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In a preceding article (Proc. Lond. Math. Soc., Vol. xxvir) the
properties of the catenary curve assaumed by a chain wrapped on a
sphere have been considered, concluding with an investigation of the
shape of the curve when the sphere is spinning about a vertical axis
with such rapidity that the influence of gravity may be left out of
account,

But, as the analytical results of this last problem are practically
the same as those required for the catenary curve of a chain wrapped
on a vertical paraboloid of revolution, we resume the investigations
and ‘extend them to the allied problems of the catenary on the cone,
&c., and, at the same time, consider the associated problems of the
motion of a particle on a surface of revolution.

The theory is illustrated at length by working out the simplest
pseudo-elliptic cases, by means of which the construction of a
catenary or trajectory is made to depend upon tabular matter in
mathematical tables, in conjunction with the tables for F¢ and Eo,
given.in Legendre’s Fonctions Elliptiques, t. 11.

The analysis required in these applications has been developed in
papers in the Proceedings of the London Mathematical Society : —

“ Pseudo-Elliptic Integrals and their Dynamical Applications,”
Vol. xxv;

‘“The Dynamics of & Top,” Vols. xxv1 and XxXvir ;

“The Spherical Catenary,” Vol. xxvir;

“The Transformation and Division of Elliptic Functions,”
Vol. xxvir; '

and, to save repetition, the results are quoted in the sequel, with &
reference to the volume and the page, as (L.M.S., xxv, p. 195), &c.
The following Dissertations discuss the same subject :—

Bertram, Diss., Marburg, 1876.

Osswald, J., Diss., Freiburg, 1876.

Neumann, L., Diss., Freiburg, 1878.

Schonlicht, L., Diss., Freiburg, 1884.

Sonntag, Drss., Marburg, 1886.
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It will be noticed that in all these dynamical applications which
require the elliptic integral of the third kind the Jacobian parameter
is a fraction of the imaginary period, so that the integrals are of the
circular form, in Legendre’s terminology ; and tables of the Jacobian
© functions, even if accessible to us, would be practically useless for
our purposes.

But, by choosing as parameters the rational fractions of the
imaginary period, beginning with the simplest fractions, we are
able to utilize the pseudo-elliptic cases worked out in L.M.S., xxv,
to explore the analytical field with a number of well determined
particular cases.

A dynamical desideratum appears, then, to be the tabulation of the

function
o (u— T—K’?) "
—_ "
rK~
o(«r=7)
where n=223,425,86, ...,
. A+1:B
in the form i—5'

where 4 and B are single-valued elliptic functions of u, these being
the functions analogous to snu, cnu, dn u, mentioned by Halphen,
Fonctions Elliptiques, 1, p. 222.

It is easy to translate the pseudo-elliptic results of L.M.S., xxv,
into this new notation : thus, for instance, from p. 212,

{G(u—--;-K'i) } P_cnudnu+ti(l+u)snu,
O(u+iK7))  cnudnwu—i(I+u)snu’

and, from p. 218,
ST — {9(“—3’3‘1('1:) } *
O (u+3K"%)
_ (Q—c+ct)s—(c—)'+3v8S
T (Q=c+)s—(c—)'=L VS’

oo — { @ (@—3K%)7°
i = {6(u+§;K’z’)}
_(14c)(2—c) V(5,—s.8,—8) +2 (s—2+c—c*) /(s—sy)
T (I+c)(2=c) /(5,—5.85—5)—1 (s—2+c—C") v (s—s) ’

and so on.



1896.] on the Paraboloid, the Cone, &e. 587

1. Taking Oz as the vertical axis of revolution, and », ¢ the polar
coordinates of the projection on a horizontal plane of & point P at a
height z, then the statical equations of equilibrium of the chain are

T=w(—h) or w(h—2z)
= w (z2~h), ¢))
and Vi % =H, 2)
connecting s’ the arc, T the tension, and w the weight per unit

length of the chain.
Eliminating T, we obtain a general equation, of the form

o) W _
(z~h) 7 = A, 3)
where H = wA. 4)
d? _ 14 &0 s W (a=R) dy?
Thence i 14 7 + iyt B
drt
1+ —
M = A3 dz’ 5
or FE | y ad )
where Z =7 (z—h)1—A4% (6)

The Catenary on the Paraboloid.

2. In the paraboloid of revolution, we put

7 = 4az, )

dyt _ A’ z+a
so that I3 4a 27’ €))
where Z = daz (z2—h)’—4%; 9)
so that, putting A? = 4a®k?, (10)
Y _ 1 V(z2+a) (11)

dz " 3/ {s(z—h)—ak'}

Then, if p denotes the perpendicular from the origin upon the
tangent in the projection of the catenary on a horizontal plane,

1_1 .1 a°

7o

(=R R
= b zta)’ (2)
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‘which can be written

®_ N CER D ad
4a 7 =z+a—2 (a+h)+ e

= [/(z-{-a)— M]’+2J{(a+h)’+k’} —2(a+h)

V(z+a)
. (13)
showing that p is stationary, and there is a point of inflexion, where
zta = v {(a+h)+1Y, (14)
and then p’=2a [\/{(a+h)“+kz} +(a+h)], (15)
M =4q J{(a+h)°+k’} —4ad, (16)

If the paraboloid is spinning about its axis with uniform angular
velocity n, then equation (1) must be replaced by

3
P = w(eni)— 2T 1, arn
but, as this equation can be written in the form
T = w' (z2~F), (18)
2
where w=wzk M: 2, (19)

the equations of equilibrium remain essentially the same as before.

It is also immaterial whether we suppose the vertex of the
paraboloid to be its highest or lowest point, as an alteration of the
direction of gravity with respect to the surface merely changes
the sign of 7. .

With +* for independent variable, equation (11) must be written

8a%k /(7 +4u?)

=1 dn. 2
v=s [ P/ {1 (©*—4ah)*— 6444} 0
The arc s is given by the equation
& _ de pdy_s-hy s J/Gta)
dz . rdy dz A 2 /{z (z—h)’—ak’}
— (z—1)V/(2+a) (21)
/{z (z—k)’—ak’} ’
or sl = [ (Z—h) «/(z+a) (22)
v {z (z—h)'—ak'}
— I (r*—dah) /(1*+ 4a?) &, (23)
v {7 (*—dah)’—64a'k’}
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3. Equations (11) and (15) are elliptic integrals of the third kind,
with a single pole at the vertex of the paraboloid, so that they can
be compared immediately with the standard form

where 8 =4s (s+:c)’- {(y+1)s+wy}’, 3B)
M} (s—0a) = pu—pv, (©)
| Zy= (D)
iI() - D \PTY) (’l&+'0) olMP- e
1 = 2ty (E)

Writing equation (11)

b= %k[ 22 s, 24)

where  Z = (z2+a) {z (:—h)'—ak'}
= 2'4+ (a—2h) 2*—h (2a—h) 2 +a (WP —K) z—a’F?, (25)
the comparison with (A) is made by putting

N

;;%:pu—gav:M“(s—a), (26)

making u = 0, v, ¢, correspond to z = — a, 0, ©; and then we find

_Y(a+k)(Ba+h)z—iah (a+h)— a-ak” 0
pu= 2(z+a) @7

, B)+ 1K
pu=—a % vZ. (28)
Denoting the roots of the cubic factor of Z,

- 2 (z—h)'—akd =0, (29)

by 2, z, z, these roots are essentially positive; and they may be
written in the order

©>2>5>4>2>>0>—a>—w, (30)

go that we ma,)-r put

v=Ffu, ¢ = fuy, (31)
and the determination of the arc s’, depending on the parameter c,
will be found to lead to an analysis of the same nature as that
already developed for the Spherical Catenary.
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Equation (24) may be written

y=1 "ﬂ_ dz_
T ¥ pu—pv VZ
= %]' Y du,
pu—gpv
or Vi = —uzv+—;;logj§3’_’3. (32)

Expressed as & function of s and +/S, as in the standard form (A),

3 s—a /S

= %P[%—I(v)

= 1PMu—1I (v), (33)
_ [ ds __ 2F¢
and U= ,(JZ = Je—nnta)’ (34)
where
Inthe open branch. Inthelimited branch.
sin?p = z3+a z2—2 Zg+a z—2z (35)
Z+a z—z,’ Zy—2, z+a’
1y — % z4+a Zta z,—z
cos'# z+a z—z° Z—2z52 +a’ (36)
Alp =4"% 2% R (87)
2 —2y z—-z,’ 2 —23 2 +a’

taking z, §, and ¢ as increasing together, to avoid ambiguities of
sign.
Thus, in the psendo-elliptic cases, the catenary on the paraboloid
cannot be an algebraical curve unless we can make P (v) vanish.
When P (v) =0, the discriminant of 8 is negative, and the
catenary has one open branch only; and now, with z and z
imaginary,

= (g~ _Fy
v = f vz~ JEI)’ (38)
where = z3—z,.2—2, H?=a+z.a+2, (39)
and tan®p = H 2=z (40)

I z+a’
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4. To qxpress the curve made by the projection of the chain on a
horizontgl plane, we must return to the standard integral (A) of the
circular form ; and now, putting

=82 _ Q@ _ s
] 0—z+a_a-—’—+_—4a’_QBm w, (41)
where o is the angle the normal makes with the axis, then
r z2 _ s—o
@ T Goate (42)
Denoting the roots of (B) by s,, s;, s,, and replacing
§—0, 53—0, 5—0 by o, oy oy
the roots of S+ 38pv+ispv+ip =0, (43)
H__N0 A _% % __% .
then e = Q-v’ a Qoo @ Q—v (44)
and, since z,, z, é, are the roots of the cubic equation
z2(z—h)'—ak*=0, (45)
therefore vz + 4/z,+ Vg = O! (46)
' “a. —

an equation for determmmg Q; ratlona,hzmg this equation,

"z (Q—"s), (@—a5)°+... "‘2'72”3(Q—”x)’ @-0)(R@—0y)—...=0, (48)

and putting o+ o+ 0y =8, =—3pv, (49)
0,05+ 030, +0,0, =8, = 1p', (50)
0,10y = 83 = — 1p”v, (51)

(81—48,) @* +128, Q@ —68,8, Q*+48,5,Q—38; =0,  (52)

a quarvtic equation in which the quadrinvariant vanishes; which can
therefore be resolved, and it has two real and two imaginary roots.

. _ 35 :
Putting Q= TN (53)
Rt—6aR*—8bR—3a* = Q, (54)
where a = S:—ssl Ss = ipw—’dop", (55)

2b = 28,+275,—98, 8,8,
SR AR S HAE SRS & (56)
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and (54) is a Jacobian quartic the roots of which, on putting
b—a®=¢, (57)
can be exhibited in the form
R= Via+eo)+ J{?a—c+2J(a’—aa+c’)},
or B =/(a+0)+ v/(a+we) + o/(atal), (58)
where w, o denote the imaginary cube roots of unity.

In the sequel it will be sufficient, in general, to work with the
parameter o
v="=3, (59)

n
and thus take

o=~z B=}@y+1) +s S=1z(y+1), S,=1ia" (60)

when a= o {(y+1)'—~12}, (61)
b= —g2* {(y+1°+36x (y+1)—54z}, (62)
s — 2722
“ = 022 (63)

where A denotes the discriminant of the cubic S in (B).

5. In a transformation of even order we may assume that a root of
the cubic 8§ = 0, say s =5, and at the same time that a root of the
cubic (29) is known, say 2, or 74, in the form

BT =gy
b bl (64)

and then the other two roots will be given in the form

2 3
& _ T Ty ]
=TT (B, (65)

and, with 8>3y, we have
T =1ty (66)

and the roots arranged in the order
"> > 1

Now, from the general relation (41), or

= cottw =& _ , (67)
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1 _ Q9 _ 68
Brrr a0 ©8)
1 _ Q.
-1, 69
G~ s—s 9
1 _ Q '
‘1'7_5— Ss—v_l, (70)
e (B_,')’)(ﬂ+37) = L
and then 4y’ (/3 +v) (8,—0)(s5—7) s (71)
B+ 7)(&:_§Zl= 538 7
4y (B—7v)* (31“0)(534'”), (72)
(&— )a ﬁ+37 -':5’.\1 5—a
B+y/! B=3y 3y §3—83 8,—0
— § —”l —_ -_— S
=4=%= do*(1—f) K, (73)
where ¢ is the value of s corresponding to-
uw=(1=f)wy; (74)

thence @ cun be determined when s,, s, 8, o, o° are given, and when
the ratio B/y has been found, by means of-the Jacobian quartic
‘equation, implied in (73).

6. In the degenerate case of the catenary on a paraboloid, when

A B =3y, (75)
then, putting ~ 4day'=a, h=3q, ak'=4d’, (76)
= (z+a)(z—a)? (z—4a), (77)

___ a z+a
dz fa \/ (z—n)/{(2+a)(z 4“)}

—_ ~/( a) a a+a 1 N
—é( : +\/ (:—a) \/{(.,+a)(z—4a)} (78)

y= %sm‘2\/ &(iZS) (“;(;“)sn \/(;—3;% e ),

(79)
or, with = 4az, ! = 4qa, " (80)
-1 b ’2+4’l Ilz"‘4‘(l2 <11 31)’ . r +4ll
V= }sm \/ @ +b - \/(.*30.‘ ) sin "J(a F0 A=) )
(81)

'VOL. XXIX.—NO. 649. 2 Q
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Also ds' _ (2—38a)/(z+a)
dz~ (z—a)/(z—4u)’ (82)

so that the catenary is rectifiable in the form

& =/(z+a.z—4a)+ath”! \/(z-— 4”’)

z+a
i) e (2 ).

The Whirling Spherical Catenary,

7. In the catenary curve on a sphere due to centrifugal whirling
(L.M.S. xxvi1, p. 181),

=1 |Ad
¢—;L,m, (1)
where R=(01-+) {/,-’ (#_b)ﬁ_Ai}
= A=A =)= *~7), @
suppose ; in which we can take
Ty = Ty, 3)

in consequence of which relation we encounter the same Jacobian
quartic (54) as with the catenary on the paraboloid.
We reduce (1) to the standard form (A), by putting
s—0 =s+r = o _ Q tan®é, 4)

1—3

where 6 denotes the co-latitude of a point ; and now

(4 (@+2)r—2 Q% Qr _ ¢
5 =4 (dyH=s a—sy {(Hy) - “}

has to assume the form

B —b) =4

§= W’ )

and this leads to the Jacobian quartic for the determination of @',
namely,

[{Q+y)+42} @+ 41 +y)Q +32° ]
—~4{2(1+) Q@ +3¢} [4Q*+ {(1+y) + 4} Q*+2e(1+y) Q' +2*]
=0, (6)
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Qe
Next, ds—(_l_—__—q—ﬂ)" (7)
ds _ NQd»'
V8T VR’ ®
and, putting r=0,
=J(-3) =4
z=,/(-3)= N )]
J(=3)_ 4 1=7 1
s—e NQ 2 (10)
= 1PN | 9 14 (127 dr
0 that I= PNQL/R 2A]' o
=1N(PQ'+m)§ dr? —y (11)
2 VR 7

To cancel the secular term, we must therefore introduce the
condition that

PQ’+$ =.O’ Q'=_%n (12)
z 9
and now sta=—— T (13)
3 (1—P)»*+P

In the projection of the catenary on a plane perpendicular to the
axis of rotation, if ¢ denotes the radial angle,

cotp = 1= ZF, (15)
. 4
ing = 1
V7 T W e S (18)
9 _ 4*
P Ty A an
or %: = (=) (P =b)'+ A% @18)

The projection will have points of inflexion where p is stationary,
corresponding to the maximum of (1—2%)(»*—b)? and therefore when

1= 1(b+2), (19)
L =4 A-b)y+4% . (20)
2q2
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8. To illustrate the preceding.theory, begin with the simplest
parameter obtained by the bisection of a period, and put

v = Lw, 1)
'We have to put, for a catenary on a paraboloid,
I
s+m—z+a—r,+4aa_Qsm w, (22)

in the associated pseudo-elliptic integral

1) = *I:ﬂs_"'_.‘ﬁ)_tfds

C(s+z) VS8
 rgint VS o1 gognt V{40 +2)'—1]
il S (s+z) ¥ 008 2(s+z) (33)
in which S = 4s (s+z)'—5', (24)

obtained from the general case by putting
y=0. (25)
Then, substituting from (22),
(s+a) S = 4{(Q—2) z2—=za} @ —(z+a) {(Q—=) a-—a:a,}’,

and this, in consequence of (29), § 3, must assume & forth

=z (4z— By —2°a?, ' (26)
and thus A'=(Q—2)(4Q'— Q+=),
24B = 4@z +(Q—2)(Q—32),
B = 2Qz— 3%, ‘ (7

4(Q—2)(4Q — Q +2)(2Qz—3%) = {(1+4a) Q'—4(Jx+82°}",
(1—240 4 162%) Q'+ 482 (P — 62* (1 + 4c) @ +82'Q— It = 0, (28)
obtainable from the general case of (52),7'§ 4, i)y putting y = 0.
’..l‘hen, putting Q= ﬁ%’ (29)
R*—6(1—12z) R*+8 (1—182z) R—3 (1—12z)* = 0, (30)
a Jacobian quartic, with
a=1—122, b=1-18z,
¢ = b'—a® = — 108z* (1—16z). (31)
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Writing this equation as & quadratic in 2,
(R-1)*(R+3)+72 (R—1)*2—432' =0, (32)
so that, putting 122 = (R—1)%q, (33)
R+3+6(B-1)¢g—3(R—1)¢*=0, (84)
=4
B-l= sy (35)
Put qg—1=1%r, (36)
3
—1= 53 @37
_ _2r4+3 -
T4 (*=3) (38)
_ 2r+3
Q= 4 (P—2)(*=3)’ (39
—1a, . r+1)(r=3)
1-162 = o U (40)
It is convenient to put
r=3 _ —
A1 P or P (41)
according as the discriminant
A = z' (1—-162) (42)
is positive or negative ; and then,
—160=___ 0% —64p® .
Bl s R ¢y “3)
= (=1 (7'-9) (P +1)* (p'+9) .
S I R i aa @
Q= (P'—1)"(p'—9) r (P"+17(p'+9)

E— 65" =3)(p—105—7) ° 8(p+65—8)(p+10p'—7)

1 P+1 6 1:3_ 3 (p‘+6p2—3)? _ 1
‘ (p—l) (p+3) ot
o =2 (p=6p=3) 64p

-1 (p+3)" @I} (F+9)°

@9 167

(45)
(46)

(47)
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The roots of the cubic (B) are given by s; = 0, and
1-8x+ +/(1—16z)

8y & =

8
_ (1x/(1-162) } !
== )
= (pF1)° (p£3)? or (ipF1)° (p£3)* (49)
16 (p*~6p* - 8)’ 16 (p*+6p*—3)"”’

d th 4y = % = x =p‘_10Pi—7 E‘+1022‘h7
TR e Tem T - " Ty O
h'l 2 — %l.’ﬁ =3 Zi‘_‘lpl”__.z M:Z . .
vhile ()= TR =SraEn O ey O
so that 2 4+2=-2_1 and £ or p. 52

atL T y POrP (52)
The constants & and k of the problem are determined by
h_B _40%+(Q—2)(Q—32)
a 4 2(Q—2)4Q—-Q+x)
= (#+3)(p*—10p'—7) -
= apey %)
kﬂ {l)’ wi
@ A (=) EQ—=Q+9)
_ (p*=10p'—7)* 4
=Y (54)
Now we shall find that, in the closed branch of the catenary
between 2y and %y ‘/’ — _;_ (1 +K) 1"¢-—I, (56)
h I=1gin ' Y@ =100'=7) J(z+a.2—2)
where 3 sin J(p—1.5=9) -
= 1 cog-! 4 V(z—2.2—12) 57
2 cos JF—1.p7=9) . ) (6]
and sin'p = at® 2= g0 (58)
23—7% zt+a
In the open infinite branch, extending from z, to infinity,
=114« Fé+1, (59)
but in this I the sin™! and cos™ in (57) must be interchanged ; also
sin’¢p = 2T 27A g, (60)

’
Zt+a z—2

In the stereoscopic diagram, drawn by Mr. T. I. Dewar, we have
taken ¢ = 077384, so as to make the apsidal angles 144° &nd 54°.
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a Paraboloid.

Catenary on
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9. In the associated case of the whirling spherical catenary, we put

stz =

lqi’ = Q' tan®4, (61)

agreeing with the case of the catenary on the paraboloid, if we take

=i, (62)

a

thus utilizing the imaginary part of the catenary, and the negative
values of @, given by the quartic (28), and making

2
. ""}!‘l_‘il,.i-*'w Qdr
IM:EJ QF AVE (1—r)p
1—4 (I—r’)*

= lj _(%Q-*_x)ﬁ.aidr'
) AP /A= VR

— _13Q+4= dr
=-47 4 [/(1—7')4/13”" (63)

1f we should try to cancel the secular term by putting
1Q+z=0, (64)
then z must be negative to make @ positive.
Substituting in the expression for S,

S Q;‘,_"')a = (1—16z) 7*+ (1 —162) r*—r*—1, (65)

and it'is not possible to construct & real case which shall make this
assume the form P (=Y — A "
— T (66)

10. For a parameter obtained by the trisection of ‘a period, take
v = fuy, (67)
and build up solutions on the pseudo-elliptic integral

1(v)=§J%ﬁﬂ?ds

sV
. VS -
=} sin 12_3’}-:%008 ‘s;-s:n, (68)

where 8 = 48— (s+m)". (69)
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Putting s=12,

I(v) = &sin"! J(2t“2—t§tf’—"12 = gcos ¥ (2t°2+§t +m)  (70)

and the associated catenaries on a pa.ra.boloi&, or on a whirling
sphere, are obtained by putting

f=s=Q—— = Qsin'w, t=+Qsino, (71)
z2+a
3
or f=s=Q] L =@ tan’d, t=+/Q tanf; (72)
and Q, @ are determined by the condition that
tan wy = tan w, £ tan w,, (73)
or sin §; = sin 0, =% sin 6;. (74)
8§ 1% z+a I:‘ 1—43 :
Then s 2z z+a o l—r';’ (75)
_& e zon 1 2=
1 8 z z+a oA 1—27 (76)

+iqu=I(v) = }sin"’ \/(1— B1-hi1-a)

s

3 ey gy ge—
=-§-sin"\/(g'— 2—2.2—2,.2 z,)
2 ntae.gmtaznta

. 1 7=

or %sm,‘\/(—o =
1 arnl a z(z—h)”—ak’}
=som \/{ 2 a(a+h)+ak’

or isgin!'-= 1 \/ G _b,l;?’-:;:ta} . (1)

<

Again, since Y+3u=1I(v) = Lcos™' s;'m (78)
sl’

therefore it assumes the form

-1 (Hz—EK)/(2+a) Y ‘—I(le —EK)v/(1—-2") 79
z’/{(a+h)’+.k’} or 3¢ ')'5\/{(1 bs)s A’} ( )

4 cos
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where H?=2ah+h*+k or A*+2b*—b",
2HK = a (F*+K) or —4,
K = o or A*—p,

and therefore o’ (P’ +£')*—4a’® (Rah + 1+ £*) = 0,
(B + 1) (h2—31*) = Bahk’,
or - 4 (44288 (A—b)—A* =0,
34%+8A4°%° (1—b*)—8b0+ 40%.
Otberwise, the equation (52), § 4, becomes in this case
(1432m) Q' +48m’ QP —6m’ Q' —8m*Q —3m* = 0;

or, on putting Q= -15_7?—2 s

R'—6R*—8 (1+54m) R—3 = 0,
. _ (B+1)(B=3)
432R !
0= (B+D*(B-3)
144R (B—2) '
and then, in the catenary on the paraboloid, we find
h _ 2R (R-2)

s0 that

o TRY O

¥ _ _4R(E=-2)

a’ 3(R*=-1)"°
If, in (83), we had put

B = kp,

h 8p

then —;= m,

agreeing with (90), when
R-2
P —_ e -5

v

(80
(8D

(82)
(83)

(84)

(85)
(86)

87
(88)

(89)

(90)

1)

92)
(93)

(94)

But there does not appear to be any simple explicit relation of =

in terms of R, or R in terms of =.

In the whirling catenary the secular term would be cancelled by

. putting @ =—Q=3m,

but this makes R = 1, and h and % infinite.

(95)
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11. Other trisection formulas, corresponding to parameters
V=jwy; Or 3wy,
can be obtained by taking (L.M.S., xxv, p. 216)

%=0 or z=y—1’

and then
10— 1 [2(s+y—y)—y(1—y) ds_
I(§wy) = 2[ shy—y 78
— e emE A=)
(s+y—y")
g V1P A=) A —sy)e 1y =gy}
’ (s+y—y)t

1 — —_ (] — d
or I(%“’s)=%§—§(l 3y)s—y'(1 Z‘/)VSS_

v S
= 1lsin!—
: 2%

_ 4 cop1(1=80) 5=y (A—y)

2
2%

603

(96)

(97)

(98)

(99)

To construct an algebraical catenary on a paraboloid by utilizing

the integral (99), put

1-3y=0, y=1%, 2z=4%
But now 8 = 4s"— iy,
. _ Qz
and, putting = e

(+a) 8 = 4@ty (s +0)°
= z (Bz—Ca)}— 745,

the requisite form, provided that

B = 4@—7%'5, 2B0 =_g_:’§a 0i=-§':'§y
. 1
leading to the value Q= 34’
and therefore  (z4+a)’S = —TZ3 (z+2a)’ — 7454’

so that the catenary is imaginary.

(100)
(101)

(102)

(103)

(104)
(105)

(106)
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In the same way, in attempting to construct an algebraical case of
the whirling spherical catenary, by putting, in (98) or (99),

s+y—y* or s=1§_—-7:,, 107)
where Q=—-3y(l—y) or —'?’—3/;(—_13—3!—?/2, (108)

the results obtained are again imaginary.

12, An algebraical case of a catenary on a paraboloid, corre-
sponding to a parameter
v = 1oy, (109)

can be constructed by taking the pseudo-elliptic integral on p. 228,
L.M.8., xxv, and putting

z2=13%; (110)
this makes r=—3% y=—3
S =—F 1 =35 S = 3tm
3Fx19 3 x 215 32
@ =05, b= o 0= "5 (111)

whence the equation for () can be constructed, when we put

Q _ @° 1
— = = 112
e iya T Atdat (112)
and now the catenary is given by putting this expression for s in
=
~5 —ds 42
= $cos™! (s \‘4{8?%), +2), (113)

13. To form the corresponding algebraical whirling spherical caten-
ary, we start with the pseudo-elliptic integral (L.M.S8., xxv, p. 228)

3 4Z(s+z 22’)-—2-{-22
IGw,) = 1 ds
(4“'3) = P 4/S
¢ K
N =
= $cos™!

2 (s+z—-2z’)‘
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= {sin™ 2 (s+2—27")* !
and pat s+2—2 = l‘zr”
. o 42 (1—2) (1—22)
with Q= 34 .

thereby cancelling the secular term.

605

(114)
(115)

(116)

(117)

(118)

(119)
(120)

(121)

1— 1—42)r*+3—4
Then §—2 = — z?(’_é) . ( zl):r’ z,
e
so that TT-_'—I—4z'
o (1=22) | #A(1-22) z(1—25)°
Ao Wy T Sy T T e—ar A
x { ~(8—82+82)(1—82+82) 14— 2 (8—42) (1—B8z+82") P + (3—2)'},
.80 that rtr = _23—38+j-28z"
1293 = — (3—42)*
18 (3—82+87") (1—82+82")’
P = (3—4) (1+87)
T T (1—4z) (3—82+82)

Then, from the conditions
(r':—r:—'r:)’ = -L'r;'r:,
we obtain the equation
(1 +87) (1 =824 87%) +4 (1—4dz)* (3—8z+87) = 0

or 51228 — 51228 4 7042*— 8964* 4 5042~ 1362+ 13 = 0,
-a sextic equation for the determination of z.

Putting z = }p, this becomes

P — 4P +22p4 — 112" + 252" — 272p + 104 = 0,

the roots of which are

(122)

(123)

(124)
(125)

(126)

p = 277764, 0-7604, 1-22961 + 0'92181s, 0-90861 = 4°450397,

as calculated by Mr. T. I. Dewar.

(127)
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Choosing the root p = 2:77764, this makes

z = 06944, (128)

7 = 01251, 7 = sin20°42] (129)

@ = 01386, (130)
1-8:482" = —068, (131)
3—8+82 = 132, (132)
b =3 (r1+r}+7}) = —01096, (133)

A = 7lr}r = 0:008. (134)

At the point of inflexion on the projection,
P =1(24b) =063, r=sin52°32", (135)
Substituting for s in terms of 7* from (117) in (114), we shall

obtain equations of the form

o (HA+H) V(1= ~2%)

,rl

- ¢ = }sin

wogt (EP+HE) V(7 =1 s —r)
72 ’
— B—%4-1}! o (3—4)(s—-1)
82 (2:—1) z—a)t ' 82(2—1) (s +)}’
K= (3—8z+_8z’)9(—1+8z—8z’)*’ K =— @—8z+8z")*(—1+8z—-82‘2
T 82(2:—1) (z—2)} (3—42)t T 32 (2z—1) (z—2*.8—4z)8
(138)

giving the form of the whirling spherical catenary shown in the
stereoscopic diagram annexed, drawn by Mr. T. I. Dewar.

(136)

1
4

(137)

14. In the case of quinquisection, with a parameter
v = 2y, (139)
the relation ;=0 is satisfied by y = 2, and now
8, =} @+62+1), S;,=1 @ +2), Sy=1a%;  (140)
and e = f52° (22— 10z +1), (141)
b= —3;2* (*+ 392"~ 15z +1), (142)

S = %g:;(w’-}-llw—l). (143)
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Catenary on a 'Whix;ling Sphere.
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The associated pseudo-elliptic integral is

I@w) =1 I 1(@+3) (s+z)—=

(s+=2) /8
= lgin-! (s+xz—1)v8
° 2(s+z)t
—1 cos" (z+3)s*+ (22" +42—1) s +2*+2* L (144)
2 (s+a)t ’

and the corresponding catenary on the paraboloid or on the whirling
sphere is obtained by putting

stz = z_% = Qsin’o, (145)

or sta =0 = Qtants, (146)
where @ is determined by the quartic (52), § 4; and then

=232 1) )

or y=1 (”“;3 ‘ta )]' —I(). (148)

If we put s+x =1, (149)

then we find that we can put
2+ V{20 —(1—2) #—20t + 2}

I(v) = %cos

2t
= $sin"! (t—1) V{2084 (1 —z) ! ~22t—a} . (150)
: 2
and, to obtain the catenaries, we put
t= +/Qsinw or +Q tané. (151)

To construct an algebraical catenaz-y. on the paraboloid, put
z+3=0, (152)
and now the cubic 28— (1—2z) *—2zxt+2 =0
becomes 28—4£*+6t—-3 = 0, (158)

which has one real root ¢ = - -, 3 (154)

Y/(10y+2°
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Also §,=-2, §5=3 8=
45 27 x 185
= =225, b="=o— 35
g1y 52 813/(100) _ ..
=3x%, -_-_1(6_=235; (155)

and the real roots of (54), § 4, are
45 81 {/( 100)
B+ {3 B

i\/ 46-§1~/1_(6100)+.g\/(10).4/{160—36-‘{/(100)+6561{/(10)}],

or, approximately, R=15 and —1437,

and Q=0375 or 43. (156)
Denoting by w, the value of w corresponding to ¢ = ¢,, so that
¢
sinw, = — 157
1n w, /Q’ ( )

the first value of @ makes sin v, greater than unity, and must be

rejected, but the second makes
sinw, = 03405, o, = 19°55';

and -}“ = tan w, = 0-3623. (158)
When b= V3, o=21°2%, =18
t=1, o =28°8, ¢ =36°%

t=/Q, 0=90°, y=>51°2¢ - (159)

15. To make the associated catenary on a whirling sphere into an
algebraical curve, we put

Sx
/o ——— 1
Q 713 (160)
_ Sax o 1
and st = el gL (161)

which makes 8 = 4s (s+2)'— {(1+2) (s +2) —a}®

= @ (Brl=0)—(x43)" 2

T (®+3) (1—r% (162)
where B =4 (4¢—-3) (2" +11e—1)

2BC = 8(x+3) (v*+11x—1) }; (163)

C'=—(a+3) (Te+1)
VOL. XXIX.—No. 650. 2 r
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and therefore leads to the equation for =,
322 4 272—-7 = 0,

4o =275 V/(65)

64 ’

of which the positive value makes @’ negative, and must therefore
be rejected.

Taking, then, z+3 =

(164)

165—5v(65)
= (165)
__54/(65)+27

~ 33—4/(65)
_3{7v/5+3v/(13)}*
- 1024 ’
1 32

17707 /3 {7v/5+3v(13)}

_7/5-3/(13)
4v3

Q

(166)

(167)

and, now, with t= t—m—l—q, (168)
q

the equation of the catenary can be written in either of the forms
(tan 6)¥ sin $y = (tan6+q) / {} tan®0—} (1—2)q tan’d
—4aq" tan 6+ }z*}, (169)
(tan 6)¥ cos 4y = (tan6—g) v/ {3 tan’0+§ (1—z) ¢ tan'6
—32q* tan 0—jzg*}. (170)

o aleo the equation of the algebraical eatenary on the paraboloid
may be written

(sinw)tsin 2y = (sinw+q) V(2 sinfw—g sin*w +3¢* sin w—1q%),

' 171)
(sinw)tcos §¢ = (sinw—gq) v/(} sin’w + g sin*w+ 3¢ sinw +44%),
) (172)
where q = 7(?5" = 0'4714.

These two catenaries are represented’ in the annexed stereoscopic
diagrams, drawn by Mr. T. I. Dewar.
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Catenary on a Whirling Sphere.
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16. With a parameter v = 3oy, (173)
the associated pseudo-elliptic integral (L.3.S., xxv1, p. 225)

I() =1 [-}(5—z—z2) (s+m)—mds

(s+a) /8
2
=psin SEOHD g g, 174
4 2 (s+a)t : ()
in which z=z(l—2)? y=2(1—2), (175)

and, again putting s+ = t*, the result can be expressed by
L(#B—=t—142) J{2&’——(1—2——23)9—22(l—z)t+z(l——z)g}

I(v) = #sin o
- ;cos-l("”"‘l“) V{28 4+(1—2—2")t*—2:(1 - 2)t—z(1 —2)*}
2t '

(176)
and, to obtain the corresponding catenarics, we put

t= +Qsinw or @ tané, (177)
and determine (Q from the condition that S assumes the form
2 (Br'—=0)*—F

[ gD 78
(" +4a*)® or (1—27)* (178)
To make the catenary on the paraboloid algebraical, put
S5—z—2=0, z= —-l_:l:éi(_l_]_) (179)
But, to obtain an algebraical whirling spherical catenary, put
= =le(1-2)
= 5—z—2 (180)

and now it will be found that
B = 4(1—-82+52 +2*) (5—192+11-*—95°)
2BC = —8(h—z—7")(2—32) 1 —8:+52+2%) ¢, (181)
O =(5-2-2)"(1-1724112")
thus leading to the equation
4(2-32)*(1-8s4 52+ 2*)~(1—172+112%) (5—19z+112'—9:*) = 0

or (92 —1) (272*—232°—262'+17:—11) = 0. (182)
The value 7z =4 makes @' negative ; of the other four roots
+1:376, —103, and 0253404641, (183)

the negative root will make @ positive, and give a real case.
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The Trajectory of a Particle sliding on a smooth Paraboloid.

17. The path of a particle on & smooth paraboloid whose axis is
vertical is of a similar analytical character to the catenary curve,
(Ziige, Grunert's Archiv, 70, 1884.)

The equations for the conservation of momentum and energy are

,'.2 %\9 = H" (1)
d d d
R T Y @
with 7! = 4az, (3)
dr _ o dz
dt z dt 4
Thence (1+ ) g": 29 (z~ 7,)_ E (5)
H’
or d_zf—QQZ(ZNh)_E
e~ z+a
z(z~h)—! ’_ (6)
z+a ?
putting H? = 2gak? and 4az %‘if = H = ~/(2guk?), (€))

so that, dividing (8) by (6),
ay _ 1 k_ J(z+a)
dz~ ° wa 2/ {4z (2~ h)—1'}

k z+a

—1 k z4a
T2 Vaz/Z (9)
where 7 = (s+a) {4z (e~h)—K}. (10)
Putting g = 2ant, 11
dt _ z+a
"%~ V(az)’ (12)

so that the time is given by Legendre’s E¢ and F¢.
Taking »* as independent variable,

o= EHIDL, 19)
where R = (P +4a?) {r* ("~4ah) —4a’k*}, (14)

so that the projection of the catenary is of herpolhode character.
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(i.) When the vertex of the paraboloid is nupwards,
Z = (¢+0) {4e (z—h)— K}
= 4 (z—2) (z—2,) (z—32),
where 2 = +3V (R +F),

23 = 3h—3~/ (B +K*), or —a, a negative quantity,

2 = —a, or $h—3 V(B +1%);

so that 0>2z>2>0>2>2>—n,
and, putting 2= M*(s—0) = pu—pv,
then % = pw,,
for real parts of the path of the particle, while
v = w+fu;
Then z4a = M? (s—s;) or M? (s—s,),
a = M?(0—s;) or M?(o0—s,),
ot = k = M* (8,+5;,5—20),

f—g,s = v (B +F) = M (—8,3),
kva = M3 /(-3),

P
vVZ =M,

ds = M*ds,
bz _ 1 ds
vZ M8’

and, introducing these substitutions into (9),
=1 3 z24a
¥ =k Lz«/(aZ) dz.
=] (A=, D)

§—a a8 3

V8
=I(0)—4 {P()- LD [ &

U—Sg,s

= 1)~ 4UP (o—u,) [ 22

= I(v)—3MP (v—u, ;) 7({%:‘),

615

(15)
(16)
)
(18)

(19)
(20)

(21)
(22)
(23)
(24)
(25)
(26)
@7

(28)
(29)

(30)

(31)



616 Mr. A.G. Greenhillon the Catenary, and Trajectory, [March12,

in which sin’p = z;:l &e., (32)
]
and now, in (12),

d —2y 3 d
ndt = o

_ Y[R ER Aede R R dg
- \/( al ) Foos'p O \/( al ) cos’p Ap’ +(33)
so that (Legendre, 1, p. 257)

SRR L
nt = \/( Z; ) ?(tanzp A¢p+ Fo—E¢)

or \/(h Rt ) (tan ¢ Ap+x*Fp—Ep). (34)

18. As the secular term cannot be cancelled, it will be sufficient
to consider the single special case of a parameter

0= wtioy; (35)
and now, with z+a = M3(s—s,), 2= M:(s—0), (36)
we shall find (L.M.S., xxv, p. 212)

I=1% 05"1M= 1gin-! v (&' —hz—ah) (37)
3 B 3 . ,
. 40'3
with k= 4ah = c+ca’ (‘38)
2, 23 = ght /(3P +ah) = % or — 1—+—c (39)
Differentiating (37), Z vh 27‘2
T dz MG (40)
Also K= \/ z,—z, _ M(dat+l) -~k (41
zl_zs T V(4a+h)+ VR’

and

[ =t/

= '\/’LF(p —1(]1— 492
Tty 1A= (42)

o




1896.] on the Paraboloid, the Cone, §c. 617

e s
i g ="= = ] 43
with sin’ ¢ P Pyt &e., (43)
l+¢
so that the equation of the trajectory is
¢ =1I+3(1—x) Fo. (44)

Expressed in terms of +% this may be written in either
of the forms

2 cos {2¢—(1—x) Fp} = v {4al (©+4a)}, (45)
r’sin {20 —(1—x) Fp} = / (*—4ahr’—16a°h)

- \/ [(7{—4@’1{—“) {r+4a (l—x)}]; (46)

and, while 7* ranges from 4a’ 1 = ol

to infinity, the angle ¢ increases

from zero to

v=1 {(1—.:)%5"#1}. 47
With the same parameter, but with
sta=M'(—s) =M (—0), (48)
z=M(s—o) = M?(s—c—cY), (49)
a = M?3c, (50)
h=z+z = M*(1—c%), (51)
V(R+R) = 52, = M (1+¢Y), (52)
a=M(l+c) = al—j”, (53)
2, = —M?c = —a, (54)
g3 =—M(c+c)= —a(l+c), (55)

1l

(S

I -;—sin*ﬂz___z;'ifﬁ = 1og-! \/_«:_ _«_/_(zz—zQ

of

\/(z—al_'*'.c..z+a) «/{z+ (1+r)}
sin™! ° = %005—1\/1__‘1_’__, (56)

z c z
and, by differentiation, we find
dl _dy 142 Va

d=di  oJc V& (7
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To reduce the secular term to Legendre’s standard form, put

p—g it a1+2c
infgp = oS _ 3p = c Al = 142¢ z+a(l4c)
sin‘g paraa cos’¢ paraad ¢ O+t  sta
(58)
2_'_"_‘2 _@iz —1+2% d_‘f_ —1 i@
and then 5ve VI ~ 248 4¢ (1+K)A¢, (59)

8o that v—3 (14x) Fp = % sin™! iﬁ_ﬁ;—'i_ﬁ), &c., (60)

and the equation of the projection of the catenary may be written,
as before :

P sin {2¢-(1+K)F¢}=-\/ {( -47“’) (f’+4a=)}, (61)

7 cos {2¢—(1+x) Fp} = _2;_6 (T, + 14_,,:‘)’ ©2)

and, while  ranges from 2a/+/x to infinity, y increases from zero to
T larog (63)

Thus, for instance, with ¢ =1, k=0, k = 4a, xk = £ = 8in 30°.

19. To find the pressure on the surface, we notice that the cosine
of the angle between the normal and the axis of the paraboloid is

Ves)

so that, denoting the pressure between the particle and the outside
surface by B in dynes, the mass of the particle by m in grammes,
and resolving vertically,

dz . a \’
P ey 5
M= ™ R\/(z+a) (63)
3 -—d 3
But, since 2 _ g, 2—he—3k (66)

ﬁ— 9 z+a ’

d? 2+ 2az—ah+ 1K
d_; = ——-—A—(z Ty s 67
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that /(8_) = g EHOh—3E
5o T B (z+a) b (z+a) ’

B _d+ah—ik
mg  Ja(z+a)
Then, if atah =ik, z=2z=—a,
R =0,

and the particle moves freely in space in a parabolic trajectory.

But, in this case, equation (9) reduces to

_k_
d-_lk — % 2\/0:
dz K
V%)
and integrating,
¥ = cos”! LA
24/ (az) 7’
or recosy =k,

619
(68)

(69)

(70)
(1)

(72)

3

(74)

so that the projection of the path on a horizontal plane is a straight

line, a verification.

20. When the vertex of the paraboloid is downwards, the particle

must now move on the interior of the surface, and
Z = (z4+a) {—4: (z—h)-k‘}
= —4(2—2) (2—2) (3—2),

where 7 = —a,’

and W>z>2>2>0>2%>—0,
so that the parameter v = w,+foy,
and we put z= M? (0 —s) = pv—pu,
z2+a= M2 (s,—s),
a= M (5,—0),
Zgt+2g =" = M?%(20 —8,—8),

23—2, = /(BP—K) = M2 (5;—s3),

(75)
(76)

(77
(78)

(79)
(80)
(81)
(82)
(83)
(84)
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kva = M3/(-3), (85)
k(=3 (86)
Ja s —0
dz _ _ 1 ds (87)
dz~ M Y8’
11 ] Z+a
and now Y= ELL i /(ad) dz
=lj’ {«/(—2)+ J(—-E)} ds
2 “" o—s V8
J(— 2)} [ ds
=L1JP =
p{pe+ L2 St
= 1P (v—uy) j
= LMP(fu,) - (88)
9 )
. hich fay o B2 — 2% s =z+a, 89
in whie sin’¢ m— cos’¢ oyl ¢ ez, (89)
and now the pseundo-elliptic cases can be written down as before.
In the expression of the time
1= ("2 _y
=, /e
= \/ [ Bpdp
7L —l.: -p
= -——=) =, 9
\/ a K (50
When k=1, the particle describes a horizontal circle, at a height
2y = zh, 91)

and, if T denotes the time of a small oscillation,

2T = \/(z’:—z') o)
r=u f(015), (92)

so that the oscillations synchronize with a simple pendulum of length
20427, = GT, (93)

P@ and P1 being the normal and tangent drawn from a point on
the circle to meet the axis.
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21. Thus, with the parameter

v = 0+ 3oy, (94)
we put 2= M*(c+c'—s), (95)
o= {Abe-s) )
a=M(1+o), 97
2z = —M*(1+¢) = —a, (98)
=M% = a5
=We=er (99)
zy = M*(c+¢) = ac, (100)
h=zatz =M (2+c), (101)’
V(B =K) = 5=z = M, (102)
h _ 2c4-¢?
@ 1+¢’ (103)
B s
po il et (104)
Then I=4cos~! LE=f:2=%) _ 1 gp M /(5—2)
z 2
\/(z+a.z———-ﬁc—)
= 1 cos"? Lo/ _ 1 p1 Vo /(ac—2) (105)
: z : JA+0)z
and, by differentiation,
dI —1 __l-__'*' C \/(L 'l'k z24a
2V +0) V7 P2/ (aZ) (106)
—17|"_zta
o that v=3 j i/ad)
1 142 [" Vadz
=i J0+g). vz tF (107)

To reduce the secular term to Legendre’s standard form, put

—z= - asintg, 1— 0= acos - 2
ac z—1+casm¢, 2 1+ca.—l.*_aacos ¢, z+a=a(l+c)aily,
(108)

y 14% Jadi_ 4142 dp _ do
andtllean(1+c) 77 = }1+c Ag %(1+x) (109)

so that v =30+« Fp+], (110)
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and the equation of the trajectory may be written

P cos {2y—(1+«) Fp} = /(r'+4a*. ¥ —4xa’) (111)
or  sin {2y—(1+x) Fp} =2 \/(1—n)\/(l-‘f_LK«'— )
= 2a/ {4xa’—(1—«x)7"}. (112)

Thus, as r diminishes from 2a \/ (1 X ) to 2a ./, the angle ¥ in-
—K

creases by K
‘I’=%1r{(1+x)%—”+l}. (113)

We can make the apsidal angle ¥ very nearly #= or 144° by
trial and error, by taking, as in Fig. 1, p. 599,

x = 077384 = sin 50°42',

_r1= = - ﬁ: / x = 1 .
and gL = vx=08796, 2 V(l-x> 1849.  (114)

We thus obtain a trajectory which very nearly closes upon itself.
The pressure I is again obtained by resolving in the vertical

direction &z a
82 = - 115
" ag B \/ ( z +a) ™9 (115)
dz __ —2'—2az+ah+ik 1
and =9 Gtay ) (116)
80 that B _dtah+ik Q)

mg  Ja(z+a)t "
so that R does not change sign.

The Catenary on a Vertical Cone.

22. Taking the semi-vertical angle of the cone as a, then, along a
generator, z = ztan a, )
and the general equation (5), in § 1, for the curve formed by a chain
wrapped on & vertical cone of revolution becomes

ay _ Aseca
dz  gtana./ {7 (z—h)’ tan’ a—A4°}

. a(l\k_____ 12
or sina =2 z\/{zs(z—h)’—k‘}’ (2

on putting 4 = k'tana. 3
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If 7, 6 denote the polar coordinates when the surface of the cone
is developed into a plane, we can put
ysina=6 and rcosa=rz, 4)
do b b
so that —= = , 5
&= 7/ (P (r—2ay—] VE ®

involving only one parameter b/a; and

b=1Fkseca, 2a=hseca, (6)
R =7 (r—2a)'=b* = (»'—=2ar + b%) (' —2ar—b?). )

This proves that in the developed catenary (Routh, Analytical
Statics, 1, p. 361)
o= athr @)

where p denotes the perpendicalar from the origin on the tangent,
and a, B are constants; for, ¢ denoting the radial angle,

d b’
—_—=t = s 9
{7 o oy o T ®
o
B g = =20 (10)
i —.2ar—b?
tan (3w —3¢) = \/(:“—,’m)a (1)
—rgine = 2
and p=rsin¢g = o 12)
p(r—20) =, 13)
Thus A =0, or a =0, gives
pr = b, (14)
a rectangular hyperbola.
23. Put r—a=uz; (15)
— bide a
then 0= j.—'————(w_’_a) X (16)
where X = (@'—a'+ ) (2 —a’— D). a7

We can now employ the Jacobian notation.
When a®—1* is positive, = £, suppose, and

d+V¥=d, o'=1(l+8Y;
then X =a'—a’. 2* - (18)
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On the open branch of the curve we put

=4
V= (19)
and on the closed branch z=fsnuy, (20)
with c=B @1)

"

s0 that increasing » by 2K changes from the closed to the open
branch of the curve.

We put a=fsno, (22)
~ =05

and then cnv= 3 dnv = — (23)

and v = K+fK"%; (24)

so that we can write equation (16)

6= j Vada j ab?dz

@@= VX ) @F-d) VX
tenov dno
i 12 —a’—b ]’ sno
= \/(2 Z—al )+ snzv—sn'udu’ (25)

involving a Jacobian Elliptic Integral of the Third Kind, in a
standard form.

24. It follows, from the preceding relations (23), that

s’ (l—f) Ki=—1; (26)
and, to the complementary modulus K,
tn*(l1-f)K'=1, (A~f)K =F (}m), (27

so that, in the pseudo-elliptic applications the results are restricted
to special numerical cases.

In eguation (25),

-1 j .’t}’—a"—'bz — -1 / la:’—u"-f—b’
s1n A s == CO8 P R
X—-a =

L’ u?

—1 -1 — 1 ane-!

CO8™" —— - = e
2 d—g 2 v (r—2a)

=4 3Gr—9); (28)
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from (10), § 22, so that (25) may be written

.cnv dn o

O+3ip—1ir = (_ MY du. (29)

Jsn®v—sniu

Thus in the rectangular hyperbola
24, Also, if s’ denotes the length of the arc

df' _ ds iPdy _s=h rdseca
dz rdy dz A ztan’aVZ

2 (z—h)seca

z(s—nh)seca 1
7 , (31)

ds' _r(r—2a)

dr~ R (32)

ds' _ a'—n’ :

de /X' (33)

so0 that s" is given by Elliptic Integrals of the First and Second Kind.

25. Denoting by ¢’ the value of s corresponding to

v = (1—f) K%, (34)
then sn? (1—f) K% =175, (35)
o' —sy
so that, from (26), 8§ =83 = §y,—0" (36)
Thus, for f =%,
= —c—d, s5=QQ+¢c), s, = s5=0; 37)
so that c=w, b=0, (38)

which must be rejected, as representing a plane curve, a straight
line along a generator.

If =1 =0,
s =(1=c), s=0¢ 8 = (c—c*), (39)
so that 1-28 =0, ¢=32=0707, (40)
which must be rejected, as greater than 0-5.
If f=12 o ==3+2 (41)
leading to 208 —4¢+1 =0,
c=1—3/2=0293; (42)

VOL. XX1X.—No. 651. 2s
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B onmn _(VE=1P 425 b
Y §—s; 2421 7 a*+ b’

n 12442

K ——_—7 ,

%:2(«/2—1),

(l’

B~ (va—1y.

al

The equation of the catenary can now be written

0=sin-‘¢'(%“_°_’.—__(2_"!g__1)_a)+1- l‘/z[ ada

o —at VX'’
where I= %cos~! {2'—(v2+1) e’} /{a'—(v2—1)'a}
3 (wi_a,s){}
= lgin"! 292V {z'—(2v2—-1) @}

(a*—a?)t
and 1d2]l‘}.‘ﬁ=l¢29_F¢’
a
where ging = % in the limited branch,

sing = -% in the unlimited branches.

26. When a*—0* is negative, = — 8, and &’ +b* = o’
X =2 +p.a2—d),
a __ b

and we put z=—,

cnu’ T L@+’
and the curve consists of a single open branch,
To reduce the integral to the standard form, we put .

« «
cnu =—, cnv=—,

x a

so that u=pK, v=fK%,

and then sn’v:-b_ dnfv = =
a

(43)
(44)
(45)
(46)

(47)

(48)

(49)

(50)

(51)
(52)

(53)
(54)

(55)
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so that env—2do?y =0, (56)

en{(1-VK', ¢} = _K‘.‘ . (57
Then, from (25),

o_J bzde [ ablda
T J@—-a)vX [(m’—a’)x/X

— Ein" (_1_$2—a2) _ ab’ !’ du
Pd—ut /(P4 | ncdu—nc’y

= _;_(%ﬂ__q’)_isnr dnv]’ du (58)

3
cn®v nctu—nciv

depending upon a Jacobian elliptic integral, in a standard form.
To change from the Jacobian form to that given in(A), §3, we put

a’—b* positive a*—b* negative
&=} (@) &= =)
b= =) b= 3 (B
2 = m? (s—sy) 22 =m?(s—s,)
2P—al = m?(s—s,) ¥ —a’ =m?(s—s,)
2 = (s—5) A= i (5—ey) (59
'—a? = m?(s—o) '—a' = m?(s—o)
so that
o =73 (s;+sy) o =73 (s,+s5)
a® = m’(s,—s,) «* = m?(s,—s,)
B == m®(s,—sy) 3% = m? (s;—s,)
m*S = u/ (P — .27 —5F) mdS = J/(a’—ad. 2+ %) )
Now % =m %, (60)
and m*/(—3) = 2ab}, (61)
A= (62)
so that 0=;’-1r-—§¢—%[—‘£s(_;f2 %; (63)

and, therefore, from (A), §3,

0= tn—tp—T+1nr | L2 (64)
282
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27. Try v= o, + Lo,
with o =3 (n+8);
then (L.M.S., xxv, p. 212)
c+c" =3 (L+c)' +ic

giving ¢ = o, which must be rejected.

Bllt, with c = _:‘i' (31+33)a
e+ =3 +c),
and c=1, k=1,
a’ §17=8 _ ¢ 2 23
L _hTh = 33" = 3a’,
ﬁz Sg— 8, '3) a /> 3a
b = 24,
] 2
and we find that I=1sin! ﬁ.ﬁ%’i?ﬂ
= 3 cos~1 &Y/ (@ +d%)
d—a
with P=1 m=a, in (64).
Try v =+ oy,
with o=13% (sl +55) ;

then (L.M.8S., xxv, p. 218)
2c (1—c)* =} (1—2¢+2¢%),
(2c~1)(2*—4¢c+1) =0,

of which the root c=1—1+/2=0293
must be taken, as before, in (42), § 25.

With o=} (sit+5),
we have (c=1)*(*—4c+1) =0,
of which the root c=2~V3
makes © = sin 15°,

With v = w;+ fuw,

o =1 (s4s) or §(s+3),

we take (L.M.S., xxv, p. 2206)

(65)
(66)

(67)

(68)
(69)
(70)

(71)
(72)

(73)

(74)
(75)
(76)

77
(78)
(79)
(80)
(81)
(82)
(83)
(84)

(86)
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—2(1=2) = él(l_f?)' (87)

reducing to (22—1)(42"—2z:—1) = 0, (88)

so that z=1%, —sin18° sin 54°. (89)
The root z = — sin 18° makes

1—-8:482 = 24 /5, (90)

and must therefore be chosen.

Having determined in this manner the numerical value of the
modulus, &ec., the corresponding value of I as a function of =z is

calculated, aud the secular term [% is reduced to Legendre’s‘form

F¢ by the appropriate substitutions; so that the equation of the
catenary is expressed in functions which have been tabulated
numerically.

28. Although the theory of the catenary on & cone is now
analytically complete, still we shall find it more convenient, because
of the occurrence of the term } (3w—¢), to adopt another mode of
reduction of the integral, equivalent to Landen’s quadric transforma-
tion performed on the first substitution.

Suppose R then to be resolved into linear factors, so that
R=r—ryr—ry.r—ry.r—mn, (1)
where 0>r>7y>2u>r,>r>1>0>nr>r>—w. 2

To agree with the notation employed in the Applications of Elliptic
Functions, p. 154, we veplace ry, 75, 75, 7, by a, 8,7, ; and put

pu—e, =M’ (s=5) =} (a—B) (e—7) =1, ®
pu—e= 1 (s—s) =} (=9~ =7, (4)
pu—ey= M (s—8) = } (a—y)(a~?) "=, )

G = =% _ f—y.a—? (6)

e—e; §,—s; a—y.3—38

K

3 =e|—eﬂ=s|—si= G—B"y_s. (v-v)
e,—ey §—8 a—y.B—9
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We can put e =1, without loss of generality; also we put

b= 1—¢, ®)
R =+ (r—2)—1+4¢, o)
50 that a=ro=1+\/(l‘2“’)+\/ —;—e) (10)
s )05
'Y=rs=1—\/(1;e) \/(1_;_5’») (12)
B0 o
and a—y = -3, a—f=y—9, f’:g{g; (14) .
and this makes b= 26 o lze 15)

1+e l4e

But, denotmg by A, X" the moduli introduced in the original sub
stitution in § 23,

= L=y =y (43

—v(A+e)—/(1—e) 1«
JAte)t V(=) 14& (16)
1_2’\/"
A =1+ amn

as in one of Landen’s transformations.

The elliptic argument

,,=I __ﬂ___\/(li)mp J/(2—%) Fy, (18)

and, in the region of the limited branch of the catenary

T§>T2> Ty (19)
a1 B—=0.r—y -
Fp = sn \/(,G_—-y.r—a) &e. (20)
or sin’g = B=8.r—y &e. 21)

B—y.r=3g’
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while, in the two regions ow>r>7, and rn,>r> — o, (22)
Fp = sn! \/ (f—:g::g) &c., (23)
sintg = f:g:;_‘_; &e. (24)
Calculating the invariants g, and g, of the quartic R in (9), then

3gs = 1+3¢’, (25)
27g; = 1—9¢%, (26)

so that the discriminating cubic
| 4P —gyo—gy = 0 @

breaks up into the factors

(@—3) {(2e+3)~€'} =0, (28)

and thus, arranged in descending order,
6a=% =—t+3e 6=—f—je (29)
Calculating the Hessian H of the quartic R,
= —3iR—-(1—¢)(r—1)} (30)

and, employing Hermite’s formula,

H (1—e)(r=1)*

M= — =24 I
pru=— T =y (oA=L (31)

—eH(r—
p2u—e, = (1= —;—B(Q)—’ (32)
Since r = o, and » = 1, make
p2u—e, = 0; (33)
it follows that, if w, and w, denote the corresponding arguments,

w, = 0y, Wy = Wyt g, (34)

Thus, if 4 denotes the sectorial area of the developed catenary,
' d
d4 = 1°d0 = 1b° f/; (35)
g0 that 4 is always given by a pseudo-elliptic integral of the third
kind ; in fact . ,
- VP20 —
4 =3p2chr Y _g%. =) _1b, (36)

Y A Conl e ok ) PV

— ¥, 37)
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for the limited branch; but

-1 3__ 3
A =1 ;’:, */(’Tf?ﬁ +ibh, (38)
- -1 O 12
= o0 LBy gy, (39)

for the unlimited branches ; both forms being included in
A = 1sh! ‘_;g@ F 1. (40)

If v, v, denote the elliptic arguments corresponding to » = 0 and
r = 2, then

P20, = p2v, = —3, (41)
so that we may .put
v, = o +fug, vy = fuy, (42)
f denoting a fraction ; also
ip 2, = 7p' 20, = J/(1—€)) = . (43)
Also P”2v, = 6p*—13q,
=3-3e, - (44)
so that, from the formula
plo+2p2 = } (fz—;:) (45)
p4v,=—lle,+%—]i—i_6£. (46)
Thus, for instance, with
v = oy, (47)
4o, = bdw, + wg, (48)
piv = 6= —3—1e, (49)
leading to the equation
(e8—1)*+8 (e+2)(*—1)+16 =0 (50)
or (e*+4e—1)2 =0, (51)
e=+v5—2, (52)
b =4(v/5-2). (53)
The other root e=— v5—-2 (54)

would correspond to the case when I has four imaginary roots.
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Making use of Weierstrass’s formula,

8__ps 4
p(vxy) =2 S:E—b
= +3ie or 1; (55)
agreeing in making v,—v, = w, (56)
and putting v+ v, = v, (57)
then 12pv =1+3¢, (58)
while 12g, = 4+12¢*
= (1+3¢%)*+24 Mé_lf 3&’?_)’ (59)

216g, = 8—"72¢*
= — (1436,
1728a = (12¢,)%— (2167,)* = 1728 (1 —¢*)%. (60)

Forming the invariants of the cubic S in (B), § 3, we can make

1;‘52: {(y+1)*+ 42} — 24 (y+1), (61)

?_jll_fgm{(y+1)ﬁ+4w}=—36m(y+1){(y+1)?+,4w}+216w’ (62)

(L.M.8., xxvi1, p. 129), so that, on comparison,

=M {(y+1)'+4a} = 1+3¢, (63)
— M (y+1) =1 (1—c)(1+3¢), (64)
16M%* = (1—¢%)%; (65)
and therefore, from (64) and (65),
2 —  (1+3¢)° ,
ary+ly = S (66)
and, from (63),  4M% = —} 511—+_37:l° —1-3¢
= 3—e)(1+3¢)
= v (67)
v 16 (=)’
M= Goordtiay (68)
g = — (= dPL+3e) (69)

256 (1—¢%)°
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—  (6=e)(A+3e")’
y+ 1 8 (1-——8‘3)8 ’ (70)
—_ (3+e)(1—-18+¢f)
y - 8 (1_ 2)3 ’ (71)
whence an equation for ¢’ can be formed, when we put Halphen’s
7. =0. (72)

29. If we turn to the values of Halphen;s z and y in terms of a
and m, as given in the L.M.8., xxvi1, p. 449, we shall find that

a= a?%f%féﬁj’ (73)
el &
a—m = %:_:2 (75)
and thence 4a(a—m) =1, (76)
3
SRTaasa @
ma = BL0LLD, (78)
(= G O, -
and- s, =5, always.
Also, with =, 8= 8y
(=) (s—s) = Gl AL 3D, (80)
(s = ECZN LA, 81)
=5yt = Coeb CAZD" (82)
sy g = BT CERLATS (83)
%;%=(5—§V0+3§E@jg§féx' 84)

256 (1 —¢)°
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a=fi=8 2

Also W= s:—s: =17e (85)

=58 l—c (86)

1+4¢’

$17=5
as before, thus serving as a verification.

Having fixed upon some pseudo-elliptic form of the integral I(v,)
in (A), we shall obtain an equation for e, giving it a certain
numerical value; and then we must express the variable s in terms
of r by means of the relations in (3), (4), (5) of §28.

We can also employ the formula

pu =5l )+ 2, 87)
r—1,
where R(r) =r*—22+++ 00", (88)
R (r) = 4°—60"+2r, (89)
R'(r) = 12r*—12r + 2, (90)
and now pu—puv, = M?(s—0o) = § (2r;—3r,+1) - T'r . (91)
—To
Another simple relation is
§—s, — u—B.a—y\r—7 _1-7
V (8, —85.8,—5;) \/(/3-—3.' 7—8) r—ry T—7, ©2)
because at+d=pB+y, a—Bf=v—68, a—y=P-9, (93)
and then (B8 878) 7 ~, (94)
s—sfw, To—1,
because siw, =8+ /(5,—5;.8,—53). (95)
Putting r=0, u=v, s=o,
V(51—8.5=8) _ _—T,
o—siw, - To1, ! (56)
g—siw, _ _r
s—skw, 1 7, ©7
s—
so that s—zéw, =—, (98)
s,—o — Ta
P i (99)
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The relation between the roots
Ty +ryrs =0 (100)

thus leads to =~ =" — 4 = THTT__— (101)
s—sgw;,  §—siw.5—sdw,

an equation which may be employed to settle the numerical value of
8 parameter.

From (3), (4), (5) of § 28,

—pu=M V8 = § (1= . 1y—1y. To—Ts) T3

(f—'r,,)2
i VR
= 1R (r) o (102)
] 1 dr
and Mods = R (r) 0 (103)
therefore j‘"s M-%i (104)
Also M3/(—3) = 1F (R,) 72— , (105)
0
M/(=3) = bn"'_"'o (106)
s—o ror
_ B J(=3) ds
so that do—')w/lt— r—r, §—ao 8
_ _s—shey (=) &5
T sju—o s—a V8§
=_v(=3%) ds | J(=3) ds
siw,—o JS s—e /8
— - A_E_)
= 9dI(v,) iP(v)+ } 5 (107)
J —3)
= 21(v,)+M{P(v,)+—{L:§2}u, (108)
s—gw,—a

and it is the coefficient of the secular term » which is apt to be
very baffling ; so, to make sure of it in the applications, having con-
structed the pseudo-elliptic term I (v,), a differentiation will be
employed for the verification. -
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It will not be necessary, and it would occupy too much space, to go
through all the details by which I(v,) is converted from being a
function of s, as worked out in the paper on ‘Pseudo-Elliptic
Integrals,” L.M.S., xxv, into a function of r, and in which ry, », 7, 74
have certain numerical values depending upon the solution of an
associated eéquation ; so now we proceed to the simplest cases.

Having drawn some branches of the curve on a sheet of paper, we
can bend the paper into a conical shape, and, as the vertical angle of
the cone is at our disposal, we can, if we like, chooseit so as to make
the branches close and overlap each other, after an assigned number
of convolutions, and thus have a figure suitable for stereoscopic
representation.

The sterevscopic diagram on p. 638, drawn by Mr. Dewar, shows
the catenary on a cone given by equation (147) in §30, when the
closed branch is made- to have an apsidal angle of 180° so as to
form a single loop.

30. With V= wyt Ry, Uy = dus U= wtwy, (109)
pv=1¢- or Fyt+ie=—}f+1e, (110)
so that e=1, b=0, (111)
and the catenary degenerates into a generating line of the come.
Next, with v, = wy+ 3wy, v, = lu;, v = +3u, (112)
and p3v =e¢, (113)
so that [L.M.S., xxvi1, (326), p. 450]
m =1, (114)
and therefore, from (74),
e*+22¢°—7 = 0, (115)
¢ =8/2-11=(v2-1)'(2v2-1), (116)
W¥=12-8v2, V=2+/2-2, (117)
v =3Y/(2v2—1){V/(2V2e-1)— V2+1}. (118)
The ¢ employed in L.M.8., xxv, p. 217, is now given by
2 o Ap o2\ 3
(A-or =% = (17=5)’ (19)
l—o= 4 L2de=d (120,
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in which the negative sign must be taken; so that

—4e—¢? 1—ét J(2vV2—-1)— 241
=1 =
°c= +'1+4e— =2 ie—d 3

In the catenary curve the corresponding value of I(v,) for the
infinite branches is found to be given by

. (121)

242 )
— 1 opg-] V2+1y (r+1) /(v —'r,)
1 cos \/( o ) 3 (122)
with o =1+ /(2v2—1), (123)
=2, (124)
g =2~ 42, (125)
n=1—-/(2v2-1). (126)
Differentiating, we find
d_‘[— 1 /Y L_ d_o. )
dr ~ ° V2 vEB %dr ’ 27)
so that 0=§¢2fﬁL—M
o VI
=3v2/(2—«*) Fp—2I. (128)
When r=w, Fp=3K,
=1lg VM2—-1y _ w
and I=1isi V(zvz)—zy (129)
so that ©, the corresponding value of 8, is given by
0 =1v2/(2—+%) K—- —
{ Ve >L—1} (130)

In the branch of the catenary extending from —oo to v, in which
» 18 negative, we must write

I=1sin \/( 2/-?—-1) (= rory—r s —r)

242 (=)}
Y V2+1\ Sy +r) (= .
= 1 cos- \/( /21 ;(_gjﬁl*__) (131)
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In the closed branch of the catenary, we take

I'=4cos™ \/( “/2—1) /(”’n—”’-"‘a.—r.r—o'l)

242

o
1an-l (V241 (o+73)\/(r—r,)
=8 \/( 2¢2> A
: ar_ . 1 . df
leading to = 12 Sptig
and then  6—2I=3}v2 | %:%\/2\/(2—-»:’)1%

.oy

=%¢m«%qnm4v(na_L7)&%

r3—Tg.T
and, as r ranges from 7, to 7y, the apsidal angle is given by
( K
o=2{ivave-»k 1}
3 l FV2v (8 —+Y) i +
With the parameters

— 1 — 1
U = wt ey U= ot gy,

we have already shown that
’ _1\8
e=v/5—2= (.{5__1) ,

2
b =4/5-8,
and now « =L (+/5—1) = sin 38°10".
Now « =« e =«"°; and we find that
re = 1 +&" 4«7,

ry = 14& =«

7y = 1—&" 4«7,

7 =1—«k—«?%;
and it 1s also found that

L= 1 gin-s (HL=) = =)
V2

=1l ~|(7‘+1+K’)‘/(r —1y . T—1,)

=i P2 '

leading, on differentiation, to

dI_l K’“.
g = (e )VR R

(132)

(133)

(134)

(135)

(136)

(137)
(138)
(139)
(140)
(141)

(142)
(143)

(144)

(145)
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8o that, in the infinite branch from 7, to w0,

0+2I=1'(1 +x'2)! {%—E = %?-
N S Ta—T. T—T,
= poon \/(7————‘0_71.7_7_3) , &e. (146)

We can also write the relations

¥ 8in (Fti —-20) = -5«{;()'-}-1—::") V{rP=20+V) r+2¢ Q++)}

7 cos (E}’ —26) = ﬁé(r+l+x"’)\/{r’—-2 A=x)r—2¢ (1=x)}

(147)
In passing from 7, to «,
=K_=_=(1LX_}\_~yo
oe=r-%F=% (K o 1) = = x 08185. (148)

In the infinite branch from — to 7, it is preferable to change
the sign of the +’s, and to write

-1(7' 1—%) /{r*+2 (1—¢) r—2¢ (1 =)}

=1lg
=i 72
=1 cog™! =1+ /{7 +2(1+x)1+‘h (L+:)¢ , (149)
7 A/2
leading, on differentiation,. to
al £
3 = a5 \/1, + S (150)
so that oI—0 = F_“‘
= Lggn J(nzter=n) g
=g \/(.,-,_,.o,,.__rﬂ), &e., (151)

and, as r increases from r, to o, 4I increases from 0 to ¢m, and F¢
from O to 1K, so that

K
=8p_
=TT ke
=7 (51 Ky_m )
=7 (5 - 1) = Ex318Ls, (152)
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In the limited branch, take

1 a1+ (=g r—7)
I= {sin =
1 (1= (ry—r.7y—7)
=} cos 72 , (153)
a4 L 4 <
and then el (1++7%) E + L (154)
sothat  6—2I="1%
2x
=1 n \/(’w) &e. (155)
2« Ty— Ty tmry)’
or, as it may be written
Pin (20-22) = L (146 vrmrprmr)’
K V2
Fo 1 (156)
7* cos (20— —K—) =7 r+1=x%)/(re—r.75—7)
As r grows from 7, to r,, the apsidal angle
=" (LXK _ 1)=-"yog18
o=21 (K %n+1) T x2:8185. (157)
With v, =0, +te, v=w,+2u, (158)
pov=¢, (159)
so that, from (330), p. 450, L.M.S., xxviI,
(1-2m) a = m* (1—m), (160)

and making use of the values of a and m in ('73) and (74), § 29, and

putting e* = ¢, there results the sextic equation
8+ 194¢5 — 745¢* 4 6908¢° + 20156 —4318¢ + 41 = 0, (161)
requiring solution.
The corresponding form of I (»,) must be

A (Hr+H) /(r—ry.r—11.7—13)

73

J= %sin

AP+ K r+ K,) S/ (r—1y) , (162)

—_ 1

= - COB
L)

’l'i

in which the determination of the H’s and K’s will give some
trouble.
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1f we try v =0+ 3w, v=w,+ 3w, (163)
then P3v=¢,; (164)
and, from (326), p. 450, L.M.S., xxvI1,

2
f—gy = LMV (165)
u -

leading to the equation
(e—1)(e*—8e*—18e’—24¢+1)* = 0. (166)
The corresponding I (v,) must be of the form

1= pain-t (BT ) /(=1

=1 cos™! (B + K +Kjl\/("'_7'1""—9.’) . (167)

The parameters v, = w,+3twg, ¢ = w, + 2w, (168)
make s (Tv) = s, (169)

so that, from (332), p. 450, L.M.8S., xxvII,
(1—-2m) a’*—m (1 —m)(1 —2m)(2—3m) a+m? (1 —m)* = 0, (170)

giving an equation for ¢*; and now

I=1gin-? (H*+H,r+ H,) / (r—1y.7—7,.07—1y)
=1} 3
=} cos! (K7 + K\ v’ + K7+ K)o/ (»—7,) , (171)

77
and so on, for higher values; but the complexity, as is seen, increases
very rapidly.
31. If b>1, two roots of I are imaginary; we must now replace
e’ by —é*, and e by e in the preceding, and put
R=7r(r-2)-1-¢

=7 (r—2)"-b, (172)

and =1+ /(b +1), (173)
7= 143,/(0°=1), (174)

ry = 1—i,/(5°~1), (175)

n=1—=/+1). (176)

212
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Also e =13, €6 =—%}xle, 177)
1 1
we=i(lrg)=t{1F ). AW
rodr F

and = L_E =22 =G~ Py, (179)
where tan’1¢ = "7 (180)

r—7
cosp= o1 (181)
2y —ry—n, ’

These catenaries are not so interesting to draw, as the limited
branch is absent ; but a few specimens are added here.

Thus, for instance, for a parameter

2 = 3, (182)
we have, changing the sign of /2 in (116), § 30,
B=2,2+2, (183)
@=1(6—v2), =3 (/2+D), (184)
7o =2+ /2, n=—y2, (185)

and we must take

— 1t (21 (7424 /2)/(r—2— /2)
I=1%sin \/(2/2) 3
= T}Tcos-l\/(‘;f/;l) V(r+ ‘/2.75._&2¢+2‘/2+2); (186)
r
for, differentiating, fl_f =—1/2 7%3 +1 gg, (187)
so that 0-2I=1,./2 [ %’R =1/2/( -+ Fp. (188)
With a parameter 7, = tuy, (189)
we shall find that b =2, (190)
=1, &=73=-sin30°; (191)
and I=1lsin! _‘&g:?‘r;m
-
= 1 o5t (F DV (P24 2) (192)

r
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and & =" JR +5 50 (193)
so that  0—2I = .;,L :d_% — 1Fp; (194)
a,nd this can be replaced by
r'sin (20—3Fp) = V(P —2r=2), (195)
rcos (20— 31Fp) = (r+1) /(= 2r +2), (196)

giving the development of a catenary on & cone, consisting of two
sets of separate infinite branches.

Again, with v = §uy,
2
—(v/3—1 'r--———}\/ a_gp_ 2
I=}sin- U= by (P )
N 2
{r+(¢3+1)7+ } ,<7'2—2r+—‘)
) 3 3
= }cos™! ;(/z\/ 4 ’,(197)
a_1 1 _2 1
&= B IR SATIR (198)
' e 2
so that, taking b= 73’ (199)
we can make g41=L I dr _ Fo (200)
73 VRT 2y3
and E=1(1-1/3), x=sinl5" (201)

Whirling Catenary on a Cone.

32. If the cone is made to rotate about its axis with sufficient
angular velocity to make gravity insensible compared with the
centrifugal force, the differential equation of the catenary becomes
changed into

a9 _ ., v 1
i VEVR W
where R = 4¢* (©*—a?)* -1, (2)

giving the relation between § and » in the plane development of the
catenary.
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dé

—tang = 2
Now T = tang = ik 3)
. b 4
smcp = —2’)’ (7'.3_ a,) 9 ( )
so- that p(r—a®) = b )

in- the plane development.

This gives, as a particular case, when the cone itself is a plane,
the catenary formed on a whirling horizontal table, or the catenary
under a central force varying as the distance.

To reduce the relation (1) to the standard form of (A), put

y+1 =0, (6)

= M3, (7

P—a® = M? (s +2), ®

0 = — M3 = M%*, 9)
&e.,

and the analytical development is practically the same as that which
follows for the trajectory of a particle on a smooth vertical cone.

The Trajectory of a Particle on a Cone.

33. The path of a particle on a smooth vertical cone (which can be
imitated by rolling a coin inside a conical cardboard lamp-shade, or
by the path of a bicycle on the banked conical turnings of a racing
track) is given by

2t ék = H, 1)
sec? ad - z;l% 2g (z~Fk)

= 2g cota (z~a), )
sec a% = 2g cota (z~a)— H_1 (3)

< .p bk

so that sin’ a —% & = Syctaoma)d— I
ks

(4)

=i (x~a)z?—i’

on: putting H = jgk*cot a;
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or rdf _ ot -8 3)
dr — V{4 (r~a)r'—b'} ~ VR
in the developed curve, where
R =4(r~a)r*—0" (6)
Th np=_ 0 7
en sing = S Jirm)’ 7
that ' o (8)
S0 tha =78 = —————,
? Jr~a)
or P(r~a) =1, ®

i3 the curve which is the development of the path of the particle on
the cone.

"Since p has no stationary values, this curve has no points of
inflexion ; but the projection on a horizontal plane of the trajectory
on the cone can have points of inflexion.

In particular, if @ = O, the curve becomes
" 28 cos 20 = bi, (10)
a central orbit described under a constant central force.

The arc s is given by

) (1)

. \ r/(r~a)dr
DV {a(r~a)r -—b“}

an integral similar to those occurring with the paraboloid.
If the developed curve is described as a central orbit, with
velocity v
’ Lt h?
v? == ;; =y (r~a), (12)

and the central force, given by d3v*/dr, is constant.
So also, if the developed catenary on the cone is treated as a plane
catenary under a central force at the origin, and if T' denotes the

tension
r=H_H,_g,, (13)
p D
and the central force, given by dT/dr, is also constant.
But, if this catenary is described as a central orbit, the force varies
as r—%a; and, if e =0, we obtain the rectangular hyperbola, as
before.
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With a central force (realisable with an elastic thread)

P =ar4d, (14)
v* = ar’+2br+c, (15)
Rl 1 ae
= —= — —_— 16
I h(¢2+r‘ dﬂ")’ (16)
2
so that % % = ar*+ 26 +¢cr*+0—h2 Qamn

Or, more generally, with (Legendre, F.E.I., p. 557)

P =qar+b+dr?, (18)
-—ﬁ: g—; = ar* + 20 + e —dr—h = R, 19)

suppose; or, with r = 1fu,
K ‘%: = — W —dd 4 oud 4+ 2bu+a =T, (20)

hudu ¢
ody, (@)

a form which can be compared immediately with Abel’s results.

suppose; 8o that 6= J-

Generally, if the trajectory on the cone is described under a
central force P, acting through the vertex of the cone, we find that

2

j Pdr = 1’:_ (22)

where H? = I¥sin’a, (23)

go that P is the same as for the plane development of the trajectory,
described as a central orbit, and this explains why the developed
curve is described as a central orbit under a constant central force.

Again, for instance, the equation of the development of a plane
section of the eight circular cone being of the form

%- = 1+4ecos kb, (24)

the central force P = Ar*+Dr-3 (25)
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34. Comparing equation (5) with the standard form in (A), we

must take y+1=0;
or, employing the forms given on p. 449, L.M.S., xxviI,

y+l=(a—1) T,

—-—m

so that either m = 0, which must be rejected, or

a=1.
2 s
; =— 2m
and this makes x= (1=2m)*’
§, = m
"= T gy
_ oy = M (3—2m)
(6‘. 81) (8, "91) - (1 zm)s
oy m'(8Bm—3)
(8.—80)" = aA—2m)* ’
_ eyt — M (4m=-3)
(—s,+8—s)" = (1 2m)‘ ’
8.—8, 85—S§, &(1 2m)’ {4-m ~3+ /(8m—3)},

{4m -1+ /(8m—3)}.

= m’—z—f

‘When 8m—3 is positive, the parameter
v = w,+ fu,,
and there are three cases to distinguish :

(i.) When 1/f is an odd integer,

8,>8,> 54,
S=5%"%_ 3—4m+.(8m—3)
8,—8g 2,/(8m—3) ’
o BT 3+4m+ /(8m—3)
T s,—s8 2J(8m—-3) !
5,—s(v) = —=_m_

a—m 1—2m’
and this must be negative; so that

m>3.

(26)
(27
(28)
(29)
(30)
3L
(32)
(33)
(34)

(3%)

(36)

37
(38)

(39)

(40)

(41)
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(ii.) When 1/f is an even integer,
8,>83> 86,
&=5—% _ dm—3—/(8m—3)
s,—s8, 4m—3+.,/(8m—3)’

A Sa—5 2/(8m—3)
ga—s, 4m—3+./(8m—3)’

and s,—s (v) is negative; so that

K

m>3.

(iii.) When 1/f is half an odd integer,
$,>8,>8p,

3 8,—85 __ 2/ (8m—3)
—sp —4m+3+ ./ (8m—3)’

a_ 5—5 _ —dm+3—/(8m—3)
s,—8, —4m+3+ ./ (Bm=3)’

and s,—s (v) is positive, so that

i>m>$.
‘When 8m—3 is negative, the parameter

v = fus,

1
i ST P YORTSIR
o CEEIUT s, n—r)

=%{1=F 3—4m

3/ (@—2m.1—2m) "

(42)
(43)

(44)

(45)

(46)

(47)

(48)

(49)
(50)

(51)

In the upper limited branch of the trajectory, described by the
particle sliding on the inside of the upper sheet of the cone, take

R=4(a—7)r*-0b
=4 (r,—r.13—7.75—7),
©>ry>r>7,>0>r>—w.
Writing o for s (v), then, we put
r=—M (s+2) = M?(c—s),

a—r = M3,
R = M®S,
a=— M=,

(52)

}(53)

(54)
(55)

(56)
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b = — M3 = M%],

a%

w='—‘§;,

b8

m: 't:,’;-,
dr _ ds
Mﬁ_ /8’

and now the standard integral (A)

Plo—s)—/(—=3) ds
I(v) = j p— 78
1 T dr bt dr
=weu| -7
—ipy TP _1g
V(ry—mry)
— dp-! T
and F¢ = dn \/(T —9‘:)’
= T3—7"y
ry—r,
so that A% =0"N,
7 —r
Sin’¢ —_ 7'3_7'1 r —Tg

Ts—173 T—TI

35. Also, for the time integral,

2
% =igcosa R,
or, putting 1gcosa = aa?,
nt = | rdr
ra \/(aR)

A?

= __1—_ r ("'1+ 'rg—?‘l) i‘z)

V(a.rg—mn)],
and (Legendre, Fonctions Elliptiques, 1, p. 256)

r do _Eo &' sing cosg
A3¢ "i L A¢ *

(61)
(62)
(63)
(64)

(65)

(66)

(67)
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The expression for the time is simpler if reckoned from the upper
limit of the trajectory ; and now

1 =4[ Blema=y(D) &

o—s . Jb
=1 tdr ., ("bbdr
= i [y [0
Fy
=iPM.. % 16, (68)
«/(Ts_rl)
=sgn"! 7)) = cn- r T = a1 'r——' —h
where F¢ = sn \/(r,—-r,) cn \/('r,—r,) dn \/(7‘3—"'1) '
(69)
and nt= "1
L v (aE)
1 _ 3
mj {7 +(7 TI)A¢}
1
\/(a Ty—1) L’1F¢+("a""'1) E¢} (70)
If 7, = 7,, as in steady motion in a horizontal circle, then
== %?‘3,
and «=0, Fop=FEp=9;
— 7@
so that nt = m, (71)

and the small oscillations synchronize with a simple pendulum of
length I, such that

Vi va

2 2
or l=4 _ " =2geca--T2_ =40G, (72)

n} a(rg—r,) Ty —T
if the normal to the cone meets the axis in G.

But, if the particle describes the same circle, suspended from G, as
a conical or spherical pendulum, then it will be found that the
small oscillations synchronize with a pendulum of length

oG

T¥Teobu (73)



1896.] on the Paraboloid, the Oone, &ec. 653

36. In the unlimited branch of the trajectory, described by the
particle sliding on the outside of the lower sheet of the cone, it is
convenient to change the sign of r, r,, 7, 75, and to make

B=4(r+a)r—b"

= 4d.r—n.r—ryr—r, (74)
©>r>r>0>r>r>—w. (75)
We now put r =M (s+2) = M?(s—o0), (76)
r+a= Mk, ® n
R = M°S, (78)
ar _do
JR-J8 (79)
*PG—a)+V(—3) ds
=1 a5
and now I(v) =3} L P 78
—ipy( Gr i bdr
= 2PMI ViR Lr«/R
Fo
=3PM ——"— +30, 80
Jon=my ©
where
—gn-!. ] ™71\ = en!? "= — gn? "V T—7s
F¢ =en \/ (’r—-'r,) en \/('r --'r,) dn \/('r, —1y 'r—r,)’
. (8D)
and, in the expression for the time,
nt = [ _rdr
n v/ (aE)
d .
= V. r,-"a)f {rat (n—r) sec’ ¢} ¢ (82)
in which (Legendre)
( sec? ¢% = tan ¢ A+ F— E. (83)
0 .

We might also have started from » = o, and then

o=t J(25) = o (122) = (22). 00

but now the expression for the time will introduce an infinite con-
stant.
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We notice that, while » =0 corresponds to the elliptic argument or
parameter u = v = w,+fw,, the value of » =a in the upper branch,
or of r = — @ in the lower branch, corresponds to the argument

u = 20 = Zfu;.
37. Suppose we begin by taking f = §; then 2v = w,, s0 that rFa

must be a factor of E, which requires b = 0; and the trajectory lies
in a vertical plane through the vertex.

Next take f = 1, when m=1, (85)
z=-2, y=-1, M“_% b® = }d¥, (86)
[L.M.8S., xxvi1, (364), p. 460]; and, from (38) and (39), § 34,
R .*g_f/i;! @87)
In the upper limited branch of the trajectory,
r = 3a(2—s), (88)
a—r = ias, (89)
B=4(a—r)r—id
= (r—3a)(—47*+2ar+a’), (90)

=3 (v/5+Da, n=30 n=—=}(v5—Da (O
and the corresponding pseudo-elliptic integral

I (w,+3wy) = 3 sin- CFE2) /g(r_%a

av{ia(—r+ier +‘a,’)}

= 1 cos T 92)
T
dI 1 at
FrA e «/R 5278 TR 3)
6o that 0=%vz[‘f;‘l‘:” +oI
_ 2Fy
=5ys T2b (94)
= dpn-! (vV5+1)a
F¢ = dn \/ {r+ (V5— l)a} &e.,
and the apsidal angle 1
K
o= (:/5 %w+1). (95)
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Changing the sign of » in the open unlimited branch of the
trajectory on the lower half of the cone,

r = ja(s—2), (96)

r+a = jas, 97)
R =4(r+a)r*—3d®

= (r+3a)(4° +2ar—a), 98)

=1(/5-1)a, n=—}a n=—1(/5+l)a  (99)
and now the corresponding

2 Vi3 jer—tan

I=1sin 3
=1co _,(—r+2a);/(r+ (L) (100)
r
leading, on differentia.tion, to
1 at
=1 Na
52 «/R+2,/2 T (101)
2Fd :
so that 0= 35 (102)
F — -1 5
d =sn \/ (r "'2) &e., (103)
and now the apsidal angle, in going from 7, to infinity is given by
—_ 2K 2
°=-3vst3
1 X
=T (o—-=— ).
3 ( Yo =L1r) (104)
With f = {, and
v = w;+Juwy, (105)

the equation obtained from putting in (329) (L.ALS., xxvii, p. +50)
5,—5, =0 and a = } gives

2mP—~4dm+1=0 (106)
or . m=1z%,/2 (107)

of which the upper sign must be taken so as to make m>3 in (45) ;

and then
S =——=2=J2 (103)
X
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Now, in the upper limited br@nch of the trajectory,
R=4(a—7)r*—(2—2)d°

= 4 (L) (n- 2“2/ 2/ 22‘1 @),  (09)

a V2—1+ /(2V2— -1,
2 02D,
and we ghall find that the associated pseudo-ellipti.c integral is
2+ /2 _ a
. ){r+(/2 l)a}\/(/2
73

so that Ty = Ty N =

T (w+3oy) =%sin-1\/(

—1(2—./2)ar—1 —1)a?
_ yoop TTAV PR (- \;Z)ar Hve-Da} 0
leading, on differentiation, to
dI 2+ 2\ Va _, db
5= \/( )-— 2, 12)
so that 0= \/( ) ‘r Jadr -2
a
S EA ) e
where gin*¢p = :":: , &c., (114)

and, on reduction,

a 2¢/2
\/(r,-r,) (VAN TV /e-Dveve=n’ @®

10 that 0 =mF¢—2I, (116)

where m=1}{1-(+/2-1)/(2v/2-1)}, (117)

and the apsidal angle 0 =mK—1w. (118)
In the lower unlimited branch, changing the sign of 7, so that

R=4(r+a)r-Q2-/2)a", (119)

vy, T3= :!:J@Ji;g ‘/2_+1 a, ry=-— :—;—5, (120)

and we take
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a(a=7) \/(""""rl —"s)

I=1sin

= 1 cos™! \/(2+2J2) {r—(~/2-13a} Sr=r) qa

leading, on differentiation, to

ar _ 2+ /2\ Va 9
E_%\/(_.2_)~/R+,d, 122)
so that = 2]—mFé, (123)
where . sin'¢ = , &c., (124)
?‘—Is

and now the apsidal angle, in passing from r, to infinity, is given by

0 = Jr—mkK. (125)

38. The other value of m,
Tm=2-3}2, (126)
makes ;b; =2+ 2, (127)

and R has now two imaginary roots, so that’the trajectory consists
of a single infinite branch.

As another specimen of a trajectory of this character, we may take
the one based upon I (2w;), in which

z=y=-1, (128)

8o that 8 =4s (s—1)'—1, (129)
a8 in the Transformation of the Eleventh Order (L.ALS., xxvii,
p. 424), and in Abel’'s Guvres, 111, p. 142,

We have now to put

r=M(s—-1), (130)
r+a= Mk, (131)
a =1, (132)
b =d, &e, (133)
in the pseudo- elhptlc integral
_ 1 288—38s
I(3w}) =} cos 2(—8'—_1)'
=1 i (s—2) /{43 (.s-2)'-1}
° 2 (s—=1)t

VOL. XXIX.—NO0. 653. RA
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0g°1 27 +ar—a’

so that I=1c = Ja
- 3__ .3
=%sin-l('f a)x/{4:(7'+a)r a}’ as)
9,4
= %sin”! (3 —a?) /(2 + 2atr + 2ar% 4 aF)
2rt
= 305t T HD YV (2_"'3;?@% +20ri—af) (135)
2t

leading, on differentiation, to

T a9 (136)

. " Jadr
80 that §=2I-} f {/ ar (137)
To reduce this elliptic integral of the first kind to Legendre’s
fuuction I'¢, we must determine the real root of R =0, or 8§ =0;
or else determine m from the cubic equation

23— (2m-1)*=0. (138)

39. If the particle, instead of moving freely under gravity on the
cone, is attached by a light thread to another particle, hanging
freely at the end of the thread, the thread passing through a smooth
hole at the vertex of the cone, there is no material change in the
analytical equations; so that the preceding cquations can be applied
without essential modification. Thus, if the particles balance, the
trajectory on the cone develops into a Cotes’s spiral.

The cone, for instance, can be replaced by a flat smooth horizontal
table, along which the paurticle is projected, attached to the second
particle by a thread passing through a hole in the table.

When the particle is replaced by a ball, spinning and rolling ou
the cone, the dynamical cquations are of the same form (Routh,
Ligid Dypwwmics), but we have an additional constant at our disposal,
as the restriction of (26), § 34, is no longer required.

1f the cone is mude to rotate with constant angular velocity about
its axis, the function I rises from the third to the fourth degree, and
the differential equations are of the same form as those given in § 33,

In a stercoscopic vepresentation we should tuke a thalwey procession
of particles spaced at cqual time intervals (Hadamard, Livuville, 1897).
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The Geodesics on a Quadric of Revolution.®

40. These geodesics have been discussed recently by Prof.
Forsyth, in the Messenger of Mathematics, 1896 ; they are introduced
here as another illustration of the Elliptic Integral of the Third
Kind in the notation employed in this paper.

In the geodesic on the oblate spheroid, generixted by the revolu-
tion about Oy of the ellipse

a2 3
T+ L=, @
a* b
add =k 2
&Z d.s" ] ( )
o
or ds"= da’+ dy’ +2'di? = -Z— dy*; 3)
and therefore, with y = L2 V(@ —2?), (4)
a
2 wﬂ,’;vg .
dy* = ‘@ al—ga’ ©)
v 28 x?
@i (1455 on)+ataw (1-55) =0, ©®
2
pER (g,_ _wz)
N LS ) 7
or dlp - e (mi_k':) ((L"—ﬂ.'.:) 1 ( )
Put a’ =’ (s —0), ®)
a’ 2 g% . 9
r—at=m (5= )
=g = m* (s~ 3), (10)
Bk =t (s —s), an
so that a>x>k,
and H> >8>0, (12)

Since s;— o is positive, the parameter v of the integral is o fraction
of the imaginary period, or
8 v = fuwg. (13)
\ —1ke v/ ($=9)
Then W= m (s—0) /(53—5.5—6)

ds, (14)

* Legendre, Fonctions Elliptiques, t. 1, § 111, 360.
2 v 2
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and, putting z2=0, s=o,
& = (4—0), 1s)
o' = m? (5,—0), (16)
B = m® (s,—0), (7

3 __5—0

o=, (18)

Ke' _s,—0.55—0
= (19)
Then, with S =4 (s—s)(s—s)(s—35), (20)
3 =4(o—s5)(o—s)o—s), (21)

b _ 5y —0.8—0 (5, —5)
ds i \/( §,—0 ) (6—0) v (s5,—5.5—85)
JL—E) 5—8
s—o (s—0)/S
—1 V{=3) _}\/( -3) 1
*o—ayvS T a=e VS
—1 \/( —=3) 1 1 P(s—”)_‘\/(“zl)
(P §—0 ) J8 (s—a)v/8S ’ (22)
v=1(p- Jéffl)u-r(v). (23)
But P or P (v) is connected with P (w,+v) by the relation
P LD = plu o) (24)
80 that v = .;.P}‘Z;iﬂﬂm—r(v), (25)
where sin’p = : ::; b _]’::, cos® ¢ = 2:—:%;, A% = al —e’:’

(26)

The first requirement of an algebraical geodesic is that
P(w,+fuw,) = 0; 27)
but, as pointed out by Halphen (F.E., 1, p. 275), this relation
implies a negative discriminant for the cubic S and two imaginary

roots, which is excluded by the conditions of the problem; the same
applios to the geodesics on all the other quadric surfaces.
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Wae shall find that, in Glaisher’s notation,

Pw+w,, )= zn ’ 1P W, — ’ X
Toimay IR m IR g gy = I G (@)

41. On the prolate spheroid, generated .by the revolution of the
ellipse about Oz, we find in a similar manner, from

sdy -
Y2 = k, (29)
bl
¥+ o5
dy =1 ’_“s;_e a’e’ o dy, (30)
y* \/(b"‘.‘/"yz"k"?/""uTes)
and we put P =m? (0 —s), (31)
bi—y' =m! (s —s,), (32)
y' =k = m?(5—3), (33)
4
g o= (5, —s). (34)
Putting y=0 or s=o,
b= m' (0 —s), (85)
B =m' (0 —s5,), (36)
B o= 37
P B (s—0), (37
Bale® _o—sy.0—s,
W s—e (38)
.and 8> 0>5,>8>8, (39)
so that v=w,+fu, u=u+fw,. (40)
We now find
dp _y S(=3) _s—s
ds s,—0 (0—s)/S
—1(Y(=3) —1P(e—8)— /(=3) .
—_— 3 ( 8‘—6 +-P) ‘/S 2 (a_.s)‘/s ] (41)
y=1 !Lif%ls Fo—1I(v), (42)

—_ . 3
with sm’¢—li—--_1}(,, osqb—’/ ’; Ng=1-cfe . 43
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42. In the geodesics on the hyperboloid of one sheet, génera.ted

by the revolution about Oy of the hyperbola

5 e,

@ % =k,
- L:
W = e — J)“( da?,
where X=a'"—a®. 2~ —Z:—. =k,
=1+ -3:—,
and the parameter v = fu,.

(44)

(45)

(46)
(47)
(48)

(49)

When &’ <a’, the geodesic extends over the whole hyperboloid ; and

2
(i) oo>:vg>a’>£'; >k,
€
§>8,>82>8 >0,
and we put 2} = m? (s—0),
P—a =m? (s—¢),
2
a
1’2—2"2- = 7'12 (6'—&_,),

=k = m? (s—sy),
and find, as before,

y Plot A o

=3 — Fo+1(v),
v (s1—85) 4 )
. @
] 9 - ﬂ.g—k"’ 2 _ ,1;2_a2 A2 _ = _GT‘—
where 81N ¢ = .';:?k" COS" ¢ = :_2———;;;, ¢ = T
: 2
The condition Br=2
e

makes s, = &, « = 0, and gives the generating lines.
.. , a’
(i) o>a’>ad’>k >—;
e

a
sy and s3, k* and —- change places, and we find
¢

(50)

(81)
(52)
(53)

(54)

(55)

(56)

(57)

(58)

(59)
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=%%%rQﬂEMJ®L (60)
2
at— E;
where sin’ ¢ = 62 , &c. (61)
2= 2
e?
(i) ow>#*>k>a’> z;i ) (62)

the geodesic extends from the circle of radius k to infinity, and

_ _1_P ws v
v =200 mr 1),

where sin’ ¢ =

&e. (63)

43. On the hyperboloid of two sheets, generated by the revolution
of the hyperbola

2= /(B +y) (64)
about Oz, g’ @ _ k, (65)
ds
1 X )
+ SRS T
. y kae 1 \/(y a+1
lead —akae 1 VLV eVl e
eading to dy =1 b 7 T = dy. (66)
We take y: = m? (s—o), (67)
y'—k = m’(s—s), (68)
b4

7+ = o), (69)
v+ =m? (s—sy), (70)
and 83 8,> 0 >8> 8, (71)
so that ¢ = w;+ fuy, (72)

Pl—f)w .

and =1 PA=Dws 1y, 73
VEE ey 1O @

v+
sintp= Bt ey _ YR g, T @ gy
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44. The parameter obtained. by the bisection or trisection of &
period will serve as an illustration of the general theory; it was
employed in Mr. Dewar’s stereoscopic diagrams given here.

For the oblate spheroid, and the parameter
v = juwy, (75)
we shall find that the projection of the geodesic can be expressed by

2*sin {29—(1—«) Fp} =\/ (1+‘) J@=k),  (76)

a?cos {2¢ — (1—«) Fp} =\/(.‘§._mﬂ_aﬂ_wﬂ), (77)

b?

B_ 1

where e =« ?=1—K, il e (78)
and now the apsidal angle
W:{—w{(l—x);l’(—r +1}. (79)
By trial it will be found that
¥ = &=, when « = sin58°, (80)

80 that a closed geodesic can be constructed with these data.
With the parameter v = w,+ }wy, 8n
we shall find that - the equation of the geodesic on the prolate

spheroid may be written

y’sin {2¢—(I+K)F¢} = \/I(y’_kz.ya_*_ :;_;’)’ (82)

y'eos (29— (149 Fp} = 1=Kby/(—y), (83)
where 2—: = —l-)";i =1—x, e =x, 84

with an apsidal angle

qr=.;_1r{(1+x)-l’-{1—r+l}. (8%)
7
By taking, as in § 21,
x = 077384 = sin 50° 42, (86)
we make ¥ = 4m,

and thus obtain a closed geodesic.
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Geodesic on a Prolate Spheroid.
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On the hyperboloid of one sheet, with a parameter
v = }wy,

the geodesic is given by
() asin{2y—(1+&)Fp} = \/(z'—a‘.w’— z—:)

Z*oos {20 —(1+%)Fp} = /(&)

and e = 1 B_ &

*' @ 1+«
(ii.) a'sin{2y—(1+«)Fp} = /(d'—a'.2—F’),
2 oo {2 —(1—r) Fp} = av/(1+5) \/(z’--g)
kﬂ ?
ey F = &e.
(iii.) 2?sin {2¢—(1+x)F¢} = /(2" —a’.2'~F),

2icos {29 —(1+x) Fp} = a\/(l—:ii) \/(m’— 96-:-)

On the hyperboloid of two sheets, with a parameter
v = @ +jwg

we shall find that the geodesic is given by
4
ysin {2y —(1+<) F$} = \/(y’—k’. P+ a_e;w)
4 cos {2¢— (1 +x) F$} = bl:?':" S+,

2

KB =a, ¢ =—l-.
K

45. On the surface »* =a'+y'=4d’ ch’T: ,

the modified catenoid, the geodesics are given by

_ r*~ (a’ —c’)
W=t S o i AT

87

(88)
(89)
(90)

(oD
(92)

(93)

(949)

(95)

(96)

C1))
(98)
(99)

(100)

(101)
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an equation of the same nature as that required for the geodesics on
the hyperboloid of one sheet, so that these geodesics are analytically
equivalent ; this is obvious when we consider that the two surfaces
are deformable into each other, without stretching or tearing.

But the catenaries and trajectories are intractable.

Either of these surfaces can also be developed into a skew helicoid,
so that the geodesics on this surface are of the same analytical charac-
ter, which, it may be remarked, is the same as that of Poinsot’s
herpolhode. '

[46. Legendre points out that the integral required in the deter-
mination of @, the angle of the sector in the development of the
surface of the oblique cone on a circular base, is exactly the same as
that which gives the angle  in the geodesic on a quadric surface of
revolution ; this is evident from the-substitutions

= fleinte
~ W+ (r—f cos w)'’ (102)

or mi (s —s;) = Bt (r—fcos w)® (103)

flein’w ’

m? (—s)

in his integral for ® on p. 331, t. 1, Fonctions Elliptiques.

Then, writing ¢ for cos o,

; = i {(@'+a)—(a'~a)c}*
m(6—8) = 7 Pro— (104)

it {@ta)e—(a'=a)}
ad tR+r—p W+ (r—fo)* , (105)

m’ (8 —s,) =

R

(o =gy = LT D], (107)
and with m? (¢ —s) = ?'l}}:i?_fgfc_)*ﬂ (108)
or m? (s—0) = WA =2fo+f" (109)
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in which A*++*—2rfc+ ¢ is the squared radius vector, and A2+ (r—fc)®
is the squared perpendicular on the tangent of the development;

this makes ds
o= 2, 0

_3/(=3) J' 8— 8
or ®= 5—0 Js—a «/S (i)

exactly as for the determination of  in the preceding geodesics_.]

On a Regular Rectangular Configuration of Ten Lines. By F.
Moriky. Received May 28th, 1898. Read J une 9th, 1898.

1. The Construction.—1I shall say that a straight line is normal to
another when they intersect and are perpendicular. Three lines in
space form three pairs, and each pair has a common normal. The
three lines, with the three normals, form a rectangular hexagon.
The three pairs of npposite sides of this hexagon give three more
lines—their common normals. It will be shown that these last three
have one common normal. Thus, if, starting with three lines, we keep
on constructing all possible common normals (excluding the common
normals of intersecting lines) we geb only ten lines in all, forming &
regular configuration in the sense that each line has three normals.

2. The Points at Infinity.—Taking five points a, b, ¢, d, ¢ in space
and outting the ten lines such as ab and the ten planes such as abe

by an arbitrary plane, we get a well-known configuration (Fig. 1).
[Cf. Cayley’s Math. Papers, Vol. 1., p. 318.]

ca

\ da
ec % ¥ eb
de
—_— b
N
abd

Fig. 1





