4 c+2 c^{2}\right), \\
\sigma_{3} & =c(1-c)^{3}(1-2 c)^{8}, \\
\sqrt{ }(-\Sigma) & =c(1-c)^{8}(1-2 c)^{3}\left(1-2 c+2 c^{2}\right)\left(1-4 c+2 c^{2}\right), \\
\rho & =\left(3-8 c+6 c^{2}\right)\left(1-4 c+2 c^{9}\right) . \\
v & =\omega_{1}+\frac{3}{4} \omega_{3}, \\
\sigma & =c^{2}(1-c)(1-2 c)\left(1-2 c+2 c^{2}\right), \\
\sigma_{1} & =-\frac{1}{4}(1-2 c)\left(1-2 c+2 c^{2}\right)\left(1-4 c+2 c^{2}\right), \\
\sigma_{3} & =c^{8}(1-c)\left(1-2 c+2 c^{2}\right)\left(1-4 c+2 c^{2}\right), \\
\sigma_{3} & =c^{8}(1-c)(1-2 c), \\
\sqrt{ }(-\Sigma) & =c^{8}(1-c)(1-2 c)\left(1-2 c+2 c^{2}\right)\left(1-4 c+2 c^{3}\right), \\
\rho & =\left(1+2 c^{2}\right)\left(1-4 c+2 c^{2}\right) .
\end{aligned}
$$

With

The cone described by the axis of the top in the corresponding states of motion will now have eight loops, given by equations of the form

$$
\sin ^{4} \theta \cos (4 \psi-p t)
$$

$$
=\left(P \cos ^{8} \theta+Q \cos ^{2} \theta+R \cos \theta+S\right) \sqrt{ }\left(\cos \theta-\cos \theta_{8}\right),
$$

$$
\sin ^{4} \theta \sin (4 \psi-p t)
$$

$$
=\left(\cos ^{8} \theta+C \cos ^{2} \theta+D \cos \theta+E\right) \sqrt{ }\left(\cosh \theta_{1}-\cos \theta \cos \theta_{2}-\cos \theta\right) ;
$$

with

$$
P=\sqrt{ } 2 \frac{p}{n}=\frac{\rho+8 L}{\sqrt{ }(2 \Omega)} .
$$

38. Again, from p. 290, with

$$
\begin{aligned}
v & =\omega_{1}+\frac{1}{8} \omega_{8}, \\
\sigma & =8 c(c+1)^{y}(c-1), \\
\sqrt{ }(-\Sigma) & =8 c(c+1)^{8}(c-1)\left(-c^{2}+4 c+1\right), \\
\rho & =(c+3)\left(c^{2}-4 c-1\right) ;
\end{aligned}
$$

and with

$$
\begin{aligned}
v & =\omega_{1}+\frac{3}{6} \omega_{8}, \\
\sigma & =4 c(c+1)(c-1)^{3}, \\
\sqrt{ }(-\Sigma) & =8 c^{2}(c+1)(c-1)^{3}\left(-c^{3}+4 c+1\right), \\
\rho & =(3 c-1)\left(c^{2}-4 c-1\right) ;
\end{aligned}
$$

and the cone described by the axis of the top has ten loops, given by equations of the form

$$
\sin ^{5} \theta \cos (5 \psi-p t)
$$

$=\left(P \cos ^{4} \theta+Q \cos ^{8} \theta+R \cos ^{8} \theta+S \cos \theta+\Gamma\right) \sqrt{ }\left(\cos \theta_{2}-\cos \theta\right)$,

$$
\sin ^{5} \theta \sin (5 \psi-p t)
$$

$=\left(\cos ^{4} \theta+C \cos ^{8} \theta+D \cos ^{2} \theta+E \cos \theta+F\right) \sqrt{ }\left(\cosh \theta_{1}-\cos \theta \cdot \cos \theta-\cos \theta_{3}\right)$,

$$
P=\sqrt{ } 2 \frac{p}{n}=\frac{\rho+10 I}{\sqrt{ }(2 \Omega)} .
$$

So also, with parameters of the form

$$
v=\omega_{1}+\frac{2}{6} \omega_{8} \quad \text { or } \quad \omega_{1}+\frac{4}{6} \omega_{j},
$$

when the cone described by the axis will have five loons, given by equations of the form

$$
\begin{gathered}
\sin ^{5} \theta \cos (5 \psi-p t) \\
=\left(P \cos ^{4} \theta+Q \cos ^{8} \theta+R \cos ^{2} \theta+S \cos \theta+T\right) \sqrt{ }\left(\cosh \theta_{1}-\cos \theta\right), \\
\vdots \sin ^{5} \theta \sin (5 \psi-p t) \\
=\left(\cos ^{4} \theta+C \cos ^{8} \theta+D \cos ^{2} \theta+E \cos \theta+F\right) \sqrt{ }\left(\cos \theta_{2}-\cos \theta \cdot \cos \theta-\cos \theta_{3}\right) .
\end{gathered}
$$

39. It is readily proved that the angle between GHI and the projection of $O x$ on the tangent plane GUK (Fig. 3)

$$
=\tan ^{-1} \frac{B-C}{A-D} \frac{y z}{\partial x}=\tan ^{-1} \sqrt{ }\left(-\frac{\left.\left.\wp v-e_{a} . \wp u-e_{b} . \wp \frac{u-e_{c}}{\wp u-e_{a} . \wp v-e_{b} . \wp v-e_{c}}\right)\right) ~}{\text { and }}\right.
$$

from (91), (119), and (123); so that, if ρ_{a}, ш، denote the polar coordinates of the projection on the invariable plane of G of a point fixed in $O x$ at a distance k_{a} from O, then, from (68),

This is of the form

$$
\begin{equation*}
\omega_{a}=\frac{1}{2} \int \frac{a\left\{\wp\left(v-\omega_{a}\right)-\wp u\right\}+i \wp^{\prime}\left(v-\omega_{a}\right)}{\wp\left(v-\omega_{a}\right)-\wp_{u}} d u . \tag{210}
\end{equation*}
$$

while

$$
\left(\frac{\rho_{a}}{h_{a}}\right)^{2}=\sin ^{2} x O G=1-\frac{A^{2} x^{2}}{D^{2} \delta^{2}} .
$$

But, from (154),

$$
x^{2}=\frac{B C}{(O-A)(A-B)} m^{2}\left(\wp u-e_{a}\right), \ldots
$$

and, from (168),

$$
\rho^{2}+\frac{(B-D)(C-D)}{B C} \delta^{2}=m^{2}\left(e_{a}-\delta u\right), \ldots
$$

Also

$$
p^{2}=m^{2}(\wp v-\wp u),
$$

so that, putting

$$
u=v, \quad \rho^{2}=0
$$

$$
\frac{(B-D)(C-D)}{B C} \delta^{2}=m^{2}\left(e_{a}-\wp v\right), \ldots
$$

and

$$
\begin{aligned}
m^{2}\left\{\wp\left(v-\omega_{a}\right)-e_{a}\right\}= & \frac{n^{2}\left(e_{a}-e_{b}\right) m^{2}\left(e_{a}-e_{c}\right)}{m^{2}\left(\wp v-e_{a}\right)} \\
= & \frac{(O-A)(A-B) D^{2}}{A^{2} B C} \delta^{y} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\binom{\rho_{u}}{h_{u}}^{y} & =1-\frac{A^{2} B C m^{9}}{(C-A)\left(A-1-\frac{e_{a}}{}\right)} \\
& =1-\frac{\wp u-e_{n}}{D^{2} \delta^{2}} \\
& =\frac{\wp\left(v-\omega_{a}\right)-\wp u}{\wp\left(v-\omega_{u}\right)-e_{a}} \ldots \ldots \ldots \ldots . \tag{211}
\end{align*}
$$

and (210), (211) prove that (ρ_{a}, ϖ_{a}) describes a herpolhode, denoted liy σ_{a} in Poinsot's I'héorie nouvelle de la rotation des corps, p. 127.

In the curve σ_{a}^{\prime}, described by the point A^{\prime}, in which $O x$ cuts the invariable plane of G,

$$
\begin{aligned}
\rho_{a}^{\prime 2} & =G A^{\prime 2}=O A^{\mu}-O G^{2}=\frac{D^{2} \delta^{4}}{A^{4} a^{2}}-\delta^{2} \\
& =\frac{(O-A)(A-B) D^{2} \delta^{4}}{A^{2} B C m^{2}\left(\wp u-e_{a}\right)}-\delta^{2}=\frac{\wp\left(v-\omega_{a}\right)-e_{a}}{\wp u-e_{a}} \delta^{2}-\delta^{2} \\
& \left.=\frac{8\left(u-\omega_{a}\right)-e_{a}}{\wp v-e_{a}} \delta^{2}-\delta^{2}=\frac{\wp\left(u-\omega_{a}\right)-\wp v}{\wp v-e_{a}} \dot{\delta}^{3} .\right]
\end{aligned}
$$

