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ON BINAKY FORMS

By A. YOUNG.

[Read January 22nd, 1914.]

THE object of this paper is to develop a method of attacking some
of the problems in the theory of binary forms. Problems connected with
the enumeration of complete systems are particularly in view.

Every method introduced requires some justification for its existence ;
its utility needs to be judged by results. In this case the method is
at once applied to covariant types of degree four of the binary form
of order n, and the complete irreducible set of these is obtained.

The preliminary analysis is concerned with the theory of perpetuants,
and incidentally the complete system of perpetuant syzygies for every
degree and weight is obtained. It appears that all perpetuant syzygies of
the first kind can be obtained symbolically from those due to Stroh, and
that consequently the extension to any degree of the work * of Mr. Wood
and myself, for the first eight degrees, depends solely on accurate enumera-
tion, and does not require the introduction of any new principle or the
discovery of a different type of syzygy.

I. Explanation of Method.

1. We are concerned here entirely with the symbolical notation. Its
introduction by Aronhold at once gave a method by which all covariants
could be mathematically expressed. At the same time in the calculus it
provides every form considered has the covariant property. But it has the
drawback that a great many unnecessary forms appear in any discussion.
Various methods have or can be suggested by which the forms considered
may be limited to a linearly independent set. But such methods cannot
avail much in most problems unless it is possible to express the product of
two forms so expressed in terms of the corresponding forms.

* Proc. London Math. Soc, Ser. 2, Vol. 2.
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Grace,* in applying the symmetrical notation to MacMahon's theory of
perpetuants, has succeeded in doing this for the case when the order of
every quantic considered is infinite. In this case he selected one quantic
a?z for particular attention, introducing the symbol «x into every deter-
minant factor, by means of the equation

(a2a3) alr = (a^) fl2.—(ai«2) «v

Thus the only symbolical products he had to consider were of the
form (omitting factors aa)

These, when perpetuant types are under consideration, are all linearly
independent. There are no superfluous forms.

Now, when we come to forms of finite order, we cannot, as a rule,
apply this method as it stands, for the reason that there are not a
sufficient number of factors alx in order to be able to introduce the letter ay

into every determinant factor. In iact, if we can do so, nv the order of
the corresponding quantic, must be equal to or greater than the weight
of the covariant considered.

Let 10 be the weight of the covariant C, then if we multiply C sym-
bolically by a""Wl, we can express a™~niC in the form

where N is numerical.
We have thus, as in the case of perpetuants, a linearly independent set

of symbolical products

to consider. But there is this difference: separate products do not
represent actual covariants, but only certain linear functions of such
products. We shall proceed to shew how every such product may be
made to represent a covariant or else a form which we shall call a
fundamental form.

After that we shall proceed to shew how products of covariants may be
dealt with, as in the case of perpetuants.

2. Let us consider covariant types of degree S; that is, covariants

• Proc. London Math. Soc, Vol. xxxv, p. 107.
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linear in the coefficients of each of the qualities

U, <
l

It jis supposed, to start with, that these quantics are arranged in a fixed
sequence.

Let us fix our attention on some covariant type expressed in the
ordinary manner as a single symbolical product. We say that this
covariant is a term of tne continued transvectant

(using the single symbolical letter to denote the corresponding quantic).
This statement is nearly obvious. An immediate proof is obtained by
induction. Assume it true for degree S ; then, if C be a symbolical
product representing a covariant of degree <5+l» C is a term of a trans-
vectant

(P,

and, since P is a symbolical product representing a covariant of degree S,
the theorem in question is true for P, and therefore it is also true for C.

Now the fact that every term of a transvectant differs from the whole
transvectant, by a linear function of transvectants of lower index, leads us
at once to the fact that any term of the continued transvectant

differs from the whole transvectant by a linear function of forms

which are such that the first of the differences

which does not vanish is positive.
We are then at liberty to express every covariant type of degree S

in terms of continued transvectants of the above form.

3. Let us now return to the consideration of a single symbolical
product which represents a covariant type G of degree S. Let the weight
of C be to.

The symbolical product a™~n C can be expressed in the form
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where N is numerical: by repeated use of the equation

{aras) a](t = (^a.,) a,i;— (axar) a,x.

"We shall arrange the products in a definite sequence by saying that

(a1a2)
Ki (aia^3...

precedes {ax a^ (ax a 8 )w ...

provided that the first of the differences

which does not vanish is positive.

The continued transvecfcants will be supposed arranged in sequence
according to the same law.

Now it is to be observed that a continued transvectant is defined by

the same set of numbers X2, X8, •••» «̂> a s a Product

If the continued transvectant be expressed as a sum of the products
considered (by multiplying it by a]"~mi)> the first of the products in our

sequence to appear will be that which is defined by the same numbers.
Now every continued transvectant represents a covariant type; but

only certain linear functions of the products (viz., such as are divisible by
al°~ni) represent actual covariants. The difference between the two cases

being accounted for by the fact that there are certain limitations to be
imposed on the indices of the transvectant; whilst the only limitations to
the indices of the product are those expressed by the inequalities

\>n2, X8>?i8, .., X8>n«.

These limitations are also necessary for the transvectant, but in addition
we must have

(i) X2>wi> 2X2+X8 > ^i+w2» 2X3+2X3+^4 >

... + 2Xfi_1+X6>n1+n2+n8+...

In the case of products we shall use the term fundamental forms
to denote products for which the set of inequalities (i) is not satisfied.

4. We proceed to shew that corresponding to every other product, that
is to every product for which the inequalities (i) are satisfied, there is
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a unique covariant which can be represented as a linear function of that
product and of fundamental forms. We have seen that the transvectant

can be expressed as a linear function of our products of which the first
term is

Let

be the next term in the order of our sequence to appear; if it is not a
fundamental form we may subtract the covariant

from both sides of our equation.
Proceeding thus step by step, we arrive at the truth of the above

statement. That the covariant is unique is evident from the fact that
every covariant can be expressed in terms of the transvectants considered,
and that these transvectants can be expressed in terms of the covariants
found, and vice versa.

5. Let us use the notation

(X.2 , X 3 , . . . , X§)

to denote the covariant corresponding to

i.e. the covariant obtained from this product by the addition of a linear
function of fundamental forms.

Then we have a set of linearly independent covariant types of degree S
in terms of which every such covariant type may be linearly expressed.
And this set is composed of the forms

(X2, X3, ..., Xs),

where X.2 > n2, X3 > n3, ..., X« > ns,

and the X's further satisfy conditions (i).

It will be convenient to have a notation for the covariant

(X2, X3, ..., X6),

in which the letters corresponding to the different quantics appear ; we
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shall for this purpose use the notation

= (X2,X3l...fX6).

In order to discover what forms are reducible, or to find relations
between products of forms, it is necessary to be able to express the
product of any two of our forms as a linear function of the forms of
a higher degree.

Thus, for example, the product

The case of perpetuants is much simpler than that of forms of finite
order, and the analysis in this case is a necessary preliminary to that of
the more difficult case.

II. Perpetuants.

6. Grace proved that the perpetuants

can be expressed in terras of products of perpetuants and of forms of this
kind for which ^ > 2 , . 2 ; ^ > 2,_3 Xj > 20

This is the result. The method by which the result was obtained (by
means of certain relations due to Stroh) is not the method we require here.
We shall therefore proceed to establish the same result by a slightly
different method for the sake of the analysis. The analysis will be
capable of application to forms of finite order.

7. It is our aim at the outset to express every possible product of two
forms as a linear function of forms

In order to do this we must separate the letters alf a2, ..., as into two
sets. We may write them

Then we consider the product of any covariant type of the one set by any
covariant type of the other set.
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The product to be considered is of the form

('V) ( a ^ ^ ...

V \X ( a ^ ) 1 " ^ - ^ ( a ^ / ' ^ 2 ... (%as,)V\

Let us suppose that .$! = 2, and let us use the notation

Then without fear of ambiguity we may write our result [replacing {a^a^i
by a2 in the exponential index]

e J s M ^ , A3, A4, ..., A8)

/ a A ' . a A ' . ... aA 'A /aA<»aA*. ... aA*A
= ( » ^ r- ) {'•- -^ '•) ;

s i n c e (h%, X3, ..., X«) = ( a 1 a 2 ) A ' 2 ( ^ i«3 ) A : l ••• ( * i « « ) A <

for perpetuants.

8. We thus have a set of equations

e ~ '•'*"• % (0, X3, X4, ..., X«) = R'

to consider, where s2, s3, ..., sv

are any, all or none of the numbers

3, 4, ..., 8.

Since each of the <J—2 numbers may be taken or left we obtain 2*~2

equations. We shall shew that the 28~2 equations are, in general,
independent and are just sufficient to express every form

for which X2 < 2*~2 in terms of similar forms for which X2 > 28"2 and of
products of forms of lower order.
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In order to prove this we must arrange our equations in a particular
manner. We begin with the equation

(0, \8, ..., X«) = B,

representing the fact that this form has the quantic a°, for a factor.

The next equation will be

e-a^(0, X3 Xa) = JS,

or- (0, X8, ..., X s ) - X 5 ( l , X3, ..., X a - 1 ) + Q f ) ( 2 , >.3f ..., X , - 2 ) - . . . = R.

This equation with the help of that already used reduces (1, X3, ..., X«—1);
i.e., it expresses this form in terms of earlier forms in the sequence and
of products of forms.

We next consider

c - - 0 - ! (0, A8 Xa-i, X,) = Rf

and it is easy to see that this reduces the form

(2, X8, ..., Xa-i-2, X«).

When we come to our next equation

«-./*-i-M>.(0, X3, ..., Xa-i, h)]=R,

it is necessary to take it in conjunction with the last. We have, on sub-
tracting,

[ e - ' ^ - ' - ^ - e - ^ - ' K O , X3, ..., Xa_x, X«)

= Xa (1, X3, ..., Xa_i, Xa—1)—XaXa_i(2, X3, ..., Xa-i — 1, Xa—1)

6
2-

1)(3, X3 X , - , - 2 , X . - 1 ) - . . .

+terms in which the last argument is less thaaXa—1

= R.

Also

[e-f'^->-l](0, X3 Xa-t + l, Xa-1)

a ) » As Xa_i-2, X,-l) + ...

= R.
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Using the results of our first two equations we may write these two
equations

_1(2, X3, .... X8_a-1, X a - D - ^ - ^ S , X8 X6_i-2, X5- l ) = B,

) Xg ^ X5_x-1, Xa-1)

These two equations are proved to be independent by calculating the

determinant formed by the coefficients—its value is £Xa_i f 6~* ) •

Thus we can express

(2, X3, ..., X6_i, Xs) and (3, X3, .... X5_i, X6)

in terms of forms (/*2, X3, ..., Xg_2, /J.&-\, ^s),

and of products of forms ; where /u2 <f 4 and the first of the differences

/*«—X«, fis-i—X«-i

which does not vanish is negative.
In general we shall consider the equation

r«,D,-i1D,.-...-«fDrf ( 0 > ^ ^ ^ = B ^ < r a < < n )

before the equation

<ra2D'~a'^--fl2Z\(o, x3,..., x«) = B (Sl<s2<... <5,),
if rx > Sj.

If rj = st we consider the two equations simultaneously. In fact, we
have a set of 26~ri simultaneous equations in which the first operator in
the exponential index is Dn.

9. THEOREM.—The 2s~T equations

e '• " •' %(0, X3, ...,X5) = B,

where sv s2, ..., sv are all, any or none of the numbers r-f-1, ?'4"2, ..., 0
are just sufficient to express all forms

(\> X3, . . . , Xr, X r + i , . . . , Xfi),

for which X2 < 25~r in terms of products of forms, and of forms

0*2> X 3 , . . . , X r , / * r + l > • • • > /*«)>

SER. 2 . VOL. 13. NO. 1218. 2 G
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where fx^ 26~r, and the first of the differences

\ j — fl&, ^ 8 - 1 — / * « - l , - . . , A r + 1 — f*r+l,

which does not vanish is positive.

Let us assume the theorem to be true as it stands for a particular
value of r. "We proceed to show then that it is true when r is changed
to r-l.

Consider the equations

-aiDr-a2D -a»D -...-atD, .- . -v \ _ p
e * v ([), A 3 , . . . , A&) — i t ,

for which slt s2, ..., sv are all, any or none of the numbers

r+1, r+2, ..., S.

The equations may be written

e - « ^ - « 2 V . - « ^ [ e - M r (o, x3f ..., A8)] = B,

and when they are written in this way they are identical in form with the
set of equations for which we have just assumed our theorem true. Hence,
on making use of the assumption, we find that

e~('*Dr(X2, X3, ..., Ar, Ar+i, ..., A«) = B,

if A2 < 28"r ; and that the symbol B here stands for products of forms
and numerical multiples of forms

0*2, A3, ..., Ar, Hr+\, •••> M«)>

where /ua ^ 25~r and the first of the differences

Aj — H&, A j_ i—H$- i , . . . , A r + i — fXr+l

which does not vanish is positive.
We thus have 25~r equations to consider of a simplified form, in which

the covariants we consider differ only in the arguments A2 and Ar, the
general equation of the set being

—)r l/j A3, ..., Ar_i, Ar—£ Ar+i, ..., A8) = B.

Using our assumption again we see that we have a reduction for
all those terms for which A 2 + £ < 2 8 ~ r , and, in fact, we may suppose
that these reductions are inserted, taken over to the other side of the
equation, and included in the general symbol B. Taking then the first
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2 ~r terms of each of our equations, we have a set of 2s~r linear equations
to solve for the 2&~r variables

(25"r+£ X3, ..., A,.!, A, . - f -2 8 - ' , Ar+1 X6) (f = 0, 1 2*"*-l).

If the determinant formed by the coefficients of these 2s"r variables in
the several equations is not zero, then the equations give a reduction for
every one of these covariants.

The determinant in question is

\2*-7 + l 2 l

A r - 1 \ / X r - 1 \
\ 2«-'- / "* \28- r + 1 —2/

K—m \ l \r—m
)

m \ ( X,.—m
— nJ '" \2*~r+1— 1 —

/Xl.-2»-r+l\ A r - 2 « - ' r + l \ A , - 2 S - H
V 1 / \ 2 / '"' V 2a"(-

2*~'"i /08—*• _L_i \ ! (28~~'+ 1 IV

XI 1 ...

/26-r\ /28- ' + l\ /2 6 ~ r + 1 ~l \

/28"r\ /2s- r- |-l\ /2 s - r + 1 — l
\ m ) \ m ) '" \ m

/ X , W X, \ / Xr \
\2s-7 \ 2 i - r + l / \2s-'-+1 — 1 /

MW (
l / \ 2 / \2fi-r—h

2 o 2
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This is not zero unless X r <2 6 ~ r + 1 — 1 ; but in this case our equations
only involve Xr—2s~'-f-l variables of the form

(2 r - r ^ , X3, . . . , Xr_i, Xr—t,—2 ~r, Xr+i, . . . , X5),

i.e., those for which g has the values 0, 1, 2, ..., Xr—25"r. (If X,. < 2*"r

none of these forms occur.)
To solve our equations for these, we take the first X, —2fi~r+l equa-

tions and calculate the determinant formed by the coefficients. Its value,
obtained as above, is

/ X , . W X,. \ AA
\28-v \2*-r+l/ \A/
AA/AA / X, \ «
\ l / \ 2 / VAP-28-7

Thus in any case the solution of our equations gives

(25"'-+£ X3, ..., Ar_lf A,-£-25- ' - , Ar+1, ..., A«) = B,

when £ < 2 8 - r and X,. < f+2*-'1.

The terms included in the symbol R are either products or forms

which occur later in our sequence than the term on the left, and for which
yu2 <£ 28~r. By repeated application of this result to all terms on the
right for which /m2 < 26"r+1 we find that we may restrict w2 to be equal to
or greater than 28~r+l.

Thus, if the theorem is true for any particular value of r, it is true
for r—1; but we have seen that it is true when r = 5 or r = 8—1.
Hence it is true in general.

In particular we deduce that the form (X2, X3, ..., X6) can be expressed
in terms of products of later forms in the sequence when X2 < 2S~-.

10. The equations

e '<, (0, X3, ..., Aj) = E

result in establishing reductions which depend solely on the value of X2.
We have another set of equations

where t$ > ^_i >• ... t2 >- ^ > r ;

which establish reductions dependent on the value of X,. They give a
reduction when Xr < 26~r.
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We shall consider all our equations in regular sequence, and those
equations which affect the value of Xr will be considered before those
which affect the value of Xs when r > s.

Thus, when we examine any form

(X2, X3, . . . , Xj),

we may find that it is reducible because Xr •< 2s~r and also because
Xs < 26~*. Then, if /• > s, we shall suppose that the form is reduced
by the Xr equations ; it is then necessary for a complete discussion of
these forms to discover what the Xs equations may mean. In the case
of perpetuants we know from the well known facts of the subject that
these Xs equations cannot introduce any new reductions, for all reducible
forms have been reduced, and that therefore they must lead to syzygies.
But, so far as the present investigation has gone, it might happen that
they lead to new reductions. Indeed, in the case of forms of Unite order
the discussion may be carried on on precisely similar lines, and then it will
frequently be found that these Xs equations lead to new reductions and not
to syzygies. We have shewn (§ 7) that every possible product of per-
petuants of total degree s can be expressed in the form

-a,J) , -«,J9. —...—.i,J) / \ \ \ A \ ** \
e •' J i {A2, A3, . . . , A r _ i , U, A r + i , . . . , At),

where r < sx < s3 < ... < sv

Hence a complete discussion of our equations involves not only a
complete discussion of the question of reducibility, but also of that of
syzygies as well.

We shall proceed to prove the following theorem :
The equation

e i (A2, . . . , \r-i, 0, A,.+i, . . . , Xfi) — M,

where r < sv < s2 <C ... -< sn,

reduces to a syzygy ichen X̂  < 2s"'4"1, or when XT < 2*"T, where rr is
any one of the numbers slt s2, ..., sv, and r is one of the numbers
r + 1 , ?'+2, ..., 8, idhich is not included in the set sv s2, ..., s,.

11. Let us first consider the equation (r < s)

e-^' (X2, X3, .,., Xr_h 0, Xr+1, .... \t)=R

= [X2, X3, ..., Ar_], 0, Xffi, ..., Xs_i, \ , Xs+i, ..., Xj], say.
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Consider the identity

(ar «

Expanding the braces on each side by the binomial theorem, we obtain a
syzygy-

The syzygy at once gives us the relation between the equations

-«,-D>(\, ..., V-i, 0, i, Xr +,-», Xr+3, ..., X,)

a . t i <••••* (X2, . . . , X r _ i , j , 0 , Xr +2, . . . , X,_i , X,— j , X s + i , . . . , X$).

Now every equation on the right-hand side is discussed before any of those
on the left since r-f-1 > r. Hence this syzygy yields the relation

And in general when <r<i> ax> r, and neither <rx or <r2 is equal to s, we
obtain just such another syzygy which yields the relation

e~ao, «.j ([X2, . . . , Xr-1, 0, Xr +i , . . . , Xs_i, \s, Xs+i, . . . , X{J^=o) —'• -B-

The result may be at once extended to a slightly more general syzygy to
which the relation

e * °> « •<> ••• a « « ( [ X 2 > ...f X r _ i , 0 , X r + i , . . . , \ g > • • • > X 5 J A j = o ) = = - B

(where r <. a- <. cr-^ <....<. (rK, and none of the <r's which here appear is
equal to s) corresponds.

Let us call these syzygies the perpetuant syzygies of the type A.

12. Consider the identity (r < s)

OV-i {(aras)—(a

,..!)*---! -J (ar+ias) — (at ar) |
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Expanding the braces on both sides we obtain a Stroh syzygy, and this
at once gives the relation between our equations

~^ (X2, ..., x,_If 0, I, Xr+,, ..., A,_,, A , - / , A,+ l, ..., X6)

= S(—)'• ( .") e~a ' + i »(X2, . . . , X,._i, i, 0 , X,.+2, . . . , A.s._i, X s — i , Xs+\, . . . , Xj).

Every equation represented on the right is considered before any of those
on the left of this relation : hence we may write it

2(—Y ( ' . ) [\2, •••» K-u 0, i, X,.+2, .... Xs_i, Xs—i, XST1, ..., \ 6 ] = Jf.
\ 11

And although a slightly different meaning must be attached to the operator,
we may, without fear of ambiguity, write this equation

e-«-A[X2, .... X,._1} 0, 0, Ar+2, ..., A,_i, X_s, Xs+1, ..., \6] = B.

In the same way we obtain, whenever s > <r,

e~"a * {[X.2, . . . , Xr-i> 0, X,+i, . . . , Xs_i, Xs, Xs+i, . . . , X&]\ =o) = R,

and whenever <r > s,

e~a* ° l_X2, . . . , X,_i,-0, Xr +i , . . . , Xs_i, 0, XJS+I, . . . , Xj] = i?.

That is, we obtain syzygies which yield these relations.
Now combining one of these syzygies with one of those of the last

paragraph, we have a syzygy expressed by

i)}A'** \(aras)— (axar+i) }'v'

which yields a relation

e-«,*xDr.2-»,+ iD. [X2, ..., Ar_lt 0, AP+2f ..., A,.!, A,, A,+lf ..., A«] = R.

In this way we obtain syzygies to give each of the relations

e °» '• a" * '" " "" {[Xz, . . . , Xr_i, 0, Xr +i , . . . , Xs_i, Xj5, Xs+i, . . . , XSJA^^O) = = -R,

when r < cr < <rx < <r2 < ... < o-̂  and a- =f= s.

These relations have already been fully discussed in § 9, when dis-
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cussing the question of reducibility : we obtain from them at once the re-
8ult r x x o x x x x x i - 7 ?

[ A g , . . . , A r _ i , U , A r + i , . . . , A , _ i , As, A s + ] , . . . , A{J — It,

when X, < 28~», where r < <r =£ s.
We will call the syzygies of this paragraph the perpetuant syzygies of

the type B.

18. In obtaining the limitations to the value of X,, and the correspond-
ing syzygies, for the equation

e~a> ' (X2» . . . , X r _ i , 0 , X,.+i, . . . , Xj) = B.

We shall simplify the work and not lose anything in generality if we
suppose r = 2 and .s = 8. Thus we consider

e-«2 a (o, X8, X4, ..., Xs) =E [0, \ , X4, ..., X5] = JB.

If X3 = 0, our equation becomes

), 0, X4, ..., Xg) = a2

but we already know from a previous equation that

(0, 0, X4, ..., \s) = a%

Thus the equation simply gives the obvious syzygy

If X3 = 1, our equation becomes

(0, 1, X4, ..., X8)-(l, 0, X4, ..., X«

giving again a syzygy. This syzygy is the Jacobian syzygy.

Consider the two identities

and
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when these are expanded they yield Stroh syzygies. These syzygies give
us the relations

<T«^[0, 0, \4, ..., \6] = R,

and e+a*D*[0, 0, \4, ..., X«] = R.

And in general we find in this way syzygies which give the relations

e-^-LO.O, A4, .... \S~] = R,

and e+('*D°[0, 0, A4, ..., \s] = R,

for <r = 4, 5, ..., o.

Fu r the r , from the syzygies

{{ax a4) — (a2 a3)}A* {(% a5) — (a2 a3)}A s K a6)
A(i •••(#! ««)A;

= | (axa2)-f ( ^ 4 ) } A 4 I («i a.2) + (a3a5) [Ki (axaG)A(1... (aa a.6)
A>,

and I {ax a4) + {a2 a3)}
A- {{ax a5)+(a.2 a3) [Ai (ax a c ) A c . . . (« ! a«)A«

= | (a2 a3) + (a2 «4)}A j I (% aa) + (a 2 a 5 )} A i («i ̂ A<! • • • ( a i ««)A*«

we obtain the relat ions

e±(o3D,+a,D:,) j - O j o, X4, ..., Aa] = R.

Proceeding thus we can write down a set of syzygies which give us the

relations .±(«3D.+«,/>,.+...+«,D, > r f t A A . A I _ r>

where 5j, s2, ..., s, are all, any or none of 4, 5, ..., 3.
These syzygies we shall refer to as the perpetuant syzygies of the

type C.

14. It is necessary to discuss the equations just found.
We shall arrange them in a sequence as we have done the other

equations:
Thus the equations

will be discussed before the equations

when ?-! > «!.
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But, if rx = slt the equations are discussed simultaneously.
Thus the first pair of equations to be discussed is

O, 0 , X4, . . . , \ & ] = R .

Whence [0, 0, X4, ..., X*_,, Aj ± Xfi[0, 1, X4> ..., X4_lf X 6 - l ]

[0, 2, X4, ..., X8_b X 5 - 2 ] + (A
3
6) [0, 3, X4) ..., Xa_lf X«-3] + . . . = B,

giving immediate reductions for

[0, 2, X4, ..., X6_,, X«-2] ,

and [0, 3,X4, ..., X5_b X 5 - 3 ] .

The forms [0, Xg, X4, ..., X8] being arranged in sequence according to the
same rules as the forms (X2, X3, ..., X6).

15. LEMMA.—The 2S~'+1 equations

e±(^/>Si+a3D,+...+f l l t^)[-0) Q; XIJ ^ x & ] = 0>

where slt s2, ..., sv are all, any or none of the numbers r-\-l, r + 2 , ..., 8
are just sufficient to express all forms

[ 0 , X3, X4, . . . , X,., X,.+i, . . . , X5],

for which X3 < 28~r+1, in terms of forms

[ 0 , /X3, X4, . . . , Xr, fir+i, . . . , MS] ,

where fi3 <( 2 8 " r + 1 and the first of the differences

Xfi — fJL&, X g _ i — f * 5 - l j ••-, X j + i — M r + l i

ivhich does not vanish is positive.

Let us assume the truth of this proposition for a particular value of r,

and then consider the 2 6 ~ ' + 1 equations

where slt s2, ..., s, are all, any or none of the numbers r+1, r + 2 , ..., S.

Let us write

g-«u2>,.[o, 0,X4, ...,X,_i, X,, X,+i, ...,X5] = [0,0, X4,..., Xr_!, X,., Xr+1, ..., X6],
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and

e+°8 • [0, 0, X4,..., X,._i, \r, A,.+l, ...,XS] = [0 ,0 , X4,..., Xr_!, X'., X,.+i,..., X$].

Then we have two sets of equations

and «,+*V«»V~+M>., [0> q, x4 \v.u Xj, X,+1, ..., X6] = 0.

From the theorem of § 9 we know that the solution of these equations
expresses all forms (X3 < 25~')

[0, X3, X4, ..., X,._i,_X,., Xr+i, ..., X5],

in terms of forms [0, £3, X4, ..., X,._i, K, /*r+i» •••, A ]̂ >

and all forms (X8 < 25"')

[0, Xg, X4 X,._i, Xr, X,+i, ..., Xg],

in terms of forms [0, /xg, X4, ..., \r-UK, t*r+u •-., Ms] ;

where in both cases ^3 ̂  25~r, and the first of the differences

X«—MS> X 5 _ i — / x s _ i , . . . , X,.+i—fM,-+\,

which does not vanish is positive.

We thus obtain two sets of equations

e^0'- [0, Xg, X4, ..., Xr_x, Xr, ..., X8] = B,

where X3 = 0, 1, ..., 2 8 " r - l .

Expanding them out, we have

2 ( - ) i Qr) [0, V H X4, ..., Xr_1} \r-i, X,+i, ..., X6] = R,

and 2 ( M [0, X3+^, X4, ..., \r-u X,.—i, Xr+i, ..., Xt] = 22.

Now using the assumption made we see that these equations may be re-
garded as equations to give the values of

[°> 2*-r+1+£ \ , ..., K-i, X r - 2 5 - ' + 1 - £ X,+1 X6] = B,

g=0,l, 2, ..., 2 8 " r + 1 - l .

Adding and subtracting our equations in pairs, we obtain two new sets;
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one of which connects those forms for which £ is even, and the other
those forms for which £ is odd.

They may be written

and

cosh a3Dr[0, Xg, X4, ..., Xj = R,

s inha3Dr[0, X3, X4, ..., Xj = B.

We desire to prove the linear independence of each set.
For this purpose we must calculate the determinants formed by the

coefficients. In the first case the determinant is

/ X,. \ / Xr \ / X,. \ / Xr \
\26- r + 1 / \26-r+1-f2/ ' " \25-r+14-2<r/ ' " \ 2 6 - ' + 2 - 2 /

X,— l \ / X,.-l \ / X r - 1 \ / X r - 1 \
« - r + 1 - l / \ 2 6 - i + 1 + l / ' " \2s- r + 1+2o—l/ '"' \2 f i - r + 2 -8 /

X.- T \ V X r - T \ / X r - T \ / \r-l \
- t / \ 2 { - r + 1 + 2 - T / ' " \2*-r+1+2<i—r) '" \ 2 f i - r + 2 - 2 - T /

c / X r - 2 5 " r + l \ /Xi—2s-' + l \ / X r - 2 8 " r + l
\ 28~r+8 / ' " \28- r+l+2o-/ '""

5-r + 1 5-r+2_2y

— A.AA/XA / Xr \
\ 1 / \ 2 / ' " \2*-r—1/

Where, on changing columns into rows and rows into columns,

A = ! 1 ( 2 T) (2T") -
1 (2S T + a ) (2 2 + 2 ) -

(. 1 ) \ 2 / "' I 2 ' - ' - l

/ 2 ' - ' + ' _ 2 \ /26"r+!—2\ /2 '- '+ 2—2\

( 1 ) ( 2 ) - U - ' - J
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We shall now consider the more general determinant

1 \ i ) . v .2 ; - U-J

461

— 2(

\ 1
—2

"" \ k-l

Subtract each row from that immediately below it, then the (cr+l)-th
row becomes

—1
' V 0

—2
- ' \ T - 1 / + \ r - 1 Jf - '

/n+2cr—1
V k-2

o—1

_ /w+2o—2\ , /w+2t r -2 \ , /?i+2o—1\

Next we repeat the process of subtracting each row from the next
below, leaving the first two rows unaltered. The (T-f-l)-th element of
the (cr+l)-th row becomes now

— 2\j.f t^n+2a—8\_l /n+2o—4>
V T - 2

4-2o—4\
r-2 / '

We keep on repeating the process, each time leaving one more row un-
changed. After t subtractions the (T+l)-th element of the (o-+l)-row
beeomes

r - t ) +
o—t—l

, A /n+2<r—2t
) r—t

This (o-+l)-th row is not left unchanged until t = a, and so its final form
will be obtained by giving t the value cr. The (r + l)-th element is then
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zero when T < <r, and its value when r = rr is

Thus we eventually transform At into a determinant in which every ele-

ment below the leading diagonal is zero, and where the elements of this

diagonal are 1, 2, 2s, .... 2fc~1.

Hence Ak = 20+1+2+-+'--1 = 2 .

Hence the determinant formed by the coefficients of our equations which
we wished to calculate

Xr W Xr \ ( X, \
«-r+1/ \2s-r+1-f2/ " ' \2«-r+3-2/ ( C

2

(
2s-r+1-f2/ " ' \2«-r+3-2/ (C)

2 "(XA/XA
\ l / \ 2 / '

The determinant of the coefficients of the other set of equations can, in
a similar manner, be shewn to be

\ ( X \
/ ' " \ 2 5 - r + 2 - l / (2'2")

/XA/XA / X, \ 2 '
\ l / \ 2 / " W-r-V

Thus we obtain

[0, 28-r+1+f, X4, .... Xr.h xP-2»- '+ l-^f X,+1, ..., Xs] = B,

for all values g = 0, 1, 2, ..., 2 6 ~ r + 1 - l ; provided X, < 2 6 ~ r + 2 - l . If Xr

is less than this value, we can remove some of our equations, for there
are fewer forms to solve for. The determinants, when we take the same
number of equations (starting from the beginning), as there are forms, can
easily be calculated, and are found not to be zero.

Hence the equations give

[0, XR, X4, ..., Xr_i, Xr, ..., X«] = R,

provided X8 < 26"r+2.

Where R consists of forms
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for which /x8 <£ 25~r+l, and where the first of the differences

which does not vanish is positive.

We may apply this result again to all forma on the right-hand side
for which /x3 < 26~r+2, and thus ultimately we obtain the condition
Mg < 28~r+2. Thus, if the lemma is true for a particular value of r, it
is true when we replace r by r—1. Now it is true when r = S—1 ;
hence it is always true. Thus the truth of the lemma is established.

16. We may now apply the lemma to the equations of § 14. We find
at once that the syzygies obtained in § 18 are sufficient to express the
equation (X3 < 28""2),

in terms of equations already considered and of equations

e-a*B> (0, /*8, M4> ...,M«) = .R,

where n3 <£ 2S~2, and the first of the differences

X s — ^ 8 > X f i _ i " — / i { _ ] , • • • > ^ 4 — ^ 4 >

which does not vanish is positive.

The equation e~a^ (0, X3, \ , .... Xs) = B,

then may be said to yield a syzygy when

X3 < 28"2, or X4 < 2*-4, or X5 < 28"5, ..., or X5 < 1.

Thus the theorem enunciated in § 10 is true for the equation

e-tt2°3 (0, X3, X4, ..., \s) = B.

And in just the same way it can be established for

e-'A (X2, X3, ..., Xr_x, 0, Xr+1, ..., X«) = B (s> r).

17. Let us now consider the equation.

«--*•-"•**-•-"•»% (0, X3> ..., X,) = [0, X3, ..., XJ = B

(Sj < S2< . . . < S,).

By means of the perpetuant syzygies of the types A and B, discussed
in §§ 11, 12, we obtained relations by which we can reduce our equation
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when X^ < 2 s " ' , where <r is any one of the numbers 8, 4, ..., 8 which
is not included among the numbers slf s2, ..., s r

We may then confine our attention to those syzygies which will give
limitations to the value of X, when a- is one of the numbers slt s2, ..., sv.

To fix our ideas let us put s r = 8, and consider the syzygies which
will affect X3. :

We obtain first certain syzygies of the type C,

{(a2 ar)—(

where rv r2, ... are just those of the numbers 4, 5, ..., <5, which are not
included in the set s.2, s3, ..., sr

Similarly we have

)(%a,.,)—(aga3)(
A>-: { (a x a r g )—(a 2 a B ) \^ (a 2 a , /* ... (a 2 a , /* . (a t a^) A ( . . . .

= \(a8an)•+-(%a.2)}
A<i 1 («8ar2

Then we have a set of syzygies we will call syzygies of the type D : such are

{aiah)
Kh ... (a2as)\ (a^r^'', («!»,./•»...

,,) — (ax a2)}
 A'S... j (ax a,?) — (a! a2)} S

We obtain fresh syzygies by replacing any term (a2as) on the left
by |(a2as) —(a2a3)}, and making the corresponding change on the right of
\(aia8)—(aifljj)} into (asas). Or we may change on the left (axar) into

— (a2a3)j, and at the same time on the right (a^dr) into

In this way we obtain a set of syzygies which will give us the 28"8

relations between our equations

where <rx, && ..., <TIC are any, all or none of the numbers 4, 5, ..., S.

Again, we have the syzygies of the type C,

{((1^)+ (a2aB) \*<•. {(a1ar,)+{a2a3)}*•* (a2a82)
K'*... (a.2a,)\ {a^r.)^,...

= 1 («aart) + («i<h) \ A'> \ (aaar) + (%a8) [
A--. ( a 2 a , / (a2a8)\

for example. This will give the relation

>,3 [ o , o , X4 XJ = JB.
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And so we obtain syzygies which yield

e '< "• °* [U, u, A4, ..., ASJ — u,

where erx, a-%, ..., o-̂  are all or any of the numbers rlt ?*2, r3, ... .
We have then certain syzygies which we shall include in the type D ;

an example of these is

{(ax an)+(a2 a3) [ x<-, ( (a 2 ah) — (a2 a3) \K>* (og as.)
K>,...

(azas)\(axar.)
K>,(axa,/-,...

= | (a2 «r , )+(» i a8) f K> \ (aJ a«2)—(ai a3) i **• (a2 a*s)A'« • • •

(a2as)\(axar)
K->(axar/<......

This particular syzygy yields

g«»2>P-«»!»., [0, 0, X4 X,] = B.

The syzygies of which this is an example yield the set of relations

where px, p2, ..., pu are any of ?*!, r2, r3, ..., and o^, <r2, ..., o-̂  are any of
^i> 5 2 , . . . , s^.

Lastly, we have a set of syzygies we shall call syzygies of the type E.
They are really forms of the Jacobian syzygy, an example of these is

3) | (a2 a j—(a 2 a3) [ A'» {(«2 a«3) — («2a3)} ̂  (a-2 «««)*•• • • •

(a2aSt)\(a^r)^; (a^r/--, ...

{((h aSi)—(»! a3)} *«* (% ari)
A--. (ax ar/<-> . . .

A«« (a 3 aSs) \ { ( a j aS 4)—{ax a2) \ A». . . .

j (oja^) — {ax a2) \ \ (ax an)K>, {ax a r /<,

whence e—*0*-**0*. [0, 1, X4, . . . , Xs] = B.

and so, in general, we have syzygies which yield

e-M>(,-«32><,.j-...-M><,i j - 0 > ] } ^ ^ ^ = ^^

where <rx, <r2. ..., 0-̂  are any, all or none of s2, s3, ..., s,,.

18. We have to prove that the 2*~*+1 equations

8EB. 2. VOL. 13. NO. 1219. 2 H
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where <rv o-2, ..., <rk are all, any or none of t+l, t-\-2, ..., S;

(ii) e^Pi+a3Dpa+...+a3Dfik-a,D<,,-aiDar...-(hDJk [ Q > ^ ^ ^ ^ = ^

where plt p2, ..., pk are all or any of the numbers rv r2, r3, ... which are
contained in t-\-l, t-\-% ..., <5; and a-y, <r2, ..., er;. are all, any or none of
the numbers sv s2, ..., s, which are contained in t-{-l, £+2, ..., S\

(iii) e-^r^---*^ [0, 1, X4, ..., Xj = 0,

where <rx, <r2, ..., o-fc are all, any or none of the numbers .sl5 s2, ..., sv

which are contained in £-+-l> ^+2, ..., 8 :

are just sufficient to express all forms

[0, X3, X4, ..., X(, Xt+\, ..., Xa],

for which X3 < 2S~'+1, in terms of forms

[0, /z3, A4, ..., Af, nt+h •••» Ms]>

where ^a "^ 2S~'+1, and the first of the differences

which does not vanish is positive.
The proof follows the lines of the proof of the Lemma of § 15, and we

need not give it in full.
We assume that the theorem is true for a particular value of t, and

then proceed to prove the next step. We have two cases here.

(i) t = r ; then applying the theorem of § 9, we show that

e-*r [0, X3, X4, ..., Xa] = B for X3 = 0, 1, ..., 2 a - ' - l .

We obtain, in the same way, for the same values of X3,

e+«^. [0, X3, X4, ...,XS] = B,

for the proof of the theorem of § 9 is not altered if the sign of certain of
the operators is changed throughout. From these two equations we ob-
tain the result by the reasoning of § 15.

(ii) t = s ; our assumption gives at once

ea>D- [0, X3, X4, ..., X«] = B for X3 = 0, 1, .... 28"s+1.

Then, applying the theorem of § 9, we find the truth of the statement of
this paragraph.
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Thus, in either case, the induction proceeds step by step, and, as the
theorem is true for the simplest case of t = 8 — 1, it is always true.

19. We apply this result to the relations of § 17, and we at once
obtain the truth of the theorem of § 10 for the equation

e *2 « (.U, A3, . . . , As) — x l

so far as the argument X3 is concerned.
The proof follows the same lines for the arguments AS2, ••-, \ - But it

is necessary now in order to complete the proof to add a fresh convention.
We have so far regarded the equations

e ' " h (A2, A3, . . . , A r _ i , U, A r + i , . . . , As) — -ft

(/• < <rx < <r2 < . . . < crh),

e •:• ,, «.- r3 - <v rk ^ Ag> ^ \r_i, 0 , A r + i , ..., Xs) = B

(r < rt < r2 < ... < TK),
as simultaneous when ax = rv

We must now arrange all our equations in sequence according to the
law that the first of the above equations precedes the second if the first of
the numbers

0*2 —

which does not vanish is positive, and this rule will be made complete if
we introduce the symbols a-h+i, Tk+i, each of which is supposed to be
numerically greater than any given number.

Thus, when h =• 0, we have the equation

(A2, A3 ..., \,—i, 0, Ar + i ,

for which crx exceeds any given number, and which therefore precedes
all the other equations at the moment under consideration.

We deal with our equations in regular order, beginning with the
earliest in the sequence. Each equation will reduce a fresh form or else
with the previous equations in the sequence it must give rise to a syzygy.

The truth of the theorem of § 10 is established now for every possible
case, exactly as we have established it for those cases we have discussed.

20. Having arrived at the truth of the theorem of § 10, let us con-
sider the equation

e •• s (A2, A3, . . M Ar_1 } 0 , A,.+i, . . . , Aj) = H

2 H 2
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In general it has been taken as one of 26"'1 equations which will reduce

( X 2 , X 8 , " • » A r - 1 , X r , X r + 1 > • • • » A«) = & i

when Xr = 25-'1, 28-81 + l , ..., 2 8 - " + 1 - l .

We have in the last paragraph introduced a convention by which
these 28"*1 equations are arranged in a definite sequence. We may then
associate each equation with a definite form which it reduces. We shall
suppose that the earliest equation will reduce the form with the lowest
value of Xr, and so on. This supposition gives consistent results, for the
determinants of the coefficients involved are easily seen to be different
from zero—in general. By this arrangement the equation

e-alJ>,-arl>,r...-al.D% ( ^ ^ ^ ^ ^ ^ ^ ^ _ R

reduces the form

(\2, X3, . . . , Xr_,, 2« 8 * '

i.e. it expresses this form in terms of later members of our sequence
of forms and of products of forma of lower degree.

If X4 < 26~s+1 or if XT < 2S~T, where r > r and is not one of sv sa,..., s,,,
then this form has been reduced by a previous equation. But, in either of
these cases, there is a syzygy by means of which this equation can be
expressed in terms of previous equations, as we have shewn in our
theorem of § 10.

Thus, to every equation we have a definite reduction or a syzygy.

21. Now let us review the perpetuant types of degree S.
Firstly, they can all, reducible or irreducible, be expressed linearly in

terms of the forms ,. . .•
VA 2 , A 3 , . . . , A j ) ,

and these forms are all linearly independent. Secondly, any product
of perpetuant types of total degree S can be expressed as a product of
tivo perpetuants, neither of which is necessarily irreducible; and, when
this product is expressed in terms of our standard forms of degree S,
it can be written, without ambiguity,

-aJ) -...-a
(X2, . . . , Xr_i , 0 , X r + i X8)
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Thirdly, the complete discussion of the equations .

involves, firstly, the discovery of the laws of reducibility and irreducibility,
and, secondly, the discovery of all the syzygies of the first kind.

The lawfe of reducibility established by Grace follow from this. And
we have now shewn that all syzygies of the first kind can very simply be
deduced from those of Stroh and the Jacobian form of syzygy.

III. Forms of Finite Order.

22. The discussion for forms of finite order follows identically the
same lines as that for perpetuants. We express all covariants of degree S
in terms of the forms

defined as in § 5. We then consider every possible product of two
covariants of total degree 6, and we express it in terms of our standard
forms. The equations which we get in this way will give us the laws
of reducibility of our standard forms, and also will yield every syzygy for
this degree.

The discussion is rendered more complicated by the fact that

(X.2, X 3 , . . . , Xj )

is no longer equal to the simple product

(a2 a.2)
Ki {ax a^3.... {ax a&) K»,

but is equal to this plus a linear function of the fundamental forms.
If the set of inequalities

X2 > nlt 2X2+X8 > tt1 + >&2> 2X2+2X3+X4

2X2f 2X3+2X4+...-f 2Xa_i+Xa

is not satisfied,

{axa.JiKi (a,ias)
Kt ... (a^j)*'

i s itself a fundamental form; and we must write

( ^ 2 > ^ 8 » • • • > ^ « ) = = 0 .

The analysis for perpetuants must then be modified in two ways.



470 DR. A. YOUNG . [Jan. 22,

Firstly, the product (&• < sx < s2 < ... < s, < 8+1)

is equal to a sum of forms, of which the earliest are

e *' *" s '" (A2> •••» A,_i, 0, A,+i, ..., As),

in general; but which contains other terms too.

Secondly, if the numbers A,,, XSi, ..., X, do not satisfy the set of in-
equalities

ns, 2XSl-|-\8i > ns+n8l, 2XSl + 2 A 5 s + \ > ns+nS] +nSi, ...,

t hen •' -2 = 0,

in this case there is no equation.
Thus many of the equations obtained for the case of perpetuants do

not exist for forms of finite order ; the corresponding reductions either
do not exist or else they are brought about by other equations. Thus,
equations which for perpetuants yielded syzygies may now yield
reductions. It will frequently be found that the reduction which
corresponds to such an equation is most simply found by a consideration
of what the corresponding perpetuant syzygy becomes when the orders of
the quantics take the finite values of the case in hand.

The forms /\ \ \ \
( A 2 , A 3 , . . . , A 5 ;

are arranged in sequence according to the same law as for perpetuants.
Also the law of sequence of equations is still adhered to. It is useful
to remember that no form can be reducible for quantics of finite order,
which is not so for perpetuants, and also that an equation which produces
a reduction for perpetuants must reduce the same or an earlier form (if it
exists at all) for quantics of finite order.

28. At the outset the question rises: Can we find an explicit expression

(A X A)
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in terms of {axa2)
 A « ( a x a ^ . . . { a x a 6 ) \

and the fundamental forms ?

We proceed to find such an expression for the case when % alone
is finite and the orders of all the other quantics are infinite. In this case
we observe that a fundamental form is simply a form

... (ax a8) \

for which X2 > nv

We proceed to prove the following theorem :—

When the orders n2, %, ..., n8 of the quantics concerned are greater
than the weight of the covariants under consideration, while the order nx

is less than this quantity, the covariant

{\f \ , •••i Xj)

may be represented by the sum

(ax Oa)Aa ( « ! a 3 ) A j . .

where i = 2X—Xj—•%.

For simplicity we will take 8 = 4. And for this case we will prove
the symbolical identity

(I) (a,. a2)
Aa (

+ 2 ( . ) ( T .t=i V; / \p—l—jJ

where /o = X2+X3+X4—?ij.

The forms on the right are ordinary symbolical products which
represent as they stand covariants of the quantics with which we are
concerned. Let us assume the truth of this identity as it stands and
then deduce that it is true when X4 is changed into X4+l and nt into
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It is to be noticed that this change leaves p unchanged. To do
this multiply the supposed identity by {a-^a^. Then when the order
of the dry quantic is Wx+1, those terms under the sign of summation
on the left for which i = 1 are no longer fundamental, and those terms
only.

From the identity

(a2a3y (a2 V " ' = I K %) — Ka2) (j

we obtain

We make use of this result and the identity becomes

a2)

4 .
p—L—j

The right-hand side of our identity is already the same that we should get
by writing X4+l for X4, and %-f-l for nx in the identity we want to prove.
The coefficient of {.axa^n^l+i {axa^ (a1a4)p-i-j on the left is
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= the coefficient of a?yy>~V~i~J' in the expansion of

= the coefficient of cciif~1zp~i~i in the expansion of

( Til I *3 ( 911 \

Hence the coefficient of

_ /
V

The identity is true, then, when we replace X4 and nx by X4-fl and
M - l .

If, then, it is true for certain values of X4 and n^ it is still true if
these values are both increased by unity, and therefore if they are both
increased by any the same number.

(i) Let Wj be greater than X4. Then, if the identity is true when n^—X4

and 0 are written for nx and X4, it is true as it stands. It will be sufficient
simply to discuss the case X4 = 0 and leave nx unaltered. The identity
then becomes

(II)

p—
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To prove this we write the right-hand side in the form

The coefficient of

To find the value of this we shall prove the identity

Assume that it is true as it stands and add one more term

(_y+i (P+A ( P ) to each side.
V + l / \i—j — 1/

The right-hand side becomes

and BO the induction proceeds step by step : for the identity is obvious
for j = 0.

Making use of this result we find that the coefficient of
(o1aa)

Xll+'l(a1aB)x»"1' is

which is the same as the coefficient of the corresponding term on the left-
hand side of the identity, for X2+^3 — wi+/o- This coefficient is unity
when ij is zero, it is zero for n = 1, 2, ..., %—\2, and its value is

for *\ = nx—\-\-i.

The identity (I) is then true if X4•= 0, and therefore whenever nx > \4.

(ii) Let nx be equal to or less than X4. Then, if the identity is true
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when 0 and X4—nx are written for % and X4, it is true as it stands. It will
be sufficient to discuss the case % = 0. It is just as easy to take the
case nx < X2. Here the left-hand side of (I) becomes

(a1a2)
xHa1a3)^(a1ai)

x*+(-)Xi~ni L ~} ,

every other term under the sign of summation vanishes. The left-hand
side is therefore zero. On the right there are no terms in the first sum,
for X3—p is negative, and in the second sum every coefficient is zero for
g— 1 < p — 1 —j, since j must be less than X3. Thus (I) is true when
nx < X2. [In the same way we see that the general expression in the
enunciation of our theorem

vanishes when nx < A2.]

The identity (I) is then true when nx }> X4; it is therefore true for all
values of nx and X4.

Now the identity (I) expresses the sum of

and certain fundamental forms as a sum of symbolical products which
represent actual covariants of the quantics under discussion. This sum
of covariants is then the covariant we have named

(X2, X3, A4).

The theorem is then true for degree 4. Assuming that it has been
proved for degree (5—1, it can be proved for degree S in just the same way
that it has been proved for degree 4. The actual form of the covariants
on the right of the identity is not given, and it is not required. It
is sufficient that the right-hand side of the identity should contain
only symbolical products which represent actual covariants of the quantics
concerned. There is no difficulty in obtaining the expression, but it is
troublesome to write out, and no advantage is gained by doing so.

24. When the orders of all the quantics are finite the case is not
so simple. For the discussion of the covariants of degree 4 we require
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the linear function of fundamental forms that must be added to

in order that the sum may really be a covariant of a"\ an*, a11*. We shall
Jjr ix az

prove that:—

The covariant

where pi = X2+X8—/it, or 0, according as X2+X3 > or < n«.

In the first place the terms under. the sign of summation are all
fundamental forms, for

2 (ni—

since the coefficient is zero unless i > 0.
Moreover the index of {axa.2J never exceeds n1—pi-\-pl = n2, for i >̂ pv

From the identity (II) of the last paragraph, we have for the case
/>2 = 0,

an identity which establishes our theorem in this case. We shall take
this as it stands and suppose that n% has its least possible value X2+X8.

Now in this replace X3 by X8—p2, keeping X2 and px unaltered ; then
nx must be replaced by nl—pa, since nx = Xa+X8—p1( and n2 must be re-
placed by %—p2; we have

= ' 2 P

Now multiply this result through by {axa^% and we have

Pi—
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Since the right-hand side of this represents a covariant of the quantics
concerned, it is = (X2, X3). Q. E. D.

25. It will be sometimes useful to use the notation

Also we shall copy the index notation of ordinary algebra further by writing

and also by writing

E 2 ( ) ' ^

When we confine ourselves to the operations of symbolical algebra this
notation will not involve any assumptions.

We will now prove that with this notation

(III) {(at a8) — (ax a3) • x = {(aLa3) — (ax a2) •
x.

In other words we shall prove that

In fact

J

The coefficient of

= the coefficient of xj~lypl~j in the expansion of

{(i+*)(n-y)-i;-xa+*y:pi-p'-1(
= the coefficient of xJ~1//Pl~J in the expansion of

= 0, unless j—l+Pi—j ^ X,

i.e., unless X—«x > X,
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all the coefficients on the right are then zero, and hence (III) is identically
true.

Consider now the difference

j

X

The coefficient of (a1a2)
n>+J-« (a1a3)

Pl+ps--' (-V

= the coefficient of a>;~1?/Pl~j in the expansion of

= 0, unless px >• \—/UL—V,

i.e., unless n-\-v > Wi»

Hence

(IV) (% a2)M (ai %)^ I («i %) — (ai *2)} A-M—

unless M+^ > Mi-

IV. Covariants of Degree 4.

26. These may all be represented as linear functions of the covariants
defined by „ « . .

J (Xa, X3, X 4 ) .
We shall suppose the quantics of which these are covariants are

n>h nm /j'>3 n*-\
a l x ' a2x>

 a3x>
 Cl4x'

Then we obviously must have

2̂ 5> ?*2> ^3 3> n3> \ 3> n4-

Also, if the set of inequalities

X2 > nv 2X2+X3 > nx-\-n^ 2X2+2X3-f-X4 > %+Wa+Wa

is not satisfied, the form (X2, X3, X4) = 0.

Otherwise these forms are linearly independent.
The first step towards discussing the problem of reducibility is to
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express all products of lower forms of total degree 4 in terms of
these forms, just as we have done for perpetuants. We obtain thus
a set of equations which we have to discuss.

As a basis of discussion the forms are arranged in sequence as in
perpetuants; thus .. . . .

VA2, A3, A4)

precedes (/x2 Ma» ÂX

if the first of the differences

X4—/x4, X3—//3, X2—fx2

which does not vanish is positive. We seek to express earlier members of
the sequence in terms of later members and of products of forms.

27. Let us first suppose that the factor containing ax is of degree 3.

Then, by the theorem of § 24, '

ba\3\

i— l / \ pi — 11

Hence ( ^ ) a j * = (X2, X3, 0),

for it can differ from this by fundamental forms only.

Again, if p1 = X2-f X4—nx and p2 = X2+X4 —»2,

(V) (JL-L U ^ = (X2, 0, X4)

i, 0,

This gives a reduction for (X2, 0, X4), provided

2X2+X4 >
Again,

-5-S- a ^ = ( 0 , X3, X4)
ft\ i x
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which gives a reduction for (0, X8, X4), provided

2X8+X4>n1+?i8 and \1l>nv

28. If the factor containing % is of degree 2, we have simply

(VII)

= <T^(X.2> 0, X4),

using the same notation as for perpetuants.
Next we have

(VIII) (a^f*(a^a^ = e-a>D* (0, X8, X4),

and then

(IX) {a^ (OaOj)̂  = c—* (0, X8, X4).

Finally, the factor containing ax may be of degree 1 only, then we have

provided 2X8+X4 > ^+w3» 8̂ > ™a-

Thus, we have obtained every possible reduction equation for degree 4.
The equations are either the same as or modifications of the corre-
sponding perpetuant equations.

In discussing the equations we shall confine ourselves to the case
of most importance, viz., when

% = n3 = ?i4 = n ;

but the order % may be any independent number.

29. As concerns X4, the only limit is the same as for perpetuants:

(Xg, X8, X4)

is reducible if X4 = 0 ; otherwise we must go to X2 or X3.
For the limit of X8 for reducibility we have two equations, (V) and (VII).
From (V) we learn that

(X2, 0, X4) = R,

provided 2X2+X4 > n+nv
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Putting the value of (X2, 0, X4) obtained from (V) in (VII), we find

(X2, If X4—1) = E,

provided 2X2+X4 >• n-\-nv

If 2X2+X4 > n-\-nv we have, from (VII),

(X2, 0, X4) = E

(for X4 cannot exceed nA = n in any case).

Thus always (X2, 0, X4) = E,

and (X2, 1, X4) = E,

provided X4 < n, and 2X2+X4 J> n + «i — 1 .

80. Let us now discuss the reducibility limits of X.2.
We have the following equations

(VI) (0, X8, X4) = E,

when 2X3+X4 > n+nx, X3 > nv

(VIII) (0, X3,X4)-X4(1, X3, X 4 - l ) + ... = E,

when X3 J> nlt

(IX) (0, X3, X4)-X3( l , X 3 - l , X4)+ (X
2

3)(2, X3-2, X 4 ) - (g3) (3, X 3 - 3 , X4)

+ ... = 2ifr
when X4 ^> nx,

(X) (0, As, A4)-X3(l, X3-I, X(J)+ (X
2
3) (2, X 3 - 2 , A , ) - (fy(S, X 3 - 3 , X4) + ...

when 2X3+Xij>2;i.

Taking these last two equations together, we see that (IX) is true
when either X4 J> nlt or 2X3+X4^t> 2??. And that when we replace these
conditions by the original condition of (IX) we may replace (X) by

(XI) ( l , X 3 ) X 4 - l ) - X 3 ( 2 , X 3 - l ) X 4 - l ) + ( 2 3 ) ( 3 , X 3 - 2 , X 1 - l ) - . . . = 7i',

when X4 >̂ nv and 2X3+X4 >̂ 2n.
8ER. 2. VOL. 13. NO. 1220. 2 I
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Let us first see what the equations give us just as they stand.
(0, X3, X4) is reducible if any one of our equations exists. Hence we

see that it is reducible unless X3 > nlt X4 > nx> and 2X3+X4 > 2u.
The reduction of (3, X3, X4) requires the coexistence of equations of

each of the four types, and there is only one way in which it can be re-
duced. It is easy to see that it is not reducible unless

X3>w—8, X3>%—8, X 4 >; i—1, X4 > « ! — ! , 2X3+X4 > 2/1—5,

2X3+X4 > n+nx—5.

The conditions of reducibility are more complicated when X2 = 1 or 2;
it will be convenient to separate the discussion into two cases.

(a) nx ^ n.—The equations (VIII) and (IX) always exist; together they
reduce (1, X3—1, X4). Then (1, X3, X4) is reducible if X3 < n.

From (VI) and (VIII) we have a reduction for (1, X3, X4), provided
X4 < n and 2X34-X4 }> n-^n^—l.

Thus (1, X3, X4) = B, when X3 < n, or when

X4 < n and 2X34-X45>n+n1—1.

From the first two equations with (XI) we find that (2, X3, X4) = B,
when X3 ̂ > n—1, X4 }> n—1, 2X3+X4 >̂ n-\-n1—^.

In this case we observe that (0, X3, X4) is always reducible.

(fi) 11^ <n.—Here (1, X3, X4) may be reduced by (VI) and (VIII), in
which case we have the conditions

(i) X3>?i1, X 4 > n — 1 , 2X3+X4> 71+n, — 1;

or by (VIII) and (IX) in which case the conditions are

(ii) X 3 > % — 1 , X 4 > % ;

or (iii) X 8 > M 1 - 1 , 2X3+X4 > 2 w - 2 ;

or else by (XI) when

(iv) X 4 > n 1 - 1 , 2 X 3 + X 4 > 2 « - 1 .

Also (2, X3, X4) may be reduced by (VI), (VIII) and (IX) when the con-
ditions are

(i) X3>%—2, X4>?i— 1, 2X3+X4>w+%—3;

or, by (XI), (VIII) and (IX), when

(ii) X3 > % - 2 , X4 > nx-l, 2X3+X4 > 2/1-3 ;
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or else using (VI) and (VIII) to reduce the first term of (XI), we obtain
the conditions

(iii) \ 3 > » i —1, X 4 >»i—1, 2X3-fX4 > /i-f-%—8.

81. It is necessary to examine equation (VI) a little more closely. The
two conditions for its existence may be replaced by the single condition

When X3 = n^—-p, the equation takes the form

(0, \3, X4)-P l (0, X8+l, X 4 - l ) = B ;

and when X3 < nx—p, it takes the form

(0, X3, X4) = B ;

where in each case B represents a linear function of products of forms
and of forms (0, /x3, ,u4) for which /*4 <C X4—1.

A difficulty apparently arises when we use (VI) and (VIII) in con-
junction in the case X3 = nx—p ; for eliminating (0, X3, X4), we have

/»,«>, X3+l, X 4 -1)-X 4 ( l , Xg, X 4 - l ) + ... =B,

giving a reduction for (0, X3+l, X4—1) instead of for (1, X3, X4—1).
But in this case (0, X3-f-l, X4 —1) is reduced by another equation of

the type (VIII), unless p = 0, and the reduction of (1, X3, X4 —1) then
follows.

When p = 0, 2 (X3+1)+(X4-1) > 2 / i - (X 4 - l ) ,

and hence, from (IX), we have

(0, X3+l, X4-1)-(X3+1)(1, X3, X 4 - l ) + . . . = B.

Then, taking these equations in conjunction, we obtain the reductions
exactly as stated in the last paragraph.

82. We have so far discussed our equations without any reference to
the reductions already obtained when X3 < 2 or X4 < 1. Thus some of
our forms will be reduced twice over. In the case of perpetuants the
result of equating the different reductions was shewn to lead to a syzygy
in every case. Now we shall find that it may lead to a syzygy or else it
may lead to the reduction of a form not previously reduced.

2 i 2
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Let us turn to equation (VI). Put X3 = 0 and use (V), thus

(XII) R = (0, 0, X4)+2(-)' ( X * -? i+; - 1 ) ( X* W n i + i , Pl-i)

giving a reduction for (0, i\-\-\, X4—nx—1) instead of a syzygy when
X4 > « x + l ; it should be noted here that X4 £> n.

Now this is already reduced by (IX) since 2(n1+l)-|-X4—nx—1 >• 2n.
Also we have a reduction for the form (1, nv \4—n{—1) which occurs in
this equation from (VI) and (VIII). Thus we obtain a reduction for
(2, nl—1, A4—nx—1). This is the final reduction when \">2nlt but if
X4 ̂ > 2?ij, we can use an equation of the type (XI), and so reduce the form
(3, nx — % X4—nx—1). These farms were not reduced in § 80.

The reduction when X3 = 1 is given by (VII). To find what (VI)
gives us in this case, put X2 = 0 in (VII) and use (VI) for each term, thus
(assuming p = 0)

) (
j — 1 I \pi— j

(0, nx+j, Pl—j)

since the coefficient of (0, «i+i> P\~j) is zero. Thus in this case we
only get a syzygy of a very obvious nature.

When p is not zero, we have only the case X4 = n, and then (VI) gives
the reduction of (0, 1, n) which has not been reduced by (VII).

When X4 = 0, (VI) only gives an obvious syzygy.

33. The equation (VIII) gives syzygies just as in the case of per-
petuants when X4 = 0 or 1, or X3 = 0.

When X3 = 1, we reduced the equation in the perpetuant theory by
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means pi the syzygy

This holds good as it stands when X 4 ^ > M — 1 , and Xj^fti — 1 . But it
still furnishes an identity when X4 > % —1 and X4 ̂ > n— 1.

We write this identity

2
i=0

Now, from (XII), we have (changing X4 into X4+l)

M) !
( M i ) !>®' ni+1' ^~'h)-(%+l, 0, X.-n,)}

,0, x4-W l - i ) i •+. . . = R .

Hence on subtraction we obtain a syzygy if X4^>-«1+1; and a reduc-
tion for

(0, »!+2, Xj-Wi-l),

when X4 !$> n—1.

The reduction equation is

(XIII)

- [ e - ^ - i j ^ + i, 0, X4-;O|

f 0, X 4 - n ! - l )

With the help of (IX), thi3 in general will reduce the form

(1, % + l , X4—?ii—1)

when X4 > 2?^; but if otherwise we can use (XI) also and so reduce
(2, nv Xj—•%—1).

We must examine (XIII) further, owing to the presence of an excep-
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tion. Expanding, we obtain

—(ttj+i, 0, \—«!—i

— 2 2 ( - )

When Wj = 1, the left-hand side of (XIV) becomes

2 (-)' (Vf^tf-Da-^-^tO, 1 + /, \4-i).

And since 2 ( l + * ) + \ — * 3> 2w (for X4 > »—1) we can use (X), and thus
obtain a syzygy. This furnishes then no extra reduction when nx = 1.

We have yet to consider the case X4 = n, that is the equation

e-"*** (0, 1,71) = B.

84. The equation (IX) gives syzygies which are quite obvious when
X4 = 0 or X3 <C 2.

For A3 = 2, we use the syzygy

which reduces the equation when

\yp-n-2 and X4^>?/1 —2.

The equation exists only when X4 >> nv We can shew then that this
furnishes a syzygy whenever our equation exists and X4 >> n—2. For

0 =

(where P is used here and elsewhere to denote products of covariants)

= P + {(Oifla

= P,

giving us a syzygy for all cases X3 = 2, X4 > nv
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For X3 = 3, we use the syzygy

0 = {(ai

= P+2(A4+3): (aAai

- ( a ^ ) ^ 2 (a2a

= P+4 (X+3)

4); - ( a i a s ) ^ + 2 ;(a,«t)+(a3a4) ;•].

If \4 = nlt we obtain

, 0, 2)-(0, ; t l + l , 2);

-2(/i1+l)-;(H1+2f 0, l ) - (0 , ni + 2, I)! = P.

And using (XII) we find we have a relation between products of covariants
only, i.e., a syzygy.

If ,\4 = ;/j —1, we obtain

K + l , 0, l ) - ( 0 , « 1 + l , 1) = P ,

and again using (XII) we have a syzygy.
If A, < it—1, there is a syzygy without the help of (Xll). Thus we

obtain a syzygy from (IX) in every case when A3 < 4, or A4 < 1, provided
A, 3> n—'l.

We have still to consider the cases A4 = n — 1 or n. In fact we have
to consider the four equations

c-,.,/>, (0> 2 j n_l) _ Bf g-^i)3(0> 3, n—i) = B,

e-a,D, (0> 2> n) _ Rf e-v+lH (0, 8, n) = Jif

where it must be remembered in each case that A4 >̂ n^

35. The equation (X) gives obvious syzygies when A3 < 2 or A, < 2.
For the other cases the syzygies
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and • («.2a4)—(a.2a3) • "'-1 (a2as) = — K a ^ - 1 (^(13)—(a8a4)
(t-|-(a8a4)"-1(a1a4)>

may be used, as for perpetuants; provided the weight w is not greater
than n. When the weight is greater than n we rind ourselves with five
equations to deal with of just the same type as those of equation (IX).

We are thus left with ten equations to consider, four of weight n-\-l,
four of weight n-f 2, and two of weight ?i+8.

86. For weight n+1 the equations, in the case of perpetuants wero,
reduced by means of syzygies obtained from the symbolical identity

(XV) Aiin+l) [(a2a3) 1 {a^)—(

+A9[[(asa4)-(fliOs)[Jl+1 - {(a..2a4) ~

+^4[;
+AR[;

( i a i j " + ' ] = 0.
From § 25 we see that

•(a,a4)-(a2a8) 'l+l

= 2 (-)'"

and that

J,(a.3a4)—

;=o
^ 1 - ( - ) " ( a 2 a 8 ) ) l (0904),

where (a-aa8)i(a2a4)n+i-i is an actual covariant of the three quantics con-
cerned : in these we replace

(Oa 03)B (Oa a4) by (a.2 a3)n (ax a4) — -| («i a3)—(a2 a2) \n{ala2),

and then substitute in (XV) •
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In the result the coefficient of each of (aaa4)
H+1,

)rt+1, (aja3)"
+1 is zero. And, in fact, the identity is a syzygy as it

stands for all values of the five constants when nx ^ n.
If /i, %> n, we need the following results from § 25,

and

Making use of these results in (XV), and of the corresponding result for
| (a1ai) — (a1a.^\"+l, we obtain from (XV) in the notation of this paper,

(XVI)

;f,-,- [("tT2) CVi-J -<-)"' CUT"1)]
x iO, «,4-i—1»

(-)U | [(»i. 0, H + 1 - M J )

£ , , l 5 + ( _ r , , l 4 t e , : t ( 0 j w + i _ t t l _ i ( yil + i) = p.

It is evident that we only get syzygies (with the help of the regular equa-
tions) when nx = n.

In general when all the A's except Ax are zero, we find

(0, nlf w+1 — nj — (n + l — nj(0, tii + 1, n—n1) + ... = R.
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From Ai = AA = A5 = 0, A2 = A-A, we obtain

From

.18 = ^4 = .16 = O and il1(M + i ) ( - ) - + ^a •] ( ; " ) - ( - ) " ' ', = 0,

we obtain •' ( )—(—)" ' ' {nv 0, n + l — nx)

This is all we get in general, for (XV[) does not help us, as a rule, unless
AA and ^ 5 are zero, as it is easy to see. Further the three equations are
all we require; since when t^ < n—2, the equations

e-"'D'(0, 2, n-1) = E, e~''°* (0, 8, n - 2 ) = R

no longer exist.

Tims, when nt < n—2, we find three new reductions which easily
may be shewn to be those for {nlt 1, n—%), (2, /ij—1, ti—n{), the third
being {1, nv n—Hy), if H > 2/^—1; but, if « < 2 « 1 —1, this is already
reduced and our third reduction is (3, ^ — 2, -n — n^.

When «i = «—1, we have to look for five reductions or syzygies; the
three equatious obtained for the general case enable us to express each of
(0, n, 1), (0, 11—1, 2), aud {n—l, 0, 2) as a sum of products. Substitute
their values in (XVI); and it reduces to

^ + ( - ^ 4 , ! e-'*D<(0, 1, H) =• P.

But using (VT) we lind that

= P.

And hence the extra equations give two syzygies here.
When nx

 = n—2, we have one extra equation to obtain.
It is plain that we must have Ar}—(—)"'Ai = 0 in (XVI). We find our
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equation by putting Ax = A3 = 0, A2 = Ak = (—)'", .43 = 1. And by
means of this we can obtain the reduction of the extra form (2, «—2, 1).

37. For weight w+2, we find that the equation

g - o j f t - ^ (o, 2, ?*) = .B

is required for the ordinary reductions, unless nt ^ n. The equation

e-a2D3 ( 0> 2 , w) = £

exists only when % ^? i , and is then required for the reduction of (1,1, n).

The equation « - * < 0 , 8 r » - l ) = f i

exists only when nx ̂  n — 1; and

e-MV-«,/>t (o, 3 , 7 i _ i ) = i^,

which exists only when n ^ 5 is required for ordinary reductions when
>h < 4.

Thus we inquire three reductions or syzygies when ;tx ^ n, two when
/ix = n—1, one only when n—1 > ;tx > 3, and none when ^ ^ 8.

We replace ^ by n-\-l in (XV) ; and observing that by § 25 we have

2 (-)

- { / i
2 - ^ -3 - ( - ) ' i (8w+4)

and

-(rtaaj — (a2a3)\'
l+1

= 2 (—)

- \n-l-(-r ( 2 7 i K 2 3

| )" (a2a4)
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In these we replace

by

— ! (%a8) — («x a.2)}
 n"M 8 ( a ^ ) (% a4)

2 —• 8 (ax a.2)
a(ax a4)-f(ax

and (a2ad)
n (a2a4f

by (a.2 aH)n (a, a4)2 — {(a! a3)—(ax a.2)}w ) 2 (ax a.2) (ax a4) —

and then substitute in our new identity.
In order that the identity may yield a relation between actual co-

variants, the constants must satisfy the conditions

(XVII) .^-At+At+At = 0, A^At+At = 0.

When % ^ n-\-2, we find if n is even no syzygies, but reductions for
the forms (8, n—8, 2), (2, n—\, 1), (8, n — 2, 1); and if n is odd there is
a syzygy and the forms (8, n—8, 2), (2, n— 1, 1) only are reducible.

When «! = n+l» and « is even, our identity furnishes reductions for
(8, ;i—8, 2), (1, ii, J.) and (2, n—1, 1) ; but when n is odd there is a
syzygy and reductions only for (8, n—8, 2) and (1, n, 1).

When nx = n, there are no syzygies, the reductions are (n—1, 1, 2),
(2, n—2, 2), (8, n—3, 2), when n is even, and (2, n—2, 2), (8, ?t — 8, 2),
(1, n, 1) when n is odd.

When nx = n—1, we expect only two results from our identity, and
we find that the constants must satisfy the additional condition
Ai+Aa = 0. And whether n is odd or even we find the new reductions
to be (8, n—4, 3) and (1, n—1, 2).

When w 1 < « — 1 , we have one reduction only to look for, and we
must have A4 = 0 = A6; and therefore 1AX = A2 = 2.48. We find then

., I Q

a reduction for (8, J^—8, n—nx-\-%), when nx <̂  —«•—, but for (2, Wj—2,

«—?ii+2), when nx < —r— ; and no new reduction at all when ??x < 4.

88. Lastly, when the weight is « + 8 , we find that the equation

which only exists when nx ^ n, is always required for the reduction of
(1, 2, n). The equation
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is also required for the ordinary reductions unless nx ^ n ^ 6. To ob-
tain the reduction or syzygy corresponding to this last case, we replace ~.n
by w+2 in (XV) and proceed as before ; then we find that the constants
must satisfy the two conditions (XVII), and also the further conditions
As+A4 = 0 and A3—A5 = 0 ; whence

2 4 1 - 1 1 '

When n1 > n and n is odd, the form (3, n—4, 4) is reduced.
When % > n-\-l and n is even, the form (3, n—3, 3) is reduced.
When % = n-\-l and n is even, the form (2, n—2, 3) is reduced.
When «t = n, the form (2, n — 3, 4) is reduced, whether n be even

or odd.

39. We can now sum up our results. As before stated, (0, A3, A4) is
reducible unless

nlf v and 2A8+A4 > In ;

it is therefore always reducible when % ^ n.
The reducibility limits of (1, A3, A4) are illustrated in Fig. 1: where

FIG. 1.

contours are drawn for different values of ni when n = 20, the form
corresponding to any point (A3, A4) either on or on the origin side of the
contour being reducible. The character of the contour changes according
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to the value of % ; thus the reducibility limits are, when

(i) iix^—, Aa^Mj—1 or A8 = nx or Mj-f-1 and 2A8-f-A4̂ >-?? + "i

or A4^>7i1—1, 2A3+A4>-2w—1.

(ii) ^ > , h > i f A 8 > n 1 - 1 , 2A 8 +A 4 >2«-2 ,

or X 4 > n 1 - 1 , 2 A 3 + A 4 > 2 « - 1 .

(iii) n—2^nx>-£, 2A3+A4 > 2w—2 or Aq>n, — 1 , A4 > >?,

or A4 > «!—1, 2!

(iv) % = w—1, a modification is introduced owing to the reducibility
of (1, ;i—l, 2); we have then

nx = n—1 or n, 2A3-f A4 ̂ > 2w—2 or A3 ^> ^ — 1 , A4 ^> nx

or A4 ̂ > 7^—1, 2A8+A4 $> 2/?.

(v) nx = w+1, A3 > n—1 or 2A8-|-A4 > 2?i+l.

(vi) » j > w + l , A8>n—1 or 2A3+A4 > n+nx—1.

(vii) Wj > 2n, every form is reducible.

The reducibility limits of (2, A3, A4) and (8, A8, A4) are traced in
Figs. 2 and 8. It will be seen that in both these cases there is part

2 3 * 5 6 7 fl 9 loll 12 13 I* 15 16 HIS '20
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of the figure which corresponds to forms irreducible for all values
of fy.

3 4 5 G 7 6 5 16 II 12 13 K-15 16 17 18132022
21

FIG. ?,.

40. It is noteworthy that our special cases introduce the reductions of
(nlf 1, n—nx) when % < n; and of {n—1, 1, 2) when % = w, and is even,
which must be added to the reductions given in § 29.


