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ON BINARY FORMS

By A. Youne.
[Read January 22nd, 1914.]

TrE object of this paper is to develop a method of attacking some
of the problems in the theory of binary forms. Problems connected with
the enumeration of complete systems are particularly in view.

Every method introduced requires some justification for its existence ;
its utility needs to be judged by results. In this case the method is
at once applied to covariant types of degree four of the binary form
of order », and the complete irreducible set of these is obtained.

The preliminary analysis is concerned with the theory of perpetuants,
and incidentally the complete system of perpetuant syzygies for every
degree and weight is obtained. It appears that all perpetuant syzygies of
the first kind can be obtained symbolically from those due to Stroh, and
that consequently the extension to any degree of the work * of Mr. Wood
and myself, for the first eight degrees, depends solely on accurate enumera-
tion, and does not require the introduction of any new principle or the
discovery of a different type of syzygy.

I. Ezplanation of Method.

1. We are concerned here entirely with the symbolical notation. Its
introduction by Aronhold at once gave a method by which all covariants
could be mathematically expressed. At the same time in the calculus it
provides every form considered has the covariant property. But it has the
drawback that a great many unnecessary forms appear in any discussion.
- Various methods have or can be suggested by which the forms considered
may be limited to a linearly independent set. But such methods cannot
avail much in most problems unless it is possible to express the product of
two forms so expressed in terms of the corresponding forms.

* Proc. London Math. Soc., Ser. 2, Vol. 2.
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Grace,* in applying the symmetrical notation to MacMahon’s theory of
perpetuants, has succeeded in doing this for the case when the order of
every quantic considered is infinite. In this case he selected one quantic
ay, for particular attention, introducing the symbol a; into every deter-
minant factor, by means of the equation

(agag) a;, = (a,aq) as —(a,ay) ag .

Thus the only symbolical products he had to consider were of the
form (omitting factors a,)

(@ @™ (@ agh ... (@ as).

These, when perpetuant types are under consideration, are all linearly
independent. There are no superfluous forms.

* Now, when we come to forms of finite order, we cannot, as & rule,
apply this method as it stands, for the reason that there are not a
sufficient number of factors a,, in order to be able to introduce the letter «,
into every determinant factor. In fact, if we can do so, n;, the order of
the corresponding quantic, must be equal to or greater than the weight
of the covariant considered.

Let w be the weight of the covariant C, then if we multiply C sym-
bolically by a;"™™, we can express “110,_“'0 in the form

r

ZN(a/l afg)kg (al as)Aa e (alaa)l\ﬂ (I,;:-Az a';:“AH cee ag“A",

where N is numerical.
We have thus, as in the case of perpetuants, a linearly independent set:
of symbolical products
(@ra9 (a ag)* ... (a;as™s

to consider. But there is this difference: separate products do not
represent actual covariants, but only certain linear functions of such
products. We shall proceed to shew how every such product may be
made to represent a covariant or else a form which we shall call a
Sundamental form.

After that we shall proceed to shew how products of covariants may be
dealt with, as in the case of perpetuants.

2. Let us consider covariant types of degree ¢; that is, covariants

¢ Proc. London Math. Soc., Vol. xxxv, p. 107.
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linear in the coefficients of each of the quanties

a;‘:. (g% e ag’.
It lis supposed, to start with, that these quantics are arranged in a fixed
sequence.

Let us fix our attention on some covariant type expressed in the
ordinary manner as a single symbolical product. We say that this

covariant is a term of the continued transvectant
((-.. ((@rap)™, al™, a)™, ..., a)

(using the single symbolical letter to denote the corresponding quantic).
This statement is nearly obvious. An immediate proof is obtained by
induction. Assume it true for degree J; then, if C be a symbolical
product representing a covariant of degree é+1, C is a term of a trans-
vectant

(P, a‘8+l)x“'1

and, since P is a symbolical product representing a covariant of degree 4,
the theorem in question is true for P, and therefore it is also true for C.

Now the fact that every term of a transvectant differs from the whole
transvectant, by a linear function of transvectants of lower index, leads us
at once to the fact that any term of the continued transvectant

(... ((ala'z)Az, a‘s)'\a: a4)~: ceey AN
differs from the whole transvectant by a linear function of forms
(.. gy @), agh, a), ..., adt,

which are such that the first of the differences

>‘6_,U~8r As—1—Ms—1, veey >‘~2_ﬂ21

which does not vanish is positive.
We are then at liberty to express every covariant type of degree &
in terms of continued transvectants of the above form.

8. Let us now retnrn to the consideration of a single symbolical
product which represents a covariant type C of degree 8. Let the weight
of C be w. .

The symbolical product a;~"C can be expressed in the form

IN (@ a)™ (@ ag ... (@ a),



444 Dr. A. Young. . (Jan. 22,

where N is numerical : by repeated use of the equation
@ras) u;, = (@,0) a,,— (@, a) a,,.
We shall arrange the produets in a. definite sequence by saying that
(ayap)™ (@ a™ ... (aap™
precedes ' (ayax* (a ag ... (@, as*,

provided that the fivst of the differences

A=y Ao 1—Ma-1s oooy Ag=Hg

which does not vanish is positive.

The continued transvectants will be supposed arranged in sequence
according to the same law,

Now it is to be observed that a continued transvectant is defined by
the same set of numbers Ay Ay, ..., As, 88 & product

(@, ™ (@ ag)™ ... (@ a5
_ If the continned transvectant be expressed as a sum of the products
considered (by multiplying it by a’~™), the first of the produets in our

sequence to appear will be that which is defined by the same numbers.
Now every continued transvectant represents a covariant type; but

only certain linear functions of the products (viz., such as are divisible by

ay~™) represent actual covariants. The difference between the two cases

being accounted for by the fact that there are certain limitations to be
imposed on the indices of the transvectant ; whilst the only limitations to
the indices of the product are those expressed by the inequalities

AP g, Agng, ooy e P Nge

These limitations are also necessary for the transvectant, but in addition
we must have

(i) AQ } Ny, 2A2+>\3 > n1+n2, 27\2+27\3+X4 > nl+ng+n3, voey
W+ 220+ ... 214+ As By Fngtng .. 5.

In the case of products we shall use the term jfundamental forms
to denote products for which the set of inequalities (i) is not satisfied.

4. We proceed to shew that corresponding to every other product, that
is to every produet for which the inequalities (i) are satisfied, there is
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a unique covariant which can be represented as a linear function of that
product and of fundamental forms. We have seen that the transvectant

(.. (@yagle, ag™, a, ..., a)™

can be expressed as a linear function of our products of which the first

term is .
(ayag™ (ayagm™ ... (a ap™.

Let N(ayax)* {a,ag)* ... (ayaghe

be the next term in the order of our sequence to appear; if it is not a
fundamental form we may subtract the covariant

N((--- ((al a-z)“s’ Qg M) a4)“'; sevy a&)“‘

from both sides of our equation.

Proceeding thus step by step, we arrive at the truth of the above
statement. That the covariant is unique is evident from the fact that
every covariant can be expressed in terms of the transvectants considered,
and that these transvectants can be expressed in terms of the covariants
found, and vice versa.

5. Let us use the notation

Mo Ags oeer A

to denote the covariant corresponding to

(a,ax)™ (@ an)™ ... (@ ashe,

t.e. the covariant obtained from this product by the addition of & linear
function of fundamental forms. :

Then we have a set of linearly independeut covariant types of degree &
in terms of which every such covariant type may be linearly expressed.
And this set is composed of the forms

Mgy Ags -oes As)y
where S NP g Ag D g, ..., As D ns,

and the A’s further satisfy conditions (i).
It will be convenient to have a notation for the covariant

Ao Azy oevy A,

in which the letters corresponding to the different quantics appear; we



446 ' Dx. A. Youne [Jan. 22,

shall for this purpose use the notation

A

aypay ... ak
(2—8(1'—8) = (Ab A.’iv ey A6)-
1

In order to discover what forms are reducible, or to find relations
between products of forms, it is necessary to he able to express the
product of any two of our forms as a linear function of the forms of
a higher degree.

Thus, for example, the product

A;

(B2 = 30 ) (),

ay 4 (11

The case of perpetuants is much simpler than that of forms of finite
order, and the analysis in this case is a necessary preliminary to that of
the more difficult case.

II. Perpetuants.
6. Grace proved that the perpetuants
(@ a9 (a,a™ ... (@ as™

can be expressed in terms of products of perpetuants and of forms of this
kind for which NS 272 A S AS W,
This is the result. The method by which the result was obtained (by
means of certain relations due to Stroh) is not the method we require here.
We shall therefore proceed to establish the same result by a slightly
different method for the sake of the analysis. The analysis will be
capable of application to forms of finite order.

7. It is our aim at the outset to express every possible product of two
forms as a linear function of forms

(@ ag)® (@, @™ ... (@, as).
In order to do this we must separate the letters a,, a,, ..., a; into two

sets. We may write them

Ay, Qry .er Qr,

Qsyy Gsyy oevy Qg o

n

Then we consider the product of any covariant type of the one set by any
covariant type of the other set.
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The product to be considered is of the form

Ap A«
(@0, (@@ (@1@,) 7 (g, Q)™ (@5 0 .. (@5@0)™

=zppeer () o (37) o o i)

. . i A, —i
X (@, @)t i@ a M L (@)

= ¢~@8,)3Ta(0e))~(@0,) 3 [3ee, ). ~(:e,)3 [ (1, )]
A '\r A )‘n
X (@) .. (@ @) (@ as)s .. (@@ ) ™.

Let us suppose that s, = 2, and let us use the notation
| _ 2

T AN

Then without fear of ambiguity we may write our result [replacing (a, a,)
by a, in the exponential index

—agD, —agh, —...—aD,
€ * " ”(O: Aav Ab ey A6)

A, A,
<a*r.a"r.1 ... a ) (a*-*:a-“m ...a >
_ re oy r, Sa &y s, .
- b
a

(227

2

since Ay Ags «-es Ap) = (@09 (@ya9™ ... (@, as)s

for perpetuants.

8. We thus have a set of equations

e—“:‘Dz,—"ﬁns,_"‘—u7Dl,’ (0, Ag, Ay feny AG) == RI

to consider, where Sgy Sgv .-vy Sy
are any, all or none of the numbers
8, 4, ..., 0.

Since each of the d—2 numbers may be taken or left we obtain 232
equations. We shall shew that the 2°-? equations are, in general,
independent and are just sufficient to express every form

Az Agy .oty Ay,

for which A; < 2*-% in terms of similar forms for which Ay > 202 and of
products of forms of lower order.
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In order to prove this we must arrange our equations in a particular
manner. We begin with the equation

0, Ag ..., M) =E,
represénting the fact that this form has the quantic a:,: for a factor.
The next equation will be

e=%04 (0, Ny, .oy \g) = B,
or (0 Ag +ory AD=As(L, Ag -.ry x8—1)+(7;)(2, Mgy ooy A=) —... = R.

This equation with the help of that already used reduces (1, Ag, ..., As—1) ;
u.e., it expresses this form in terms of earlier forms in the sequence and
of products of forms.
We next consider
e~ “P1 (0, Ay, ..., Nsu1y As) = R,

and it is easy to see that this reduces the form
(2, Agy +eer Aoc1—2, 9.
When we come to our next equation
e~%ls1=Pe (0, Ag, ..., As-1, \),= R,

it is necessary to take it in conjunction with the last. e have, on sub-
tracting,

[e=Pa-1= 40— =22D5.1] (0, Ay, ..., Ag—t, Ao)
= AL, Agy ooy Apmty Ag=—1)=AsA5-1(2, Ag, -0y Asmr1—1, As—1)

2 (M) 8, A oo Na—2 M=

+terms in whicl the last argument is less than. As—1
= R.
Also

l—_e_{"zl)a-l—]-] (Oy AS; ey A5"1+1’ As—l)
= — Qe+ DL, Agy oy Mg, As—1) + (M—12+1) 2, Aoy Apc1—1, A —1)

(e

; )(3, Agr oo Ap1— 2y Ng—1) 4.

= R.
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Using the results of our first two equations we may write these two
equations

Acr (@, Ngy ooy Ao —1, \g—1)— ("*‘2—1) 8, Ags +es Aeci—2, \s—1) = R,
(M‘;+1)&,A@.",M_r—1,xy—n

- (AS—;}'*' 1) (3, >\3, “.,' A5_1—2, A—1) = R.
These two equations are proved to be independent by calculating the
determinant formed by the coefficients—its value is 3A;-; (A“‘?’ 1).

Thus we can express

(2, Agy oevy Asm1, A 80D (8, Ag, <.ty As—1s A9)
in terms of forms (Mgy Agy <+ey Aggy Mo1, Mo),
and of products of forms ; where u, < 4 and the first of the differences
ms—Ns,  Ms—1—Ng-1
which does not vanish is negative.
In general we shall consider the equation
e D (0 N N =R (<1< .. 1)
before the equation

¢ 0Tl g N, A =R (5, <5< .. < 8,
if 7, > s o
If », = s, we consider the two equations simultaneously. In fact, we
have a set of 2°~" simultaneous equations in which the first operator in
the exponential index is D,,.

9. Taeorem.—The 25" equations

—agD, —uaD, — ... —a;D
e @D, =020, 4y ;"(O, A&’ ceey AS) = R,

where sy, Sg ..., S, are all, any or none-of the numbers r+1, r+2, ..., ¢
are just sufficient to express all forms '

0\2, As, cevy A‘rr A1‘+1) [XR] )\8),
for which Ny < 2= in terms of products of forms, and of forms

(/‘2; AS; ceey Ar; Mrgly ooy ,“8)1
SER. 2. vorn. 13. ro. 1218. 2a
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where uy = 257, and the first of the differences
M—#Os >\8—1_#5-19 coey >\f+l_l‘r+ly

which does not vanish ts positive.

Let us assume the theorem to be true as it stands for a particular
value of . 'We proceed to show then that it is true when » is changed
to r—1.

Consider the equations

—aoD,~asD, — ~...—agD,
¢ 2Prm el mwl Az ...y A)) = R,

for which s,, s,, ..., s, are all, any or none of the numbers

r+1, r+2, ..., d.
The equations may be written
e'“ZDn,"‘“2Ds,_--'_“203'7[e—GQD,‘ ©, Az, ..., )\5)] = R,

and when they are written in this way they are identical in form with the
set of equations for which we have just assumed our theorem true. Hence,
on making use of the assumption, we find that :

e_aeD' (>\2’ AS, vy A’r; A'I"}-], ey A5) = 'R?

if A\; < 2°"; and that the symbol R here stands for products of forms
and numerical multiples of forms
‘ i (:“'2’ A3: erey >\1‘, b,‘r"‘l’ eeey ,U'S),

where u, = 2%-7 and the first of the differences
7\a—m, As—1—M5_1;.- s >\|-+1—‘Al-r+1

which does not vanish is positive.

We thus have 2°~" equations to consider of a simplified form, in which
the covariants we consider differ only in the arguments A, and A,, the
general equation of the set being

z(_)T (}r) (>\2+fr )\31 seey 7\1'-1) )\r_fs Ar+1) ey >\8) = R.

Using our assumption again we see that we have a reduction for
all those terms for which A\,+ ¢ << 2°-", and, in fact, we may suppose
that these reductions are inserted, taken over to the other side of the
equation, and included in the general symbol R. Taking then the firs
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28-" terms of each of our equations, we have a set of 2°~" linear equations
to solve for the 25" variables .

@€ Agy oy Arcts Me— E—=257, Apaty ooy A (=0, 1, ..., 27T—1).

If the determinant formed by the coefficients of these 2°~" variables in
the several equations is not zero, then the equations give a reduction for
every one of these covariants.

The determinant in question is

(2>;:r) (26-’\"';1—1> (25_;-':'1_1)

A1 A—1 A—1
) B ) B
(21\:'——”:)1,) (25_1'\':}-_1’1”&) (25"3::?—7;7,)
P ) e

— NOL—=D =281
T =T\, =2 =)l ... (=2 T

112!, (25-"—1)!

X 26_.:.! (28—,_}_1)‘ . (25—)'-0-1_1)!

X 1 1 1

BT - Y

98=r 2s—r+1 26—r+1__1

(-m) ( m ) ( m )

Q8- ) (25—r+ 1) (26—r+1_1

(25-"—1 2-r—1/ 7 \gir_q )
(2 (g ) = i)
26-—;' 25—r+1 26—»‘+1_1

= <);> (;) <25_§r_ 1)

26 2
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This is not zero unless A\, < 2°-"*!—1; but in this case our equations
only involve A\,—2%~"41 variables of the form

(26—r+sé, AS) seey Ar—ly Ar—f—gs-'; >\M-l, ey AS):

t.e., those for which £ has the values 0, 1, 2, ..., \,—25-". (If A, < 2"
none of these forms occur.)

To solve our equations for these, we take the first A\,—25-"41 equa-
tions and calculate the determinant formed by the coefticients. Its value,

obtained as above, is
(7) () = )
26—r 26—r+1 A,
(1G) -G )
1/\27 77\, =28
Thus in any case the solution of our equations gives
(26_T+£, Aaa seey >\"—19 }\)__5_26—:', At‘-Hv seey AG) = R)

when £< 2" and A L 420

The terms included in the symbol R are either products or forms

(M.z, A3, ceey Aa'-l, Myy Myprry ooy MS)v

which occur later in our sequence than the term on the left, and for which
pe < 25-7. By repeated application of this result to all terms on the
right for which u; < 28-"*! we find that we may restrict uy to be equal to
or greater than 28-"+1,

Thus, if the theorem is true for any particular value of 7, it is true
for »—1; but we have seen that it is true when » =4 or » =4—1.

Hence it is true in general.
In particular we deduce that the form (A, A4 ..., As) can be expressed
in terms of products of later forms in the sequence when X\, < 28~

10. The equations
e-a2bﬂ_(ublu-"'-({2D"'2 (0, As; ey Aﬁ) = 'R

result in establishing reductions which depend solely on the value of A,.
We have another set of equations

e P T D (N Ngy ey Armty O Nyt ooy Ag) = R,
where >t > . 5> H>

which establish reductions dependent on the value of A,.. They give a
reduction when A, < 28-7,



1914.] ON BINARY FORMS. 453

We shall consider all our equations in regular sequence, and those
equations which affect the value of A, will be considered before those
which affect the value of A, when r > s.

Thus, when we examine any form

(>\‘2’ AS, evey A«‘S)’

we may find that it is reducible because A, << 2°-" and also because
As < 2-% Then, if +>5, we shall suppose that the form is reduced
by the A, equations; it is then necessary for a complete discussion of
these forms to discover what the A, equations may mean. In the case
of perpetuants we know from the well known facts of the subject that
these A, equations cannot introduce any new reductions, for all reducible
forms have been reduced, and that therefore they must lead to syzygies.
But, so far as the present investigation has gone, it might happen that
they lead to new reductions. Indeed, in the case of forms of finite order
the discussion may be carried on on precisely similar lines, and then it will
frequently be found that these A\, equations lead to new reductions and not
to syzygies. We have shewn (§7) that every possible product of per-
petuants of total degree s can be expressed in the form

—a,D, —e,D, —...—u,D,
¢ T ? (A‘Z’ A37 seey Ar—l, 07 A'r'+lr veey A8)’
where r<s<H<..< 8,

Hence a complete discussion of our equations involves not only a
complete discussion of the question of reducibility, but also of that of
gyzygies as well.

We shall proceed to prove the following theorem :

The equation
e~ PP me D, Mgy +oes Aec1y 0, Ay ooy A = R,
where P s <8< . < Sy

reduces to a syzygy when X\, < 2=7*1 or when \, < 2", where o is
any one of the numbers sy, So, ..., Sy, and T s one of the numbers
r+1, r+2, ..., 8, which is not included in the set s, Sy, ..., Sy

11. Let us first consider the equation (» < s)
e~ P Ngy Agy veey Arcly 0y Argyy ooy Ag) = R
= (2,a)™ (089 (@8 ... (@B (@ ) o ..
(@1a5-1) -1 (@@ ) 0 L. (@ ap)

= [xm AS! savy A'r'—l’ Oo A1‘{—1, “V-’ )\s—l; L&: )\s+ls seey AG]! 83y~
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Consider the identity
(@109 (@189 ... (@, @r_1)'r2 { (@) Qryg) —(@10441) } Ao (@) @yas)res Lo,
(aras) (a, a4;+1)'\“l ves (al ag)
= (alaﬁ))‘2 cee (ala'r-l))‘"' (@r 41y 40)re2 (a, ar+8))"‘3 (ala's—l)'\"‘
X (@ @) = (@ @) | (@ Qepr) ot oo (@ ag™.

Expanding the braces on each side by the binomial theorem, we obtain &

8y2ygy-
The syzygy at once gives us the velation between the equations

N . .
2(—)1 ( ;2) e~ D (A‘z’ vy A1y 0, %, Arsa=—1, Arygy ooy Ap)

- . .
= 3(—Y (;) e aPers (g, ey vty G5 0y Arats +ver octy As=Js Aes1s +ees A9
Now every equation on the right-hand side is discussed before any of those

on the left since 41> ». Hence this syzygy yields the relation
G_a""ln’*g [AQ, ooy AT_], O, O, A1~+2, veey )\5_1, 'A_s, A.‘H-h veny 7\5] = R.

And in general when o, > o; > #, and neither o, or o, is equal to s, we
obtain just such another syzygy which yields the relation

e~%D., ([Ag, ceos Arm1y O Ariyy ooy Aoty é_a, Asils +oes Aa] )‘v.=0) = R.

The result may be at once extended to a slightly more general syzygy to
which the relation

€70 Pe 000D ([Ng, oy ety O, Artly ooer Agy ooy Aslay=0) = R

(where r < 0 < 0y < ... < o, and none of the ’s which here appear is
equal to s) corresponds.
Let us call these syzygies the perpetuant syzygies of the type 4.

12. Consider the identity (» < )
(@™ ... (@ @)1 {(@r @) — (@1 @r 1) } 20 (@ @y 2)ren .
(@ @s-)M=1 (@1 Qg i) ev1 o (@)
= (@@ ... (@1 @r1)~1 {(@r41@) — (@ @)} (@ Argo)roe .

(alaa—l))‘"l (a1aa+1)'\‘“‘l (alaa)k‘-



1914.] ON BINARY FORMS. 455
Expanding the braces on both sides we obtain a Stroh svzygy, and this
at once gives the relation between our equations

E(_')l <>:1‘> e—u"D" (>\2) veey A'r—l: 01 1;1 Ar+21 reey A.~‘—lv ’\s_iy Az~‘1'-l) ey Aﬁ)

= 2(—)' (:a) e—a“ll)’ (Aey veny A"‘—1’ (I;) 01 A'r+'2, ey )\.\'—l, A.‘)'_iy As+11 ey Aﬁ)-

Every equation represented on the right is considered before any of those
on the left of this relation : hence we may write it

S (3) D oo Mty 0,6 M o At Aemis Ay o ] = B
And although a slightly different meaning must be attached to the operator,
we may, without fear of ambiguity, write this equation

e~ [Ny, vy Mcty 0, 0, Arvzy <oy Mgty Mgy Agrs oo Aa] = R
In the same way we obtain, whenever s > o,

e="Pr ([Agy ooy Momty 0, Avsy wooy Aty Ay Asts ooy Ashh =) = R,
and wheunever o > s,

6_“-‘0’ [Az, veey A,-_l,' 0, Ar+1, ey Ag_], Q, 7\“.1, ey /\5] = R.

That is, we obtain syzygies which yield these relations.
Now combining one of these syzygies with one of those of the last
paragraph, we have a syzygy expressed by

(@ @)™ ... (@ @)1 (@ @rid) = (@ @) o2 L (@r @) — (@ @r i) H
(@ s gres L. (@ @s_ ) o1 (@ g ) e . (ayap)s
= (@)™ ... (@A) (@11 @ 1)+ {{@r 1@ — (@ @) 1A (@ @rpg)os ...

. (@@ )1 (@ @)L (@ ag)s,
which yields a relation

e~ Prra=%nDs [Ng, Loy Nesty 0, Apyzy oony Mg, Ay Aists oo As) = R.
In this way we obtain syzygies to give each of the relations
g% Do Pa™ T e ([hgy vty Arcty 0, Avtty «oos Aacty As Askty ooy As]a=0) = R,
when ’r<'a'<<rl<<7'2<...<a',< and o .

These relations have already been fully discussed in §9, when dis-
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cussing the question of reducibility : we obtain from them at once the re-
sult [Ag, seey A,-], O, xr+], ey As—l; AS’ AS-{*I’ ey Aa] = ‘R

when A, < 2%-°, where »r < o Fs.
We will call the syzygies of this paragraph the per petuant syzygies of
the type B.

18. In obtaining the limitations to the value of A,, and the correspond-
ing syzygies, for the equation
"D’ (A2| veey A1'—11 0; >\1‘+l’ ceey >\8) = -R

We shall simplify the work and not lose anything in generality if we
suppose » = 2 and s = 8. Thus we consider

e—a,D;, (0, Aas A4, (KX}] 7\8) = [O) _A__gs A«is reey >\6] =R
If Xs = 0, our equation becomes
(0, 0, A41 seey A8) = a’: (u) ’
x al

but we already know from a previous equation that

0 M A
©, 0, Agy -y A) = (“2__“_6_)
. xr al

Thus the equation simply gives the obvious syzygy

0,7 A 0_Ay A
o (aaa .a.b") =g (asa, .aa")
2 ——————— — 3‘,. ————— .
7 G @

If A\; =1, our equation becomes
0, 1, Agy oovy Ad=—(1, 0, Ay, .c0s Ap)
= (a9 (B2 %) = (a;a:‘ ) _gp (G0
a; * a, y a,
giving again a syzygy. This syzygy is the Jacobian syzygy.
Consider the two identities
{(aya) = (agag) }™ (@, ap™ ... (@ a0 = { (a1a2)+ (@gag) ™ (ayap)™ ... (@ aq)™,
and ‘

{(aya)+(agay) | Mayap™ ... ( (ayas = {(a ug)+(aa) | (@ as)™ ... (@ a5,



1914.] ON BINARY FORMS. 457

when these are expanded they yield Stroh syzygies. These syzygies give
us the relations
6-“3’)‘ [01 (_)! Ah AARE] 7\6] = R’

and e*®% [0, 0, N, ..., \s] = R.
And in general we find in this way syzygies which give the relations
42 [0, 0, \,, ..., \s] = R,
and e, [0, 0, Ay, ..., M) = R,
for o=4,5,..,0.
Further, from the syzygies
{(@ya) —(agag }™ {(aya5) —(agag) }* (ayag)™ ... (@ as)™
= (@ a)+(aga) ™ {(aya))+(agay) | (@, ap) ... (@, a),
and {(a,a)+(@ya9 }™ {(a,a;) 4 (aza) }* (@ ag) ... (@, as)™
= {(@ a)+(@ya) ™ {(@,aq +(@yap) | (a a9 ... (@, a9,

we obtain the relations
gtlaPsral) [0 0, A, ..., As] = R.

Proceeding thus we can write down a set of syzygies which give us the
relations D, +a @

1 eAi((,gD_,l+(3l),=+..‘+ ,,D_,n) [0’ 9’ 1\4, i Asj — R,
where s, Sy, ..., 8, are all, any or none of 4, 5, ..., ¢.

These syzygies we shall refer to as the perpetuant syzygies of the
type C.

14. It is necessary to discuss the equations just found.

We shall arrange them in a sequence as we have done the other
equations :

Thus the equations

ei(a;|D'.|+(lal)'_”+...+f'.:]]),-() [0, 9, A4, ..‘., Ag] =R ("'1 < ra <..< "'t)s
will be discussed before the equations
et WD s+ +tuD, ) [0’ 9,'&, ey ABJ =R (5<u<...<s),

when r > 8.



458 Dr. A. Youne : [Jan. 22,

But, if r, =s,, the equations are discussed simultaneously.
Thus the first pair of equations to be discussed is

eiaul)d [01 91 >\~1’ reey A5] = R.
Whence [0, 0, Ay, ...y Nsoiy As] £ A0, L, Ay ooy Mgy As—1]

+ (25) [0, 2, Ay, ooy Nsop, As—2] £ @5) (0,8, Ay .oy Moo, As—8] +... =R,
giving immediate reductions for

[0, 2, Ay -y Aacsy Ne—2],
and [0, 8, Ay, -.., As—iy As—3].
The forms [0, Ag, Ay, ..., As] being arranged in sequence according to the
same rules as the forms (A, Ay, ..., As).

15. Lemya.—The 25"+ equations
etV Fa D+ twiD, ) [0, 0. Apy o.or As] =0,

where sy, sy, ..., 8, are all, any or none of the numbers r+1, r+2, ..., é
are just sufficient to express all forms

[0, Agy Ay +vvs Apy Apsts +oes sy
for which A3 < 2=7*Y, in terms of forms
(o, M3y Agy oo iy Mraly «-er Moy
where wg <§ 227"+ and the first of the dufferences
As= My As—i—Ms=1y -+oy A1 Mrtl,

which does not vanish s positive.

Let us assume the truth of this proposition for a particular value of »,
and then consider the 22~"*! equations

e;t(a;,D,‘+rrsD,‘+...+a;D,") [0, 9’ >\4, s As] — 0,

where s, Sy, ..., s, are all, any or none of the numbers r+1, r+2, ..., 6.
Let us write

e—(!;.D,. [01 Q) Ad) sty A)‘-b A?‘! Al'+l' crer AB] "=_ [0’ (.)_’ Ah o Ar—l, .A_r, Ar+h N As]’
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and
e P[0, 0, A vy Mty Ay Mgty o M) = [0,0, 0, .., Ay, Ay Aty oy Mgl
Then we have two sets of equations
g™ Pum Wl T 0, Agy ooy Aoty Ay Avin, ooy A} =0,
and Ul Bl 10 0 N N, s Araty ooy As] = 0.

From the theorem of § 9 we know that the solution of these equations
expresses all forms (\; < 25~

[0, Ags Mgy +ves Arcty Ay Arsty veey As],
in terms of forms [0, ua, Ay, ..., Aecty Ary Mrs1y ooey M3] 5
and all forms (\, < 2%-7)

[0, Ay Aps ooes Mocty Ay Avkts ooy Ay

in terms of forms [0, mg, gy ..o, Aoty Aly Mrer, v ME

where in both cases wg < 25", and the first of the differences
Aa—ﬂﬁv A(5—1——”'6-—11 ceny A';'~4~1__'”'I'-i-1’

which does not vanish is positive.
We thus obtain two sets of equations

eV [0, A, Ay ooty Arcty Ay oy A] = R,
where A=0,1, ..., 2"—1.

Expanding them out, we have

3 (=) (2) [0, A4, Ags +ves Aoty Aem—3y Arsty oy As] = B,

and p) (’;) [0, Ag4i, Ay ooor Arcts Ae—3s Avaty ooor Ns] = B.

Now using the assumption made we see that these equations may be re-
garded as equations to give the values of

[O, 26‘T+1+E: >\41 [XX3] A'r—la A1‘—26-“’.‘*1_5) Ar+l.1 LERY] x&] = R:
£€=0,1,2, .., 2-"1—1, '

Adding and subtracting our equations in pairs, we obtain two new sets;
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one of which connects those forms for which ¢ is even, and the other
those forms for which £ is odd.

They may be written
cosh a3 D, [0, Ag, Ay, ..., \s] = R,
and sinh ay D, [0, Ag, Ay, ..., N} = R.

We desire to prove the linear independence of each set.
For this purpose we must calculate the determinants formed by the

Ar

coefficients.
26—1‘+1)

A—1
28—r+1__ 1

(

A—2T 41
28-r41

)
am il

26—r+l_.’-.
)

(

In the first case the determinant is

(26-')::+2) (25-"+):’4-2a) (26-3;'2—2) i
A—1 o a=1 ( A—1 >
(26—1'+1+1) (2a-r+1+2a,_1) Qs-r+2__g
26"/}':-;—1) (25"'1\1’;;0'—7) <26"):r2:12—'r>
Cnd) - (o) )
(%) (i) = (i) |
s Ar

()

2

)

)

98-r—1

Where, on changing columns into rows and rows into columns,

A=gl

' 1

1

1

cee

(28—1‘+1) (28—r+1)
) L)
(26-r+11+2a) (25-"+;+2a>
'kgs-,i;'_g) (22_2)

(
(

28-r+l )
(g1

25—T+1+2
98- —1

)
)
)

26-r+1 + 20.
28-r—1
26—r+2 -9

( 28—r_ 1
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We shall now consider the more general determinant

w=r ) Q0 - 6L
TR N 40 B

1 "'(n+2'1;j_2) ’"(n+§2};_2>"'m '(;;+k2_k;_"2)

Subtract each row from that immediately below it, then the (o4 1)-th
row becomes

N Gt R e B ey

(n-{;f_o-g—l) + (71-};0?2-;2) :

n+20\ _ (n+20—1\ , (n+20—1
() =TT

since
T T T—1

— ('n.+2a'—2)+('n-+20'—2)+(’n+2cr-—1).

T T—1 T—1

Next we repeat the process of subtracting each row from the next
below, leaving the first two rows unaltered. The (v+1)-th element of
the (0+1)-th row becomes now

<n+2o'-—2>+2 (71-[—20'—-3)_{_(71-}-'20'-4).

T—2 T—2 T—2

We keep on repeating the process, each time leaving one more row un-
changed. After ¢ subtractions the (r+1)-th element of the (c+1)-row
becomes

(OO T+

T—t 1 T—t 2 T—1
+ (t) (n+2a-—2t> )
t T—1t

This (0+1)-th row is not left unchanged until ¢ = o, and so its final form
will be obtained by giving ¢ the value . The (r+1)-th element is then
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zero when < o, and its value when = = is

() (4t () =

Thus we eventually transform A, into a determinant in which every ele-
ment below the leading diagonal is zero, and where the elements of this
diagonal are 1 9. 92 gt-1

IS
Hence A, = Q0F1+2+. k-1 — 2(2)

Hence the determinant formed by the coefficients of our equations which
we wished to calculate

() o) )
1)) ()

The determinant of the coefficients of the other set of equations can, in
a similar manner, be shewn to be

(26-*7:r‘+1> (26-“}*:T‘+3> <26-r>;r2_1) o)

2
>\,.> 7\,‘> Ar )
(1 (2 "'<28~'-1
Thus we obtain

[0, 26-1‘+1+£’ A&: veey A7‘—1! Ai'_za_ﬂ-l_f’ Artly seey AB] = R;

for all values £ =0, 1, 2, ..., 2°-"*1—1; provided A, < 25-7+2—1. :If A,
is less than this value, we can remove some of our equations, for there
are fewer forms to solve for. The determinants, when we take the same
number of equations (starting from the beginning), as there are forms, can
easily be calculated, and are found not to be zero.

Hence the equations give

[01 ﬁh Au [EXT} A1'—1) A1-, ceey As] = R,
provided o Ay << 25T
Where R consists of forms

[Ov M3, Ap oo Aoy By --.-; #8];
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for which ug < 28-7*, and where the first of the differences
A8'—,u'|§1 A8‘-1_#8—1) ceey A'r_ﬂ‘-r’

which does not vanish is positive.

We may apply this result again to all forms on the right-hand side
for which u3 < 2°-7+% and thus ultimately we obtain the condition
ug < 28-7+%2 Thus, if the lemma is true for a particular value of r, it
is true when we replace r by r—1. Now it is true when r=6—1;
hence it is always true. Thus the truth of the lemma is established.

. 16. We may now apply the lemma to the equations of § 14. We find
at once that the syzygies obtained in § 18 are sufficient to express the
equation Ay < 25-%),

e=Ds (0, Ag, Ay, ..., A) = R
in terms of equations already considered and of equations
e~2Ds (0, ug, myy ..., ms) = R,
where ug < 2°-%, and the first of the differences
As—Msy Ag—1"=fhE=1y ++0y Ag—Ry,
which does not vanish is positive.
The equation e~ (0, Ag, Ay, ..., As) = R,
then may be said to yield a syzygy when
Ag < 2572 or A, < 274, or A\ <2873, ..., or A\s < 1.
Thus the theorem enunciated in § 10 is true for the equation
e=Ds (0, Ag, A,, ..., As) = R.
And in just the same way it can be established for |

e_a’D" (Ag, A3’ [EXY} Ar—ly 0) A1"0'1’ ceey >\6) =R (S > ')').

17. Let us now consider the equation
e aDa 0D =D g X A =[0, Agy ... Ns] = R
' (< 85 <... <8,

By means of the perpetuant syzygies of the types 4 and B, discussed
in §§ 11, 12, we obtained relations by which we can reduce our equation
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when A, < 2%-7, where o is any one of the numbers 8, 4, ..., § which
is not included among the numbers s,, s;, +.., 8y

We may then confine our attention to those syzygies which will give
limitations to the value of A, when o is one of the numbers s, s, ..., 8.

To fix our ideas let us put s, =8, and consider the syzygies which
will affect Ag. '

We obtain first certain syzygies of the type C,

(@1 e) — (@3 @) } 1 (@ @a) s (Ag@e)s ... (@qat,) ™ (@@ )™ ... |
= {(a3an) + (@0} ™ {(@160) = (@109 } s ... {(aya,)— (@09} (@ @),

where 7, 7, ... are just those of the numbers 4, 5, ..., 6, which are not
included in the set s;, s3, ..., s,
Similarly we have

{(ayar) —(agag) | {(@yar) — (@gag) } = (@gas) ... (aga%)"'- (@y@ )™ ...
= {(agar)+(@ax) ™ {(agar) +(@,a } = {(@ya5) — (@ a9 } ™. ...
' ' {(ayas)— (@ ag} ™ (@y@,)™s ... .
Then we have a set of syzygies we will call syzygies of the type D : such are
{ (@9 )= (@2 ) | X (Ag@s)*s ... (@9@, )" (@) @)™ (@1@) o
= (agas)™ {(@ a) — (@ a}?s ... {(a,a,) —(a, ag } ™ (@ @)@y @) ..

We obtain fresh syzygies by replacing any term (a,a;) on the left
by {(agas)—(agas)}, and making the corresponding change on the right of
{(aya)—(a a9} into (aga,). Or we may change on the left (a,a,) into
{(a;a,)—(asas)!, and at the same time on the right (a,a,) into
{(agar)+ (a,a9) }. .

In this way we obtain a set of syzygies which will give us the 28-%
relations between our equations

e-“"'Da._“"'Dvu_"‘-a"Dwk [0’ 0, A“ vers A&] — R,

where oy, oy, ..., o are any, all or none of the numbers 4, 5, ..., .
Again, we have the syzygies of the type C,

{(@ra0)F (@gag) | { (@yar) + (@aag) [ M (@g@p) ... (ag a‘,.")"'» (@ ar ) ...
= {(ag@n)+ (@109} { (@gar) + (@, @) } = (@gag) s ... (anas,,))\"' (@ @r s ooy
for example. This will give the relation

et®D.+aD, [0, 0, A,, ..., \s] = R.
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And so we obtain syzygies which yield
o0l bt sDoy 10 0, Ny, oo, N) = R

where oy, oq, ..., o} are all or any of the numbers 7y, 7y, 7, ... .
We have then certain syzygies which we shall include in the type D
an example of these is

{(@1ar) + (agag) > {(agas) —(agag) } = (agas)~ .- .
(ay a,,")“-, (a @ =@ an ) ...
= {(ag ar) (@, | {(@, @) — (@, ap) | = (@gas )™ ..

(@qa)™ (@ an)™s (@, ar)™
This particular syzygy yields

@D, =D, [O, 0, Ay ..oy AG] = R.
The syzygies of which this is an example yield the set of relations

e"'3Dp,+a3Dp,+~-+“3D,,_."“3Da,-"’3Da,"-~"aSDuk [0 0 )\4, )\5] —

where p,, pa, ..., pr 8re any of », 1y, 7g, ..., and ay, oy, ..., o are any of
81y Sgy evey Sye

Lastly, we have a set of syzygies we shall call syzygies of the type E.
They are really forms of the Jacobian syzygy, an example of these is

(aga3) { (@3 @s) — (g a3) } = {(ag as) — (@gag) } * (@y s
_ (agasn)k'-, (@ a: ) (@@ )rs ...
= (a9 {(@105)— (@, ag) } = { (@ as) — (@, ag) } * (@, @ )M (@y@r ) ..
(@g@s)™ ... (aﬁas_,)’\ .
— (@ 0) (@3 @) (A @s) ™ { (2100) — (@ @) } Mo
{;a,) — (@, a5} Mo (@ @)™ (@ @)™ ..,
whence e Dy =%D [0, 1, A, ..., \s] =R
and 8o, in génera.l, we have syzygies which yield
e~ %Pe~%Po =Dy 1o 1 ), ..., As] = R,

where o}, o5. ..., o are any, all or none of s, s, ..., Sy

18. We have to prove that the 2°~*! equations

(@) e BPBPa="%0 [0, 0, Ay, ...y ] =0,
S8ER. 2. VOL. 13, No. 1219, 2 H
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where oy, g ..., 0% are all, any or none of ¢+1, ¢42, ..., d;

(i) e2Pat@DyttaDy—aD,~tD, -..=D,, [0, 0,7 ..., As) =0,
where p,, py, ..., pi are all or any of the numbers 7, ry, 74, ... which are
contained in ¢+1, {42, ...,6; and oy, oy, ..., o are all, any or none of
the numbers s, Sy, ..., $, which are contained in ¢+4+1, t+2, ..., ¢;

(il)) e ®Pm WP %D0 0, 1, A, ...y A5 = 0,

where oy, oy, ..., o are all, any or none of the numbers s, sy ..., s,
which are contained in ¢41, ¢+2, ..., d:

are just sufficient to express all forms
[0, Ay Agy -oos Aty A1y «-es As)y
for which Ay < 2°-**1, in terms of forms

[Os A3, Ab ey Al: Met1y oovy ”’8]’

where wg < 22—*1, and the first of the differences
7\6—#6, As—1—Ms=1y +v5 App1— M1

which does not vanish is positive.

The proof follows the lines of the proof of the Lemma of § 15, and we
need not give it in full.

We assume that the theorem is true for a particular value of ¢, and
then proceed to prove the next step. We have two cases here.

(i) t = r; then applying the theorem of § 9, we show that
e P [0, N, Ay, ..., As] =R for A3=0,1,...,2""—1.
We obtain, in the same way, for the same values of A,
e*sPy [0, Ag, Ay, ..., As) = R,

for the proof of the theorem of § 9 is not altered if the sign of certain of
the operators is changed throughout. From these two equations we ob-
tain the result by the reasoning of § 15.
(i) ¢ = s; our assumption gives at once
e [0, A\, Ay, .., 5] =R for A3=0,1, ..., 20—,
Then, applying the theorem of § 9, we find the truth of the statement of
this paragraph.
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Thus, in either case, the induction proceeds step by step, and, as the
theorem is true for the simplest case of ¢ = d—1, it is always true.

19. We apply this result to the relations of §17, and we at once
obtain the truth of the theorem of § 10 for the equation

e Pyl (0 N, A =R

8o far as the argument A4 is concerned.
The proof follows the same lines for the arguments A, ..., A,. But it
i8 necessary now in order to complete the proof to add a fresh convention.
‘We have so far regarded the equations

e“'f,D,."“,.D,,’—---—“rD.,h (A‘Z) AS) LRRX} A1'—1) Oy A1‘—0-11 ceey A6) = R
r<o<o<...<a,
e T P T T gy Ny oy Arcts 0 Aty oy M) = R

r<n<m<.. <7
as simultaneous when o, = 7.

We must now arrange all our equations in sequence according to the
law that the first of the above equations precedes the second if the first of
the numbers

1™ Ty, Ty Ty, ceey
which does not vanish is positive, and this rule will be made complete if
we introduce the symbols o441, 7141, €ach of which is supposed to be
numerically greater than any given number.

Thus, when 7t = 0, we have the equation

(A2’ A3 sy Al'—l, Oy A'l‘+l) vy A5)=-b)’,

for which o, exceeds any given number, and which therefore precedes
all the other equations at the moment under consideration.

We deal with our equations in regular order, beginning with the
earliest in the sequence. Each equation will reduce a fresh form or else
with the previous equations in the sequence it must give rise to a syzygy.

The truth of the theorem of § 10 is established now for every possible
case, exactly as we have established it for those cases we have discussed.

20. Having arrived at the truth of the theorem of § 10, let us con-
sider the equation
e_al.Ds'_arD""_m_Uﬁ.D*” (AZ, As’. ey Al’—]y 0: A1‘+1: seey AJ) =FK '

<< <...<s,).
2 H 2
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~ In general it has been taken as one of 2°~* equations which will reduce
formB (AZ’ As, TS A9'--1, Ar, Ar.q.], very Aa) = R,
when A= 20, gimagq, ., 20matl—g,

We have in the lest paragraph introduced a convention by which
these 23" equations are arranged in a definite sequence. We may then
associate each equation with a definite form which it reduces. We shall
suppose that the earliest equation will reduce the form with the lowest -
value of A,, and 8o on. This supposition gives consistent results, for the
determinants of the coefficients involved are easily seen to be different
from zero—in general. By this arrangement the equation

P SO O (VD WSS WY1 X WD W
reduces the form

Ogs Ags ey Apoq, 250 28=0p 98-8, X Ly A, — 280,
Ag—287", .) ;

2.6. 1t expresses this form in terms of later members of our sequence
of forms and of products of forms of lower degree.
If A\, < 28+ or if A\, < 257, where T > » and is not one of s,, sy, ..., Sy,
then this form has been reduced by a previous equation. But, in either of
- these cases, there is a syzygy by means of which this equation can be
expressed in terms of previous equations, as we have shewn in our
theorem of § 10.
Thus, to every equation we have & definite reduction or a syzygy.

21. Now let us review the perpetuant types of degree d.
Firstly, they can all, reducible or irreducible, be expressed linearly in
terms of the forms ~
(Any >\31 ey A6)»

and these forms are all linearly independent. Secondly, any product
of perpetuant types of total degree ¢ can be expressed as a product of
two perpetuants, neither of which is necessarily irreducible; and, when
this product is expressed in terms of our standard forms of degree 6,
it can be written, without ambiguity,

TP TP gy ey MmO Aray o D

<y <s<...<s, < 64+1).

[
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Thirdly, the complete discussion of the equations .
G-G.f‘DS-"“:-Dsz'""“rpﬂ,, (AQ’ cesy kr_l,fo’, Af+1, ooy AS) = R’

* involves, firstly, the discovery of the laws of reducibility and irreducibility,
and, secondly, the discovery of all the syzygies af the first kind.

‘The laws of reducibility established by Grace follow from this. And
we have now shewn that all syzygies of the first kind can very simply be
deduced from those of Stroh and the Jacobian form of 8yzygy.

I1I. Forms of Finite Order.

'22. The discussion for forms of finite order follows identically the
same lines as that for perpetuants. We express all covariants of degree &
in terms of the forms

A2s Agy eevs A9)

defined as in §5. We then consider every possible product of two
covariants of total degree d, and we express it in terms of our standard
forms. The equations which we get in this way will give us the laws
of reducibility of our standard forms, and also will yield every syzygy for
this degree. ‘ .

The discassion is rendered more complicated by the fact that

0\2’ Asy coey A6)
is no longer equal to the simple product
(aya)™ (@ ag) ... (@yas’s,

but is equal to this plus a linear function of the fundamental forms.
If the set of inequalities

Ay B gy 20 Ag B gty 2020+ B g tny, ...,
209+ 20+ 20+ ... 201+ B gt gt s,

i8 not satisfied,
{aya) (@ ag™ ... (@ ap)™

is itself a fundamental form ; and we must write
(g Agy --oy A) = O.

The analysis for perpetuants must then be modified in two ways.
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Furstly, the product (s < 5 < 53 < ... < 5, <d+1)
(a:“ a;\;- af) (a;\l-" a:;- . a;\*v)

is equal to a sum of forms, of which the earliest are

-¢,D, -a,D, —~..-a,D
e o i 0\2) veey >\x—l’ 0) /\:+1; reey >\8)y
in general ; but which contains other terms too.

Secondly, if the numbers Ay, A, ..., A, do not satisfy the set of in-
equalities '

)\s. J> 7, 2Aa,+>\sg J> ns+nap 2A81+2A85+A83 j> "e+"s,+"s,y vy
2, 2N+ +2>\sﬂ_l+)\gn > 713+n8,+...+ns_’_, ,

aval . d
SR { i |
then <_____“' * > =0,
as

in this case there is no equation.

Thus many of the equations obtained for the case of perpetuants do
not exist for forms of finite order; the corresponding reductions either
do not exist or else they are brought about by other equations. Thus,
equations which for perpetuants yielded syzygies may now yield
reductions. It will frequently be found that the reduction which
corresponds to such an equation is most simply found by a consideration
of what the corresponding perpetuant syzygy becomes when the orders of
the quantics take the finite values of the case in hand.

The forms Og Ags vos A

are arranged in sequence according to the same law as for perpetuants.
Also the law of sequence of equations is still adhered to. It is useful
to remember that no form can be reducible for quantics of finite order,
which is not so for perpetuants, and also that an equation which produces
a reduction for perpetuants must reduce the same or an earlier form (if it
exists at all) for quantics of finite order.

28. At the outset the question rises:Can we find an explicit expression

fOI' 0\2’ A87 seey >\5)
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in terms of (ayan* (@ ax) ... {a,ap™,

and tk;e fundamental forms ?

We proceed to find such an expression for the case when n, alone
18 finite and the orders of all the other quantics are infinite. In this case
we observe that a fundamental form is simply a form .

(ay a) (aya5)s ... (ay as™,
for which Ay > n,.
We proceed to prove the following theorem :—

When the orders mg, mg, ..., ns of the quantics concerned are greater
than the weight of the covariants under consideration, while the order n,
15 less than this quantity, the covariant

(7\2’ 7\3, cery )\8)
may be represented by the sum

(ayap* (@ a9)™ ... (@, @)™

43 (=) (’”q :\e'l']'-"/ ) (]a> (?:) (;‘:) (a,lq,z)ﬂﬁi (alaa)is (a1a4)f*.... (@, as),

where C g= IN—Zj—n,.

For simplicity we will take ¢ = 4. And for this case we will prove
the symbolical identity

D (2109 (@, a9)™ (@ a)™

+2(-) (nlv—}z_-iiz'—1) (xa) (p A )m 09" (@, ag) (@, @)~

1 J —t—
=% (p—1+$

g0 \ p—1 >(a'2“s)P (@ a9 (a, a™ "¢ (@ @)™

+ ﬁ (] ) <p £-1 )(ag%)J (@a @~ (@ agteths+Ei=P (q, @ )M ¢,

where p= 7\2+)\3+7\4—n1.

The forms on the right are ordinary symbolical products which
represent as they stand covariants of the quantiecs with which we are
concerned. Let us assume the truth of this identity as it stands and
then deduce that it is true when A, is changed into A\,+1 and %, into
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m+1. It is to be noticed that this change leaves p unchanged. To do
this multiply the supposed identity by (a;a,). Then when the order
of the a, quantic is n,41, those terms under the sign of summation
on the left for which =1 are no longer fundamental, and those terms
only.

From the identity

(agagy (@ga)f™ = {(a,a9— (a,a9) } {(a,a)—(a,an)}?,
we obtain
(@,aq) (a,a,)P~

= (agaq) (aga)~— i]+§¢04( —)hti (';71 (P ;]> (@, a))"*% (a, ag)’ " (ay @)~

We make use of this result and the identity becomes

(@, ax)™ (@, ax)™ (a, a)Mt !

+ iz:z (=) (nl—:;\g_-{;'l}—l) <7}5) (p_A’l?—]‘) (@,a9)™ " (ay ag) (@ a,)P+ =

e 2 B2 s

X (@ agl ™™ (@, @)p—i=
As—p

= 2 (p s +£> (@2a9)° (@, a9)** ¢ (@, a))™™* 7% (a, @)+
g=0 \ p—1

+ § (7;5) (p EIIJ) (aya9) (a9~ (@) a0)*2* *+E7F (@, @) M¥1—4
i=1 —1— -

The right-band side of our identity is already the same that we should get
by writing A\,+1 for A, and =,+41 for n, in the identity we want to prove.
The coefficient of (a,a)™*'**(a, a3y (a, @,)?~*~¢ on the left is

= (T G i)

+(=)r2 (25) (,, ) (;C) (pp——q;fj)’
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Now 2(8) () G (55)

= the coefficient of 2/y*~'2*~*~/ in the expansion of
1+y Q4o {14y Q42 | 1+2)

= the coefficient of #y*~'2#~*~7 in the expansion of

_( Ly | Ag 'f 2y ) M Ast+Ag
(1+_Ll+yJ gy GF9TA4s

IR e RN G

Hence the coefficient of

(a’la‘ﬂ)nﬁvfﬁ(al aa)j (ala4)p—£—j

()

+(=)* (’1‘3) (p—ifj_1> [k ) (ki)

= G ED A0+ ()

(_)i (‘71/1_A2+";) (Aa) ( A4+1 )
i—1 j/ \p—i—j/°
The identity is true, then, when we replace A\, and n, by A,+1 and
n+1.
If, then, it is true for certain values of A, and =,, it is still true if

these values are both increased by unity, and therefore if they are both
increased by any the same number.

(i) Let n; be greater than A\,. Then, if the identity is true when n,—2X,
and O are written for n, and A, it is true as it stands. It will be sufficient
simply to discuss the case A, = O and leave n, unaltered. The identity
then becomes

ID  (ayap™ (@, az)™

+3(—) (”1_?9_’:7;_1) (p)\_31> (@ ap) "+ (aya9)P7!

- :g: <P ;‘}‘T g) (@ agf (ay g+t (a,az™—r~¢,



474 ' - Dr. A. Youne [Jan. 22,

To prove this we write the right-hand side in the form

Mo /h—1 ‘ .
£=0 (P p—-{-é) Hlar1ap) —(aya9) }? (@ ag)s+¢ (‘11%))"—’-6
x,-p -1+f) > (— a (2, a4+ (a, agh—E=%,
f

The coefficient of (a, a.,,)"”'" (@ ag)="

(=2 (2t T ()]

To find the value of this we shall prove the identity
(5 =02+ 032 =t (7))
' - ()P

Assume that it is ﬁrue as it stands and add one more term

(—y+t (514) (i—§—1> to each side.

The right-hand side becomes

(— y+1(P+J) 1pi=(+Dp+j+1—0)} _ i+ (z— )(p+]+1>
U+DHp+j+1=d! G—j—Dls J+1 i )

and so the induction proceeds step by step: for the identity is obvious
for j = 0.
Making use of this vesult we find that the coefficient of

(@ya* (@, ap)™=" is
—)n+As—p ”—1) )\3), ’
=) <>\s_P ('l ’

which is the same as the coefficient of the corresponding term on the left-
hand side of the identity, for Ag4-A3 = n,4p.- This coefficient is unity
when # i8 zevo, it is zero for n = 1, 2, ..., n,—\,, and its value is

) ()

for n = ny—Ag+1.

The identity (I) is then true if A, = 0, and therefore whenever n; > A,.

(i) .Let n;, be equal to or less than A, Then, if the identity is true
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when 0 and A,—n, are written for #, and A,. it is true as it stands. It will
be sufficient to discuss the case 7, = 0. It is just as easy to take the
case 7y < A;. Here the left-hand side of (I) becomes

—1

(6'61 a/ax)}‘2 (al a“s))‘“ (a’l a’4)h +(=) T (7\2 — N —

1> (@@ (ay ag)s (@, @),

every other term under the sign of summation vanishes. The left-hand
side is therefore zero. On the right there are no terms in the first sum,
for A;3—p is negative, and in the second sum every coefficient is zero for
£—1 < p—1—j, since j must be less than A;. Thus () is true when
1y < Ag. [In the same way we see that the general expression in the
enunciation of our theorem

(g @)™ ... (ayas)™

2o ()0 0 (e i

vanishes when 7, < A,.]

The identity (I) is then true when », }> A,; it is therefore true for all
values of n, and A,.
Now the identity (I) expresses the sum of

(@, ax)™ ( agl (a,a)M,

and certain fundamental forms as a sum of symbolical products which
represent actual covariants of the quantics under discussion. This sum
of covariants is then the covariant we have named

Mgy Agy Ay,

The theorem is then true for degree 4. Assuming that it has been
proved for degree 6—1, it can be proved for degree J in just the same way
that it has been proved for degree 4. The actual form of the covariants
on the right of the identity is not given, and it is not required. It
is sufficient that the right-hand side of the identity should contain
only symbolical products which represent actual covariants of the quantics
concerned. There is no difficulty in obtaining the expression, but it is
troublesome to write out, and no advantage is gained by doing so.

24. When the orders of all the quantics are finite the case is not
so simple. For the discussion of the covariants of degree 4 we require
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the linear function of fundamental forms that must be added to
(@09 (@,

in order that the sum may really be & covariant of a"l ay!, @ We shall
prove that :—

The covariant

(g, Ap) = (@, a9)™ (@, a9

+3(—) (Aa—m,—m“‘_l) (A _p2> (ayapm =P+ (alas)"‘*"““

I/—l Pl_l
where py = Ag+Ng—y, or 0, according as >\2+>\3 >or < ny.

In the first place the terms under, the sign of summation are all
fundamental forms, for

2(m—pgtd+ptpe—i = 2m+p—pyti = ntngt+i > ntny

gince the coefficient is zero unless ¢ > 0.
Moreover the index of (a, a;) never exceeds n,— py+p =y, for ¢ > p,.
From the identity (II) of the last paragraph, we have for the case
p2 =0,

@ @age+ 2=y (WA (M) e @agn

As=py _1+£‘
= P [ Ag+é Ys—p—¢

£=0 ( p—1 )(%% (@ az) (@ ag™™n=,
an identity which establishes our theorem in this case. We shall take
this as it stands and suppose that 7, has its least possible value Ag+Ag.

Now in this replace A3 by )\B—pg, keeping A\, and p, unaltered ; then

n, must be replaced by n,— p,, since n, = )\,+>\B—p1, and n, must be re-
placed by ng—p,; we have '
>\5_

g PQ) (al aﬂ)n1+ i—pg (al_as)p‘—i

@ a,)"’ (@ aa))‘,_p,_*_z(_)t (AS—PITPQ‘*”&'—I).( o

t—1
As=p1—pa -1 ‘
Now multiply this result through by (a,as)* and we have

(al ag)k. (al as)xa+2(_)1 <7\3-P1‘;T_Pi+'l:—1> (ﬁ;ﬁ:z) (al aﬂ)n,+i—p, (alas)p.+p.—i

)\s-sz-Ps (pl_ 1+£

Ao Qo) (A Ag+§ a }\s—Pl—E.
27 (1T @y e @ay
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Since the right-hand side of this represents a covariant of the quantics
concerned, it 18 = (Ay, Ag). _ Q. E. D.

25. It will be sometimes useful to use the notation

(ala‘g)h (alla,s))«z+2(_)i (Xs—Pl—Pz""b—l) (>\3—P2> (a'la.l)"‘“"” (alaa)pﬁ.h_i

1—1 P,
= (a1a9h, (@ ag,.

Also we shall copy the index notation of ordinary algebra further by writing

A
{a1a) — (@ a }r = Z(=) (b> () ag)i (y an—1
and also by writing
t  S— i A
(a a9, (ayag), (@ ag — (@ ux) iy = Z(—) ( t\) (ay ag)usi (g agysr—ie
When we confine ourselves to the operations of symbolical algebra this

notation will not involve any assumptions.
We will now prove that with this notation

1) Haag) — (@ya) i\ = {(a a) — (@ ag) ™

In other words we shall prove that
N ‘ : . . .
2= (}) @ @aghes = 2 (=) (}) @t @ agh=
In fact
o ' , ‘ .
(=1 (}) s @agh-— 2= (}) @ (@, a9~

iv (A (Ma—p1—i+7—1\ (ny—2 - -
—_ 2 i+ ()( 2 Pl' )( ‘> Wy Ao Ny +j—p2 @ p1+p3 J,
( ) i ]_1 pl__J ( 1 d) ( 1 8)
The coefticient of

(alaQ) n+j—p2 (alaa)"l“’*‘f

= the coefficient of 2/~!y”»~/ in the expansion of
{1+2) A4y =1 Aty (14y) e (=)
= the coefficient of «/~!y*»~7 in the expansion of
{ety+ay* Aay =Pt (1+y) 7 (=Y
=0, unless j—14p,—j S,

1.e., unless : A—ny > A,



478 Dr. A. Youne [Jan. 22,

all the coefficients on the right are then zero, and hence (III) is identically
true.
Consider now the difference

(@1 @9), (@, @3), 1 (@) Bg) = (21 09) } Ampmv— (@1 8" (@1 )" { (@) @g) —(@y g} |7
A==\, (A—p—i— py—poti—1\ (A—p—i—
=2 () (TR T (TR )
X (@,ay)™HiP (q, ag P,
The coefficient of (@ya)) =P (@, ag)P P (—)
= the coefficient of 2~"y”»~/ in the expansion of
T (AF2) A 4y) —1 A+ (L4z) ==l (14 y) e
= 0, unless p; > A—pu—y,
i.€., unless wtv > n,.
Hence
IV)  (@,ay), (a,a9), (@ @) — (@) @) |\

= (@, @)* (@ a9)" { (@09 —(a,@9) X7+,

unless . utv > n,.

IV. Covariants of Degree 4.

26. These may all be represented as linear functions of the covariants
defined by

Qg Az Ay
Wa shall suppose the quanties of which these are eovariants are
ayl, ap, ag), ai.
Then we obviously must have
Aa By, Ag g, A By
Also, if the set of inequalities _
NPy, 204 A B gy, 204203+ Py tagtng
is not satisfied, the form Mgy Ag A) = 0.

Otherwise these forms are linearly independent.
The first step towards discussing the problem of reducibility is to
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express all products of lower forms of total degree 4 in terms of
these forms, just as we have done for perpetuants. We obtain thus
a set of equations which we have to discuss.

As a basis of discussion the forms are arranged in sequence as in
erpetuants ; thus
por O Asr A

precedes (g mg) my),

if the first of the differences

Ay Ag— g, Ag—mp

which does not vanish is positive. We seek to express earlier members of
the sequence in terms of later members and of products of forms. ‘

27. Let us first suppose that the factor containing a, is of degree 3.

Then, by the theorem of § 24,

Ag oA
a22 a 3
(%) = o @agh
1

+3(—) <7\3_P1"_P2+7:_ 1) <)\5_P_ﬂ> (al @) (@, agr P i

t—1 P10
. a/k-z a)\;
Hence ( 2a ”) al = Ay Ag 0),
l rs

for it can differ from this by fundamental forms only.

Again, if . P1=NHN—n; and  py = N+ —iiy,

A2 Ag
W () az =0y 0,3

1
: A - — ‘_1 A P . .
+2(—)”( APt )( ¢ P.‘)(nl-p-z+», 0, prtpa—1).
1—1 P11t
This gives a reduction for (Ag, 0, A,), provided

2+2, B ny+n,
Again, :

A3 4 A4
oD (E2) = 0,3, \)
1

+ (=) (>‘4—P1':‘P3+i—1> (N“Pa) ©, '"'1—/33""'5: p1+p3—'é),

1—1 p1—1
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which gives a reduction for (0, g A,), provided

2+A P ny+ng and A B,
28. If the factor containing a, is of degree 2, we have simply

(VID (@10 (@ga™ = (=) (" )@ag @0y @ a)?

4
%
= e—maD.; (>‘~Z’ 0: xi)n

using the same notation as for perpetuants.
Next we have

(VIII) (@, a/s)}‘s (afzaq)}“ = ¢~ %D (0, Ag, )\4)s
and then
(IX) (al a4)}“ (ag aa)h = G_a’Da (0, As, A4).

Finally, the factor containing a, may be of degree 1 only, then we have

a’gsas‘ N — p—ttyDg—az Dy
(X) (T) a,,t =¢€ [(O; As, A4)
Ag—pg— —1\ (A— . .
(= (NPT (N 0, mmpoti, prrtpe—) ],

provided 2s+A B ngtng, Ag P ny.

Thus, we have obtained every possible reduction equation for degree 4.
The equations are either the same as or modifications of the corre-
sponding perpetuant equations.

In discussing the equations we shall confine ourselves to the case
of most importance, viz., when

Ng =13 =Ny =N ;

but the order n, may be any independent number.

29. As concerns Ay, the only limit is the same as for perpetuants :
(Aﬁy Aas x.;)

is reducible if A, = 0 ; otherwise we must go to A or A,.
For the limit of Ay for reducibility we have two equations, (V) and (VII).
From (V) we learn that

(s, 0, A) = R,
provided M+, B ntny.



1914.] ON BINARY FORMS. 481

Putting the value of (A, 0, \,) obtained from (V) in (VII), we find
(Mg 1, \y—1) = R,
provided 2+ B ntny.
I 2\+A > n+n,, we have, from (VII),
Ay 0, A\) =R

(for A, cannot exceed 7, = 7 in any case).

Thus always (g 0, A) = R,
and A 1, A) = R,
provided A <n, and 224N, P ntn,—1.

80. Let us now discuss the reducibility limits of A,.
We have the following equations

(VD) ©, Ag, A) = R,
when 2X\;+A, B n+n,, Ay b ny,
(VIII) 0, Agy A=y (1, Ayy \y;— D) +... = I,

when A; B n,,

IX) (0, gy A) =R (L, Ag—1, A+ (’;d) (2, \g—2, \)) ~— (’gf) (8, \g—3,7)

+...=RHR,
when A, B ny,

(X) (0, Ag A=A (1, Ag—1, A+ (’;j) (2, \g—2,A) — (’;f) (8, Ag—8, A +...

= (LA A =D AN, (2, A —1, A — 1) — (7;8) ABA—2 A —D+...= 1,

when 2X\s+4X\; B 2.

Taking thece last two equations together, we see that (IX) is true
when either A\, B ny, or 223+, B> 2n.  And that when we replace these
conditions by the original condition of (IX) we may replace (X) by

(XI) (L, Ag, A;— 1) =g (2, As—1, A\, — 1)+ (7;3) 8, \y—2,A\,—1)—... =

when A, P ny, and 20347, B 2n.

S8ER. 2. VOL. 13. No. 1220. 21
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Let us first see what the equations give us just as they stand.

(0, Ag; A,) 18 reducible if any one of our equations exists. Hence we
see that it is reducible unless Ay > n;, A, > ny, and 22g+A; > 2n.

The reduction of (8, Ag, A,) requires the coexistence of equations of
. each of the four types, and there is only one way in which it can be re-
duced. It is easy to see that it i3 not reducible unless

NP n—8, AP u—8, AP n—1, AP n—1, Wg+A P 2—5,
W+ b ntn—5.

The conditions of reducibility are more complicated when A, =1 or 2;
it will be convenient to separate the discussion into two cases.

(@) 7y > n.—The equations (VIII) and (IX) always exist; together they
reduce (1, A;—1, A,). Then (1, Ay, A,) is reducible if A; <.

From (VI) and (VII) we have a reduction for (1, Ag, A,), provided
A< moand 2047, P ndn,—1.

Thus (1, A3, A,) = R, when A; <n, or when

AN<no oand 204N b4 —1.

From the first two equations with (XI) we find that (2, Ag, A) = R,
when Ay > n—1, A\ > n—1, 20+A, P n4n,—8.
In this case we observe that (0, Ag, A,) is always reducible.

(B) m, <n.—Here (1, A3, A\,) may be reduced by (VI) and (VIII), in
which case we have the conditions

W AP, A Pn—1, 2+ D ntn—1;
or by (VIII) and (IX) in which case the conditions are
@ NPu—l Abw;
ovr (i) AP m—1, 20+A P 20—2;
or else by (XI) when

ivv NP m—1, 22+A P 2n—1.

Also (2, Ag, A,) may be reduced by (VI), (VIII) and (IX) when the con-
ditions are

) A Ppm—2, MNP a—1, 20+A P nt+n—3;
or, by (XI), (VIII) and (IX), when
() AP n,—2, AP m—1, 2034A, P 2n—38;
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or else using (VI) and (VIII) to reduce the first term of (XI), we obtain
the conditions

(i) AP -1, A j> m—1, 2X34A, B n4n—8.

81. It is necessary to examine equation (VI) a little more closely. The
two conditions for its existence may be replaced by the single condition

Ag B my—op.
When A3 = n,—p, the equation takes the form

(0, Agy A)—p;1 (0, Ag+1, A\, —1) = R;
and when Ay << n,—p, it takes the form
(Oy Aa, >\4) = R H

where in each case R represents a linear function of products of forms
and of forms (0, ug, u,) for which u, <A;—1.

A difficulty apparently arises when we use (VI) and (VIII) in con-
junction in the case A\; = n,—p ; for eliminating (0, Ag, A,), Wwe have

P10, A+ 1, A= D=, (I, \py \,—D)+... =R,

giving a reduction for (0, Ag4-1, A;—1) instead of for (1, Ag, A;—1).

But in this case (0, A\g+1, A;,—1) is reduced by another equation of
the type (VIII), unless p =0, and the reduction of (1, A\g, A;—1) then
folows.

When p=0, 2M+1+0,—1)P 2u—Q,—1),
and hence, from (IX), we have
0, \g+1, \;— 1) =g+ 1)1, g, A,—D+... = R.

Then, taking these equations in conjunction, we obtain the reductions
exactly as stated in the last paragraph.

82. We have so far discussed our equations without any reference to
the reductions already obtained when A; < 2 or Ay <1. Thus some of
our forms will be reduced twice over. In the case of perpetuants the
result of equativg the different reductions was shewn to lead to a syzygy
in every case. Now we shall find that it may lead to a syzygy or else it
may lead to the reduction of a form not previously reduced.

212
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Let us turn to equation (VI). Put A; = 0 and use (V), thus

XID) R= (0,0, \)+=(—) M—pti=1) (A )0, ny 41, py—1)
1—1 p1—1

—(0, 0, \)—Z(—) (’.‘*fi?_*‘l"_l) (;pf‘il.) (443, 0, py—1),
giving a reduction for (0, n,+1, \,—n,—1) instead of a syzygy when
Ay > ny+1; it should be noted here that A, }> ».

Now this is already reduced by (IX) since 2 (n,+1)+A—n;—1 3> 2n.
Also we have a reduction for the form (1, 1y, A;—n;—1) which occurs in
this equation from (VI) and (VIII). Thus we obtain a reduction for
(2, n,—1, A;,—n;—1). This is the final reduction when A, > 2x;, but if
Ay B 2, we can use an equation of the type (XI), and so reduce the form
(8, m;—2, \;,—n;—1). These forms were not reduced in § 80.

The reduction when A; =1 is given by (VI). To find what (VI)
gives us in this case, put Ay = 0 in (VII) and use (VI) for each term, thus
(assuming p = 0)

ay @y (ag a )™
=31 (1) 0,4 =0

= 5~ (’:)[(%—) =3y (NI =) (M)

- O, 7L1+j, P1—j):[
— Z(__)z <>\4) (a;al‘_’) al
¢ o 2

since the coefficient of (0, 7;47, py—7) is zero. Thus in this case we
only get a syzygy of a very obvious nature.

When p is not zero, we have only the case A, = n, and then (VI) gives
the reduction of (0, 1, n) which has not been reduced by (VID.

When A, = 0, (VI) only gives an obvious syzygy.

88. The equation (VII) gives syzygies just as in the case of per-
petuants when Ay, =0 or 1, or A3 =0.
When A\; = 1, we reduced the equation in the perpetuant theory by
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means of the syzygy
Haga) — (@, a9 } M1 — { (qga) — (@ a9) | 4+ = 0.

This holds good as it stands when A, B> n—1, and A, b n,—1. But it
still furnishes an identity when A, > »,—1 and A\, > n—1.
We write this identity

g: (_)i <7\4+1\) [(%aq)hﬂ—i (alaa)i_(wsaﬂhﬂ-t (ﬂq%)i]

i=0 v

— (_)ul [(2:11) ; (ach)"*“"' ((11 aa)n1+l — (a3 ao)\,—nl (al a2)1z,+l :

_(x4+1

n1+ 2) : (aga‘))\,—n,—l (alas)n|+2_ (as aq))\‘—m-l (al1 a2)7n+2 } + .. ]

Now, from (XII), we have (changing A, into A\;+1)

(::ii) 10, m+1, A=) — ( +1, 0, Ay—n));
_(n1+1)(:\7:i;) 0, ny 42, Ay—n;—1)— (1,42, 0, \(—n,—1); +... = R,

Hence on subtraction we obtain a syzygy if A, > n,+1; and a reduc-
tion for
0, i +2, \y;—m—1),

when A P n—1.

The reduction equation is

A1

(XIID) (n] 1

) e Ps—1](0, ny+1, A\j—ny)
—[e~Pi—1(n,+1, 0, \,—n,) |
- C\;i;) ilem P =0y + 1] (O, m+2, \y;—n;—1) |
—[e %P —m+1)] (42, 0, \;—n,—1)} +... = R.
With the help of (IX), this in general will reduce the form
1, 41, \jg—n;—1)

when A; > 2n,; but if otherwise we can use (XI) also and so reduce
(2, ny, Ay—ny;—1).
We must examine (XIII) further, owing to the presence of an excep-
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tion. Expanding, we obtain

— N[y +i—1 . .
w9 2 ()L (M) =1 ]io mei Ammit
. ' —(y+1, 0, \;—n,—1+1)]
N Ag=n—j (A4+1)'

— (=)b+J
B S My e e ¥

(G, ;149 \j—n—i—)) —(y+ 14, j, \;—n,—i—j)] = R.
When 7, = 1, the left-hand side of (XIV) becomes

2 (—) C‘: 11> (G—1) e M=% (0, 14, \,—1).

And since 2 (14-2)+A;—¢ P 2n (for A\, P n—1) we can use (X), and thus
obtain a syzygy. This furnishes then no extra reduction when n, = 1.
We have yet to consider the case A, =n, that is the equation

e~ (0,1, n) =R.
84. The equation (IX) gives syzygies which are quite obvious when
AN=0or <2
For A3 = 2, we use the syzygy
(@8 = (@ga) M (@ a)+(agag) ;M
= {(yay) + (@) ™2+ (@ a9 +(apa) M7,
which reduces the equation when

The equation exists only when A, }>n,. We can shew then that this
furnishes a syzygy whenever our equation exists and A, > n—2. For

0= {(@a)— (a9 M+ {(a,0)+(agag); ™*°
— (@30 (@ a9) ;M — {(@ga) +(ty ag) [ M+
= P+2(a, aq)x.+2_ (alag)"‘“—(a., a,s)’“”
— A\ F2)(ay a™ ! (aga) — A+ 2) (@, ag™*2 (apay)
(where P is used here and elsewhere to denote products of covariants)
= P+ {(a189)+(@aaq) ;N2 { (a1 ag) F(agay) M+ — (o  aM+*
- (@ @M = (N +2) (@ )M (@gay) ~ Ay 1 2) (@ ™+ (a,a)
= P4\ +2)(a509) i (@ @™+ — (@, g™+
= P, '

giving us a syzygy for all cases A3 = 2, A, P n,.
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For Ay = 8, we use the syzygy
0 = :(a,a)+(@yay ;M 3—:(a,a)—(agag)  M+3
— (@139 + (@39 M2+ | (0, @)+ (ag ) M+
+ (0109 — (238 M7 — { (0189 —(@ga) | M+
= PH20\+8) | (3, @M (2289 + (@M 2(0,09) + (@0 (@)
= PO [+ 000 7 @00 — | @109+ @) M (040

— (@ a2 (@pay) + (@ a2 (3]

= P+4 (A*Q_S) [(@ ad™*! (ay ) — (@, ag)™ 1 (agae)?]

+2 (A‘Ts) (@ a)™*? ! (aga) + (agay) : — (@ ag™*? aza) +(agay) : ].

If A\; = n;, we obtain
(”1+2) . ("1+11 O, 2)—(0v n1+ l; 2)
—2(m+1). (,+2, 0, )—(0, ,+2, 1) = P.

And wsing (XII) we find we have a relation between products of covariants
only, i.e., a syzygy.

If A, =n,—1, we obtain
(”v1+1, 0, 1)—(0, ')ll+1, 1) =P,

and again using (XII) we have a syzygy.

It Ay < n—1, there is a syzygy without the help of (XII). "Thus we
obtain a syzygy from (IX) in every case when Ay << 4, or A, < 1, provided
AN B =2 :

We have still to consider the cases Ay = n—1 or n. In fact we have
to consider the four equations

e~ (0, 2, n—1) = R, e 4%, 3, n—1) =R,
e~ (0, 2, n) = R, e~ (0, 8, n) = R,

where it must be remembered in each case that A, I n,.

35. The equation (X) gives obvious syzygies when Ay <2 or A\, < 2.
For the other cases the syzygies -

) —(apas) ¥ = (ugay)”,
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and (@) — (@9 ;" agty) = — (a1t (@, ap) — (ayay)* +(aga,) "~ (a,a,),

may be used, as for perpetuants; provided the weight w is not greater
than #. When the weight is greater than »n we find ourselves with five
equations to deal with of just the same type as those of equation (IX).

We are thus left with ten equations to consider, four of weight n+1,
four of weight n+42, and two of weight n+3.

36. For weight n+1 the equations, in the case of perpetuants were
reduced by means of syzygies obtained from the symbolical identity

XV)  A,(n+1) [(azaa) 1309 — (@ya9) } " — (@, ¢tg) i@y ) —(ayag) ;

+ (@, a9)(a5a,)" |
+As[i(@a) = (@2ay) } " —(aga,) ']

+ Al {@e) = (@)} = (@) — (@ a5 }**]
+4,[1@0) +H@ a1 = (@ 6) — (a9} *]

+ A [ @ya) Fiqa) P — (e a) +(azag [ 7]
= dy—4) (@00~ { @ a) = (@ag} ]
+(— Ayt dg— o) [(@90)* ' — L@ a)— (@) } 7]
+(=) f = e 1) F dy— A (=) A5 [(ag g

— (it ag) =@ ag) " T'] =0,
From § 25 we see that

i@y @) —(asag |

"

=Z(—) (71-5-1) (@5,09); (@@ )ns1-iF(@a)" "'+ (ayay)"
i=1
— 1= (=" agay)" (aga,) ;
and that

(aqas) { (@) —(azag) } "
=1
= -_20 (=) (':) (@9@)i+1 (@@ )n-i—(@5ay) "' — (—)" (g ap) " (@sa)),

where (@aay)i (@ @gn+1-; 18 an actual covariant of the three quantics con-
cerned : in these we replace
(@2a9)™ (@3ay) by (a3a9)" (@) — {(@;a5)—(a, a9} " (@, ay),

and then substitute in (XV),
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In the result the coefficient of each of (a@gay)**!, (aya)™*!, (a,a)"*,
And, in fact, the identity is a syzygy as it

((],20,3)"'*1, ((‘q as)’l‘H iS Zero.
stands for all values of the five constants when n; > n.

If n; B n, we need the following results from § 25,
(@ ag) 1 (4 @) — (@, ag) | *—Z(=) ("L) (@ agiri (@ ag), -+ (aga) ™!

YR [ ,

—_— ()" ’Slr Y —-"'_'3+"’l+l‘> ( —1 ) ‘ Wy +i=1 nEQmiiy =i

== i =) < i—1 n4l—n,—i ety (e l
weny+1 — i

—_ (__)u,. 2 (_)L (""t—__l "‘1) (“la”)n,-é-:—l ((“1 a4)n+2—u,—: ;

i1

and
) c(n+1
{(a1a4)—(a,a,,)}""‘—E(—)‘( -*/- )(a,a;;).; (@) @)1 i— (@ @) T —(aya )"+

= 5 () (im) o (]

X (g™ ¥y ) i,

Making use of these results in (XV), and of the corresponding result for
Ly a)—(a; @)} ", we obtain from (XV) in the notation of this paper,

(VD
T _ -
—A, (1) (=) S (—)‘("+.1 ”')(o, At i—1, nd2—n—i)
r=1 L—l
' , et Gt i—2 n o (1=
—y—dy—d) 2 )[( i—1 )(ul+i-—1)—( (" )]
X0, imy+it—1, n+2—n,—?

—(dy— Ayt : ("Z}) —(=)" : (ry, 0, n4+1—ny)

L— (=" 4t e =20 (0, nyti, n4 11—y —i)

ST 3 AN
i§1 <n,+i) -

_s (”'*‘1.) A (=)0 4, L =D (O, - 1—ny—i, n,+i) = P.
AN o) '

It is evident that we only get syzygies (with the help of the regular equa-

tions) when n, = n.
In general when all the A’s except A, are zero, we find

0, ny, n+1—n)—m+1—n)0, n,+1, n—n))+... = R
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From A, = 4, = .4;=0, d,= .1, we obtain

n+1> iy _

(nl+1 e (Oy“l+1n" "l\

— N+1 —0.D, D 0 _
<nl+~z)e 0, 0,42, n—m—=D+... = R.

From

dg=A,=4,=0 und 4, (0+1)(=)"+4d, ; (,’:>—(—)"' L =0,
1

. ! . i
we obtain | (:) -_(—)" t Oty O, n41—ny)
1

This is all we get in general, for (XVI) does not help us, as & rule, unless
4, and d; ave zevo, as it is easy to see. Further the three equations are
all we vequire; since when n; << n—2, the equations

e~ 0,2, n—=1)=Fk, (0,8 n—2 =R
no longer exist.

Thus, when n, < n—2, we find three new reductions which easily
may be shewn to be those for (ny, 1, n—mny), (2, n,—1, n—n,), the third
being (1, ny, n—ny), if n>2n—1; but, if n € 2n;—1, this is alveady
reduced and our third reduction is (8, 7, —2, n—n,).

When n, = n—1, we have to look for five reductions or syzygies; the
three equations obtained for the general case enable us to express each of

0, n, 1), (0, n—1, 2), and (n—1, 0, 2) as a sum of products. Substitute
their values in (XVI); and it reduces to

- ("-,*:1) :115+(—)“¢4.| : c_""::b:c (Ov 1v "/) = [J'

But using (VI) we find that

e~"P5(0,1, n) = (0, 1, n) —(1,0, n)
= n—1)0,n—1, 2)—n—2)(0, n, 1)—(n—1(n—1,0,2)+P
= P.

And hence the extra equations give two syzygies here.

When n, = n—2, we have one extra equation to obtain.
It is plain that we must have A;—(—)*4,= 0in (XVI). We find our
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equation by putting 4,=A43=0, 4,=4,=(—=)*, 4;,=1. And by
means of this we can obtain the reduction of the extra form (2, n—2, 1).
87. For weight n+2, we find that the equation
e~ “D=nDi (0,2, n) = R
is required for the ordinary reductions, unless n, > n. The equation
e~ 00,2, n) =R
exists only when »; >n, and is then required for the reduction of (1, 1, n).
The equation e (0, 8, n—1) = R
exists only when 7, > n—1; and
e~ 2la—wDi (g n—1) = K,

which exists only when n =5 is required for ordinary reductions when
n < 4.

Thus we require three reductions or syzygies when n, > n, two when
ny = n—1, one only when n—1>n, > 3, and none when », < 8.

We replace » by n+1 in (XV) ; and observing that by § 25 we have

) — (g " ?

W 4=

(=) ("j._2> (ty@g)i (Bg@)ra—iF ()" 2=+ 2) (@ )+ (agay)

+ (aga)" 2+ (n+2) (agag) ! (ay )

+ {2 —1— (=) 2n+38)} (aya9" ! (aga,)®

— {0 —n—=8—(—)" (Bn+4) | (agag" (e,
and '

(agaty) | (taa)—(@qas) "+

n—1 . 1 ' .
= 2 (=) <IL-::- )(“za/s)iﬂ (agaq)n+l—i+(a;’.an)(a;’.ai)n*l

t=1
— (g ay)" T — (4 1) (agan)" ! (ag ay)
—{n—1—(=)"@2n+1)} @ay" " (aza,)?®
+ {n—2—(—)"(Bn+1) } (apa9)" (aga,)’.
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In these we replace '
(apa5)™ ! (apa,)®

by (azag* *(a,a,)?®

— (89— (0,2) } " 18(2,0) (@, 2)* = 8(2, @) (@, @) +(@, @2)°},
and (aga9)" (a5a,)
by (@,09)" (a,a,)2— {(a,a35)—(a; ap) } * {2(a, a) (@, a)— (@, a9},

and then substitute in our new identity.
In order that the identity may yield a relation between actual co-
variants, the constants must satisfy the conditions

(XVI) A=Ay Ag+4, =0, A,—A,4+4,=0.

When n, > n+2, we find if n is even no syzygies, but reductions for
the forms (8, n—38, 2), (2, n—1, 1), (8, n—2, 1); and if »n is odd there is
a syzygy and the forms (8, n—38, 2), (2, n—1, 1) only are reducible.

When n, =n+1, and = is even, our identity furnishes reductions for
8, n—8,2), (1,n;, 1) and (2, n—1, 1); but when n is odd there is a
syzygy and reductions only for (3, n—38, 2) and (1, », 1).

When n, = n, there are no syzygies, the reductions are (n—1, 1, 2),
2, n—2, 2), (8, n—8, 2), when n is even, and (2, n—2, 2), (8, n—8, 2),
(1, n, 1) when n is odd.

When n, = n—1, we expect only two results from our identity, and
we find that the constants must satisfy the additional condition
A,+4;=0. And whether n is odd or even we find the new reductions
to be (8, n—4, 8) and (1, n—1, 2).

When n, < n—1, we have one reduction only to look for, and we
must have 4, = 0 = 4;; and therefore 24, = 4, = 24,. We find then

a reduction for (8, n,—8, n—n,+2), when n, < '1'12-—?-, but for (2, n,—2,

n—n,+2), when n, <7-L-ﬁ

B and no new reduction at all when », < 4.

88. Lastly, when the weight is 728, we find that the equation
e~%P (0, 8, n) = R,

which only exists when n, >, is always required for the reduction of
(1, 2, n). The equation

e~@D-wD (0, 8, ) = R
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is also required for the ordinary reductions unless 1, > n > 6. To ob-
tain the reduction or syzygy corresponding to this last case, we replace 1n
by n+42 in (XV) and proceed as befove; then we find that the constants
must satisfy the two conditions (XVII), and also the further conditions
Ag+4, =0 and 4;—A;,= 0; whence

When ng > n and n is odd, the form (3, n—4, 4) is reduced.

When ny > n+1 and n ts even, the form (8, n—3, 8) is reduced.

When ny = n+1 and n is even, the form (2, n—2, 8) is reduced.

When n; = n, the form (2, n—38, 4) is reduced, whether 7 be even
or odd.

39. We can now sum up our results. As before stated, (0, Ay A) is
reducible unless

Ay >y, Ay >my, and 204N, > 20

it is therefore always reducible when 7; = n.
The reducibility limits of (1, Ag, A,) are illustrated in Fig. 1: where

A

1234567

\

F1G. 1.

contours are drawn for different values of n, when 2 = 20, the form
corresponding to any point (Ag, A,) either on or on the origin side of the
contour being reducible. The character of the contour changes according
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to the value of 7, ; thus the reducibility limits are, when
@) <.i, Ag B ay—1 or Ag=n, or m;+1 and 20;+\, P n+n,
. or Ay b ay—1, 23+A, b 2n—1.
(i) ?Sl‘> ny > % Ag > m—1, DA, P 2n—2,
or Ay b —1, 20+2, P 2n—1.
Mg+A P 20—2 or Ay B n—1, A\, By
or Ay b ayy—1, 23+7, b 2n—1.

2n

(i) n—2>n, 3

(iv) n, = n—1, & modification is introduced owing to the reducibility
of (1, n—1, 2); we have then

m=n=lorn, 22+ P21—2o0r \gbn—1 \Pny
' or A, b ny—1, 2047, B 20,
V) n, =n+1, AN B n—1 or 2047, b 2n+1.
(vi) n, >n+1, Ag P n—1 or 2X\g+A, P n+n—1.
“ (vii) m, > 2n, every form is reducible.

The re.ducibility limits of (2, A5, A) and (8, Ag A) are traced in
Figs. 2 and 8. It will be seen that in both these cases there is part

Ll %é
2345678910112 1SIETTT go_’\;

19
Fre. 2.
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of the figure which corresponds to forms irreducible for all values
of n,.

1213141516 17 I819§?22 ™3

Fia. 3.

40. It is noteworthy that our special cases introduce the reductions of
(ny, 1, n—n,;) when n, < n; and of n—1, 1, 2) when »n; = n, and is even.
which must be added to the reductions given in § 29.



