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punctum T attingit lineam rectam quae tendat ad eandem plagam
cum infinitis cruribus Parabolicis figurae, si modo pro z sumatur una

aequalium radicum.

107. In praefatis determinationibus supposui primnm terminum
aequationis 3° non deesse. Quamobrem si terminus ille desit et da®
non desit, debet y fieri basis figurae et = ordinata, et caetera peragi
ut supra. Sed si uterque terminus simul desit sed b et ¢ non desunt,
figura erit Hyperbola triformis cujus una Agymptotos determinatur

capiendo AD = — %,

et ad B erigendo lineam parallelam ordinatis, altera determinatur
capiendo BS =— —Z—

ot ducendo per S lineam parallelam basi. Nam istae parallelae erunt
Asymptoti. Tertia attingetur a puncto S sumendo
_ e, e |
BS——?-FE—'E'F-%.
‘Denique si terminorum etiam b et ¢ alteruter puta ¢ desit, figura vel
Hyperbola Parabolica erit vel Hyperbolismus aliquis cujus determi-
nationem supra satis explicuimus.

On the g-Series derived from the Elliptic and Zeta Functions of
3K and K. DBy J. W, L. Graisuzr, Sc.D., F.R.S.

[£ewd Dec. 11th, 1890.]

1. In a paper onthe function If (n),* which denotes the cxcess of
the number of divisors of # which =1, mod. 3, over the number which
=2, mod. 3, it was shown that the g-series having H (n) as the
coeflicient of its'gencral term, n denoting any integer, was expressible
by means of a zeta function of argument }K, and that tho g-series in
which H (m) was the coefficient of the general torm, m denoting any
uneven integer, was expressible by means- of an elliptic function of
1K. - These rosults suggest that it would be of interest to obtain the
developments in ascending powers of ¢ of the complete system of

¥ Vol. xx1., p. 395.
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g-series which ropresent the sixtcen elliptic and zeta functions of 1K ,*
in order to determine the nature of the arithmetical functions which
form their coefficients. The principal object of the present paper is
to examine these arithmetical functions ; but the elliptic functions of
1K, the changes produced by the change of ¢ into ¢% and other
matters that arise in connexion with the g-series, are also considered.
The concluding sections (§§39-56) relate to the elliptic. and zeta
functions of 1K and 1K. :

Developments of kp sn 3K, §c., in ascending powers of q. §§ 2-7.

2. Six of the sixteen functions of 1K are expressible by means of
the function E (n), which denotes the excess of the number of divisors
of % which = 1, mod. 4, over the number of divisors which =3, mod. 4."
These expansions may be written : '

kpsn 3K = lpcd 3K = 237 E (m) ¢+ 637 E (m) ¢,
kk'psd 4K = kpen 3K = 237 (=1)}"0E (m) g
+637 (=1)!™V B (m) gt

pus 3K = pdc3K = 2+237 B (n) ¢"+637 B (n) ¢
pds }K = K'pnc K = 24237 (—1)" E (n) 9"+ 0% (=1)" E (n) ¢,

KpndiK = pdniK =1-25" B (n) ¢"+63° B (n) ¢,
pdn 3K = IKpnd 2K =1—-232(—=1)" E (n) ¢"+ 637 (—1)" E(n) ¢™,

o
where p denotes é-lf, and m and » denote, as throughout this paper,
T

any uneven number, and any numbecr; respectively.

3. Five others arc expressiblo by means of II (n), defined as in § 1,
and by I’ (n), defined as denoting the cxcess of the number of
divisors of # which =1, mod. 3, and have uneven conjugates, over
the number of divisors which = 2, mod. 3, and huve uncven éon-.
jugates. These expansions ave

kped K = lLpsn 3K = 283 I[(m) ¢,
kpendK = ki'psd 4K = 2 /3 3 (—1)¥-DH (m) ¢,

- % The complete system of 4-serics for kpsnw, &e., is given in the Aessenger of
Muathematics, Vol. xvi., pp. 2, 3. The four zets functions zn v, zs 4, zcu, zdu are
there denoted by Z(w), 7 (), Z, (1), Zy (u).
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—pzd 3K = pzn3}K =2./33" H' (n)q",
pzn K= —p2d 3K =2,/33" (—1)""'H' (n) ¢",

D 1 © n
—pze3K = pzs§K=73 £1+4 637 H (n) ¢* }

4. Two of the elliptic functions of LK are expressible by means of

a fanction J(n), defined as denoting the excess of the number of
divisors of » which =1, mod. 6, over the number of divisors
which = 5, mod. 6; viz., we have
2

pdciK=pus{K = 73

{1+33:°J(n) q"},
Kpne K = pds 3K = 53 (14337 (- 1)" T (n) "}

When « is uneven, J (z) is evidently equal to II (), so that in the
first two formulm of §3 we may replace II (m) by J(m). These
formulw may, therefore, be written :

pcdiK = FkpsniK =2 /337 J(m) ¢,
kpen 3K = kk'psd 31X = 2 /3 X7 (=117 () ot

5. Denoting by I (n) the excess of the number of divisors of
which = 1 or 2, mod. 6, over the number of divisors which = 4 or 5,
mod. 6, we find

pzs K =—puzciK= /3 {1+23" I(n) 7"}

If » be nueven,

I(n) = J(n);
I(n)=J ()+II(in).

We may therefore express this formula uléo by wmeans of the
functions .J and I/ as follows :

if n be even,

pzs 3K = —pue 3K = /3 {1+2 37 J () ¢ +257 I (n) 7"}

6. The remaining two functions, sc and es, may be expressed by the
formulw

KpsclN= pesih= -«}:; { 1—=0637 h () rj""},

pes N =Epscih = /3 {1-237i (u) 4],
VOL. XXIL.—No. 408, L
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where
h(n) = IT' (n)—H" (),

i) = I (n)—=I"(n).

The function II' (#) has been defined in § 3; and H” () is defined
as the excess of the number of divisors of # which = 1, mod. 3, and
have even conjugates, over the number of divisors which =2, mod. 3,

and have even conjugates. The functions I' (n) and I” (n) stand to
I (n) in the same relation as H' (n) and II” (n) to H (n).*

7. The arithmetical functions, which serve to express the cocfficients
in tho sixteen scries, are, thercfore, seven in number, viz. :

B(n), H@w), II'(x), H"(n), Jm), I(n), i(n);

but the first of these, I7 (n), occurs in the series for p, p, k¥p, &c., in
ascending powers of g, and is not specially connected with the
argument I,

When = is uneven, H” (n) is zero, and all the other functions
become equal, so that

B (m) =II (m) = H' (m) = J(m) = I(m) =1i(m).

The Functions 1, ', II;', 1. §§8,9.

8. Let n = 2"m,

m being an nneven namber, and let 1, a, b, ..., m be all the divisors
of m which =1 or 2, mod. 3; thesc are tho divisors upon which the
value of II (m) depends. Now, in 27m, the divisors which have
uneven conjugates are 2, 27q, 270, ... 2"m ; t.e., they wre the former
divisors cach multiplied hy 2".  Now, by multiplying a divisor = 1,
mod. 3, by 2, we produce a divisor =2, mod. 3, and vice versdé. Thus,
evidently,
U (2w) = —I[' (m), II' (4m) = II (m),

and in general

I (n) = (=1)" II (m).

* In the caso of the funclions 7f and I, tho singlo accent indicates that in forming

. the function only the divisors whoso conjugates are uncven are to bo taken into

account, und tho doubloe accent indicates that only divisors whose conjugates are

cven aro to bo tuken into account. The accent in a’(2) (§31) has a different
meaning.
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9. If r be uneven, H(n) =0;
and if » be even, I (n) = H (m).
We may therefore write ) A
H(n)=} {1+ (=1)} H(m);
and, since H' (n)+H” (n) = IT (),
we find H” (n) =-}-{1—(—1)'} H (m).

This latter result may be independently established without
difficnlty ; for the divisors of » which =1 or 2, mod. 8, and have
even conjugates, are 1, a, b, ... , m; 2, 2a, 2b, ... 2m; ...; 2", 2" 'q,
2r-1p,...2""'m. Thus there are r systems of such divisors. The
divisors in each system -are opposite in character to thosc in the
preceding system; so that, if '

r=2, H"(n) =0, N
if . _ r=3, H"(n)=II(m);
and, in general, H" (n) =0 -or JI(m),
according as 7 is even or uneven.

We have also
h(n) = O'(n)—H"(n) =} {8 (—=1)"=1} I ().

The Punctions J, I, I',i. §§ 10, 11.
10. If, as before, we put

w == 2"m,
we have v (n) = IL(m).
Since (§5), if n be even, ' N
I(n)=J @)+ (3n), .
and (§9), I (m) =1 {1-(=1)} T (),
wo find »
I(n) =H(m)+1 {1-(—1)"} H(m) = 1,-_{3—-(-—])"} 11 ().

11. It is easy to see that, if n be even,
I’ (n) = II' (3n),
215
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and I" (n) =J (n)+ H" (4n).

W; thus find o
I'(n) = (=1)""' H(m) = —H' (n),

I"(n) =3 {8+ (=1)"} H(m), i(n)=—3{1+(-1)"} H(m).

The complets set of Functions. §§ 12,18,

12. It thus appears that all the H, J and I functions of # admit of
being expressed in torms of II(m), where m is the largest uneven
divisor of n. Arranging the formnlre in one group, we have, if

n= 2'm,
then ' JT(n) = H(m), -
H(w) = § {1+(=1)} E(m),
I (w) = (~1) H (m),
I (n)y =4 {1—(=1)"} I (m), '
h(n) = {8(=1)y'—1} H(m) = (=1) I (n),
I(n) =% {3=(=1)"} H(m) = (—1)"h (n),
I'(v) = (=1)""H(m) =—=H (n),
I" (n) =} {3+ (1)} H(m);
i(n) =—4 {1+(=1)} H(m) = -3/ (n),
it boing supposcd, in the values of I’ (n), I” (n), i (1), that niseven,
2.¢., that 7 is not zevo. 1, therefore, + be even, then
H@)y=H (n)=h(n)=I(n)==1"(n) =H(m), H'(n) =0,
I" (w) = 2I (m), i(n)=—81I(n);
if » be uneven, then .
')y =1I"(n) =1"(n) = I"(n) = I (m),
—~h(n)=I()=2I(m), H(n)=0, i(n) = 0,
and (§7), in the cnse of an uneven numbor m,
H(m)=1I(m) =h(m)=I(m)=1I(m)=1i(m)=II(m),
n"(m)=0, I"(m)=0;

whiio, for all values of a, '
J(n) = II (m).
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18. Since i () is equal to H (n) when n is even, and. is equal to
—8H (n) when n is even, we have, for all values of n,

i(n) =—{1+2 '(—~1)j'} H (n).

In the group of formulm at the beginning of the precedihg section,
all the functions were exhibited in terms of the exponent » and
8 single function H (m). In such & mode of expression, it is
perhaps preferable to take -J (n) instead of H (m) as the. single
function. The two functions are equal as regards numerical value,
but the former is more fundamental in definition and depends upon »
instead of m.

The Series for pcs 3K, Wpsc3K, pas K. §§14, 15.

14, By substltutmg for i (u) ‘its value in terms of H (»), given in
the precedmg section, we obtam for pes 3K (§6) the formula -

pesil = kp sc3K = v/38 §1 =237 II (m) q”'f-{-GE, H (22) g},
or, a8 we may write 1t . :

pcsiK— kpso&K— V3 [1+2'En {1+2 ( —1)*} H (n) g™].

15. Since h (n) = 2I' (n)~H (n),
and I(n) = 31I(n)—2H'(n),

we ‘may express the series for k'p sc}X and pzs 3K by means of the
‘functions H and H’, in the forms ’

Kp se %IC; pes3K= -}—3 (1—63F {2m (n)=II (n)} g1,

pz8e 4K =~pzc 4K = v3[1+237 {31 (n)—2H' (n)} ¢"].

The Functions I and J. §16.
16. It may be observed that, since
I (w) = 2H (n)—J (n),
h (n) = 8II (n)—-2.J (n),
I(n) = = H (n)+2J (n),

wo may cxpress all the sixteon elliptic and zota functions of 31 as
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series of powers of ¢ by means of the three functions B, H, J. Six of
the formulee involve E only, six involve H or J only, and four involve
both H and J.

The siz formulse which involve I,  §§ 17, 18.
17. Since
457 B (m) ¢ = 437 (= )" B (m) ¢ = ko,
and 14437 B (n) ¢"=p, 14437 (—1)"E (n) ¢" = Kk,
it follows from the formulw of § 2 that
kpsn }K—1kp = 637 E (m) ¢,
—kkpsd 3K+ 1kp = 637 (=10 B (m) ¢',
pns }K—3p = §+637 B (n) g™,
pds }E—}kp = 34637 (—1) B (u) ¢*,
Kpud 3K +1p = 34637 T (n) ¥,
pdn d I +3kp = 34+ 637 (—1)" F (n) g™
18. If we denote by k, kj, p, the quantities into which %, ¥, p are
converted by the change of ¢ into ¢* these equations show that
kosn 4K = Lkp+ 3oy,
k'p 8d 3K = Lhp— Py
pus 4K = 3p+3p,
pds K = §lp+ jlipy
Kpnd (K = —3p+ 3y
pdn 3K = — Lkp+ Skipy

EBlliptic Functions of K. §§19-24.

19. In the twelfth volume* of the Messenger of Mathematics, Mr.
Burnside has given, in a very intervesting form, the values of sn'4K,

* ¢ The Elliptic Functions of 3 &, &c.,” p. 164.
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en’ 4K', &e. Mr. Burnside’s formulm lead directly to the following
results :—

o 4 = 1 { V2 (T-A+2)+2-A— VIFi},

cn’%K:%{/f& (Tptpi—2—pFva-1},

cs® 3K = I’ {\/2_(l;v +v§)5+2—v+ \/l_-r;'},
[\ (1 _ (B
where A= (215)’ p= (2Ick')’ v= (2/{)'

In the formula for cn® 3K, the upper or lower sign is to be taken
according as k< or >%'.

20. Applying Jacobi’s general formule of transformation to the
.case n = 3, we find

k= Wsn'iK, I = _Ilydn* AR,

= sn? 1K 2y 2y L _gp
M= "gK"Sn LK de? LK, M—J 0"
These formul® give
4 .
3 .:} = ns* 1K cd® 1K, 7’:; = ksn’ K, —,7—"'?,- = —kl— dn’$K,
'
whence 3 —’j& =ked®iK, 3 k]:,f; "'—,16—, o8’ 3 XK.

Substituting the values of cd’1K and cs® 1K from the last section,
we find

3;:3"* VZAAFN 2 A—VIFX,
tp

’A

L\d

32 2(1—v+y‘)!+ —y+J1TxJ.

=~

'ap

21. By the change of g into ¢? I'p is converted into 3kp, and

2
;ﬂk into 2}’5 ; and by the change of ¢ into ¢!, %'p is converted into ¥'p,

2
and g nto 72,", By making these changes in the two formulm,
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respectively, we find

’2_::& =v2(I-utw)i+2—u—v1+y,

3

3% =v2(I=v+o)i+2—0v+vI+o,
— 2’12 3
= ()"

where %= ('2,‘?)*,
By changing the sign of g, we convert k’p into p, and

S
2% into 2ikk",
The sccond formula, therefore, gives

i

Pr = /2 (l+w+w”)‘+2'+w +v1—w,
where w= (2kk).

The upper or lower sign is to be taken according as k< or >k’ (§ 28).

22. The formulw of § 18 may be written in two groups, as follows:

3?5'&= 203K -1,

3 ’;:,"B = -2,- ds 31,
3P —9ngiK—1;
P

miE+ksd}f =1,
ds 3} —dn 3K =k,
ns 3=k nd 3K = 1.

Of the three formulw in the second group, any two are deducible at
sight from the third.

23. By combining the results given in the two preceding sections,
we obtain the following system of formulm for six of the elliptio
functions of } K :—

k=4 {1+veQ=utu)its—u—vItu},
Ked3K =} {1-vV2(Q—u+u)+2~u+ v1+u},
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ik =3{ 1+v2(Q+wtu")i+2+w+vi-w},

Knd3K =} {-1+v2(1+w+w)+2+wtv1-w},

W
Il' dniK =1 {—1+«/2 Q=v+0 ) +2—v+ 140} ;

_ (2K} - o (2k\D

where u= (_IcT) , w= (2K, v= (k”) .

In the two middle formule, the upper or lower sign is to be taken
according as k< or >k, as in the second of Mr, Burnside’s formule.
That this must be so is evident on putting k=0 and k= 1. In both
cases w vanishes ; but, when k = 0, the value of ns3XK is2, and when
k=1 it is unity.

24, In the volume of the Messenger* already referred to (§19),
Dr. Forsyth has obtained the value of sn 3K in the form

2
1+(1—c)i+ {2+c+2 (1 +o+cy}t’

where ¢ = 4k'k";

the sign of the radical (1—c¢)! having been determined by putting
k = 0. This result is equivalent to

2n8 3K =14 (1—c) 4+ {2+0+2 (1+o+ )},

which is the same as the third of the above equations, when k<K',

. System of values of p,, k;p,, &o. §25.
25. From § 20, we find at once, by multiplication,

Brdoy ko
3;?;5’# = -z,—cn *K;

and, by combining this equation with Mr. Burnside's second formula

# (¢Tho Elliptic Functions of $X," Vol, x11., p. 134,
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(§19), and collecting all the results into one group, we have

Y]
3 ’;a': =V (I=AF ) +2A—=vTFX = kod! 3K,

A = = For'}y
Ty = V2 tpta) —2—pF -1 = 'K,
3k,, =VE(I—r i)t 2—’+‘/1+"=717“’%K’
’;;PS ~/0(1_u+1¢’)‘+2 u—*/l+“

P

= k'sn’ 4K cd’ %K =2sn}K~1,

3% =v2(1+w+w)+2+wtv1—w

=ns*iKcd’iK =2nsiK~1,

ls,p, =v2(1—v+" ) +2—v+ V14w

k’
=~]:,2ds’§Kcn’f}K=762;-ds§K—l;

o= (), wmn o= ()

go that w=1 pw=1, vu=1

The case of k = § 26.

J2

26, Patting k=% = 72 in the formulw for sn K, &c., in § 23,

we find that, in this case,

on 1 = 120429

—1+3*+2!3*
1 —To TEI
dniK = of
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14323

od = TEEZZS,
g4 1 gt

ds %K=1+62¢,
P4S

§ } i
ns 3K = 234
DX

' —9% H
ndiK = =2+3'+3

2

The values of ns 3K and 1L na 3K present themselves in the forms

v

3 {1+(2v3+38)} and }{-1+(2v/3+3)i},
which are reducible to the expressions given above by observing that

(2v/3+3) = 3*;.‘32-

I had obtained the numerical values corresponding to the case of

1

k=—

v2

before ﬁﬁding the general formulw in § 23, so that the former afford
a verification of the latter.

Systems of g-sertes involving E. §§ 27-29.
27. From § 17, we have
1+457 B () g™ = } (208 }E—1) p,
1+437 (—1)"E (n) ¢ = § (2 ds JE—K) p,
437 B (m) g =} (2sn 3K—1) bp;

in which equations the values of the coefficients of p and kp in terms
of k and %' may be at once written down from § 23.

28. The corresponding formulm, in which ¢* is replaced by g, ¢* or
¢*, are easily obtained ; and, combining them with the above results,
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we have the following groups of equations :—

14437 B (n) g" = p,

14437 E(n) g™ =3 (1+K)p,

L+43 B(n) g" = } (2ns 3K—1)p,

1+437 E(n) ¢" =1 (1 +K)p;

14437 (=1)"E (n)¢" = ¥p,
. 1+42r (—1)"E(n) q‘zn - 'lp’
14437 (—=1)" B (n) ¢ = (2ds 1 K—K) p,

l‘ ’
L 1 ip.
J2k (1+k)p;

14437 (—1)"E (n) " =
437 E (m) g™ = kp,
4% B (m) " =3 =),
45 B(m) g =} 2en3K—1) by,
437 B (m) ¢ = (1=K

29. The three kinds of g-series may be expressed as series of the
form 37 ¢ (¢") by means of the identical equations :—

SNE M) ¢g"=3 TL

= 5° (—1)om-n_9"
+q2n 21 ( ) l_qm’

§® ¢ __1\n-1 n— 2 1\n-1 9" = S® (. l(m-l)_g’i_
ST (=1)"E(n) ¢ =37 (-1) Tt = o (=D T+

ET E (m) qm — 2‘: = ET (_ l)l(’ll-l)i_—quq‘—zm.-

-
1+¢™
Taking the first of the two forms, we may write
14437 E (n) ¢" = 22, sech na,
1+437 (—1)"E (n) ¢* = 32, (—1)" sechna,
437 B (m) ¢" = 37, sechma ;
_ =K

h =—.
where “=
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The case of k = 1 § 30.

V2
30. Denoting K°+/2 by w, where K° is the value of K when

1
k= —,
V2
80 that w is the quantity so-designated by Gauss in his posthumous
papers on the Lemniscate functions,* we find
3%, sech ur = 202,
™
3% sech 2nr = (2°44-27") : ,

3%, sech 3ur = (31439 .1‘%,

S°, sech dnr = (2-¥42-242-1) %;

2. (=1)"sechnr = bl .
k4
3%, (—1)" sech 2um = 28-%-,
™

3%, (—1)"sech 3ur = (203-1+8"4) %,

37, (—=1)"sech 4nm = 2-% Q1 +2-1)Lf’_ ;
T

w
und 3%, sech dinmw = - |
T
< o W
. 3. sech mmr = (274—271) =,

3%, sech 3mr = (20371—-3-1) A:%’

3%, sech 2mr = (2~ 42-2-2-1) &,
: m

* Guuss, Werke, Vol. 1., p. 413.
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Developments of I’p* sn® LK, §c., in ascending powers of g. §§ 31-88.

31. The g-series for the squared elliptic functions of §K do not lead
to any new arithmetical functions, being expressible by means of the
functions A’ (n), { (), o (n) which occur in the developments of R,

R, B,* The system of formulmw is as follows:—
1Ppisn? 1K = Ip’ cd®* 2K
= —I;+437 (—1)"A"(n) ¢"—36% (—1)" A" (n) ¢*",
kp*en? 1K = K%p"sd’ 2K
= R,—437(—1)"A"(n) ¢"+ 8637 (—1)" A’ (n) g%,
p*dn? 1K = k"*p*nd®* 2K
L, —437 (—1)"A"(n) ¢"+ 3637 (—1)" A"(n) ¢*;

00 0d? 4 = Wp? snd 3K = — B+ 437 & (n) q"— 3657 A (m) g™,
Bk sd K = Kp*cn® §K = R,—437 A’ (n)q"+ 3637 A”(n) ¢*,
Fp'nd*lK= p'dn*2K= L, —43’A"'(n)q"+3637A'(n)q™;

Png’iK = p*de? 3K = —DI; +4—437 { (n) ¢+ 3637 ¢ (n) ¢*,
p'ds’ 1K = k"%’ nc’ 2K = — B, +4—437 { (n) ¢ +363 ¢ (n) ¢*, -
ples' 1K = k%' sc® 3K = — R, +4—437 { (n) ¢+ 3637 £ (n) ¢ ;

pd I = p’ne? 3K = — D+ 44437 o (1) ¢ —363] o (n) ¢™,

E'p'nc 1K = p*ds’ 2K = — R, +4+4357 o (1) ¢*— 3637 o (n) ¢*,

Fpled JK = p’es’ 3K = — B+ 4 +437 o (n) g™ — 3657 o (n) ™.
The functions o (2), A’(n), {(n) denote, respectively, the sum of the
divisors of n, the sum of the divisors of n which have uneven con-

jugates, and the excess of the sum of the uneven divisors of # over
the sum of the even divisors of » respectively.+

* Theo symbols X;, R, X, are used to denotc ‘”‘1, “‘;G, ut£ respectively,
o w

whoro I = I—Kand G = E—L3K. (Quart. Journ., Vol XX., p. 352, or I’roc. Camb.

Phil. Sec., Vol. v., p. 191.)
+ Messenger, Vol xvil., p. 2.
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32. By means of the formulme
—R;=837A"(n) ¢*, B, =83 (—=1)""'a"(n)¢",
B,= 148355 {(n) ¢*, B+DR,+B, = 1-242° ¢ (u) g *

we may express the twelve squared functions in terms of R, I, R,,
and of series procceding by powers of ¢°. Selecting one formula from
each of the first three groups, and adding the three members of the
last group, we find

—kpten? 3K+ 3B, = 3637 (—1)"~'A"(n) ¢™,
—kped® K — 3R, = 8637 A" (n) ¢™,
prest IR+ 3R, = §+3637 ¢ (n) ™,
p*dc’ I K+ k% ne® JK +k"%p* 8¢ § K+ 3 (B + B, + B.)
= $—1083f o (n) ¢**.

33. Denoting by (R)y (B,)s (Ry)s the Qu&ntities into whiéh B,
R,, R, are converted by the change of ¢ into ¢° we thus obtain the
formule Foen*JK = 3R,—9%(R,)s,

Fple® K = — 31,4+ 8 (),
pres’ { K = —32L1,+ 2 (R,),,
ptdc? 3K +k%p* ne® 1K+ 17p* sc? K '
= =3 (B By + Bo) +§ § (B)s+ (I,)s + (B.)s}

Vulues of I, Gy, Ly § 34.
34. The formuls of the preceding article give
3(Bi); = L+ 3% cd® §K,
3 (1) = B,~§k%* cn 3K,
3 (I)y = B +3p° c8® S K ;

whence, by substituting for cd*}L, &c., their values from §19

* Messenger, Vol. svin., p. 61,
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we have
3(R)y= Rt {V2A-XN+NP+2—A—v1+A} o,

3 (B,)y= B, =3k { V2 (14 p+pP—2—pF Vu—1} p,

3(R)y= B43k §V2(L—r4+ )42 vt V14v}p';
or, as we may write these equations,

3p, [, =pI+3k {v2(I=XN+N)I+2=X— v1+A}pK,

3p, Gy = plGl—3hk' { V2 (L p ) =2 = pF Vu—1} oK,

3psBy=pE+3 {V2(l—v+r ) +2—r+ VI+r}pK.
Writing for 3p, its value from § 25, we find

T3k {V/2Q-A+N)P -2~ \/l-{-)t}IL
= s/z(1—w+w‘)’+"—w:};\/l—w

(" — (r-—~”x ”\/Z(l-{-,u-l-y)!— —;A:F\/p 1}
T /2(l—w+w)‘+ —w:i:«/l——'w ’

oo B3 V2N v+ )y 1204 V10l K
J|———‘—:

VY (l—zo-{-zé‘)‘-{-"—w;{: «/l—w

where

A= (IE‘/) "= (2/}/,:'7)!’ g =(zl;>l’ w = (2K

Values of p3, Ep, e §§ 35, 86.
35. Since o
L-I=1I ((—1=I1K, Il—(=Fk"kK,

we may deduce, from the first group of formule in the preceding
section, the following expressions for p?, k%, k™ p* :—
B 38 IR |

3py = p*+ 2p* (cs? LK — It ed® 1K),
Shipy = I3t — 3% (e L K +en? 1),

Bl = I 3 (es? LK+ R on? LIY)
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whence, by substituting for cd®3K, &c., their values from §19,
we find

2
3 %} =1+3 ¥ {VEA—v+)+2—v+ 147}

— 3k {V2(A=N+N)+2-r—V1-1r},

323-3—1 g—{Jz(l NN +2—A— v}

{s/Z(l+;t+;4’)‘ 2—puF Vp—1},

2
3

a-]a"

3:’2 _1+§ {~/2(1—y+y’)l+ 2—v+V1+4}

+34 (VEATRTRY—2—nF /a1,

2
The corresponding values of l‘kiﬂ}, %;,}, ];:I%& are easily deducible

from the formuls by g-changes, as in §§ 21 and 25,

36. When k= 712. we have (§19)
314 31— 231
Al !
gt
2’
14 gty 0igs
o1 ir = BB+
ot
whence, from the above formuls,

od' 1K =

e}k =

2
3£;=1+2.3-',

3%-3— 142.8-1-243-,

’12

3#‘-:;_ 142.370423,

1
v
VOL. XXIL.—No. 409. M

From § 25, by putting & =
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we find
3= T8 gl _gig g sEn_ gy,
P Kp

which give

K3 _

i = 3+42.314243%,

3 ' 2 3
9f=342.9, 9%;53:3”.3*-3%3*, 9

agreeing with the above results.

' Values of de? 31X, nc*iXK, sc’ K. §§37, 38
37. The four formulm of § 33 show that
do’ $0+57 ne $ I+ k7 s’ $ = K ed’ X —K' cn’ j K +cs’ § K.
If, therefore, we put

P=Fk{v2(A-A+N)+2-A—v1+A}

—kE { V2 A +p+p ) —2—pFVp—1}
+ k'{~/2 A—rv+)i4+2—v+ \/1+r},

we have de’ A+ k% nc* 1K+ k%sc* J = P.
Nc;w de? 1K+ 5% nc’ J K+ 178 J K = 3de® A K—1-4
= 8K nc* LK+ —k*
= 3k s L+ 14+K%;
and we thus obtain the curious formula
dd 3 =3 (1+K+P),
Mind 3K = } (M—F+P),
Kisc* = } (—1—1k"+P).

_ 1 . g4y
38. When k= 72—, = -—2i—»,

and the formulm in the preceding section give

d' 3K =} + ?i-_;?;_*
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343+
nc® 3 = o

3 Q-1
sc? %](: -3+ 3 -2:3 ;

which are easily seen to be equal to the reciprocals of the values of
cd® 1 X, &e., given in § 36.

Elliptic.and Zeta Functions of 1K and K. §§ 39-45.

39. Of the g-series for the sixteen elliptic and zeta functions, eight
proceed by uneven multiples of the argument «, and eight by even
multiples. By putting # = }r in the former, we obtain the following
formulee depending upon a new function 7' (n), defined as denoting
the excess of the number of divisors of » which =1 or 3, mod. 8,
over the number of divisors which = 5 or 7, mod. 8:—

kpsniK = kped 1K =2./2 37 T (m) ¢,
keen i =kk'psd $ 0 =2,/2 37 (—1)"-V T (m) ¢,
pus (= pdeiL=v2+2,/23T(n)q",
pds 3= kKpnc3K=.,2+4+2,/2 3 (—1)"T(n)q"
Substituting for sn ;.K, &c., their values, we thus find
(1-K)p =223 T (m) ¢,
KV (1=K)p = 2 /2 37 (—1)=" 1T (m) g¥",
(1+E)p=+v2+2/2 3T (n) ",
MQA+E)=v2+2/237(=1)"T(n) ¢"

40. We do not obtain new results by putting » = }» in the eight
formule proceeding by even powers of », the cquations so obtained

being 3 (1—K)p =437 E (m) ¢",
F(A+K)p= L4371 (n) g™,
Ko =1+437 (—1)"E () g™,
which are deducible at once from the g-series for kp, p, and ¥p, by

changing ¢ into ¢*.

41. We may, however, obtain results involving the argument }X&

by putting & = }= in the eight formuleo proceeding by even multiples
M2
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of 2. The g-series which occur in these formuls do not introduce
any new arithmetical function, being expressible by means of the
functions T and E, as follows :—

pmmiE=—pzd3il = 2.,/237 T(m)q"+435 B (m)q™,
pzd }K = —pzn 3K =—2 /2 37 T (m) ¢"+437 B (m)¢*";

pdniK = KpndiK
=142 V237 (=17 (m) g"+ 437 (- 1)" E (n) ¢*,
Kpnd}K= pdnik
=1-2 /257 (=11 (m) ¢"+437 (—=1)" B (n) ¢*;
pzs il =—pzc3K = cotfr+2,/235 T (n) ¢ +437 B (n) ¢,
pes} = lkpscill
= cobtir+2v2 3 (—1)"T(n)g"+43 (—1)"E (n) ¢ ;
pzc 3 = —p2s 3 = —tan fr—2 /2 37 T'(n) g™+ 427 E (n) ¢,
EpsciK= pcsill
= tanir+2+/2 37 (=1)"T (n) ¢*"—437(—1)" E (n) ¢*
42. By changing g into ¢’ in the T-series at the end of §39, and
the E-geries in § 40, we find
2 V23T (m) " = A-EY(A+K)}p,
2 VI (1) N T (m) g™ =27k (1—&Y)p,
V2 +2 V23T (1) " = 2 A+EY) (A +K)p,
V2 H2V23 (1) T (n) ¢ =2V K (1 +KY) p;

and ASTE(m) ¢ =3 (1— ")’ Ps
14437 B (n) " =3 Q+5Y)p,
14437 (=1)"E (n) ¢ = 21 K* (A +K)p.

43. Substituting these values for the g-series in § 41, and separat-
ing into different groups the zeta functions and the elliptic functions,
wo find 28 }K = 3 (1+ K0 {14+K1+2 (1 +)},

ze 3 =% (1453) {1+K1—2 (14+¥)},
2d 1K =} A=K {1—-k—2 (14¥)},
i =4 (1-K){1-k+2 (1+%)i}
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and s 3 = 27k 14K+ (1 +K)},
Ksc 3K =271 L1+ki—(1+k)],
dndl =24k 1=Kt (14K},
K nd 0= 270 k* { ~1+ 10+ (1 4+ K)4],

44. Putting for the moment p!in place of (14 %)}, the zeta formulw
may be written

28 1K = L (14K + 25" 4-2p2 + 2K p3),
zc $ 0= 2 (1 4+ + 280 —2pt — 2K pt),
zd 31 = } (1 + 5 — 2k - 2p! 4- 281 pb),
zn 3 =} (1 + K —2k"% + 2pt— 2k p}) ;
whence it is evident that
28 3 —zn }H = K44+ k" p? = cs $ 0 dn } 11,
zn }H—zc K = — k' 4p* = sc L dn } /1.
The functions thus satisfy the equations
z8z—zna = csxdnz, znz—zcz =scxdnz,

a8 they should do.

45. It can be shown that
28 22 = } (z8 ¢+ zc 2 +zd z4zn z),
ns 2¢ =} (zs x—zc 2 —zd 2 +zn a),
ds 22 = § (282 —zc w+2d x—zn ),
cs 2z = % (z8 2+ zc 2—zd ©—2zn ),

and these formulm afford another verification of the values of the zeta
functions in § 44 ; for, putting 2 = }, and substituting for zsz, &c.,
we find

283K =31 (1+4F), nsiK=p' dsiH=~K%} csiK=1K",
which are the correct values of these quantities. The formulm in this

section evidently afford a very simple means of obtaining the values
of zs } X, &c. in the first instance.
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Representation of Numbers by the Form «*+2y° §46.
46. Since P‘ = 2‘_’0 qu” k}pi s Etw qbul’
we have, by changing g into ¢*,

1 KO @ 2 _k,. A . o
( -;k) ot =3, g™, (1 = ) ot =57 gt

go that (1+K)p =232, 9" %32, ¢,
(1-%)p=v237, ¢ x 37, ¢".
Comparing these formulo with the second group in § 39, we see that
3. gV X3, ™ = 14237 T'(n) ¢",
3. g™ X 32, q" = 237 T (m) ¢

The first of these formule shows that the number of representations
of a number by the form a*+2y* is equal to 2T (»).* The second
formula may be written

» 30 ¢ x32, 4" =237 T (m) ¢",

and, as regards arithmetical interpretation, is included in the first,
from which it is easily deducible.

The Function T (n). §47.

47. The function T (), like so many other functions of the same
clags,t possesses the property typified by

¢ (pg) =¢ (p) ¢ (2),

» and g being relatively prime, and also satisfies a recurring relation
in which the arguments differ from the highest argument by squared

numbers.
It is ensily seen that, if « be & prime =1 or 3, mod. 8, then

T() =a+l;

* This thcorem is due to Lojeune-Dirichlet (Crelle’s Journal, Vol. xx1., p. 3).
+ Soo Pros. Lond, Math, Soc., Vol. xx1., p. 214 (§ 66).
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and that, if 7 be a prime =5 or 7, mod. 8, then
T()=1or0,
according as p is even or uneven.. |
In gencral, if n=2abc..rsl..,

where a, ), ¢, ... arc primes which =1 or 8, mod. 8, and =, s, ¢, ...
are primes which = 5 or 7, mod. 8, then T'(n) is zero, unless p, o, , ...
are all even, and, if thoy are all even, then

T(n) = (a+1)(B+1)(y+1) ...
so that, if n == Ny NNy ...y
where n,, ny, 75 ... are relatively prime, then

T (n) =T (n) T (ns) T () -...

It is easy to see that, if » =25 or 7, mod. 8, 7'(n) vanishes; for to
every divisor which =1 or 3, mod. 8, there corresponds one which
=5 or 7, mod. 8, and vice versd.*

As regards all its principal properties, therefore, the function T'(n)
is closely analogous to T (n) and H (n).

48. From § 39, by division, we find

= 14237 (=1 T(w) g _ 37 (= 1)) T (m) g
14235 T (n) " SIT(m)g

k'l =] g.@_(_ﬂ
D i

and we know that

‘We thus obtain the identical formule

o (=1)"¢" 14237 (=1)"T(n)q"
3. q" 14237 T(n)¢"

E?m (_l)n q2n" — Elrn (_1)‘(111-1) T (m)gm .
2’_"” q'zm 2? T (m) qm 4

* It follows, therefore, from §42, that a number =6 or 7 cannot be represented
by tho form 2%+ 242, This is however obvious; for, by considoring separately the
four cases of # and y even or unoven, we seo that 2%+ 22 must be either (i.) oven,
or (ii.) unoven and =1.or 3, mod. 8.



168 Dr. J. W. L. Glaisher on the ¢-Series from [Dec. 11,

whence, by equating coefficients, we find that, m being any uneven
number,

T (m)—=2T (m—1)+2T (m—4)—-2T (m—9)+... = 0,*
and that, » being any number which =3, mod. 4,
T(r)-2T (r—2)+27 (r—8)—2T (»~18) +... =0.
In the first formula, T (0), when it occurs, is to have the value 4.
In the second formula the numbers 2, 8, 18, ... are the double of
the squares. If » =7, mod. 8, all the terms vanish, as all the argu-

ments are =5 or 7, mod. 8. We may therefore suppose r =3,
mod. 8, without substantial loss of generality.

Developments of kp® sn® }K, §c., in ascending powers of q. § 49.

49. Proceeding as in § 31, we may deduce from the g-series for the
squared elliptic functions the expansions of I’p*sn’}K, &c., in
ascending powers of . Thesc developments involve A’ (n) and {(n),
and also a new arithmetical fanction ¥V (n), defined as denoting the
excess of the sum of the divisors of » which =1 or 7, mod. 8, over
the sum of the divisors which = 3 or 5, mod. 8.

Sclecting one formula from each group, the developments are
Kplen?3K—R, = kK% sd? 3K — R,
= 4237V (m) ¢"+3237 (—1)" &’ (n) g™,
—k17%sd’ 1K+ R, = — I  en® 3K+ I, ‘
= 44/237 V(m) ¢"—3237 (—=1)"A"(n) ¢*,
—p*ds* 3K —~R, +cec’ i = — k% nc* $ K + R, —sec® §=
=4/237 V(n) ¢"—8237 ¢ (n) g™,
%P ne? 1K + B, —sec? r = — p*ds? 1 K + B, —cec’ §r
=423 V(n) ¢™+32 374 (n) g™

* Similar recurring formulic relating to other arithmetical functions are given in
Quart. Journ., Vol. xx., p. 121, and Proc. Lond. Math. Soc., Vol. xx1., pp. 205, 210.
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Values of q-series whose coefficients are expressed by the function V.

§§ 50-54.

50. It can be shown that, by the change of ¢ into ¢*, B, and F, are
converted into

IR~ PN (1=K +K) P and RR,+30 (L+KI4K) o,
respectively. Thus, from the formule (§ 32)
837 (=1)"'a"(n) " =R, 1+48%{(n)¢" =R,
we may deduce that
323 (—1)"A'(n) ¢ = B,— k4 (1 =K+ o',
443237 {(n) g™ = R.4+EY (L+ K4+ K) p2
51. Substituting these values in the first and third equations of

§ 49, we find
4237V (m) ¢" =kp'cn’ 3} K- R + R, —K* (1 —K*+ %) o°,
4v2 3TV (n) ¢ = —plds' K — B, + cec'bm— 4+ R+ KA (L + KV +)p",
giving

4237V (m) g™ =p*dn® K~ (1—-K1+K) ¢,

4237V () g = —p'es” K+ 2/24+ K (L+ KV +5) o2

Putting for dn }K and cs}I their values from §43, we find

ultimately
4237V (m) ¢" =Y (L+K)E (1 —K4) p?,

2/2—4/237V (n) ¢ = KV (1+K) (L+KY) p%

The sccond and fourth equations of §49 lcad also to the same
formuls.

52. By changing q into ¢! in these formulwe, we find
43V (m) g™ = K {1+ —(1—1)}} 4
2430V (n) ¢ =K {(1+k)+(1—k)} o'
These equations may also be written in the more convenient forms
2/2 37V (m) g = K (1—K)' o,
V2-2/237V () ¢¢ =k 1+K) o~
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Changing the sign of ¢, we have also
20237 ()N T (m) gn = K (1K),
V22237 (=1)"V (n) ¢" = K3 (A +K)ip ‘
There is a remarkable resemblance between these equations and the

corresponding results involving the function T (§ 39).

53. By changing q into ¢! in the four preceding formule, and also
in the corresponding group of T-formuls (§ 39), we find

237 T (m) g™ = M (L+K)ip,
237 (—1IP=D T (m) ¢ = K (1—k)¥p,
14237 T(n) " = (L +E)p,
14237 (—1)"T'(n) ¢" = (1—K)tp,
237V (m) ¢ = K} (1-k) o',
237 (1YY (m) g™ = KR (1 +E) o,
1-237 V(n) "=k (1-k) ¢,
1-237 (=1 V(n)g"=F (L+k)p’

54. It may be remarked that
142437 A () ¢" = (1+K)p’, 4374 (m) ¢ = kp'*

where A (n) denotes the sum of the uneven divisors of n; so that, by
combining these formulw with

V2—2/237 V(n)g" =K (L+E)p? 2,/237 V(m)g" = ¥ (L=K)p},
we obtain at once the values of the series
Stv(n)g, 3u(n)g, 3v(m)g", 3y u(m)g”

where v (n) denotes the sum of the divisors of » which=1 or 7,

mod. 8, and u(n) denotes the sum of the divisors of n which =5 or
7, mod. 8.

* Messenger of Mathematics, Vol, xviL., p. 61.
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The function V(n). §§55, 56.

55. By general reasoning of the kind explained in the note on
Pp- 186 of Vol. xx1., we can see that, if p and ¢ are relatively prime,

V(pg) =V (p) V(9)-
It is, however, easy to obtain an expression for ¥ (z) in terms of the
prime divisors of », which affords also an analytical proof of this
theorem.
For, if n = a*, where a is a prime which = 1 or 7, mod. 8, then
a**tl—1 .
a=1"’

V(n)=

if » = 4%, where r is & prime which =3 or 5, mod. 8, then

= (=1yT (=1
V(n) = (—1y E
and, in general, if n=ablc..rst ..,

where a, b, ¢, ... are primes which =1 or 7, mod. 8, and 7,4, ¢, ...
are primes which = 3 or 5, mod. 8, then
al—1 p=1 o*'=1
a—-1" b—=1 ¢—1"
rv+l+(_1)p 8“1-'-(—1)’ t1+l+(_1)y
r+1 - s+1 - t+1

'V(,n) - (_l)nan#...

56. From § 52, we deduce

= 12X V() SV (m)g .
1—2 2;0 (_l)n V(n) qu ET(—I)“""”V(m) qlnn

whence, by following the same process as in § 48, we obtain the
recurring formulse

V (m)+2V (m—1)+2V (m—4) +2V(m—9) +... = O,
V (r)+2V (r—2) + 2V (r—8)+2V (r—18) +... = 0,

where, as in § 48, m is any uneven number, and 7 is any number = 3,

mod. 4. The quantity ¥ (0), when'it occurs, is to have the value —1,
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Thursday, January 8th, 1891,
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The following gentlemen were elected members: — H. Taber,
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