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On iterated limits of multiple sequences.
By
E. L. Doop of New Haven (Connecticut).

Pringsheim*), London**) and Bromwich**") have discussed
iterated limits of double sequences. In this paper, I shall discuss the iterated
limits of multiple sequences of any order » >2. With Pringsheim, I
shall make extensive use of iterated lower limits and iterated upper limits.
Certain theorems will be assumed, which have been proved by Prings-
heim for double sequences, and which may be proved for sequences of
higher order, by a similar method of reasoning. By an r-fold sequence,
A={a, ., }, I shall mean an aggregate of terms a, v Where a,

18 a real number (or + oo, or — o), defined for each set of posltlve

ntegral values of »,, v,,---v,.

§ 1.
Iterated limits of monotone sequences.

A sequence, 4, is said to be monotone, if
2> a

1= Yy,

whenever v 2> v, vi> vy, v/ > v,.

Theorem L The limit and iterated limits of a monotone sequence
all exist, finite or infinite, and are equal.

Proof. With »,,,,---v,_, fixed, the simple sequence {a, ..., }is
monotone, and thus ’

hma ,——hma o -—-hma

. ’ ’
V= r Yp=o =% r

*) Mathematische Annalen, Bd. 53 (1900) p. 289.
¥¥) Mathematische Annalen, Bd. 53 (1900) p. 322.
¥#¥) Proc. of the London Math. Soc., Jan. 8,-1904, p. 76.
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The r-fold sequence {a, ..., } being monotone, it follows that the (r—1)-fold
sequence {lima, .., } is also monotone, and hence

”r

hmhma ...y =1lim lim a, ey :Hﬁ;_na,l,.,

V1 ¥ d Yr—1 % T Yr—1 Y T
and thus, finally
]i_m .- hm a’).""'r= Im.--lm a’x""'r= Iim-.-lim a,x,”,r
” v, ” Y, " r

But, for any sequence,
hma ) __é_:l_ix_n.--l_ir_n_a,l . g"{ﬁ l?ﬁa,l,,_,<ﬁﬁa,
l

= S %
1 r
Yy vy 2 v, v, ver,

And moreover, since A4 is monotone, it follows that

lima, —-hma ey _hma
1 r r
v, vy vy

..y’.'

Hence

sy

lim.--lime, —-hma
1 r

Vl V.

r
l T Vr

and by the same method of reasoning, any other iterated limit may be
shown to be equal to the limit of the sequence.

Corollary. If the limit, and any iterated limit of any sequence
exist, they are equal '

§ 2.
Properties of iterated lower limits, iterated upper limits, and
iterated limits.

Certain conditions will be used repeatedly, so that it seems con-
venient to have abbreviated expressions for them.
Suppose that, when &> 0 is assigned, it is possible to find
n,, such that if v, be taken arbitrarily, but > »,, it is then pos-
sible to find n,, so that for »,>n,, there will now exist n,, etec.,---
(C) there being finally an %, such that for any v,>n,,

L=b—e
In this case, I shall say that under the eondition (C),
.., 2b—c.

¢
Suppose that, for any ¢ > 0, and any =,, large at pleasure, it
is possible to find », > %, so that now takmg n, large at pleasure,
(D) there well he spme v, >, s0 that etc.,---, finally for any =,
there is a v,.> %, such that a,l,,_,rgb——e. In this case, I sha.ll

say that under the condition (D),
=b—e.

’;‘\ 'q—
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By saying that under the condition (C'), @, .., > @, I shall
(C") mean that G >0 is to be chosen, large at pleasure, and then it
is to be possible to find n,,n,,---n, as in (C).
o By saying that under the condition (D), a, ..., > G, I shall
() mean that it is possible to find »,,v,,---»,. as in (D).

- o

Suppose now that 1 <p <r, and that 4,4, -+ 4,94, 4,
is any permutation of the r integers, 1,2,...r; where moreover
4 <ty <---<1, in case p>1. -Let us alter the condition (C), as
follows. In (C), we required that Wiy s exists, and permitted Vipir
(I") to be taken arbitrarily, but > Wi er® Suppose now, that % is to

be taken large at pleasure, and that we require the existence of

v, >, . Let us make a similar alteration upon (C), for
p+1 tp+1

%, v, ,-+ %, ,v,. The condition, thus obtained, I shall call (I").
p+2? ipte r? T

Theorem II. (a) If, under the condition (C),

a _.vr_Z_b—-e

Vi

where b is finite, or infinite, then

(1) 1_121_ .li____m,awl...v"g b.
(b) It, under the condition (D),
..y SD+s
then
@) lim---lma, .., <b.
(c) If, under the condition (),
Oy .., St &
then |
(d) If, under the condition (D),
avl,_,yr; b—e¢
then
(4) lim - - - lim > 5.

Proof. In (a), suppose, first, that b is finite. With ¢, v, v,,---v,_,,
chosen in accordance with (C), there exists an integer #, such that
@, .., 2b—¢if vy, >mn,. This shows that the lower limit with respect

to v, cannot be less than b — &, for these values of v, v,,---v,_;. But

the lower limit with respect to », exists, finite or infinite. Thus with

& ¥y, ¥, -+ ¥,_, chosen under condition (C), lima, ., =b—s The
¥y *

Mathematische Annalen. LXIL 7
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same method of reasoning applied now to the (r—1)-fold sequence,
{ima, .., }, yields the result, that with ¢, 7, - »,_, chosen under

condition (C),
l.il:ql_ir_nayl---vrgb— £.

Vet ¥r
Finally, for any £ >0

lm-..-lma, B >b—s,
- DY 1 r

24 v
1 r

and hence
lim..-l_ill:l ayl___,, Zb.

vV ¥ r
1 r

Here b was supposed to be finite. If b= — oo, then (1) is at once
satisfied. If b= + oo, then for &, »,, vy, - -v,_; chosen unter condi-
tion (C), there exists an »,, so that if v.>n,, then a, oy, = b—¢, that

is, @, ..., =+ o0, and thus lma, .., =+ co. Finally

lim.-..lima, . =+o00=0.

V. 14
1 r

Thus (1) is satisfied, whether b is finite or infinite. The proof of (b)
is analogous. With ¢, »,--.v,_, chosen under condition (D), and #

r

large at pleasure, there is always a »,> n., such that @, .., b+e,

r

and hence lim avl,,,,rg b+ & This method of reasoning leads to
’ h__gl_l“'];!‘iavl---vrgb.‘i_e

1’1 Yy

from which (2) follows.
In the same way, (¢) and (d) are proved.
Theorem III. The following are necessary and sufficient condi-
tions that
lim---lima,

¥ 1 L

_ =21, finite or infinite,

(4

Lim . .. hm By ooy, = b, finite or infinite,
v r

v

viz., for ' ’
(a) b, finite. Under condition (C)
(%) @, ..., 2b—¢
and under condition (D)
(6) a, .., <b+e.
(b) b=+ oo. Under condition (C")
(M By ...y > G.

(¢) b=—oco. Under condition (D)
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(8) a, ., <—G.
(@) b, finite.  Under condition (C)
©® 6., <b+e
and under condition (D)
(10) a,l”_,rgz-s.
(e) b=+ oo. TUnder condition (D)
(11) a,.,>G.
(f) b= — oo. Under condition (C')
(12) sy <~ G

Proof. First, to prove that (a) is necessary. The hypothesis is
then, that

(13) lim (lim ---lma, ., )=>5 finite
or if we set b ’

(14) lim---lima, ., ~a,
then (13) becomes ] '

(15) lim g, =3.

1 4
1

From (15), it follows, that for any &> 0, there is an n, so that
(16) 6, 2b—s i w>n.

Let some particular », > n, be chosen, and suppose that a, 18 finite, for
this v, set

llv—-@ ot llvr_n avl---vr::: Qvlv?‘
s r
Thus, by (14), .
limg, , =a,

¥
2

and hence there is an n,, such that for »,> m,
(17 @, =08, —&2b—2e.
In case @, is infinite, it cannot equal — co on account of (16). If
@, =+ oo, then @, , = b— 2& can be obtained, a fortiori.

By econtinuing this process, we find the numbers, n,, n,, - - - 2, that
occur in eondition (C). Thus, under condition (C),

a, .., 2b—re.
The trivial change of r& to & gives (5).
7‘
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Moreover, from (15), it follows that for any ¢> 0, and », large at
pleasuare, there is a », > n,, such that

(18) a, <b+s.

If n, is sufficiently large, this g, is finite, on account of (16). In
fact, from (16) and (18), it follows that with », large at pleasure, there
1s a v, > n,, such that
(19) b—a,|<e.

If now n, is large at pleasure, we can find v,> n, such that

In this manner, we finally establish (6).
To prove that (b) is necessary, we suppose that G >0 is assigned
at pleasure. Then there is an n,, such that, if », > n,,
a, > rG.
With », fixed, it is possible to find #,, so that, if v, > n,
e,,.>a —G>r—1)G

and, step by step, we are led to (7).

The treatment of the other cases is analogous.

We have yet to show that the conditions are sufficient. Let us sup-
pose, as in (a), that under condition (C)

Ig’vl '_'avlvzlée'

avln-v,_ .2. I-) — &
and that under condition (D)
0, ., <b+e

Then, by Theorem II (a), (b),
limn-limal,_,,, =b,

v, e VT
Im.---lmea, . <b
um @, ..., 50
Vl fr
Hence
lim---lma, =25
! mag, ., =20
‘I’l ,'.

To prove that (b) is sufficient, we have only to notice that with
G, vy, v, - - v,_4, ehosen in accordance with (C’), there exists an n_ such
that @, .., > G, if v,>n,, and hence lma, .., > G. Finally
lim..-limeg, .., 2@,
'1 f’

where G is large at pleasure. Hence
%...]i_;_mayl'_'vr=+oo=b,
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Theorem IV. The following are necessary conditions that

lim---lima, ., =b, finite or infinite,

viz. for * 7
(a) b finite.  Under condition (C)
(20) b—a,..,|<e
(b) b=+ oco. Under condition (C")
(21) @y . .y > G.
(¢) b= — oo. Under condition (C')
(22) a, .., <—G

Moreover, if Iim - - - lim is known to exist, the above conditions are

v

sufficient. 2 "
Proof. The proof of this theorem rests upon the preceding theorem

For example, suppose that
lim---lima, ., =b, finite.

¥ V.
1 r
Then
lim---lima,.., —b~Tm - fma, ...
" v, 1 Y,

(5) and (9) are now applicable, giving (20). This shows the necessity
of (a). Suppose on the other hand that (20) is satisfied, and that

hvm ---lma, .., exists. From (3), (6), (9) and (10) we conclude that
2 tr — -
lim..-Ima, . ,=b=lm-.-lima, .
1’x 'V’. Vl Yy
Moreover, since lim ---lima, exists,
1 r
7’2 ¥y
ILI_n o 1_312 avl...v,.= lim - - - lm a11'--7r= lim - - - lim a"l"”‘r
v, %, v, v, Yy v,
and hence
imbm..-limag, , =b=lmlm---lime, .,
—— - 1 r
L4 ” ¥, 14 v v,
1 e r L | r
Thus

and the condition is sufficient.
When > 1, (a) is not in itself sufficient, as illustrated by the

double sequence of terms, a, = (— 1)’**'2( . +1’i) Here (a) is satisfied
2

(21

if we take =0, but lim @, , and consequently im limea, , does not exist.
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Before taking up the next theorem, let us consider a particular case

of it. Write
lim lim lim Gy oy = Iim lim (lim a

v vy v, V; v ¥

¥y % ":)

The subscripts, 1, 3, of the indices, »,, »;, outside the brackets, increase
from left to right. Set ¢, =1, 7,=3, 4,=2. Thus ¢, <i,. We shall
now show that, if under the condition (I')

(23> v,v ¥vs < hm a'vlv,v, + 8}
then
(24) lim limlima,, <limlimlma,,,.

Let us suppgse that v, and v, are chosen in accordance with (I"). Then
{a,, .} and {hm a,,.,+ ¢} become simple sequences for which (23) is

Y, ¥a ¥,

valid, if »; > ns, and hence
(25) lma,, <lim(lima,,, +¢&=1lim hm R

¥ Y2 3

Thus, if », is chosen in accordance with (I") and n, taken large at
pleagure, there is a v,> n, for which (25) is valid, and hence

(26) limlima,, < hm hm a,,., + &

for as soon as », i8 chosen or fixed, the right-hand member of (23) is
a constant, whereas the left-hand member depends upon v,, and repeated-
ly assumes values less than or at most equal to the right-hand member.
Now (26) is valid for every », greater than some %,, and hence

(27) lim lim hm 0,05, < lim lim lim a, , , + &

” ¥2 141 Y3 ¥a

gince ¢ is arbitrary, (24) follows from (27).
Inasmuch as the condition (C) is more restrictive than (I'), we can
conclude, also, from the foregoing discussion, that if under the condition (C)

avlv s —...<=: H_Q av,_r,v, + 8)
then (24) will follow. ’

We now consider the general case of an r-fold sequence.
Theorem V. (a) If; under the condition (I"),

a ... <hmhm lima, ., +¢

(28) "ip1 Yipys i,
then

(29) H—Q...!‘.i-—m—-a’yl.--v gl—lpéhma
v, 0l .
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(b) If, under the condition (I'),

(30) a, .., =>2bm..-limg, 6 —¢&"
1 r=,. y. 1 r
‘p+1 ér
then
(31) lm---lime, .., 2lm---lima, , .
¥ v 1o y y,o ! r
1 r iy i

Proof. Suppose that ¢, v,, v,,--- v,._, are chosen or fixed in accor-
dance with (I'). If v, occurs among the indices v;,,y, - - - v, then the
right-hand member of (28) is a constant, »,, v,,---v,_, being fixed.
By (I') now, we know that, however large n, is; there is a ».>mn_,
rendering (28) valid. Hence

(32) lim a, ,,rg_l_i_l_n~~liinavlmyr—}w E.
vy Yipt1 vi,
We may write this in the form
(33) lima, ., <lim(im---lima, ., )+e¢,
G r i vi

for an examination of the definition of an iterated lower limit will show
that an operator, lim, when required to operate a second time, produces

no alteration, just as lim produces no alteration when applied to a con-

Py

stant, e. g. hm5 5.

If, on the other hand, v, does not occur among the indices v;, ., -+ v,,
then, when v, v,,---»,_, are fixed in accordance with (I"), both sides
of (28) are simple sequences, such that (28) is valid for every »_ greater
than some n.. From this fact, (33) follows. Thus in both cases, (33) is
valid for »,,---v,_, chosen in accordance with (I'). Now just as (33)
was derived from (28), we can derive from (33) the following inequality,

(34) lim lim a, .. < lim lim (hm lim @, r) + ¢
Yr—1 -1 ¥» Yipyr Vir

which will be valid, if »,,---v,_, are chosen in accordance with (I").

Proceeding step by step, we conclude that

(5 lm--lma, ., <ln-lmQin--lma, )+ e,

v ¥y v, v, 'ip+1

In the right-hand member, let us remove from the set of operators,

lim, lim, - hm those whlch are redundant, namely, lim, - - - lim, which

" v, Yipiy 'ip

have already 0perated The operators which remain are lim, lim, - - - lim,
"1 . '," "p

which, moreover, occur in this order, because of the hypothesis that

<ty << .

1
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Hence (35) may be written
(36) lim---lma, ., <lm-. (hm -lima, .,)+e¢.
e r " "p ‘Pt iy
Now since ¢ is arbitrary, (29) follows from (36). The proof of (b) is
analogous.

§ 3.
Conditions for the equality of two iterated limits.
Theorem VI. If lim hma ooy, and lim---lima,x..., exist,

r

finite or infinite, and if under condmon (r) ! ’
(37) le, .., —lim---lime,  [<¢
v‘.p«}-i V"r
then
(38) lim---lima,lm,r=1im- -lim a, e
vil Vir yl Y

Proof. Since, by bypothesis, lim-*-lima, ..., and lim---lima, .,

"ip-‘}l 9"’_ r rl Vg
exist, 1t follows that
(39) lm.--lma, ., = lim---lmea, . , =lm--- lim & ...y
¥ ¥, Ve Ve v, v
’p+1 ‘7' UP+L lr lp+1 ‘f

(40) 1i_m---l_i_r_nav1,,,v=lim~--1imav,,_v==lim hma -

r 1 r
‘l’l ‘Vr ‘l’1 Yy ‘ll1 Yy

Now (37) being satisfied, it follows from (39) that (28) and (30) are
satisfied, from which (29) and (31) follow. These, with (40), give

(41) hm---hma,tn_vrglltg---hga,l,_,vr,

v v, v,-‘ ¥,
(42) lim---lima, , >lm-..ima, .
’,.__. ’1 Vr

‘Vl l’. Y,‘l )'l'r

But

h._gl t 1.‘11..1 a’vl---v’.ghm e hm avl---v,J

V‘- ‘)’i 1‘- v;

1 r 1 r

and thus the inequality signs must be removed from (41) and (42).
Now since lim ---lim a, ..., exists, by "hypothesis, it follows that

v; v;
12 iy

(43) lm---lme, ,=lm---limg, . 6 =lm;...-lima, .,
¥, r ¥ » 1 r ¥ > 1 r
i t’. iy iy ig J

this with (41) and (42) gives
lim-..lma, ., =lmln-..lina =lmlim---lima,

} Pty Vg ** ¥ - v,
¥ v r v, v, . 1 r v, . v, 1
1 r Yy g 'y Yy 1y

from which (38) follows.
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We have just proved that if lim-.-lima, ., and lim---limae, ..,

k4 .
1 r 1y

Py

were known to exist, then (37) was a sufficient condition for (38). It
will now be shown that (87) is a necessary condition for (38), in case
the iterated limits of (38) are finite. We shall prove that from (38) it
follows that under condition (C), (37) is valid, and hence, a fortion,

(87) is valid under condition (I).
Theorem VIL If

(44) lim-.-lime, . 6 =lim---lima,
Vz.‘ Vir 71 ‘Vr
exists and is finite, then, under the condition (C),
(45) e, .., —lim-. lim|<e.
1’1'1)4-1 1'i’.

Proof Let us set

(486) -lim-.-lme, ., =5 ., .
v, ¥ 1 r 4 ’p
P+1 r
Then by hypothesis
(47) lim---lmd, ., =b
43 Y; Ty
i 'p
where b is finite and also
(48) lim---lime, .., =bo.
‘l/1 ‘Vr r
Then from Theorem IV, it follows that under condition (C),
(49) b—a, ., |<¢
and also that under condition (C),
(50) ‘b—‘bv---v-gés'
{ 1 ‘p i
It will be evident that (50) is valid, if we remember that
hy <ty <o <4,

Inas indi . P
much as b, S does not possess theindices »;, _,

1

choosing of Vigp1r® - ¥, 10 no way affects the sequence { b, .
1

thus in (C) for (50), we may take %,y OF let us say

’ ’ ’
Ripyr = Wipyg = """ =W, = 1.

vy

v, , the

el

}, and

‘p

Let us suppose, now, that a positive ¢ is given. By (C), there exists
an n, for (49) and an %, say, for (50). Let ny be the larger of the
two, and take v, > ny, similarly n; can now be found, and then v, > 2y
be taken arbitrarily. And finally »; can be found, and if » > ),

then both
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ib——a, .”'rtég
and
lb-b,. e [ 6
R
and hence
av ooy -—-by. ceeys :,_<_28.
1 r iy ‘p(.__

This with (46) gives (45), after making the frivial change from 2¢ to .
In Theorem VI, we supposed for the sake of definiteness, that

Im-.-lm a, ..., Was known to exist, and enquired about the existence
r
: 4 1 4
1 r

of some other iterated limit. In practice, however, the iterated limit
which was known to exist, might be, for example, hm limlmae,,,, and

¥ 141 Y2

we might wish to know about the existence of lim limlima,, , . It is

obvious that the theorem could be restated, with the proper change among
the indices throughout, to obtain our desired criterion. Another method
of procedure is possible, which can be easily judtified. Form a new
sequence with terms, b, =a, .. Then

V172V

hmlimhma,,, =limlimlmb, , = li;mli;li;md

L Tad ot ]
7 " ¥ ao0Mm vz My Ma My
where u, = v;, 4, = v, 3 =v,. The problem is now to find whether
lim lim lim b exists, and for this purpose, Theorem VI is applicable.

Mylizfy
I S U

We shall now apply Theorem VI to double and triple sequences.

§ 4.
Application to double and triple sequences.
If lim hm a,, and lim g, , exist, finite*) or infinite, and if for any
positive &, and any n,, however large, there is a v, > %, and an n,,

go that if v, > n,,

lav,v, — lim anr,l é &5

then 'S
limlima,, =limlime,,

o8}
L 2SR A » ”,

We suppose now that
lim lim hm a = b,

Y1¥p¥;
” Ta

finite or infinite, and give the cntena. that each of the other five iterated
h!mts should exist and equal b.

4

')Foranotherproofofthxs mthecasewhenhmhma andhma, are
ﬁmte see Bromwich, 1. c. n
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(a) lim lim lim @ = b,

Viva¥s
" ” i£Y

if lim lim @ exists (finite or infinite), and if for any £> O there is

Y1 V2%
*

an n,, such that for any », >n, and any #n,, there is a », >#, and
an ng, such that if vy > #n4

la, ., —lna,,  |<e.

V¥ ¥

(a") lim lim lima, , , =3,
¥ ¥3 T2 1

if lim lim @, exists, and if for any &> 0 there is an %, such that

Y3 %

for any v, >n, and any wu,, there is a v, >n,, so that for any =,
there 15 a vy > g, such that

VaVy

la, ..., — hmhma”,’{ge.
(b) limlimlma,,, =b,

¥y ” v,
if lim lim a,
N %
and an n,, so that for any »,>mn, and any #n;, there is a v; > ny,

such that

exists, ard if for any ¢ >0 and any %, there is a v, >n,

¥a?a

le,,., —limlma,  1<e.
1 v v, '3
(¢) lim m lim e, , , = b,

Y2 s "

if lim lim @, exists, and if for any £>0 and any #,, there is a v, >n,

Vs
i3

and an n,, such that for any v, > »,, there is an n, so that for any vy >n,

lar,v,v, — lim av,v,v, ’ g £,
7
() lim lim hm Gy yy, =D,
re "; 273

if bm lima, , . exists, and if for any £>0 and any », there is a v, >n,

Ya?;
vs

and an #n,, such that for any w», > n, and any g, there is a v, >
such that

!af"”" hm llm a‘y"” i ge.
(d) lim lim hm By vy = b,

if Iim hm a,

”

so that for any #n,, there is a v,>#n, and an ng such that for any v, >n,
la,,., —limlime, i<+
"

¥y Vo ¥y
¥

exists, and if for any &> 0 and any n,, thereisa v, >n,,

Y3V
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(ey lim lim lim @, , , = b,

LY Vs ”

if lim lim @, , , exists, and if for any ¢>>0 and any =%, there is a v, >n,,
so that for any », there is a v,>n, and an n, such that for any v, > »,
Iai‘lv,v, - hm hm arl ¥ ¥y l é L

For the case where b is finite, these conditions have been shown to
be both necessary and sufficient.

§ 5.
Application to infinite series.
Let S be an r-fold infinite series, with terms o, . Let

# '-.Fr
a"l ¥ = 2“"1 Myt
1...1
If ima, , =s, then s is said to be the sum of the series S. 1t is
vy
customary to require that s be finite*). Here, however, I shall permit s
to be finite or infinite. It can be shown that the necessary and sufficient

condition that

2" 12:" ) '2’ oy oopt, = b, (finite or infinite)

limlim..-kma, .., =b.

¥,
* v v r
1 3 r

Thus the criteria, just obtained for the equality of the iterated limits
of r-fold sequences, are criteria for the equality of the iterated sums
of infinite series.

New Haven, Ct., U.S. A, June 1904.

is that

* Cf. London, 1. c. p. 359.



