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The variability inherent to fluorescence imaging data (1)

ADU counts (raw data) from Fura-2 excited at 340 nm. Each
square corresponds to a pixel. 25.05 s of data are shown. Same
scale on each sub-plot. Data recorded by Andreas Pippow
(Kloppenburg Lab. Cologne University).



The variability inherent to fluorescence imaging data (2)

One of the central pixels of the previous figure.



What do we want? (1)

Given the data set illustrated on the last two slides we might want
to estimate parameters like:

I the peak amplitude
I the decay time constant(s)
I the baseline level
I the whole time course (strictly speaking, a function).



What do we want? (2)
If we have a model linking the calcium dynamics—the time course
of the free calcium concentration in the cell—to the fluorescence
intensity like:

dCat
dt

(1 + κF (Cat) + κE (Cat)) +
j(Cat)

v
= 0 ,

where Cat stands for [Ca2+]free at time t, v is the volume of the
neurite—within which diffusion effects can be neglected—and

j(Cat) ≡ γ(Cat − Casteady ) ,

is the model of calcium extrusion—Casteady is the steady state
[Ca2+]free—

κF (Cat) ≡
Ftotal KF

(KF + Cat)2 and κE (Cat) ≡
Etotal KE

(KE + Cat)2 ,

where F stands for the fluorophore en E for the endogenous buffer.



What do we want? (3)

In the previous slide, assuming that the fluorophore (Fura)
parameters: Ftotal and KF have been calibrated, we might want to
estimate:

I the extrusion parameter: γ
I the endogenous buffer parameters: Etotal and KE

using an equation relating measured fluorescence to calcium:

Cat = KF
St − Smin

Smax − St
,

where St is the fluorescence (signal) measured at time t, Smin and
Smax are calibrated parameters corresponding respectively to the
fluorescence in the absence of calcium and with saturating [Ca2+]
(for the fluorophore).



What do we want? (4)
I The variability of our signal—meaning that under replication

of our measurements under the exact same conditions we wont
get the exact same signal—implies that our estimated
parameters will also fluctuate upon replication.

I Formally our parameters are modeled as random variables and
it is not enough to summarize a random variable by a single
number.

I If we cannot get the full distribution function for our
parameters, we want to give at least ranges within which the
true value of the parameter should be found with a given
probability.

I In other words: an analysis without confidence intervals is not
an analysis, it is strictly speaking useless since it can’t be
reproduced—if I say that my time constant is 25.76 ms the
probability that upon replication I get again 25.76 is essentially
0; if I say that the actual time constant has a 0.95 probability
to be in the interval [24,26.5], I can make a comparison with
replications.



A proper handling of the "variability" matters (1)

Let us consider a simple data generation model:

Yi ∼ P(fi ) , i = 0, 1, . . . ,K ,

where P(fi ) stands for the Poisson distribution with parameter fi :

Pr{Yi = n} =
(fi )

n

n!
exp(−fi ) , for n = 0, 1, 2, . . .

and
fi = f (δi |f∞,∆, β) = f∞ + ∆ exp(−β δi) ,

δ is a time step and f∞, ∆ and β are model parameters.



A proper handling of the "variability" matters (2)

Data simulated according to the previous model. We are going to
assume that f∞ and ∆ are known and that (t1, y1) and (t2, y2) are
given. We want to estimate β.



Two estimators (1)

We are going to consider two estimators for β:
I The "classical" least square estimator:

β̃ = argmin L̃(β) ,

where
L̃(β) =

∑
j

(
yj − f (tj | β)

)2
.

I The least square estimator applied to the square root of the
data:

β̂ = argmin L̂(β) ,

where
L̂(β) =

∑
j

(√
yj −

√
f (tj | β)

)2
.

https://en.wikipedia.org/wiki/Estimator


Two estimators (2)

We perform an empirical study as follows:
I We simulate 100,000 experiments such that:

(Y1,Y2) ∼
(
P(f (0.3|β0),P(f (3|β0)

)
,

with β0 = 1.
I For each simulated pair, (y1, y2)[k] (k = 1, . . . , 105), we

minimize L̃(β) and L̂(β) to obtain: (β̃[k], β̂[k]).
I We build histograms for β̃[k] and β̂[k] as density estimators of

our estimators.



Two estimators (3)

Both histograms are built with 50 bins. β̂ is clearly better than β̃
since its variance is smaller. The derivation of the theoretical (large
sample) densities is given in Joucla et al (2010).

http://intl-jn.physiology.org/cgi/content/short/103/2/1130
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CCD basics

Source: L. van Vliet et col. (1998) Digital Fluorescence Imaging
Using Cooled CCD Array Cameras (figure 3).

http://homepage.tudelft.nl/e3q6n/publications/1998/AP98LVDSTY/AP98LVDSTY.html
http://homepage.tudelft.nl/e3q6n/publications/1998/AP98LVDSTY/AP98LVDSTY.html


"Noise" sources in CCD (1)

I The "Photon noise" or "shot noise" arises from the fact the
measuring a fluorescence intensity, λ, implies counting
photons—unless one changes the laws of Physics there is
nothing one can do to eliminate this source of variability
(improperly called "noise")—:

Pr{N = n} =
λn

n!
exp−λ , n = 0, 1, . . . , λ > 0 .

I The "thermal noise" arises from thermal agitation which
"dumps" electrons in potential wells; this "noise" also follows
a Poisson distribution but it can be made negligible by cooling
down the camera.



"Noise" sources in CCD (2)

I The "read out noise" arises from the conversion of the number
of photo-electrons into an equivalent tension; it follows a
normal distribution whose variance is independent of the mean
(as long as reading is not done at too high a frequency).

I The "digitization noise" arises from the mapping of a
continuous value, the tension, onto a grid; it is negligible as
soon as more than 8 bit are used.



A simple CCD model (1)

I We can easily obtain a simple CCD model taking into account
the two main "noise" sources (photon and read-out).

I To get this model we are going the fact (a theorem) that when
a large number of photon are detected, the Poisson
distribution is well approximated by (converges in distribution
to) a normal distribution with identical mean and variance:

Pr{N = n} =
λn

n!
exp−λ ≈ N (λ, λ) .

I In other words:
N ≈ λ+

√
λ ε ,

where ε ∼ N (0, 1) (follows a standard normal distribution).

http://en.wikipedia.org/wiki/Convergence_in_distribution##Convergence_in_distribution


A simple CCD model (2)

I A read-out noise is added next following a normal distribution
with 0 mean and variance σ2

R .
I We are therefore adding to the random variable N a new

independent random variable R ∼ N (0, σ2
R) giving:

M ≡ N + R ≈ λ+
√
λ+ σ2

R ε ,

where the fact that the sum of two independent normal
random variables is a normal random variable whose mean is
the sum of the mean and whose variance is the sum of the
variances has been used.



A simple CCD model (3)

I Since the capacity of the photo-electron weels is finite (35000
for the camera used in the first slides) and since the number of
photon-electrons will be digitized on 12 bit (4096 levels), a
"gain" G smaller than one must be applied if we want to
represent faithfully (without saturation) an almost full well.

I We therefore get:

Y ≡ G ·M ≈ G λ+
√

G 2 (λ+ σ2
R) ε .



For completeness: Convergence in distribution of a Poisson
toward a normal rv (1)

We use the moment-generating function and the following theorem
(e.g. John Rice, 2007, Mathematical Statistics and Data Analysis,
Chap. 5, Theorem A):

I If the moment-generating function of each element of the rv
sequence Xn is mn(t),

I if the moment-generating function of the rv X is m(t),
I if mn(t)→ m(t) when n→∞ for all |t| ≤ b where b > 0

I then Xn
D−→ X .

http://en.wikipedia.org/wiki/Moment-generating_function


For completeness: Convergence in distribution of a Poisson
toward a normal rv (2)

Lets show that:
Yn =

Xn − n√
n

,

where Xn follows a Poisson distribution with parameter n,
converges in distribution towards Z standard normal rv.
We have:

mn(t) ≡ E [exp(Ynt)] ,

therefore:

mn(t) =
∞∑
k=0

exp
(
k − n√

n
t

)
nk

k!
exp(−n) ,



For completeness: Convergence in distribution of a Poisson
toward a normal rv (3)

mn(t) = exp(−n) exp(−
√
nt)

∞∑
k=0

(
n exp

(
t/
√
n
))k

k!

mn(t) = exp
(
−n −

√
nt + n exp(t/

√
n)
)

mn(t) = exp

(
−n −

√
nt + n

∞∑
k=0

(
t√
n

)k 1
k!

)

mn(t) = exp

(
−n −

√
nt + n +

√
nt +

t2

2
+ n

∞∑
k=3

(
t√
n

)k 1
k!

)

mn(t) = exp

(
t2

2
+ n

∞∑
k=3

(
t√
n

)k 1
k!

)



For completeness: Convergence in distribution of a Poisson
toward a normal rv (4)

We must show:

n
∞∑
k=3

(
t√
n

)k 1
k!
→n→∞ 0 ∀ |t| ≤ b, where b > 0 ,

since exp(−t2/2) is the moment-generating function of a standard
normal rv. But∣∣∣∣∣n

∞∑
k=3

(
t√
n

)k 1
k!

∣∣∣∣∣→n→∞ 0 ∀ |t| ≤ b, where b > 0

implies that since

−

∣∣∣∣∣n
∞∑
k=3

(
t√
n

)k 1
k!

∣∣∣∣∣ ≤ n
∞∑
k=3

(
t√
n

)k 1
k!
≤

∣∣∣∣∣n
∞∑
k=3

(
t√
n

)k 1
k!

∣∣∣∣∣ .



For completeness: Convergence in distribution of a Poisson
toward a normal rv (5)

But for all |t| ≤ b where b > 0

0 ≤
∣∣∣∣n∑∞k=3

(
t√
n

)k
1
k!

∣∣∣∣ ≤ n
∑∞

k=3

(
|t|√
n

)k
1
k!

≤ |t|3√
n

∑∞
k=0

(
|t|√
n

)k
1

(k+3)!

≤ |t|3√
n

∑∞
k=0

(
|t|√
n

)k
1
k!

≤ |t|3√
n
exp
(
|t|√
n

)
→n→∞ 0 ,

which completes the proof.



For completeness: Convergence in distribution of a Poisson
toward a normal rv (6)

Cumulative distribution functions (CDF) of Y5 (black) and Z a
standard normal (red).



For completeness: Convergence in distribution of a Poisson
toward a normal rv (7)

Cumulative distribution functions (CDF) of Y50 (black) and Z a
standard normal (red).



For completeness: Convergence in distribution of a Poisson
toward a normal rv (8)

Cumulative distribution functions (CDF) of Y500 (black) and Z a
standard normal (red).



For completeness: Convergence in distribution of a Poisson
toward a normal rv (9)

Cumulative distribution functions (CDF) of Y5000 (black) and Z a
standard normal (red).
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CCD calibration (1)

If what I just exposed is correct, with the two (main) "noise"
sources, the observations Y (from a CCD pixel) follow:

Y ∼ G λ+
√

G 2 (λ+ σ2
R) ε ,

where G is the camera gain, σ2
R is the read-out variance and ε is a

standard normal rv. The values of G and σ2
R are specified by the

manufacturer for each camera, but experience shows that
manufacturers tend to be overoptimistic when it comes to their
product performances—they can for instance give an
underestimated σ2

R . Its therefore a good idea to measure these
parameters with calibration experiments. Such calibration
experiments are also the occasion to check that our simple model is
relevant.



CCD calibration (2)

I Our problem becomes: How to test
Y ∼ G λ+

√
G 2 (λ+ σ2

R) ε ? Or how to set different values
for λ?

I Let’s consider a pixel of our CCD "looking" at a fixed volume
of a fluorescein solution with a given (and stable)
concentration. We have two ways of modifying λ :

I Change the intensity ie of the light source exciting the
fluorophore.

I Change the exposure time τ .

http://en.wikipedia.org/wiki/Fluorescein


CCD calibration (3)

We can indeed write our λ as:

λ = φvcieτ ,

where
I v is the solution’s volume "seen" by a given pixel,
I c is the fluorophore’s concentration,
I φ is the quantum yield.

In practice it is easier to vary the exposure time τ and that’s what
was done in the experiments described next. . . Question: Can you
guess what these experiments are?

http://en.wikipedia.org/wiki/Quantum_yield


CCD calibration (4)

Sebastien Joucla and myself asked our collaborators from the
Kloppenburg lab (Cologne University) to:

I choose 10 exposure times,
I for each of the 10 times, perform 100 exposures,
I for each of the 10 x 100 exposures, record the value yij of the

rv Yij of CCD’s pixel i , j .
We introduce a rv Yij for each pixel because it is very difficult
(impossible) to have a uniform intensity (ie) and a uniform volume
(v) and a uniform quantum yield (φ). We have therefore for each
pixel:

Yi ,j ∼ G pi ,jτ +
√
G 2 (pi ,jτ + σ2

R) εi ,j ,

where pi ,j = cφi ,jvi ,j ie,i ,j .

http://cecad.uni-koeln.de/Prof-Peter-Kloppenburg.82.0.html


CCD calibration (5)

I If our model is correct we should have for each pixel i , j , for a
given exposure time, a mean value:

ȳi ,j =
1

100

100∑
k=1

yi ,j ,k ≈ G pi ,jτ

I and a variance:

S2
i ,j =

1
99

100∑
k=1

(yi ,j ,k − ȳi ,j)
2 ≈ G 2 (pi ,jτ + σ2

R) .

I The graph of S2
i ,j vs ȳi ,j should be a straight line with slope G

ordinate at 0, G 2σ2
R .



CCD calibration (6)

The first exposure of 10 ms (experiment performed by Andreas
Pippow, Kloppenburg lag, Cologne University).



CCD calibration: Checking the assumptions (1)

I The data are going to be analyzed as if the Yi ,j ,k were IID, but
they were sequentially recorded. It is therefore strongly
recommended to check that the IID hypothesis is reasonable.

I The small example of the next figure shows that there are no
(obvious) trends.

I We must also check the correlation function.



CCD calibration: Checking the assumptions (2)

Counts time evolution for three neighboring pixels (10 ms exposure
time).



CCD calibration: Checking the assumptions (3)

I If the Yi ,j ,k are not IID we expect a more or less linear
trend—due to bleaching of the dye.

I Rather then looking at each individual pixel sequence like on
the previous slide, we can fit the following linear model model
to each pixel:

Yi ,j ,k = β0 + β1k + σεi ,j

where the εi ,j
IID∼ N (0, 1), and check if β1 can be reasonably

considered as null; while a trend due to bleaching would give a
negative β1.

I Without a trend, the theoretical distribution of β̂1/σ̂β1—β̂1 is
the estimate of β1 and σ̂β1 its estimated standard error—is a
Student’s t distribution with 98 degrees of freedom.

I Applying this idea to the central pixel of the previous slide we
get. . .



CCD calibration: Checking the assumptions (4)

We get β̂1 = 0.032 and a 95 % conf. int. for it is: [−0.018, 0.082].



CCD calibration: Checking the assumptions (5)

We can use the fact that, under the null hypothesis (no trend):

β̂1/σ̂β1 ∼ t98

by constructing the empirical cumulative distribution function
(ECDF) of the 60 x 80 pixels at each exposure time to get the
maximal difference (in absolute value) with the theoretical CDF to
apply a Kolmogorov test. The critical value of the latter for a 99%
level and a sample size of 100 is 0.163. We get the following values:

100ms 10ms 20ms 30ms 40ms
0.09 0.089 0.116 0.058 0.135

50ms 60ms 70ms 80ms 90ms
0.209 0.041 0.178 0.153 0.07

The values at 50 and 70 ms are too large.



CCD calibration: Checking the assumptions (6)

Empirical density in black, theoretical one (t with 98 df) in orange.



CCD calibration: Checking the assumptions (7)

I We now look for potential correlations between recording from
different pixels.

I We do that by computing the empirical correlation between
pixels (i , j) and (u, v).

I We get the empirical mean at each pixel (for a given exposure
time) that is: Y ij = (1/K )

∑K
k=1 Yijk .

I We get the empirical variance:
S2
ij = 1/(K − 1)

∑K
k=1(Yijk − Y ij)

2.
I We then obtain the normalized signal or standard score:

Nijk = (Yijk − Y ij)/
√
S2
ij .

I The correlation coefficient is then:
ρ(ij , uv) = 1/(K − 1)

∑K
k=1 NijkNuvk .

I Under the null hypothesis, no correlation,
ρ(ij , uv) ∼ N (0, 1/K ).



CCD calibration: Checking the assumptions (8)

Empirical density in black, theoretical one, N (0, 0.01), in orange.



CCD calibration: Checking the assumptions (9)

The empirical variance (x 100 and rounded to the third decimal) of
the samples of correlation coefficients (1 sample per exposure
duration) are:

100ms 10ms 20ms 30ms 40ms
1.009 1.01 1.009 1.01 1.01

50ms 60ms 70ms 80ms 90ms
1.01 1.009 1.01 1.009 1.009

Overall our IID modeling assumption is met with perhaps the
exceptions of the 50 and 70 ms exposure times for the drift.



CCD calibration (5): again

We wrote previously :
I If our model is correct we should have for each pixel i , j , for a

given exposure time, a mean value:

ȳi ,j =
1

100

100∑
k=1

yi ,j ,k ≈ G pi ,jτ

I and a variance:

S2
i ,j =

1
99

100∑
k=1

(yi ,j ,k − ȳi ,j)
2 ≈ G 2 (pi ,jτ + σ2

R) .

I The graph of S2
i ,j vs ȳi ,j should be a straight line with slope G

ordinate at 0, G 2σ2
R .



CCD calibration (7): S2
i ,j vs ȳi ,j

We do see the expected linear relation:
Var[ADU] = G 2σ2

R + GE[ADU].



CCD calibration (8): Linear fit

The heteroscedasticity (inhomogeneous variance) visible on the
graph is also expected since the variance of a variance for an IID
sample of size K from a normal distribution with mean µ and
variance σ2 is:

Var[S2] =
2σ4

(K − 1)
.

I This means than when we do our linear fit,

yk = a + bxk + σkεk ,

we should use weights.
I Here

xk = ADUk yk = Var[ADU]k ,

b = G a = G 2σ2
R .

http://en.wikipedia.org/wiki/Heteroscedasticity


CCD calibration (9): Linear fit

I It’s easy to show that the least square estimates are:

â =
1
Z

∑
k

yk − b̂xk
σ2
k

where Z =
∑
k

1
σ2
k

and

b̂ =

∑
k

xk
σ2
k

yk −
1
Z

∑
j

yj
σ2
j

 /

∑
k

xk
σ2
k

xk −
1
Z

∑
j

xj
σ2
j

 .

I We don’t know σk but we have an estimation: σ̂2
k = Var[S2

k ]
we can "plug-in" this value to get our weights.



CCD calibration (10): Linear fit

We have here Ĝ = 0.14 and σ̂2
R = 290.



CCD calibration (11): Checking the fit



CCD calibration (12): Some remarks

I When we use a linear regression, we are (implicitly) assuming
that the "independent" variable, here ADUk , is exactly known.

I This was clearly not the case here since ADUk was measured
(with an error).

I We could and will therefore refine our fit.
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Error propagation

I Let us consider two random variables: Y and Z such that:
I Y ≈ N (µY , σ

2
Y ) or Y ≈ µY + σY ε

I Z = f (Y ), with f continuous and differentiable.
I Using a first order Taylor expansion we then have:

Z ≈ f (µY + σY ε)

≈ f (µY ) + σY ε
df
dY (µY )

I EZ ≈ f (µY ) = f (EY )

I VarZ ≡ E[(Z − EZ )2] ≈ σ2
Y

df
dY

2
(µY )

I Z ≈ f (µY ) + σY
∣∣ df
dY (µY )

∣∣ ε



Variance stabilization (1): Theory

I For our CCD model we have (for a given pixel):

Y ∼ G λ+
√
G 2 (λ+ σ2

R) ε = µY +
√

G µY + G 2 σ2
R ε .

I Then if Z = f (Y ) we get:

Z ≈ f (µY )+ | f ′(µY ) | G
√
µY /G + σ2

R ε

I What happens then if we take: f (x) = 2
√

x/G + σ2
R ?

I We have:
f ′(x) =

1

G
√
x/G + σ2

R

I Leading to:

Z ≈ 2
√
µY /G + σ2

R + ε



Variance stabilization (2): Example
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Back to where we started

ADU counts (raw data) from Fura-2 excited at 340 nm. Each
square corresponds to a pixel. 25.05 s of data are shown. Same
scale on each sub-plot. Data recorded by Andreas Pippow
(Kloppenburg Lab. Cologne University).



Quick ROI detection (1): Motivation

I After variance stabilization: Zi ,j ,k = 2
√
ADUi ,j ,k/G + σ2

R , the
variance at each pixel (i , j) at each time, k , should be 1.

I If a pixel contains no dynamical signal—that is nothing more
than a constant background signal—the following statistics:

RSSi ,j ≡
K∑

k=1

(Zi ,j ,k − Z i ,j)
2 with Z i ,j ≡

1
K

K∑
k=1

Zi ,j ,k

should follow a χ2 distribution with K − 1 degrees of freedom.
I We could therefore compute the values of the complementary

cumulative distribution function of the theoretical χ2
K−1

distribution:
1− Fχ2

K−1
(RSSi ,j)

and look for very small values—that is very small
probabilities—(using a log scale helps here).



Quick ROI detection (2)

Contour plots of log
(
1− Fχ2

K−1
(RSSi ,j)

)



Pointwise time course estimation (1)

I We are going to be (very) conservative and keep as our ROI
the pixels having an log

(
1− Fχ2

K−1
(RSS)

)
≤ −300.

I We are then left with 12 pixels.
I We are going to model the fluorescence intensity of each of

these pixels by:
Si ,j(t) = φi ,j f (t) + b ,

where f (t) is a signal time course to all pixels of the ROI, φi ,j
is a pixel specific parameter and b is a background
fluorescence assumed identical for each pixel.

I The time t is in fact a discrete variable, t = δ k (δ = 150 ms)
and we are seeking a pointwise estimation: {f1, f2, . . . , fK} (K
= 168) where fk = f (δ k).

I We end up with 12 (φi ,j) + 168 (fk) + 1 (b) = 181
parameters for 12 x 168 = 2016 measurements.



Pointwise time course estimation (2)

I We need to add a constraint since with our model
specification:

Si ,j ,k = φi ,j fk + b ,

we can multiply all the φi ,j by 2 and divide all the fk by 2 and
get the same prediction.

I We are going to set fk = 1 for the first 5 time points (the
stimulation comes at the 11th) and our pointwise estimation
relates to what is usually done with this type of data,
∆S(t)/S0 (where S0 is a baseline average) through:

∆S(t)/S0 =
S(t)− S0

S0
= f (t)− 1 + noise .

I Notice that no independent background measurement is used.



Pointwise time course estimation (3)

I With variance stabilization we end up minimizing:

RSS (b, (φi ,j), (fk)k=5,...,168) =
∑

(i ,j)∈ROI

168∑
k=1

(Zijk − Fijk)2 ,

where
Zijk = 2 ∗

√
ADUijk/Ĝ + σ̂2

R

and
Fijk = 2 ∗

√
φi ,j fk + b + σ̂2

R .

I If our model is correct we should have:

RSS
(
b̂, (φ̂i ,j), (f̂k)k=5,...,168

)
∼ χ2

12×168−176 .

I The method also generates confidence intervals for the
estimated parameters.



Pointwise time course estimation (4): Technical details

I To solve this 176 dimensional optimization problem in a
reasonable time (< 10 s) in Python we use Newton’s method
with conjugate gradients for the inversion of the Hessian
matrix.

I That means we have to define a function returning the
gradient—vector of first derivatives—and the Hessian—matrix
of second derivatives—of the RSS we just defined (that’s a
painful work).

I To improve numerical behavior, since all parameters are
positive, we work with the log of the parameters.

I Giving all the details would be at least as long as the present
talk, but they are fully disclosed in the source file of this talk
that can be found on Github:
https://github.com/christophe-pouzat/ENP2015.

https://github.com/christophe-pouzat/ENP2015


Pointwise time course estimation (5): Time course estimate



Pointwise time course estimation (6): Data and fit

Data and fit after variance stabilization. The RSS is 1976 giving a
probability of 0.986 (a bit large).



Thanks

This work was done in collaboration with:
I Sebastien Joucla
I Romain Franconville
I Andeas Pippow
I Peter Kloppenburg

Thank you for your attention!
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