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1. The theory of series which neither converge nor diverge to a
definite limit has been little studied. It is clear none the less that
from the point of view of theory of functions such series have as real a
claim to consideration as the more usual ones; there is, moreover, the
important application to the theory of derivates.

The investigator is, however, met on the threshold by the difficulty
that the methods which were fruitful in the more simple case do not at
once apply. On the one hand, the nature of the sum function, or rather
of the two functions which now correspond to it, has not been elucidated,
and on the other, the usual definition of uniform convergence by means of
the remainder function does not lend itself easily to generalisation. This
last difficulty is removed by the formulation given by myself in a recent
paper presented to this Society, a formulation which depends on the
introduction of what I call the peak and chasm functions. Moreover,
the application of the method of monotone sequences leads readily to
the required information as to the nature of the upper and lower functions,
which, in the general case, replace the sum-function.

Except in the fundamental theorem which concerns the nature of the
functions defined by the extreme limits at every point, I confine my
attention to series of continuous functions. In the case of the funda-
mental theorem, however, this restriction is unnecessarily narrow. The
nature of the upper function is, in fact, found to be the same, in
general, whether the generating functions are continuous, or only lower
semi-continuous. In the same way the lower function has the same
nature whether the generating functions are continuous, or only upper
semi-continuous.

The fundamental theorem in question is as follows:—
The upper (lower) function of a sequence of lower (upper) semi-

continuous functions is upper (lower) semi-continuous, except possibly
at a set of points of the first category. This is, moreover, true not
only with respect to the continuum, but with respect to every perfect
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set. In particular, the upper and lower derivates have these properties
respectively.

This fundamental theorem includes as a particular case Baire's
theorem when the upper and lower functions coincide. In a paper in
the Messenger of Mathematics* I shewed that, in the case of a single
variable, this theorem of Baire's still held when there was continuity
on one side only at each point. In the present paper I shew that the
corresponding property is possessed by the upper and lower functions,
viz., that their nature is the same when the lower and upper semi-
continuity of the generating functions is on one side only.

Turning to the nature of the convergence and divergence, we have now,
in general, what is usually called oscillatory divergence existing at every
point. It at once follows from the fundamental theorem that the points
at which the measure of this divergence, or, as I prefer to say, the measure
of the oscillation, is greater than k form an ordinary inner limiting set.

The consideration of the peak and chasm functions leads, on the other
hand, to the splitting up of the concept of uniform convergence and diver-
gence into two components, which I call uniform oscillation above and
below. I shew that the points of uniform oscillation above and below
have each the same distribution as have in the simple case the points of
uniform convergence, viz., that they fill up the continuum except possibly
for a set of the first category.!

Further, all the results as to the distinction of right and left obtained
in connexion with ordinary uniform convergence and divergence still
hold. In other words, non-uniform oscillation above and below have
each on the right and left the same measure except possibly at a
countable set of points.

Closely connected with the main subject of the paper is the con-
sideration of the distinction of right and left in the case of derivates.
Here we are concerned in general with two distinct sequences, that
leading to a right-hand and that leading to a left-hand derivate. The result
obtained is that whatever be the nature of the function and of its derivates,
bounded or unbounded, the derivates are the same on the right and left,
except at a set of points of the first category.

• W. H. Young, "A New Proof of a Theorem of Baire's," Messenger of Math., New
Series, August, 1907.

+ From this it follows in particular, by the characteristic property of a set of the first
category, that the well known theorems concerning the mode of convergence of a scries of con-
tinuous functions and the nature of its limiting function still hold when oscillating divergence
is allowed at a set of the first category, viz., the points of uniform convergence and divergence
still fill up the continuum, except for a set of the first category, and the limiting functions are
all point wise discontinuous.
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2. Let / j , f2, ... be a sequence of functions, not necessarily having a
definite limit at each point. At each point we shall then have a highest
possible limit, and a lowest possible limit, and perhaps intermediate limits.
The function / whose value at each point is the highest possible limit is
called the upper function, and the function/ whose value at each point is
the lowest possible limit is called the loioer function. With this explana-
tion we may write shortly,

fix) = highest Lt fn{x),

f(x) = lowest Lt fn(x).

We now define the left- and right-hand peak and chasm functions as
follows:—

We take an interval (P, Q) with P as right-hand end-point, and denote
the upper bound of fn{x) for points x internal to this interval by Mn, Q.
The highest possible limit of Mn, Q, as n increases indefinitely, we denote
by MQ.

Now, if Q: and Q2 are two positions of Q, of which Q% lies between P
and Qlt it follows from the definitions that

Hence, also, MQ, < MQX .

If therefore we make Q move up to P as limit, the quantities MQ will
form a monotone decreasing sequence, and will therefore have a definite
limit not greater than any of them ; this limit we take as the value 7TL(P)

of the left-hand peak function at P.
Similarly, working on the right, we get the right-hand peak function

TTR{P). The function 7r(P) whose value at each point is that one of irL

and TTR which is not less than the other, is the peak function par
excellence.

Similarly, interchanging " upper" and " lower" we get the chasm
functions XL, X&> a n d X-

3. THEOREM 1.—Iff denote either the upper or the lower function,

(A similar inequality holds, of course, on the right.)
For, if x be any point inside the interval (P, Q) on the right of P, and

n, Q denote the upper bound oifn(x) in this interval,
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Making n increase indefinitely, f(x), being one of the limits on the left,
cannot lie above the highest limit MQ on the right, that is,

Now, letting x describe a sequence having P as limit, any limit which
we may obtain on the left is less than or equal to MQ , so that

Since this is true for all positions of Q, it is true when Q moves up to P ,

Similarly ^x(P) > xu(P).

which proves the theorem.

THEOREM 2.—If the functions /» are continuous at P,

(A similar inequality holds, of course, on the right.)
For, since fn{x) is continuous at P, it has the definite limit/n(P), as x

approaches P, so that

Since this is true for all values of n, f(P) cannot be higher than the
highest limit of the right-hand side, that is,

Since this is true for all positions of Q,

Similarly the other inequality holds, which proves the theorem.
From these theorems it follows that if the peak and chasm functions

are equal at P, the upper and lower functions agree and are both con-
tinuous at P, supposing the/n 's to be continuous functions at P.*

Again, it follows that at a point where the peak function is equal to
the upper function, the latter is upper semi-continuous, while at a point
where the chasm function is equal to the lower function the latter is lower
semi-continuous.

* If the/,,'s are not continuous, the same holds with a countably infinite set of possible
exceptions, by the results of my paper on " The Distinction of Right and Left at Points of
Discontinuity," Quart. Jour, of Math., 1907.
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4. Let flt f2, ... be a sequence of lower (upper) semi-continuous func-
tions. Let Ui>2 denote'the function* which at each point has the value of
the greater of fx and/2, or is equal to both, if they are equal. Then Vit 2

is a lower (upper) semi-continuous function.!
Let Hi, ,i be the function which at each point has the value of the

greater of /«, and vn-u or is equal to both. Then it follows, for each value
of n, that V\>n is a lower (upper) semi-continuous function. Also

is a monotone ascending sequence.
Thus, if the original functions / l f / 2 , ••• were lower semi-continuous,

the limit vx of the last sequence is a lower semi-continuous function.
This function vx is such that at each point its value is the upper bound of
/i» ht •" a^ that point.

Similarly we define v.2, va, ..., vn being got from fn, /n+1, ... as vx was
from/l f /2

Then vx ̂  v2 ̂  v3 ̂  ...

is a monotone descending sequence of functions, which, if the /n 's were
lower semi-continuous, are lower semi-continuous. The limit of this
sequence has at each point its value equal to the highest limit approached
by / i , / 2 , ••-, and is accordingly the upper function / of the original
sequence.

Similarly, if the original functions were upper semi-continuous, we get
the lower function £ represented as the limit of a monotone ascending
sequence of upper semi-continuous functions.

Thus we have the following theorem :—

THEOREM 3.—The upper (loiver) function of a sequence of lower {upper)

* Lebesgue, in his Integration, p. 121, uses a similar device in the case of a sequence of
measurable functions to shew that the upper and lower functions are measurable.

t For, if fx and ft are both lower semi-continuous, and Ak any number less than fk{x'),
we can find an interval throughout which

f,{x)>Au ft(x)>Ai;

and therefore v\t •> is greater than the greater of Ax or .42, that is, greater than any number less
than its value at x', and is therefore lower semi-conbinuous. Similarly, if fx and fi are both
upper semi-continuous, and Ak any number greater than fk{x'), we can find an interval
throughout which f\ < Au /2 (x) < A.,;

and therefore V\,2 is less than the greater of At and A-:, that is, less than any number greater
than its value at x', and is therefore upper semi-continuous.



1908.J OSCILLATING SUCCESSIONS OF CONTINUOUS FUNCTIONS. 808

semi-continuous functions is the limit of a monotone descending {ascending)
sequence of lower (upper) semi-continuous functions.

COR. 1.—The upper [lower) function of a sequence of lower {upper)
semi-continuous functions is upper (lower) semi-continuous with respect to
any perfect set, except at a set of points of the first category with respect
to that set.

For all the common points of continuity of the generating semi-
continuous functions yield points of upper (lower) semi-continuity of the
limiting function. This is, moreover, true whether we refer to the con-
tinuum or to any other perfect set.

COR. 2.—The points at which the upper function of a sequence of
lower semi-continuous functions is + oo, or is > k, form an ordinary
inner limiting set.

For they are the points

^ = +oo or >fc, -y2 = +oo or > k, ...,

that is, the inner limiting set of a sequence of ordinary inner limiting
sets.*

Similarly,—

The points at which the lower function of a sequence of upper semi-
continuous functions is — oo, or < k, form- an ordinary inner limiting
set.

Hence also, the points at which the upper (lower) function of a sequence
of lower (upper) semi-continuous functions ^.k (^k) form an ordinary
outer limiting set.

It may be noticed that in the case when the functions fv f2, ... are not
only lower semi-continuous but never — oo, each of the functions vn has a
finite value at each point, and therefore, being lower semi-continuous, is
bounded below. Hence the lower integral of vn (which is its generalised,
or Lebesgue, integral) is the upper limit of the lower summations.

A similar result holds when fv /2, ... are upper semi-continuous, and
never + oo, for the generating upper semi-continuous functions of the
lower function.

5. Applying the results of the preceding article to the case when the

Young, Theory of Sets of Points (Cambridge University Press, 1906), p. 72, Theorem 38a.
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original functions flt /2, ... are continuous functions, we have the
following:—

The upper function is upper semi-continuous, and the lower function
lower semi-continuous with respect to any perfect set, except possibly at a
set of the first category with respect to that set.

The upper function is the limit of a monotone descending sequence of
lower semi-continuous functions, and the lower function the limit of a
monotone ascending sequence of upper semi-continuous functions.

The points at which the difference of the upper and lower functions is
greater than k form an ordinary inner limiting set. Or, as we may say,
the points at which the " measure of the oscillation" is greater than k
form an ordinary inner limiting set.

Any function which is the limit of a sequence of continuous functions
can be expressed as the limit of a decreasing sequence of lower semi-
continuous functions, and also as the limit of an ascending sequence of
upper semi-continuous functions. Such a function is therefore pointwise
discontinuous with respect to every perfect set.

This last result is Baire's theorem, which is here proved in another
new way. Assuming the converse, which has also been proved by Baire,
it shews that any function which is pointwise discontinuous with respect
to every perfect set can be expressed in each of these two modes, and gives
a criterion, which may sometimes be convenient, for determining whether
a function belongs to Baire's first class.

6. Although we have throughout worked with a discontinuous para-
meter n, which approaches the value infinity along a countable set of
values, the whole discussion might equally well have been based upon a
sequence depending on a continuous parameter h, which approaches the
value 0, say.

Since the right-hand upper and lower derivates / + (a?) and /+ (x) of a
continuous function f{x) are the upper and lower functions of a sequence
of continuous functions ,, . ,. .. .

f(x+h)—f(x)
h

where h is a continuous positive variable which approaches the value 0,
or (Hobson's Functions of a Real Variable, p. 552) of a sequence

f(x+hn)-f(x)
K

all that has been said about upper and lower functions applies to derivates.
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7. THEOEEM 4.—There is no distinction of right and left with respect
to derivates, except possibly at a set of the first category.

For, since in every closed interval the right-hand upper derivate/+

and the left-hand upper derivate/" have the same upper bound, it follows
that at each point they have the same associated upper limiting function
of Baire, say <pB-

But, except at points of a set of the first category, both the upper
derivates are upper semi-continuous, and therefore, both being equal to 0B,
they are equal to one another, which proves the theorem as far as the
upper derivatea are concerned.

Similarly it follows for the lower derivates, and therefore for the upper
and lower derivates simultaneously, since the sum of two sets of the first
category is a set of the first category.

This result may be compared with that of Lebesgue* that a differential
coefficient exists in the case of a large class of functions, and in particular
functions with bounded derivates, except at a set of content zero.

The above theorem is true without any limitations, and is not, even in
Lebesgue's case, included in his result. It is easy, in fact, to construct a
set of the first category whose content is that of the continuum, and whose
complementary set is therefore of content zero without being of the first
category.!

Combining the two results in the case of the functions considered by
Lebesgue we have the result that there is no distinction of right and left
with regard to derivates, except possibly at a set of the first category of
content zero.

It should be noted that we cannot obtain any information with regard
to the identity of upper and lower derivates by our method of procedure,
still less prove that they agree except at a set of content zero. It is easy,
in fact, to construct two bounded functions which have all the properties
of the derivates utilised above, and which do not agree at any point of an
interval.

Ex.—Let fx{x) — %~(l at all the rational points with denominator 2~9,
and = 1 elsewhere.

Let f2(x) = 1—3~9 at all the rational points with denominator 3~9,

and = 0 elsewhere.

• Lebesgue, Integration, pp. 123 seq. See, however, Hobson, Functions of a Real
Variable (Cambridge University Press, 1907), p. 556.

t W. H. Young, '' On the Construction of a Pointwise Discontinuous Function all of
whose Continuities are Infinities and which has a Generalised Integral," Quarterly Journal*
February, 1908.

SBE. 2. VOL. 6. NO. 994. X
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Both functions are bounded, fx is everywhere greater than /2, both
functions have the upper bound 1 and the lower bound 0 in every interval^
and, while /x is upper semi-continuous except at a set of the first category
(here countable),/2 is lower semi-continuous except at a set of the first
category (countable). The Lebesgue integrals are 1 and 0 respectively,
integrating from 0 to 1.

8. On account of its importance we give an alternative proof of the
result just obtained, a proof moreover independent of the fact that the
derivates have the same <ps and \frB.

Alternative proof of the theorem:—

There is no distinction of right and left with respect to derivates except
at points of a set of the first category.

Let hlt /^, ... be a sequence of positive quantities, monotone and
decreasing with zero as limit, and such that the upper function

f(x) = highest Lt fn(x), (1)
7 1 = + 00

, - , . F(x+hn)—F(x) ,0.
where fn(x) = , — (2)

is the upper right-hand derivate F+ of the function. F(x).*

Let corresponding dashed letter apply to the left-hand upper derivate,

80 """" f'(x) = highest Lt fn(x), (3)
11 = 4" GO

is the upper left-hand derivate F~, where

It follows that, if gn(x) denote the function got by suppressing the dashes
in (4), and g (x) be the upper function of the series glt g2, ••-,

Now, let P be any point, and Qi and JB» the /> ^.
points to the right, of P , such that

Q = QiBi = h. (6)

Let X\in be the point of the interval (P, Qi) where the continuous
function fn{x) attains its upper bound Mn,Qr

Then the point y^n lies in the interval (P, RJ, if

yi,n = X^n + lbn, (7)

* Hobson, Theory of Functions of a Real Variable, p. 552.
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since hx > hn, for all values of n. Also

9n{yi,n) = ^ T — / n ( ^ l , 7 i ) — Mn, Qx,

whence it follows that the upper bound, say Gn< Rv of gn in the interval
(P, R]) is not less than MntQV i.e.,

tfmQ, <<?•»*• (8)

Since this is true for all values of n, it is true of the highest limits 3/Q,
and GRl approached by the two side* of (8), that is,

M " Q l < G f l l . (9)_

Similarly, since hi > hi+r, we have for all values of n ^ i,

Mn>Qi^Gn,Ri, (8')

whence MQ.^GR,, (9')

for all values of i.

Now, by the definition of the right-hand peak function TTR(P) of the
sequence fv f2, ..., it is the limit of the quantities MQ., since the points Qi
form a sequence having P as limiting point on the left.

Similarly, since the points .Si form a sequence having P as limit on
the left, the peak function of the sequence glt g2, ... is the limit of GR..
Hence, by (9'),

TTR (P) ;< the right-hand peak function of the gi's.

But the peak function is equal to the upper function, except at a set of
the first category, hence

except at a set of the first category, a fortiori, by (5),

except at a set of the first category, that is,

F+ < F~, (10)

except at a set of the first category.

Similarly, F~ < F+, (11)

except at a set of the first category.
From (10) and (11) it follows that

F+ = F-,

except at a set of the first category.
x 2
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Similarly, the right- and left-hand lower derivates are equal except at
a set of the first category. Thus, finally, the two upper derivates are
equal, and the two lower derivates are equal except at a set of the first
category.

9. THEOREM 5.—If the upper and the lower function coincide at one of
the points where the zipper function is upper semi-continuous, and the
loioer function lower semi-continuous, both functions are continuous there.

For the yp- of the upper function is not less than that of the lower
function, and is therefore not less than the value of the lower function,
since the lower function is lower semi-continuous. Since the upper
function has the same value, this shews that

But, since the upper function is upper semi-continuous at the point,

since, for any function, \fs <; 0,

this proves that \js = / = 0,

SO that the upper function, and similarly the lower function, is continuous.

COR. 1.—If the points at which the upper and lower functions do not
coincide form a set of the first category, the points at which the limiting
functions are discontinuous form a set of the first category.

In particular, if the points known by Lebesgue's theorem to be of zero
content, at which the differential coefficient of a function of the class
specially considered by him does not exist, form a set of the first category,
the points at which the derivates are discontinuous form a set of the first
category.

We surmise that, even in the cases considered by Lebesgue, the points
at which the differential coefficient does not exist will not, in general,
form a set of the first category.

We may state Cor. 1 a little differently as follows :—

Unless the points at which a definite limit exists form a set of the first
category only, there is certainly a set of the second category at which all
the limiting functions are continuous.

COR. 2.—At any point at which the series of non-negative continuous
functions

J Ux—



1908.] OSCILLATING SUCCESSIONS OF CONTINUOUS FUNCTIONS. 309

where ux ^ u% ^ u3 ^ ... has a definite limit, the topper and lower func-
tions, and, of course, therefore, all intermediate limiting functions, are
continuous.

In fact, the upper and lower functions are respectively upper and lower
semi-continuous throughout the whole interval, the upper function being
obtained as the limit of the sum of the first (2?i+l) terms, and the lower
function as the sum of the first 2?i terms, when n increases without limit.

10. Uniform Oscillation. — When the functions ftl are continuous
functions, I shewed that uniform convergence or divergence at a point P
might be characterised by the equality of the peak and chasm functions.
In this case both are equal to the limiting function, which is moreover
continuous at P. It was then shewn that such points of uniform con-
vergence or divergence always exist, and indeed that they form the com-
plementary set of a set of the first category only.

Our theorems shew that, in the more general case, the peak and chasm
functions cannot coincide without the upper and lower functions also coin-
ciding. Such points may not exist at all. The preceding theorems, how-
ever, suggest a generalisation of the notion of uniform convergence or
divergence which subsequent investigations further justify.

DEF.—At a point where the peak function is equal to the upper func-
tion the sequence is said to oscillate uniformly above.

At a point where the chasm function is equal to the lozoer function the
sequence is said to oscillate uniformly below.

At a point where both these occur, the sequence is said to oscillate
uniformly.

The last result of Article 3 may now be re-stated in the following
form :—

At a point where a sequence of continuous functions oscillates uni-
formly above {below), the upper {lower) function is upper {lower) semi-
continuous.

11. The theorems proved for the peak and chasm functions in § 12 of
my paper on " Convergence and Divergence of a Series of Continuous
Functions, . . . " are independent of the existence or non-existence of a
definite limiting function ; it is therefore unnecessary to reproduce the
proofs. The enunciations are as follows :—

THEOREM 6.—Any limit approached by TT{X), TTL{Z), or irR{x) as x
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approaches a point P as limit on the right ^ irL (P), and, as x approaches
P as limit on the left ^ TTR (P).

COR.—irL is upper semi-continuous on the left and izR on the right,
while TT is an upper semi-continuous function. As such* TTL and irR, as
well as 7r, are at most pointioise discontinuous.

THEOREM 7.—At every point of continuity of ir,

and both TTZ and irR are continuous.

THEOREM 8.—The only points at which both TTL and irR are continuous
are the points of continuity of T.

THEOREM 9.—The points, if any, at which -KL differs from TTR are
countable.

Similar results, interchanging the signs > and < , hold, of course,
for the chasm functions.

THEOREM 10.—At any point where the peak and chasm functions are
equal both are continuous.

For as x approaches P as limit on the right, by Theorem 6,

XL(P) < Lt XL(X) < Lt TTL(X) < TTL(P),

at such a point as is contemplated, therefore, the sign of equality must
hold throughout. The left-hand peak and chasm functions are therefore
continuous on the left. Similarly we can prove the result on the right.

12. The following theorem, which in its form of proof exactly corresponds
to that given in my paper quoted in § 11, proving that the points at which
both the peak and chasm functions are continuous are points of uniform
convergence or divergence, shews that points of uniform oscillation (above
and below) always occur, and that their distribution is precisely that of
the points of uniform convergence and divergence in the more special case.

THEOREM 11.—At every point where the peak function is continuous
and the upper function upper semi-continuous, the peak function is equal
to the upper function (that is, there is uniform oscillation above).

For, if possible, let P be a point at which the peak function is con-

* W. H. Young, "Note on Left- and Right-Handed Semi-Continuous Functions," Quart.
Jour, of Math., 1908.
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tinuous and the upper function upper semi-continuous, but these two
functions are not equal. Then, by Theorem 2, we have

f(P) < TT(P).

By the sense of this relation 7r(P) cannot be — oo, nor /(P) be -j-oo ;
therefore we can find two numbers a and /3, such that

/3, a<7r(P) , (2)

while at the same time (3 < a. (3)

Since P is a point of continuity of the peak function, we can find a whole
interval (A, B) containing P as internal point, at every internal point of

a < TT(X). (4)

From the definition of the peak function it now follows from (2) that we
can find a point Q in (A, B), such that

a<MQ;

and therefore we can find an integer nlt greater than some assigned
integer, such that ,_

a < . MnuQ.

Since Mnu Q is the upper bound of the values of/n, (x) in the interval (P, Q),
there is certainly a point of this interval where /„, (x) > a. Hence / n i

being continuous, there is a whole interval (Av BJ, internal to {A, B) at
every point of which

while, of course, the relation (4) still holds.
By the same reasoning we shew that there is an interval (A2, BJ inside

(Av Bx), such that at every point of it,

n2 being a certain integer greater than nv

Proceeding thus we get a series of intervals (A,B), (Alf BJ, {A2,B2), ...
each lying inside the preceding, and a corresponding series of increasing
integers, nlt n2, ..., nr, ... such that at every point of (Ar, Br),

a <fnr(x).

These intervals have at least one common internal point x, at which the
preceding inequality holds for all integers r, so that the upper function /
there is certainly greater than or equal to a; we have therefore found a
point x of (A, B) at which
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Since this is true for every smaller interval {A, B) containing the point P
as internal point, it follows that

while, by (2) and (3), f{P) < /3 < a < 0(P),

which is impossible, since at the point P the upper function / is upper
semi-continuous. This, therefore, proves that at P, the peak function
being continuous and the upper function upper semi-continuous, these two
functions must be equal.

COR.—The points, if any, where the peak function differs from the
upper function {that is, the points of non-uniform oscillation above) form a
set of the first category.

For they belong to the set consisting of the discontinuities of the peak
function and the points at which the upper function is not upper semi-
continuous. But the discontinuities of the peak function form a set of
the first category, and so do the points at which the upper function is not
upper semi-continuous. Since the set consisting of all the points of two
sets of the first category is a set of the first category, this proves the
corollary.

Similarly we have the alternative theorem and corollary :—

THEOREM 11'.—At every point where the chasm function is continuous
and the lower function lotoer semi-continuous, the chasm function is equal
to the lower function {that is, there is uniform oscillation below).

COR. 1.—The points, if any, where the chasm function differs from the
lower function {that is, the points of non-uniform oscillation below) form
a set of the first category.

COR. 2.—With the possible exception of the points of a set of the first
category, the peak function is equal to the upper function and the chasm
function to the lower function {that is, the oscillation, both above and
below, is uniform).

13. In the case when a definite limiting function exists, as already
mentioned, it was shewn that the definition of a point of uniform con-
vergence or divergence of a sequence of continuous functions as a point
where the peak and chasm functions were equal, was concomitant to the
old .RJaO-definition and its extension to the case when infinite values
are allowed.
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If we seek a corresponding formulation of uniform oscillation, it is
found that discrepancies occur, except in the case when the upper and
lower functions coincide at the point in question. These discrepancies,
which arise when infinite values are allowed, occur none the less when
only finite values are permitted. In fact it may be shewn* that, at a
point of uniform oscillation where the upper and lower functions are
both finite, we can find an interval d, corresponding to any assigned
positive quantity e, containing P, and such that for all points x within
l t} \f(x)-fn(x)\<k+e,

/ denoting not only the upper but also the lower function, for all values of
n*^m, where m is an integer and k a quantity, both independent of x,
which can be determined. The converse of this theorem, however, seems
only to hold when k is zero.

The Rn(x) -definition, indeed, does not lead directly to generalisation
when the upper and lower functions are distinct. The very plausible
generalisation of the inequality

\Bn{x)\ < e,

in the form f(x)—e *^fn(x) ^f(x)-\-e,

is found to lead to a point at which the upper function is lower and the
lower function upper semi-continuous. Such points, by the results we
have already obtained, will rarely occur at all, so that any theory based
on their existence will be of very limited application. All this points to
advantages in the new definition of uniform convergence by means of the
peak and chasm functions.

14. The concept of uniform convergence at a point, however, is one
which may be extended to the case where a definite limit exists at one
or more, but not at all points.

DEF.—The sequence of functions fx{x), f2{x), ...is said to converge
uniformly to a definite limit at the point P if, given any positive
quantity e, an interval d can be described, having P as internal point,
so that, for all points x within this interval d,

\f(x)-fn(x) | < e,

and also \ f(x) —fn (x) | < e

* As in the proof of Theorem 3, pp. 37 of my paper already quoted.
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(f and fbeing respectively the upper and lower functions), for all values
of ft ^ m, where m is an integer independent of x.

Similarly, we define the expressions right-handed and left-handed
uniform convergence at P : in this case the interval d will have P as
end-point.

This definition may also be adapted to give " uniform divergence to an
infinite limit at the point P ." We merely have to replace the two above
inequalities by the single inequality

fn(x) > A,

or fu(x)< — A,

according as the infinite limit is positive or negative, A being any positive
quantity.

The reasoning employed in the proofs of Theorems 8 and 4 of my
paper on " Uniform Convergence and Divergence of a Series of Con-
tinuous Functions and the Distinction of Right and Left," Proc. London
Math. Soc, 1907, may then be transferred almost verbatim to the case
in point. We only have to exercise ordinary care wherever the limiting
function / occurs, to modify the wording so as to refer both to the upper
and to the lower functions instead of to the single limiting function. The
result is then as follows :—

THEOREM 12.—If thefts are continuous functions, and P a point at
xohich the left-hand peak and chasm functions are equal, the sequence
converges or diverges uniformly on the left at P.

Conversely, if the sequence converges, or diverges, uniformly on the
left at P, the left-hand peak and chasm functions are equal at P.

(Similar results hold, of course, on the right.)
It may be emphasized that, in general, there are no points of uniform

convergence. When such do occur, they are special cases of points of
uniform oscillation which, as we saw, always do occur. Wherever at a
point of uniform oscillation we have a single limiting value, the point is
one of uniform convergence.

15. We shall now require the following theorem about monotone
sequences:—*

THEOREM 18.—If / i ^ / j j ^ ••• is a monotone decreasing sequence of
functions, whose limit is f, then the chasm function is the associated

* This is a generalisation of the theorem in the paper quoted, " On Monotone Sequences
of Continuous Functions."
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loioer limiting function of f, that is

X = \^>
and at any common point of continuity of / l5 /2, ..., the peak function is
the limiting function f, _ -

This follows from the Theorem of the Bounds, viz.,* the lower bounds
as well as the upper bounds form a monotone decreasing sequence; the
limit of the lower bounds is the lower bound of the limit, while the limit
of the upper bounds is only ^ the upper bound of the limit.

Now, if P be any point, and Q a near point on the right, and, as
usual, Llh.Q denote the lower bound of'/ft in the interval (P, Q), and
Mn< Q the upper bound, we have, by the theorem of the bounds,

LitQ > L 2 ) Q > . . .>L(? as limit,

where LQ denotes the lower bound of / in the same interval.
Now the chasm function is defined as the limit as Q moves up to P of

the limit of Ln,Q, as n increases indefinitely, that is, Lt Lq. But, by the
definition of the associated lower limiting function of / , the limit of LQ is

* t h u s

this proves the first part of the theorem.
If A denote any number greater than/(P), when / (P) is not +00, we

can, since/(P) is the limit of fn(P), find an integer in such that for all
integers n > ra,

f (P)< A

weSince /„,(«) is continuous at P, we can find an interval (P, Q) to the right
of P, such that

But M"TO, Q > Mw+1, Q > ...,

so that, for all integers n ^ m,

MlliQ<A.

Proceeding to the limit with n,
MQ < A,

and letting Q move up to P, we have, in the limit,

* W. H. Young, "On Functions defined by Monotone Sequences and their Upper and
Lower Bounds," Messenger of Mathematics, New Series, February, 1908.
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Since A is any number greater than/(P), it follows that

TTH(P) </(P) . (D
But since /„(x) is continuous at P, and for all values x in the open interval
{P'Q)' Mx)<Mn,Q;

therefore /u(P)<Mn<e.

Since this is true for all values of n,

f(P)<MQ.
Since this is true for all positions of Q as it moves up to P,

/ ( P ) < ^ ( P ) , (2)
whence, by (1), f(P) = 7rfl(P),

when/(P) is not +oo . But when /(P) = + oo, the same result follows
at once from (2), which proves the theorem.

16. Applying the preceding theorem to the monotone descending
sequence of lower semi-continuous functions vx ̂  v2 ^ ... whose limit is
the upper function /, we see that at every point except at the points of
a set of the first category, where one of the functions vn at least is dis-
continuous, the upper function/ is itself the peak function of the vn'8.

Now, by the definition of the < s , it is evident that the upper limit of
vn ^ that of f,i,fn,+i,fn+2, ••• in any interval (P, Q), and is therefore
> the MQ of the/Vs. Hence the MQ of the vn's >= that of the /u 's, so
that the peak function of the vn's ^ that of the/n's.

Hence, since, by Theorem 2, f is never greater than -K at all the common
points of continuity of the vn's, the upper function f = the peak function
of the fn's, that is,

f = TT>

except at a set of the first category.
Similarly, the lower function is the chasm function except at a set of

the first category, that is, . _
/ X#

Hence, when the upper and lower functions agree, except at a set of
the first category, the peak and chasm functions agree, except at a set of
the first category. In particular, if there is a definite limiting function
at every point, the peak and chasm functions agree except at a set of the
first category, that is, there is uniform convergence and divergence, except
at a set of the first category.
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17. We have seen that in general the points at which the upper and
lower functions are respectively not upper and not lower semi-continuous
form a set of the first category, as do also the points at which the
oscillation is non-uniform- In the following examples both these sets of
points are only countable.

Ex. 1.—Let fn (x) for each value of n be a monotone increasing function
of x. Then, if Q lie on the right of P,

Mn,Q=fn(Q), Ln>Q=fn(P).

Hence it easily follows that—

(1) The right-hand peak function is the associated upper limiting
function of the upper function, i.e.,

7TK(P) = $R(P).

(2) The left-hand peak function is the upper function, i.e.,

7TL(P)=/(P).
Similarly,

(3) The right-hand chasm function is the lower function, i.e.,

=/CP).

(4) The left-hand chasm function is the lower associated limiting
function of the lower function, i.e.,

We can at once deduce that the upper (lower) function is upper (lower)
semi-continuous except at a countable set of points, and that with the
same exceptions the oscillation above (below) is uniform.

Again, if the upper (lower) function is upper (lower) semi-continuous
throughout the interval considered, the oscillation above (below) is uniform
throughout.

Further, when a limiting function exists throughout an interval it is
continuous except at a countable set of points, and the convergence or
divergence is uniform, except at a countable set of points.

Ex. 2.—Now let fn(x) for each value of n be a continuous function
with finite total fluctuation, and suppose that in every interval this
fluctuation has a definite limit when n is infinite. With the notation
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of Lebesgne* we may write

/«(*) =Ma)+-Pn(x)—Nn(x),

where Pn(x) and Nn(x) are both monotone increasing functions. Also,

Vn(x) = Pn(x)+Nn(x),

where Vn (x) is also monotone increasing, and, since it is the total fluctua-
tion of fn(x) in the interval (a, x), has a definite limit, say V(x).

By Ex. 1, V(x) is continuous and the convergence of Vn(x) to V(x) is
uniform, except at a countable set of points.

Now assume further that at a, that is, at some one- point, fn (x) has a
definite limit. Then the above equations shew that

f(x) =f(a)-V(x)+2P(x),

and a similar equation for the lower function. This proves that here also
the upper and lower functions are respectively upper and lower semi-
continuous and the oscillation is uniform, except at a countable set of
points.

18. So far the work has in general applied to functions of any number
of variables. In the special case when there is only one independent
variable, we can work with continuity and semi-continuity on one side
only. I have already made this extension in the case of one theorem of
Baire's.t We now prove that our main result remains true if the
generating functions flf /2, ... are continuous on one side only.

THEOREM 14-—If fv fit ...be continuous on the right, and F the upper
function of the sequence, F is upper semi-continuous excepting only at a
set of the first category.

Let Vi, i be the function which at every point is equal to both /x and /2,
or to the greater of these. Then it is easily proved that vit i is also con-
tinuous on the right, t

Similarly, if V\t 2 be defined from v\t \ and /3, and each of the functions

* Integration, pp. 52 seq.
t Loc. cit., p. 299, footnote *.
% For, if fl = /2 = v, the only limit which can be approached by v is the only limit which

can be approached by /, or/2, viz., the common value, so that v is continuous at the point.
If, howeverj /, = v, and / 2 <v-2e , there will be a whole interval to the right throughout
which /, > v—e, and fi<v — e, whence fx = v at every point, so that v, like fu is continuous
on the right.
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Vi>n from Ui)7l_i a n d / n + i , the functions

0 1 , 1 < 0 1 . 2 < » ] , S < • • •

are all continuous on the right, and form a monotone increasing sequence.
Their limit vx is therefore lower semi-continuous on the right, and has
at each point P the highest possible limiting value of the quantities
fi(P), /2(P), ..., or one of these values, if it is greater than all such
limiting values.

Let v%, v3, ...,-Vn, •. be denned in like manner, omitting in turn the
first, the first two, ..., the first (n—1), ..., of the functions fr. Then,
evidently, ^ ^

is a monotone decreasing sequence of functions, each of which is lower
semi-continuous on the right, and has at each point the highest possible
limiting value of the quantities /i(.P), f%(P), •••» and is therefore none
other than the upper function F.

Since* a function which is lower semi-continuous on the right is con-
tinuous with respect to every perfect set, excepting only at a set of the
first category with respect to that set, the points at which one at least of
the functions vv v2, ... is discontinuous form a set of the first category.
At any point not belonging to this set all these functions are continuous,
and therefore the upper function F is upper semi-continuous. This
proves the theorem.

19. We shall not attempt to deduce any of the obvious consequences
of the theorems above given. As one example we may, however, note
the following application.

Let f(x) = Lt fn(x),

where /„ {x) is for every value of x a continuous function with a continuous
differential coefficient f'n(x). Then

f(x+h)-f(x) = u Ux + h)-Mx) = Lt
fa 71 = 00 (I 11 = 00 J

where 0 is > 0 and < 1.
Now, consider the set of functions of which f'lh{x) is a type, and let

Mn,Q, MQ, TL(X), ... refer to this set of functions, tho rest of the notation
being the same as in the previous articles.

Then, evidently, / ; (x+6h) < Mn, Q ;

* Loc. cit., p. 310, footnote.
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and therefore Lt Lt fi (x-hOh) < Lt M,Q < ILR(x);
upper n=oo " upper
/i=0 h=Q

therefore the uppeE derivate / + (x) < HR (x) ;

similarly the lower derivate- /+ (x) ̂  XR(x),

with similar results on the left.

It at once follows that, except at a set of the first category,

f+{x) < the upper function of the set olfn{x),

/+ (x) ^ the lower function of this, set,

and further that if the oscillation is uniform above and below throughout
an interval, then these and the corresponding inequalities on the left hold
throughout. Further, if even at an isolated point at which the oscillation,
is uniform, above and below, we have convergence, or divergence to a
definite infinite limit,, for the series of differential coefficients, then at that
point term by term differentiation is allowable.


