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In a preceding article (Proc. Lond. Math. Soc, Vol. xxvn) the
properties of the catenary curve assumed by a chain wrapped on a
sphere have been considered, concluding with an investigation of the
shape of the curve when the sphere is spinning about a vertical axis
with. such, rapidity that the influence of gravity may be left out of

account.
But, as the analytical results of this last problem are practically

the same as those required for the catenary curve of a chain wrapped
on a vertical paraboloid of revolution, we resume the investigations
and extend them to the allied problems of the catenary on the cone,
&c, and, at the same time, consider the associated problems of the
motion of a particle on a surface of revolution.

The theory is illustrated at length by working out the simplest
pseudo-elliptic cases, by means of which the construction of a
catenary or trajectory is made to depend upon tabular matter in
mathematical tables, in conjunction with the tables for F<j> and E<p,
given -in Legendre's Fonctions Elliptiques, t. n.

The analysis required in these applications has been developed in
papers in the Proceedings of the London Mathematical Society :—

" Pseudo-Elliptic Integrals and their Dynamical Applications,"
Vol. xxv;

" The Dynamics of a Top," Vols. xxvi and xxvn ;
" The Spherical Catenary," Vol. xxvn;
" The Transformation and Division of Elliptic Functions,"

Vol. xxvn;
and, to save repetition, the results are quoted in the sequel, with a
reference to the volume and the page, as (L.M.S., xxv, p. 195), Sac.

The following Dissertations discuss the same subject:—
Bertram, Biss., Marburg, 1876.
Osswald, J., Diss., Freiburg, 1876.
Neumann, L., Diss., Freiburg, 1878.
SchOnlicht, L., Diss., Freiburg, 1884.
Sonntag, Diss., Marburg, 1886.
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It will be noticed that in all these dynamical applications which
require the elliptic integral of the third kind the Jacobian parameter
is a fraction of the imaginary period, so that the integrals are of the
circular form, in Legendre's terminology; and tables of the Jacobian
0 functions, even if accessible to us, would be practically useless for
our purposes.

But, by choosing as parameters the rational fractions of the
imaginary period, beginning with the simplest fractions, we are
able to utilize the pseudo-elliptic cases worked out in L.M.8., xxv,
to explore the analytical field with a number of well determined
particular cases.

A dynamical desideratum appears, then, to be the tabulation of the
function

where

in the form

rK'i\

= 2, 3, 4, 5, 6,

A+iB
A-iB'

where A and B are single-valued elliptic functions of w, these being
the functions analogous to snw, en it, dn «, mentioned by Halphen,
Fonctions Elliptiques, I, p. 222.

It is easy to translate the pseudo-elliptic results of L.M.8., xxv,
into this new notation : thus, for instance, from p. 212,

Q(u-^Ki) ") 2_ cn« &nu + i (1+u) sn«
e(u + %Ki) ) ~ cnudnu-i(l+u)anu'

and, from p. 218,

and so on.
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1. Taking Oz as the vertical axis of revolution, and r, ty the polar
coordinates of the projection on a horizontal plane of a point P at a
height z, then the statical equations of equilibrium of the chain are

T—w (z—h) or w (h—z)

= w (z~h), (1)

and Tr*<& = H, (2)
as

connecting s the arc, T the tension, and w the weight per unit
length of the chain.

Eliminating T, we obtain a general equation, of the form.

(a~K)*&=A, (3)

as

where H = wA. (4)

ds1 , , eZr2 . , a V (z—h)1 ,<M9Thence

where Z = r8 (z - ^ ) 8 - i l 8 . (6)

Tî e Catenary on the Paraboloid.

2. In the paraboloid of revolution, we put

r» = 4az, (7)

8Otha t tf=S7F' (8)

where ^ = 4a* («-/ i ) 8-^8 ; (9)

so that, putting 48 = 4azk\ (10)

*&=\h ^+aA (11)
dz zS{z(z-hy-ak3}

Then, if p denotes the perpendicular from the origin upon the
tangent in the projection of the catenary on a horizontal plane,

_L = _L + i_^l
p8 "~ r2 r4 d^
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which can be written

4 = * + a2(a + / 0 + i ± ^
p* z+a

(13)
showing that p is stationary, and there is a point of inflexion, where

z + a= y { ( o + A)» + ^ } , (14)

and then p* = 2a [ v
/ { (a + /i)a + fe2j +(a + /0] , (15)

r8 = 4a y{ (a + /i)a + A;2}-4a9. (16)

If the paraboloid is spinning about its axis with uniform angular
velocity n, then equation (1) must be replaced by

(17)
9

but, as this equation can be written in the form

T = w'(z~h'), (18)

where w'-w± ^ ^ , (19)
9

the equations of equilibrium remain essentially the same as before.
I t is also immaterial whether we suppose the vertex of the

paraboloid to be its highest or lowest point, as an alteration of the
direction of gravity with respect to the surface merely changes
the sign of T.

W i t h r8 for independent variable, equation (11) must be written

dr>. (20)

The arc s is given by the equation

d s ' _ ds r^dxfr _ z—h x, r
8

dz ~ Tdty dz ~~ ~A~ " T

_ (z—h)y/(z + a)

or s'='=[ ( ^ - M ^ + a) (22)
] </{z{z-hy-aV\

J v/{r1(r8-4a7i)3-64a4Jfca}
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3. Equations (11) and (15) are elliptic integrals of the third kind,
with a single pole at the vertex of the paraboloid, so that they can
be compared immediately with the standard form

where 8 = 4s (s+x)*- {(y + l)s+xy}\ (B)

M* (s-a) =pu—pv, (0)

.7(1) _ 6) (tt + lQ (JfP-{,-)«

Writing equation (11)

where iJ = (z+a) [z(z—h)*—afc*]

= z'+(a-2h) z*-h (2a-h) 2
8 + a (h'-k*) z-alh\ (25)

the comparison with (A) is made by putting

^ pup (s<r), (26)

z+a

making u = 0, v, c, correspond to z = — a, 0, oo; and then we find

_ t

Denoting the roots of the cubic factor of Z,

z(z-h)i-aki = 0, (29)

by zlt zit za, these roots are essentially positive; and they may be
written in the order

co>z>zl>z3>z>za>0>— a> — oo, (30)

so that we may put
«=/<•>„ c=f'wl, (31)

and the determination of the arc s', depending on the parameter c,
will be found to lead to an analysis of the same nature as that
already developed for the Spherical Catenary.
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Equation (24) may be written

, , f Nk dz
* )pu — pv vz
2 ' p u — p v

or ft = -«&+ \ log iSl+A (32)
a \u — v)

Expressed as a function of s and VS, as in the standard form (A),

,. - 1 ( V ( - S ) i£_
* ~ a J s-ff A/5

I(t»), (33)

, f da 22̂ 0 /O/<%
and w = - — = _ ^ y . , (34)

(35)

where
In the open branch. In the limited branch.

zx—zs z—
(37)

taking z, ^, and <J> as increasing together, to avoid ambiguities of
sign.

Thus, in the pseudo-elliptic cases, the catenary on the paraboloid
cannot be an algebraical curve unless we can make P (v) vanish.

When P (v) = 0, the discriminant of S is negative, and the
catenary has one open branch only; and now, with zx and z2

imaginary,

)

where IP= zl—zx.z^—zi, 11* = a+zl.a+zi, (39)

and tan2|0 = ^ ^ . (40)
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4. To express the curve made by the projection of the chain on a
horizontal plane, we must return to the standard integral (A) of the
circular form ; and now, putting

s-tr = -Si = Q* = Q sin' o>, (41)
z + a r + 4cf

(42)

where <a is the angle the normal makes with the axis, then

_l!_ _ _£. _ S~(T

4a2 a Q—s + a

Denoting the roots of (B) by sv s2, s8, and replacing

the roots of s8+3s> v + \sp"v + \p'%v = 0, (43)

then & = - ^ — , 3 . = ^ 2 _ , h. - ^ 5 _ - ; (44)

and, since z,, za, 28 are the roots of the cubic equation

z(z-hY—al<? = 0, (45)

therefore Vzt + Vzt + ^/z& = 0, (46)

an equation for determining Q; rationalizing this equation,

•I («-».)• (Q-»8) '+ . . . -2a i a , (Q-a 1 ) 1 (<3-O(0-O- .» = 0,(48)
and putting <7, + <rs + <rs = <Sj = —3pv, (49)

or,rTa<78 = 5f8 = — i j A ; , ( 5 1 )

aS3Q-3Sj = 0, (52)

a quai'tic equation in which the quadrinvariaiit vanishes ; which can
therefore be resolved, and it has two real and two imaginary roots.

Putting {2=7rrV' <63)
l\ + o

Bi-QaB%-8bR-3ai = 0, (54)

where a = SJ-3S, 8, = ip"1—Spp*8, (55)

26 =2^+27^-95 ,6^^

= i ^ + fJP^-VPPV. (56)
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and (54) is a Jacobian quartic the roots of which, on putting

b*-as = c8, (57)
can be exhibited in the form

B = y(a + c)+ v
/{2a-c + 2v/(a1-ao + c8)},

or J2 = v/(a+c)+v/(a + o;c)+v/(a + a;8c), (58)

where w, w2 denote the imaginary cube roots of unity.
In the sequel it will be sufficient, in general, to work with the

parameter
v = **i (59)

and thus take

= £*', (60)

when a= T\x2 {(y + iy~12x}} (61)

(62)

(63)

where A denotes the discriminant of the cubic 8 in (B).

5. In a transformation of even order we may assume that a root of
the cubic S = 0, say s = ss, and at the same time that a root of the
cubic (29) is known, say z3 or r8, in the form

= V , (64)
a 4a

and then the other two roots will be given in the form

a

and, with /3 > 3y, we have

and the roots arranged in the order

(65)

(66)

rs.

Now, from the general relation (41), or

£-=^? = cot'a, = A . _ l , (67)
z r sa
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— Q ,,; 1 7fiQ\

= " ^ T' <6 9>

= - ^ - - l , (70)

*'7»and then W-fW + W = Q *'7» (71)

/3-3y st—ss Sl — a

= S^ft == dn2 (1 - / ) JT, (73)

where or' is the value of 8 corresponding to

t» = ( l - / ) • * ; (74)

thence Q can be determined when sv sit s3, «r, a are given, and when
the ratio /3/y has been found, by means of the Jacobian quartic
equation, implied in (73).

6. In the degenerate case of the catenary on a paraboloid, when

P = 3y, (75)

then, putting 4ay8 = o, h = 3a, ak* = 4a8, (76)

. Z — (z + a)(z—ay (z—4a), (77)

z + a
dz ~ 2<X\ a z(z-

(70)
or, with r3 = 4a^, is = 4aa, (SO)

, i . _, b '

(81)
VOL. xxix.—NO. 649. 2 Q
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Also d£ _ (z — 3a)</(z + a)
dz~ ( z Y

so that the catenary is rectifiable in the form

z+aI

V ^ ^ ) - (83)
The Whirling Spherical Catenary,

7. In the catenary curve on a sphere due to centrifugal whirling
(L.M.S. xxvn, p. 181),

where R = (1-r8) {rs ^-hf-A*}

= (l-^Cr'-rpCr'-rpCr3-^), (2)

suppose; in which we can take

n = r,-fr8, (3)

in consequence of which relation we encounter the same Jacobian
quartic (54) as with the catenary on the paraboloid.

We reduce (1) to the standard form (A), by putting

s-a = s+x = ^-t = Q' tan2 0, (4)
1—r

where 6 denotes the co-latitude of a point; and now

8 = 4 C £ ± * i ^ _QV__ \ n+y) Of. _
l_r* (1-r8)1 V y)l->*

has to assume tlie form

and this leads to the Jacobian quartic for the determination of Q',
namely,

« 0. (6)
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Next, *a s(^?' ( ? )

ds NQ'di*' ,R,

and, putting r = 0,

x __ // *) = _ C9)

y ( J = 2 ) = _^_ ^ r 3

s-<r NQ' r2 '

so that I — k

4,. (11)

To cancel the secular term, we must therefore introduce the
condition that

PQ'+a = 0, Q' = ~-f-, (12)

and now s+x=—g- j ( (13)

* ~ P 1-r3 *

In the projection of the catenary on a plane perpendicular to the
axis of rotation, if ^ denotes the radial angle,

sin <p = ^ , (16)
/ { ( l » ) ( * 6 ) « + l « } J

or - = ( l- r '0(r2-6)2+^1. (18)
P

The projection will have points of inflexion where p is stationary,
corresponding to the maximum of (1—r2)(r2—6)8, and therefore when

(20)

2 Q 2
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8. To illustrate the preceding theory, begin with the simplest
parameter obtained by the bisection of a period, and put

• = to- (21)
We have to put, for a catenary on a paraboloid,

Qt ^ 3 = Q sin8 », (22)
2 + a r + 4a3

in the associated pseudo-elliptic integral

(s+x) VS

•/Ue'J"A%'it (23)T 2(s+x) T

in which 8 = 4s (s+tc)2 - s\ (24)

obtained from the general case by putting

y = 0. (25)

Then, substituting from (22),

(z + af S = 4){Q-x) z-xa} QV-(«+a) {(Q-x) ts-xa}\
and this, in consequence of (29), § 3, must assume a forth

= z(Az-B)*-zia\ (26)

and thus A* = (Q-aj)(4Q9-Q+a;),

(27)

(l-24a:+16a58) Q*+48a:8Qs-6ajJ (l + 4a:)G8 + 8a!8Q-.V = 0, (28)

obtainable from the general case of (52), § 4, by putting y = 0.

Then, putting Q = j | f 2 ' ( 2 9 )

B*-6(l-12x) E* + 8 (l-18aOB-3 (l-12a;)a =ss 0, (30)

a Jacobian quartic, with

a =1-123 , 6=l-18aj ,

cs = 6a-a8 = - 108»s (1-16*). (31)
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Writing this equation as a quadratic in x,

(E- l ) 8 (E+3) + 72(E-l)3a-432.<e1 = 0, (32)

so that, putting 12a = (E-1)2 qt (33)

E+3 + 6 ( E - l ) 2 - 3 ( E - l ) 9
8 = 0, (34)

_
X ~

4 ( r 2 - 3 / '

2r+3

o r
16 (p*-6pa-3)s 16

o r

Put g - l = fr, (36)

^ - 1 = ^ , (37)

Kr-3F^- ( 4 0 )

It is convenient to put

T — 3 Q J /If \

= p8 or — rr, (41)
r + 1

according as the discriminant
A = <c4(l—16JC) (42)

is positive or negative ; and then.

(45)
(p4+6p2-3)8 J

—^—3) 64p
(^ + l ) s ( ^ + 9)' l ^
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The roots of the cubic (B) are given by s8 = 0, and

"8

(48)

or
16 ( jp 4 - 6pa - 8)J 16 (jp44- 6P* - 3 ) 2 '

( / 3 ± r ) .= ^ = ^ ^ 1 or ^ g ^ , (51)

so that -2L + — = iL _ l, and -& = ^ or t]p. (52)
zx z2 z3 y

The constants h and Zc of the problem are determined by

(53)

a? A2 (Q-

( 5 4 )

Now we shall find that, in the closed branch of the catenary
between zs and *2, ^ _ i ^ +K) j ^ - j , (56)

where 1 = 4sin"'

= i cos- -f^-^ yfc^ZfL), (57)
v(p— 1-jP— 9) 2

and sin3 * = *±£L * = 5 , &c. (58)
z2—03 c + a

In the open infinite branch, extending from zx to infinity,

but in this I"the sin"1 and cos"1 in (57) must be interchanged; also

Bin^r rk+^^rS .&c . (60)
24 + a c— â

In the stereoscopic diagram, drawn by Mr. T. I. Dewar, we have
taken K = 0*77384, so as to make the apsidal angles 144° fend 54°.
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9. In the associated case of the whirling spherical catenary, we put

^ 't&n26, (61)^ Q ,
1— r*

agreeing with the case of the catenary on the paraboloid, if we take

r9 = - - . (62)
aa

thus utilizing the imaginary part of the catenary, and the negative
values of Q, given by the quartic (28), and making

If we should try to cancel the secular term by putting

$Q+x=0, (64)

then x must be negative to make Q positive.

Substituting in the expression for S,

s(l—r*)9
= (i_16a,)

and it is not possible to construct a real case which shall make this
assume the form (J-hV A*

^° £-A - (66)
10. For a parameter obtained by the trisection of a period, take

« = > „ (67)

and build up solutions on the pseudo-elliptic integral

(68)

where S = 4s3-(s + my. (69)
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Putting s = t*,

•p / \ n • .1 V V *̂̂  ~~ V ~"" llv) a -1 V I Aft* ~t~ V "t" 7/Z'I /f7A\
j . iv) ss •*• sin = = -S- cos — ' , \ •'-'/

and the associated catenaries on a paraboloid, or on a whirling
sphere, are obtained by putting

t = s = Q. = (i sin w, t = VU, smw, (71)
z + a

or p = 8=Q' r£—j = Q' tan2^, « = VQ' tan ^; (72)

and Q, Q' are determined by the condition that

tan w8 == tan w, ± tan w2, (73)

or sin 08 = sin Oi ± sin 02. (74)

Then £L = fL ?_±? or -\- f = ^ , (75)

s z z1+a ra 1— r|

— or -T- J, (76)
• 8 Z Zt-^fd T I—?-

or 4sin"'—r

Again, since ^ + $u = I (u) = £ cos"' ^ t ^ , (78)
2s'

therefore it assumes the form

or J M - ^ ' ^ M , (79)
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where jff9 = 2a7i+fca+&a or 49+2&9-64, (80)

2HK=a(h*+k'') or -A\ (81)

E} = a*k* or A2-b', (82)

and therefore a9 {h* + ft1)2 - 4a2/.;8 (2ah + h* + A;2) = 0,

(/i2 + fc8)(A2-3/c2) = 8ahk\ (83)

or 4.{A* + 2bi-bi){Ai-bi)-A* = 0,

34*+84262(l-&9)-8&6+4&8. (84)

Otherwise, the equation (52), § 4, becomes in this case

( l + 32m) Q4 + 48m2Q8-6m2Q9-8m8Q-3m4 = 0; (85)

or, on putting Q = -~-^, (86)

E 4 - 6 E 9 - 8 (1+54T?I) E - 3 = 0, (87)

Q

Q'~ 14422(JB-2) '

and then, in the catenary on the paraboloid, we find

h__2R(R-2)

A;2 _ 4 E ( E - 2 ) 8

If, in (83), we had put

fe9 = h*p, (92)

agreeing with (90), when
JB—2

But there does not appear to be any simple explicit relation of x
in terms of JR, or R in terms of x.

In the whirling catenary the secular term would be cancelled by

Q' = _ Q = 3m, (95)

but this makes R = 1, and h and k infinite.
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11. Other trisection formulas, corresponding to parameters

i> = > 3 or §<o3, (96)

can be obtained by taking (L.M.S., xxv, p. 216)

ya = 0 or x=y-y\ (97)
and then

= x

= ,

or

= £ sin

(99)

To construct an algebraical catenary on a paraboloid by utilizing
the integral (99), put

l - 3 y = 0, y = | , 0 = f (100)

(101)

(102)

(103)

(104)

^ ( 1 0 5 )

and therefore ( z + a ) 8 fif = - -f- (2+2a)9 - Tf ^a8, (106)

so that the catenary is imaginary.

But now

and, putting

the requisite form,

B%=4<L nva,

8 = If-Th,

s - Qz

* — , >

z+a
(z + a)8/S = 4QV- T ^

= z(B«— Gay

provided that

38 , t ^ . 2BO = — _ •.

leading to the value Q = -̂777 ;

(* + a)!

I 4 - 8
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In the same way, in attempting to construct an algebraical case of
the whirling spherical catenary, by putting, in (98) or (99),

s+y-y> or « = J ^ I (107)

where C = - | y ( l - y ) or - 3 y ! ( 1 7 y ) , (108)
L — oy

the results obtained are again imaginary.

12. An algebraical case of a catenary on a paraboloid, corre-
sponding to a parameter

« = K (109)

can be constructed by taking the pseudo-elliptic integral on p. 228,
L.M.S., xxv, and putting

* = ! ; (HO)
this makes x — — f, y = — f,

$1 = — To i &S = -/a) ^8

n 32xl9 7, 38x215 ,.a = -^ir-> o = 2
18 ' 2ir~;

whence the equation for Q can be constructed, when we put

and now the catenary is given by putting this expression for s in

13. To form the corresponding algebraical whirling spherical caten-
ary, we start with the pseudo-elliptic integral (L.M.S., xxv, p. 228)

= J Vs

= 4 cos-
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and pat s+z—2*1 = - ^ ^ (115)

with Q' = —̂ *•,
3—4s '

thereby cancelling the secular term.

Then s-z> = - *-£=£ . ( l - 4 O ^ + 3-4ff ( U ? )

so that r; = _ ^ i ! . (118)

(119)

so that ^ij^-a^L., (120)

?>r = ~ (3-8Z+8z3) (I-82+8Z2) '

i3MH+8^ (122)

Then, from the conditions

, y - r 2 - r 2 ) a = rt»--»J, (123)
V 1 2 3 7 2 8' V '

we obtain the equation

( 1 + 8 Z S ) S ( 1 - 8 * + 8 Z ! ) + 4 ( 1 - 4 * ) 8 ( 3 - 8 Z + 8 Z 2 ) = 0 (124)

or 51226-512z5 + 7042«^896z8 + 504z8-1362 + 13 = 0, (125)

a sextic equation for the determination of z.

Putting z = jp, this Tbecomes
_p«_4p<s+.22/-112/+252ps-2722> + 104 = 0, (126)

the roots of which are

p = 2-77764, 07604, 1-22961 ±0-9218K, 090861 ±4-45039i,
(127)

as calculated by Mr. T. I. Dewar.
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Choosing the root p = 2*77764, this makes

(128)

(129)

(130)

(131)

(132)

(133)

(134)

At the point of inflexion on the projection,

r2 = | (2 + b) = 0-63, r = sin 52° 32'. (135)

Substituting for s in terms of r* from (117) in (114), we shall
obtain equations of the form

T 4

z = 0-6944,

r\ = 0-1251,

Q = 0-1386,

l -8*+8* s = -0-68,

3-8*+8zs = 1-32,

h = \(r[+r\

A* = rVV =
1 S 8

r, = sin20o42',

j+rj) = -0-1096,

0008.

= J 008- W + XdW-*,*-*, ( 1 3 6 )
2

(3-^.4.-1)* ff

32 (2^-1) (z-z*)*

32(2^—1) (2—a8)* ( 3 -

(138)

giving the form of the whirling spherical catenary shown in the
stereoscopic diagram annexed, drawn by Mr. T. I. Dewar.

14. In the case of quinquisection, with a parameter

» = > 8 , (139)

the relation y6 = 0 is satisfied by y — x, and now

6f1 =:i(aa + 6z + l) , Si = H*i+*), S8 = ia;s; (140)

and a = TVaj* (a2- 10a +1), (141)

6 = __Ly (38+39a5J-15a: + l) , (142)

l) . (143)



oo CO O
S

Ca
te

na
ry

 
on

 
a 

W
hi

rl
in

g 
Sp

he
re

.

I O



608 Mr.A. G. Greenhill on the CatenaryyandTrajectory, [March 12,

The associated pseudo-elliptic integral is

Tf\ i f "
(s+x)VS

= isin"1

2

= |cos"1^

and the corresponding catenary on the paraboloid or on the whirling
sphere is obtained by putting

^ Qainiio, (145)

or a + x = ^ L - Q' tan9 ̂ , (146)
1 - r

where Q is determined by the quarfcic (52), § 4; and then

(147>

or ^ = i (*±3 Qf-Ha,) | ^ - I ( t » ) . (148)

If we put «+a; = <s, (149)

then we find that we can put

= * c o s -

= | sin"1

and, to obtain the catenaries, we put

*=y<2sinw or v/Q'tan0. (151)

To construct an algebraical catenary on the paraboloid, put

aj+3 = 0, (152)

and now the cubic 2t*— (1—x) t2—2xt+x = 0

becomes 2t*—4,ti + 6t-3 - 0, (153)

3which has one real root tt = ^WXT—„' • (1*>4)



1896.] on the Paraboloid, the Gone, fyc. 609

Also /Sj = — 2, S2 = 3, Ss = -°;

a = — = 225, 6 = — ? 5 ~ ^ ;

3 \ / \ / O O t /1 11 \c = oiu i c = TT^ = ^ J - 5 ; (15&)
Z 10

and the real roots of (54), § 4, are

16 )

or, approximately, 12=15 and —1437,

and Q = 0-375 or 4'5. (156)

Denoting by «, the value of w corresponding to t = tv so that

8in«l = - ^ , (157)

the first value of Q makes sin w, greater than unity, and must be
rejected, but the second makes

sin to, = 03405, w, = 19° 55';

and £- = tan Wj = 03623. (158)

When t = y/\, a) = 21° 25', 4 = 18°;

« = 1, w = 28° 8', ^ = 36°;

« = -/Q, « = 90°, ^ = 51° 24'. (159)

15. To make the associated catenary on a whirling sphere into, an
algebraical curve, we put

£ (1G0)

and 5 + 0: = - — . , -^ ; , (161)
x + r 1 —r8

which makes 8 = 4s (s+a;)3— {(1 + a:) (s + a;)— ;u]J

where U2 = 4(4»-3)(a-J + H i — 1) '

VOL. xxix.—NO. 650. 2 u
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and therefore leads to the equation for x,

64

of which the positive value makes Q' negative, and must therefore
be rejected.

Taking, then, a+3 = 165~f/(65), (165)
o4

Q , _ 5 A / ( 6 5 ) + 27

2 —

t =

1
VQ

7/5

tan I

/ 3

4 / 3

32
(7/5+3/(13)j

(167)

Q68)and, now, with , ( )
2

the equation of the catenary can be written in either of the forms

(tan0)* sin|^ = (tan0 + g) ,/{\ tan'0—^(l-aj)} tan*0

-^g'tane+iaig8}, (169)

(tan0)*cos# = (tan^-g) </{\ tan8^+i Q--x)q t&tfO

-lxq*}. (170)

So also the equation of the algebraical catenary on the paraboloid
may be written

(sin w)* sin ~\j/ = (sinw + g) y/{\ sin'w—q sin9w+49* 6^n w~?28)»
(171)

(bin «)* cos §^ = (sinw —g) \/(£ sin8w + g sin'w + fg9 sin w + fg8),

(172)

where a = = 0*4714.
g y ( 4 6^

These two catenaries are represented in the annexed stereoscopic
diagrams, drawn by Mr. T. I. Dewar.
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16. With a parameter v = |ws, (173)

the associated pseudo-elliptic integral (L.M.S., xxvi, p. 225)

| f >/£, &c, (174)

in which # = 2(1—JS)8, t /=z( l—2) , (175)

and, again putting s+x = t*, the result can be expressed by

I(v)= ^^.^-t-l
Tsin

(176)
and, to obtain the corresponding catenaries, we put

t=VQ sine) or VQ'tand, (177)

and determine Q from the condition that S assumes the form

M r*(Br'-Cy-E _
M(?~^y~ov (l=7ji- ( 1 7 b )

To make the catenary on the paraboloid algebraical, put

5 - * - * ' = 0, . = - ' * ; * * » • (179)

But, to obtain an algebraical whirling spherical catenary, put

and now it will be found that

J52 = 4 (l-8z + 5z*+f) (5-192 +11^-9^

2JBC = -8(5-z-!r)(2-3z){l-8z + 5zi + zs) L (181)

0s = (5-«-r)2(l-172 + ll22) J

thus leading to the equation

4s{2-3z)2(l-8z-\-5z'i + za)-(l-l7z+llz'i)(5-ldz + nzi-9zs) = 0

or (5z-l)(27;s4-232s-2633 + 17;s-ll) = 0. (182)

The value z = % makes Q' negative ; of the other four roots
11-376, - 1 0 3 , and 0"253±0-464t\ (183)

the negative root will make Q' positive, and give a real case.
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The Trajectory of a Particle sliding on a smooth Paraboloid.

17. The path of a particle on a smooth paraboloid whose axis is
vertical is of a similar analytical character to the catenary curve.
(Ziige, Grunert's Archiv, 70, 1884.)

The equations for the conservation of momentum and energy are

with

Thence

or

r2 = 4az,

dt V
a dz
7 «

(3)

(5)

-r— =

dtr z + a

S

z+a

putting H* = 2gak* and 4az —• = fl"= A/(2^ofc*),

so that, dividing (8) by (6),

dz A/H.

(8)

— i_A_ g + a

where Z = (s+a) {4a (z~h)-k*}.

Putting ^ = 2an\

(9)

(10)

(U)

so that the time is given by Legendre's E<p and F<(>.
Taking ra as independent variable,

where B = (r» + 4aa) {r8 (rJ~4afc) -4a8Jk2}, (14)

so that the projection of the catenary is of herpolhode character.
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(i.) When the vertex of the paraboloid is upwards,

Z=(z + a) {4z(z-K)-V}

= 4 (•-*)<•-*)(•--•,), (15)

where zx = \K+\ V(h* + A;4), (16)

zt = \h—f <v/(&s + &2)> or —a, a negative quantity, (17)

zs = - a , or ^h-^V^ + k') ; (18)

so that co>z>zl>0>zi>zt> —oo,

and, putting
then

Then

z = M* (js—a) — pti—pv,

u ^̂  P^n

ith of the particle, while

z+a = If2 («—s3) or .flf9 (s—s2),

a = M2 («r—s8) or M* (<r—s2),

fe =3f 2 ( s , +s2)S-2<r),
1 I « \ 1/2 /•„ o \

fcya = iHV(-S),
7c _ M A/ (—2)

^ Jj •— x«X \^ O«

ds = Jf2rf«,

(19)
(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

and, introducing these substitutions into (9),

J v Z

v\zi—H)
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in which sin8* = ^=^-1, &c, (32)
z—z.2

and now, in (12),

ndt = ., 2'" dz

r V W~Vcos

so that (Legendre, i, p. 257)

nt = —) ^(t

or V ^ ' + ^ ^ t a n ^ A ^ + K-'3^-^). (34)

18. As the secular term cannot be cancelled, it will be sufficient
to consider the single special case of a parameter

V — to. 4-TrWo I ( 3 5 }

and now, with z + a = M3(s — s3), z = IP (s—<r), (36)

we shall find (L.M.8., xxv, p. 212)

J = ^ c o s ~ ss^sin'1—^ , (37)
z z

with A;2 = 4ah = - ^ L , (38)
c + c

n i / / m i 7\ ^ ft /orw

û zi = piv(fftT.wi) ^ — or — . \dv)

c 1+c
Differentiating (37), — = Jl

dz

^ (42)
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a \—K

z z — awith sin^ = ^ = i - = --IL-, &c, (43)

1+c

so that the equation of the trajectory is

Expressed in terms of r2, this may be written in either
of the forms

r2 cos {2f- (1 - K ) F?} = V {4ah (r2 + 4a2) }, (45)

r2sin {2xp-(\-K)

a
3(l-,)}] ; (46)

and, while r2 ranges from 4<r to infinity, the angle \f/ increases

from zero to

{ P + 1 } - ( 4 7 >
With the same parameter, but with

z + a = M* (s-s2) = ilf2 (s-c8), (48)

z - M2 (s-o-) = Jlf * (« -c -c 8 ) , (49)

a = Jf 2o, (50)

h = Zl+zs =J f 2 ( l -c 2 ) , (51)

), (52)

(53)
c

s2=:-.af2c = - a , (54)

fb = -M* (c + c*) = - a (1 + c), (55)

= f sin"1

z

and, by differentiation, we find

dJ __ d$f l + 2 c \/a

, , /a V{,+a(l + ,)} . _
= \ cos*1

 A / s 1 il t (56)
\ c z

2v/c
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To reduce the secular term to Legendre's standard form, put

l + c l + 2c
z—a a

. o c *^ c A j . l + 2c z+a(li + c)Bm<t>=-r+ir> C08^ = ^ T ^ - ' ^ ^ o + S 5 z+a '
(58)

•j ,-. 2-He vadz l + 2 c d<b i /-i i \ d<t> /Kn\

and then - ^ r — — = ^-^ ^ = \ (1+K) -X, (59)
so that ^ i ( l + K ) ^ = isin-' A*-*-*-**), &c., (60)

2

and the equation of the projection of the catenary may be written,
as before:

r'sin { 2 * - ( 1 + K ) F*} = J [ (r3-^*) (f*+4a«) ] , (61)

r"co3 {2^(1 + ̂ ^ } = ^ ^ + ^ ) , (62)

and, while r ranges from 2a/V* to infinity, îr increases from zero to

(63)

Thus, for instance, with c = 1, h = 0, & = 4a, K = | = sin 30°.

19. To find the pressure on the surface, we notice that the cosine
of the angle between the normal and the axis of the paraboloid is

(64)

so that, denoting the pressure between the particle and the outside
surface by B in dynes, the mass of the particle by m in grammes,
and resolving vertically,

d?z , -n II a \ (65)

•o i. • dz* o Z* — hz — \k% ,Ra\

But, since —% — 2g •—*—, (66)
at z+a
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so that BA!( -±-\ = mg a* + °ft-?fci (68)

Then, if ai+ah = $ki, zi = zi = -a, (70)

B = 0, (71)

and the particle moves freely in space in a parabolic trajectory.
But, in this case, equation (9) reduces to

and integrating,
^ = 0 0 8 - ' 5 - ^ - = cos-1 A , (73)

2 /(O2) rr
or r cos *]/ = A;, (74)

so that the projection of the path on a horizontal plane is a straight
line, a verification.

20. When the vertex of the paraboloid is downwards, the particle

must now move on the interior of the surface, and

Z = (z+a) {— 4tt(z—h)—A;8]

= —4 (z—zj (z—za) (z—zX (75)

where ^ = — a, (76)
„ ij, i //is iz\ (771

IT. i 1 / / i2 7ll\ /TQ\

and o o > « 8 > 2 > « j > 0 , > 2 i > —oo,

so that the parameter v = o>j +/o)8, (79)

and we put « = If8(<r—«) = pv—pu, (80)

js + a = M* (s.-s), (81)

a = 3fs(s,—<r), (82)

Za+Zf — ft =! JM (^(T —5j —Sj^, W " /

S58—«9 = s/Q£—A;s) = M 2 ( s a —s8), ( 84 )
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V(-2), (85)

4- = *f y ( ~ S ) , (86)
/ a sl — (r
dz 1 ds

= %k I —
J. zJ{aand now ^ %
J. zJ{aL)

—z\)
(88)

in which sinsV» = 3C=£, cos> = 5 = ^ , A2</. = ^±5 . , (89)
23 — ^3 2* — %i zi~zl

and now the pseu do-elliptic cases can be written down as before.
In the expression of the time

-
 ( 9 0>

When h = &, the particle describes a horizontal circle, at a height

H = \ \ (91)

and, if T denotes the time of a small oscillation,

(92)

so that the oscillations synchronize with a simple pendulum of length

2a + 2zs=GT, (93)

PO and P £ being the normal and tangent drawn from a point on
the circle to meet the axis.
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21. Thus, with the parameter

« = o)1 + |ws, (94)

we put 2 = M2(c + cs-s), (95)

• • } . (96)

(97)

= - a , (98)

z% = M'c = a j i - , (99)

= ac, (100)

K = zt+zt = M* (%:+<?), (101)

;s) = zs-sa = ifV, (102)

^ = 2 " ^ - , (103)
a 1+c v '

* 4c2 (104)
a* 1 + c'

Then J = k cos'1 y ( g ~ z > ' g ~ ^ = \ sin'1

a ' 2 ^ ^ ^ ^ - ^ (105)

and, by differentiation,

^ _ i l+_2c_ s/a lh z + a

so that t ^ ^ ^

[*> ,/adz

1-
To reduce the secular term to Legendre's standard form, put

ac—z=- asm8*, z— « = - acos3^, z + a = a( l + c)aA2d»,
1 + c 1 + c 1 + c

(108)

and then \ - i ± ^ 4 # = - } *±% -* = -\ (1 +«) *.. (109)
so that i/f = |(1+*)•*¥ + 1 , (110)
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and the equation of the trajectory may be written

r'cos {2^-( l + K)2ty} = y(r2 + 4a'.r2-4Kas) (111)

or r'sin {2«Jr-(l+ *)*>} = 2a

(112)

Thus, as r diminishes from 2a. l( ~— j to 2a JK, the angle ¥ in-

creases by

We can make the apsidal angle ^ very nearly \te or 144°, by
trial and error, by taking, as in Fig. 1, p. 599,

#c = 0-77384 = sin 50° 42',

and Ii.= y/K = 0-8796, £• = ./(-JL_\ — 1849. (114)
la za \ \1-KI

We thus obtain a trajectory which very nearly closes upon itself.
The pressure B is again obtained by resolving in the vertical

direction «_

so that A«°+afe + iA;
> (117)

wflr y a (z + a)*
so that 22 does not change sign.

The Catenary on a Vertical Cone.

22. Taking the semi-vertical angle of the cone as a, then, along a
generator, " a J = 2 t a n a , (1)

and the general equation (5), in § 1, for the curve formed by a chain
wrapped on a vertical cone of revolution becomes

d^ A sec a
dz ~

or sin a ̂ ! = , (2)
dz y ^ i h y k * } K J

on putting A = fc'tana. (3)
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If r, 6 denote the polar coordinates when the surface of the cone
is developed into a plane, we can put

if/ sin o = 8 and r cos 0 = 2, (4)

so that f = f
 h% - = * (5)

involving only one parameter b/a; and

b = k sec a, 2a = h sec a, (6)

R = r*(r- 2a)2 - b* = (r8 - 2ar + 6s) (r*-2ar- 6s). (7)

This proves that in. the developed catenary (Routh, Analytical
Statics, 1, p. 361)

(8)

where p denotes the perpendicular from the origin on the tangent,
and a, fi are constants; for, 0 denoting the radial angle,

^ h- , (9)
2 a ) 8 6 4 } k '

(10)

dr y

s in0= h

r (r— 2a)

) (U)

6
and ^ = r s i n 0 = — 7̂~» (12)

r—2a K '

p(r-2a) = b\ (13)

Thus h = 0, or a = 0, gives

p- = is, (14)
a rectangular hyperbola.

23. Put r-a — x) (15)

where X = (a8—af + ftl)(aj'-os-64)- (17)

We can now employ the Jacobian notation.
When a2—!)2 is positive, = ft3, suppose, and

then Ar = a;8-o3. a*-(3*. (18)
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On the open branch of the curve we put

x = -5_ f (19)
sn u

and on the closed branch x = fi snw, (20)

with e = —, (21)

so that increasing u by 2K'i changes from the closed to the open
branch of the curve.

We put a = /3 sn v, (22)

and then en v = -=-, dn v = —, (23)
P a

and v = K+fK'i; (24)

so that we can write equation (16)

n [ Vxdx f atfdx

ien v dn v

= ^ " ' x / l ^ ^ ^ 8 ) + f sn'J-sn'u Jtt> (25)

Y \ *v tv / J Oil U^^ Oil tv

involving a Jacobian Elliptic Integral of the Third Kind, in a
etandai'd form.

24. It follows, from the preceding relations (23), that

sn*( l - / )2n = - l ; (26)

and, to the complementary modulus K\

so that, in the pseudo-elliptic applications the results are restricted
to special numerical cases.

In equation (25),

1l-r(r —2a)

= h ( i * -
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from (10), § 22, .so that (25) may be written
. en v dnv

^ - 1 ^ = (_, ^-V-A,. (29)
J six* v —sir n

Thus in the rectangular hyperbola

6 = \*-\*. (30)

24. Also, if s denotes the length of the arc

ds' _ ds v^dty _ z—h r%A sec a
dz rd\j/ dz A z tan2 a \/ Z

_ z (z—h) sec a
7Z '

ds' r(r-2a)
7 " /i? ' ( 3 2 )

dr V.B
ds' a;2 —a2 f<W\
d# -v/A'

so that s' is given by Elliptic Integrals of the First and Secoud Kind.

25. Denoting by a' the value of s corresponding to

n=(l-f)K'i, (34)

then sn2 (1 - / ) K'i = V~ l s , (35)
a —$£

so that, from (26), h~h — *s—«*'• (36)
Thus, for / = | ,

so that c = oo, 6 = 0, (3S)

which must be x'ejected, as repi'esenting a plane curve, a straight
line along a generator.

If / = -l- a = 0

so that l - 2 c 9 = 0 , c = f y 2 = 0-707, (40)

which must be rejected, as greater than 0'5.

If / = f , «T' = - 2 C + IV, (41)

leading to 2c9—4c+ 1 = 0,

0 = 1-1^/2=0-293; (42)
VOL. xxix.—NO. 651. 2 s
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£1 _ « _ «t-«8 _ ( A / 2 - 1 ) 2 _ 4 A / 2 - 5 _ a*-&8

a2 " « , - » , " 2 ^ 2 - 1 7 ? + y '

and the curve consists of a single open branch.

To reduce the integral to the standard form, we put

12—4-v /2 //4/1N

* = T , (44)

£ = 2 (A/2-1), (45)

4 , (46)
a

£ = ( A/2-1)8. (47)

The equation of the catenary can now be written

J ^ (48)

where 1 = icos-» t a

(a;J-a2)*

= x sin- ̂ 2«^{^-(2^8-l)^} ( 4 9 )

and \ A/2 ^ ± . = ± A/2 — F<(>, (50)

where sin <j> = — in the limited branch,

sin d> = — in the unlimited branches.
x

26. When a 2 -6 2 is negative, = - / 3 2 , and a*+ 6* = a2,

and we put x = — , K = f fl, , (52)
cnu v/(

so that

and then

cnw = —,
a;

w = pK,

811 V a2

a
cn« = —,

a

, dn2 v = a2

2a2'

(53)

(54)

(55)
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so that cn2u-2dn2u = 0,

cnf ( l - /Uf , « ' } = - - .

Then, from (25),

a _ (* tfxdx f _ atfdx
~ J (tf-a?) VX ] (a»^)VX

627

(56)

(57)

= 8in-i /(i*—*) ahi

\ \2 x*-u?) aV(a2+/32)
i sn i-dnt) f dn

du

(58)

depending upon a Jacobian elliptic integral, in a standard form.

To change from the Jacobian form to that given in (A), §3, we put

a2—62 positive

a; = m (s—s3)
o n * / \

a,1"—a = m (s—«j)

re2—a2 = m2(s—<r)

so tha t

a2 = m2(sl—s3)

Now

and

as—b2 negative

re2 = m2(s—52)

a;2 — a2 =

x2—a? = m2(s—<

(t2 = W2(5t—

L (59)

ds

so that g = i 7 r - i

and, therefore, from (A), §3,

(60)

(61)

(62)

(63)

(64)
2 s 2
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27. Try

with

then (L.M.S.,

giving c = oo

But, with

and

. Grreenhill on the Catenary,andTrajadory,

« = «i+K

» = *(«,+*);
xxv, p. 212)

c4-cs = i ( l + c)2 + |cs,

, which must be rejected.

<7=±(S l + S3),

c4-c2 = | ( l4-c)3 ,

C = = 1 , K = • £ ,

a2 9 — s
1 2 O 2 Q / 8 Q %

]32 sa~s3~ ~ ~
V = 2a2,

[March 12,

(65)

(66)

(67)

C68)

(69)

(.70)

(71)

(72)

and we find that J = | sin"' ^UL«:£lJ±i

" / / " ' ^ , (73)

with

Try

with

then (L.M.S., xxv, p.

of which the root

P = 1, m = a, in (64).

218)
2c (1 - c)2 = £ (1 - 2c 4- 2c2),

(2c-l)(2c2-4c4-l) =0 ,

C = 1_IV2 = 0293

must be taken, as before, in (42), § 25.

With

we have

of which the root

makes

With

we take (L.M.8., xxv

» = *(«, + *.),
(c-l)2(c2-4c4-l) = 0 ,

c = 2-v /3

*r = sin 15°.

, P- 226)

(74)
(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)
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~~ ^ i , (87)

reducing to (2z-l)(4s3--2s-l) = 0, (88)

so that « = TI -s in 18°, sin .54°. (89)

The root z = — sin 18° makes

l-8z+8za = 2+N/5, (90)

and must therefore be chosen.

Having determined in this manner the numerical value of the
modulus, &c, the corresponding value of I as a function of as is

f dxcalculated, and the secular term I —— is reduced to Legendre's form
J V A

F<(> by the appropriate substitutions ; so that the equation of the
catenary is expressed in functions which have been tabulated
numerically.

28. Although the theory of the catenary on a cone is now
analytically complete, still we shall find it more convenient, because
of the occurrence of the term £ (£w—<p), to adopt another mode of
reduction of the integral, equivalent to Landen's quadric transforma-
tion performed on the first substitution.

Suppose 12 then to be resolved into linear factors, so that

E = r—ro.r—rs.r—ri.r—ru (1)

where co>r>r0>2a>r3>r>r3>0>rl>r> — oo. (2)

To agree with the notation employed in the Applications of Elliptic
Functions, p. 154, we replace r0, r8, rg, r, by a, /?, y, § • and put

pu-e, = Ms (•-,,) = | (a-j3) («-y) T— , (3)
r ar—a

ypu-e, = H* (»-«,) = i (a-3)(a-/3) — y, (4)
»• —a

? - ^ , (5)
v — a

|—^s a — y . ^ -
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We can put a = 1, without loss of generality; also we put

o* = l-e!, (8)

B = r«(r-2)1-l+e», (9)

so that . « , , = 1 + ̂ ( 1 + 2 ) + ^ ( i | « ) 1 (10)

and a -y=/?-S , a-/3 = y-3, '«'=?-=•£; (14)
a-y

and this makes K> = — , K* = ^—^. (15)
1 + e 1+e

But, denoting by A, X' the moduli introduced in the original sub-
stitution in § 23,

as in one of Landen's transformations.

The elliptic argument

and, in the region of the limited branch of the catenary

ri>r>ri, (19)

&c- ( 2 0 )

or sin'0 = ^ - ; - ) — y, A c ; (21)
p—y.r—o
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while, in the two regions oo>r>r0 and r , > r > — oo, (22)

*0-' ( 2 3 )

sh,' , = £=jLl=!» Ac. (24)
a — o . r — p

Calculating the invariants </2 and gs of the quartic R in (9), then

302=l+3e8, (25)

27«/8=l-9e!1, (26)

so that the discriminating cubic

4a*-gix-gi = 0 (27)

breaks up into the factors

(a-i){(2.«+±)3-e2} = 0, (28)

and thus, arranged in descending order,

«i = i. «i = - * + i e , ^, = - i - | e . (29)
Calculating the Hessian fl of the quartic B,

H=-$R-a-e2Kr-l)\ (30)
and, employing Hermite's formula,

(t^)V ( 3 2 )

Since r = oo, and r = 1, make

p2tt-e, = 0; (33)
it follows that, if wx and wt denote the corresponding arguments,

wx = }tov w% = Ws+J-wj. (34)

Thus, if A denotes the sectorial area of the developed catenary,

dA = tfM = lh*T^ (35)

BO that A is always given by a pseudo-elliptic integral of the third
kind; in fact .

A = ±b* dh-> SM±%-?1) _ | & 3 W j ( 3 6 )

^ - ! ^ (37>
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for the limited branch; but

^ = } 6 , c h - - y y - 2 r + f ) + , f c 8 M | ( 8 8 )

for the unlimited branches ; both forms being included in

4 = ^ sir1 .^=F|6S«. (40)

If t',, V} denote the elliptic arguments corresponding to r = 0 and
r = 2 ' t h e n „*, = , * = - » , (41)
so that we may .put

«i = <"1+/a»3, v2 =/w3, (42)

/ denoting a fraction ; also

zp2vx = -:p'2Vi = y{l-e2) = 6s. (43)

Also p"2t', = 6p2—|J72

= !-*«•, (44)
so that, from the formula

(^)\ (45)

Thus, for instance, with
Vl = Wl + iW8, (47)

4v1 = 4a»1 + ws, (48)

p4t;1 = e 8 = - i - | e > (49)

leading to the equation

(e9-l)8 + 8(e + 2)(es-l) + 16 = 0 (50)

or (e9 + 4e-l)2=:0, (51)

6 = ^ 5 - 2 , (52)

6« = 4 ( N / 5 - 2 ) . (53)

The other root e = - V5-2 (54)

would correspond to the case when B has four imaginary roots.
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Making use of Weierstrass's formula,

/ . \ 4—b* =F &4

= T2+ie 2 o r i ; (55)
agreeing in making vl—vi=w1, (56)

and putting Vj + v2 = u, (57)

then 12pu = l + 3e2, (58)

while 12^2 = 4 +12e2

= 8 - 72e2

1728A = (12gi)*-(216g3y= 1728c2 (1-e2)2. (60)

Forming the invariants of the cubic S in (B), § 3, we can make

(61)

(62)

(L.M.S., XXVII, p. 129), so that, on comparison,

-M'Ky + iy + lx] = l + 3e2, (63)

-Jfte (y + 1) = i ( l - e
2 ) ( l + 3e2), (64)

16MV= (1-e2)3; (65)

and therefore, from (64) and (65),

and, from (63), 4M'x = - J ( 1 + - 3 f ) - 1 -3e 2

s=_(are8).Q±3^).,

= 7lT ..2\i/l~T~O~7\2> \0 { 3>
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_ _ (3 + e2)(l-18e2 + e4).
V 8 (1-e2)8 5

whence an equation for e2 can be formed, when we put Halphen's

7. = 0. (72)

29. If we turn to the values of Halphen's x and y in terms of a
and TO, as given in the L.M.8., xxvn, p. 449, we shall find that

(73)
4 (1-e2)'

(5-e*)(l+3e2) (U)

4(l-e2)(3 + e2)' V J

and thence 4a(o—w) = 1, (76)

a
a - m 4 (1-e 2 ) 2 '

_ (5 -e 2 ) ( l - f3e 2 )
m a 16(1-6*)'

2)4

256 (1-e2)1

(77)

256 (1-e2)0

and sy = su always.

Also, with s. = s2, sB = 5S,

(80)

(81)
256 (1-e2)10 '

Y (g2)
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Also K2 = s-^-» = — , (85)

«,-«, 1+c'

as before, thus serving as a verification.

Having fixed upon some pseudo-elliptic form of the integral I(v,)
in (A), we shall obtain an equation for e, giving it a certain
numerical value; and then we must express the variable s in terms
of r by means of the relations in (3), (4), (5) of § 28.

We can also employ the formula

pu = *JB>0) + l f ^ , (87)

where B (r) = r*-2»-8+r8 + 0 - 6 \ (88)

#( r )=4»*-6r l + 2r> (89)

R'(r) - 12r8-12r + 2, (90)

and now ptt-pu, = M*(jt—o) = | (2r?-3ro + l ) — ^ . (91)
r—r0

Another simple relation is

\/(.s1-si.sl—si) \ \fi — 8.y — &J r—r0 r—r0*

because a + $ = P + y, a-/3 = y-d, a - y = (3—8, (93)

and then ,/(«,-*• «i—Q = r ^ ^ ( 9 4 )

because «£«>, = «,+ v/fo —v *i—*8). (95)

Putting r = 0, u = vv s = <r,

^ 4 ^ = 1 - - ^ , (97)

so that ' " ^ = —, (98)
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The relation between the roots

V i + V s = ° (100)

thus leads to SJ^L— + ^a'8*~^x • = 0, (101)

an equation which may be employed to settle the numerical value of
a parameter.

From (8), (4), (5) of §28,

-p'u = MVS = £ fa—«V*o—Vo—rs) (t._r\«

(102)

and

therefore

Also j

so that

M*ds = iii

V8~

S—a

bUr
rVJt

s-sh

VR'
>' ( T> \ ^9

" V-̂ O/ T »

K

r0 y (_S) ds
r—rQ s — a Vb

^Wj—(T 6' — ff

s — a

(103)

(1 0 4)

(105)

= 21 (t P («t)

vs- (107)

(108)

and it is the coefficient of the secular term u which is apt to bo
very baffling ; so, to make sure of it in the applications, having con-
structed the pseudo-elliptic term !(#,) , a differentiation will be
employed for the verification.
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It will not be necessary, and it would occupy too much space, to go
through all the details by which / ( v j is converted from being a
function of s, as worked out in the paper on " Pseudo-Elliptic
Integrals," L.M.S., xxv, into a function of r, and in which r0, r,, ra, r8

have certain numerical values depending upon the solution of an
associated equation ; so now we proceed to the simplest cases.

Having drawn some branches of the curve on a sheet of paper, we
can bend the paper into a conical shape, and, as the vertical angle of
the cone is at our disposal, we can, if we like, choose it so as to make
the branches close and overlap each other, after an assigned number
of convolutions, and thus have a figure suitable for stei'eoscopic
representation.

The stereoscopic diagram on p. 638, drawn by Mr. Dewar, shows
the catenary on a cone given by eqnation (147) in § 30, when the
closed branch is made to have an apsidal angle of 180°, so as to
form a single loop.

30. With vx = Wi+^s, v2 = >>3, v = wx + wj,, (109)

pv = v or T\f + £ea = - i + i e , (110)

so that e = 1, 6 = 0, (111)

and the catenary degenerates into a generating line of the cone.

Next, with vi=w1 + ̂ wi, «8 = > 8 ) « = w1 + §w3, (112)

and p3v = elt (113)

so that [L.M.S., xxvn, (326), p. 450]

m = l , (114)

and therefore, from (74),

e4 + 22e2-7 = 0, (115)

e3 = 8 v / 2 - l l = (v /2 -1) 2 (2v"2- l ) , (116)

(117)

(118)

The c employed in L.M.S., xxv, p. 217, is now given by

i~4e~~c , (120)
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in which the negative sign must be taken; so that

2

In the catenary curve the corresponding value of I (vj for the
infinite branches is found to be given by

y(r—rn.r—i\.r—r8)

When r = co , ity = Hv,

and r = * s i n - 1

so that 9, the corresponding value of 8, is given by

with ro = l+>/(2v/2—1), (123)
r8 = ^2, (124)

rs = 2 - v'2, (125)

^ = 1 - 7 ( 2 ^ 2 - 1 ) . (126)

Differentiating, v/e find

so that $ = ^V2 [ ~~-2I

F4-2I. (128)

( 1 3 0 )

In the branch of the catenary extending from — oo to rv in which
r is negative, we must write
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In the closed branch of the catenary, we take

3C0S \J\~27r

leadingto £«-^2-^+if, (133)

and then 0 - 2 7 = | A/2 f - ^ , = |^/2%/(2-ic»)J?V

/(r-rr-rA, &c, (134)
—rs.r—r,

and, as r ranges from r3 to rs, the apsidal angle is given by

6 = f (1^2^(2-0 £ +l] . (135)

With the parameters

Vx = Wj + iwg, u = w^iwj , (136)

we have already shown that

b l - 4 ^ 5 - 8 , (138)

and now ic = | ( A/5 - 1 ) = sin 38° 10'. (139)

Now K = K/J, e = if'6; and we find that

ro = l+* ' + **, (140)

r3=\+K'-K'\ (141)

r2 = 1—«'+«'•, (142)

r, = l-K'-ic / 2 ; (143)
and it is also found that

I = I sin'1 ('• + l-**Y(r-yo-r-*l»)

loading, on differentiation, to

l h£ (145)
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so that, in the infinite branch from r0 to oo,

B 2(C

V-^.r—ro\ &c ^ ^

We can also write the relations

•»:')r + 2

(147)
In passing from r0 to co ,

( ^ ) <l48>

In the infinite branch from — co to r,, it is preferable to change
the sign of the r's, and to write

- > cos_ ? cos

leading, on differentiation,.to

so that 21-0 = ^
2«r

and, as r increases from r, to co, 41 increases from 0 to £JT, and F<ft
from 0 to |K, so that

K

A'OL. XXIX.—NO. 6 5 2 . 2 T
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In the limited branch, take

I - A sin"1 fr + i + ' W f r - r . - r - r i )i _ 4 s m - , __

- r - r « - r \ (153)

andthen g = - K d + O ^ + ̂ . (154)

so that 0-21 = ^

= lsn-./('-'-'--'-M,&c., (155)

or, as it may be written

^sin ('20-^) = 1 (r + l + O^r-^.r-r,)"]
I. (156)

r'cos (*B-&) = -L(r+l-.'8)y(r0-r.r8-r) J

As r grows from r2 to rs, the apsidal angle

e = — /— i i + l ) = - f x 2-8185. (157)
4 \ K -i-JT / 4

With 7,1==Wl+>8, t; = «,+!«„ (158)

p5w = e,, (159)

HO that, from (330), p. 450, L.M.S., xxvn,

(1 -2m) a = w? ( 1 -m) , (160)

and making use of the values of a and m in (73) and (74), § 29., and
putting e2 = c, there results the sextic equation

c9 + 194c5-745c4 + 6908c8+ 2015c2-4318c +41 = 0, (161)

requiring solution.

The corresponding form of I(vi) must be

T _ , • -i (Hr + II,) y(r-ro.r-r,.r-r*)
• ± -6- BUI ;

= J c o s -
V*

in which the determination of the ff's and K'B will give some
trouble.
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If we try vx = Wi + iws> v = w,-f^w3, (163)

then pSv = e2; (164)

and, from (326), p. 450, L.M.S., xxvri,

(1—m)2 o /iaz\

a—TO

leading to the equation
(e_l)(e<_8e

8_18e!!-24e + l)2 = 0. (166)

The corresponding I(vx) must be of the form

r _ x „:„-. (gr2 + g,r-I-g2) y ( r - r 0 . r - r , . )
•i — -e s m ŝ

= j ooa"

The parameters u1 = w1 + -fw8, v = w, +fw8 (168)

make s (7«) = «„ (169)

so that, from (332), p. 450, L.M.S., xxvn,

( l -2m) s a 8 -m(l -m)( l -27) t ) (2-3m)a + m*(l-m)4 = 0, (170)

giving an equation for e2; and now

J = | sin'1 (

and so on, for higher values ; but the complexity, as is seen, increases
very rapidly.

31. If &>1, two roots of B are imaginary; we must now replace
e2 by — e2, and e by ie in the preceding, and put

= r 2 ( r -2) 2 -6 4 , (172)

and r o = l + y(62 + l), (173)

(174)

(175)

(176)
2 T 2
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Also e, = | , *,, e8 = — £ =b Ate, (177)

( 1 7 8 )

where tans-U = ̂ =^2, (180)

cos t = r " ~ r ' . (181)
2r - r o - r ,

These catenaries are not so interesting to draw, as the limited
branch is absent; but a few specimens are added here.

Thus, for instance, for a parameter

vx = K (182)
we have, changing the sign of y2 in (116), § 30,

b2 = 2^2 + 2, (183)

«2 = H 3 - y 2 ) , K" = A(y2 + l), (184)

9-0 = 2+^2 , r 1 = : - y 2 , (185)

and we must take

(186)

for, differentiating, A± = - ,)V2 4 s + i f, (187)
ar ^io dr

so that 0 - 2J = A ̂ 2 f 4?7, = i 72 v'(± - .-s) F0. (188)

Witli a parameter v, = jo>2, (189)

we shall find that 62 = 2, (190)

K
? = i , * = i = sin 30° ; (191)

and 1=1 sin-^l!^!^)
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£ ^ * i - ( 1 9 3 >
BO that 0-21 = if JL=lF9i (194)

and this can be replaced by

</(r*-2r-2), (195)

- 2 r + 2), (196)

giving the development of a catenary on a cone, consisting of two
sets of separate infinite branches.

Again, with v = § wj,

V V ^ , 097)

dl_ 1 J 2 _ _ 1 _

so that, taking b2 = —rr, (199)

we can make ^-|-I=JL. _ ^ = J _ ^ _ 5 (200)

and K2 = i ( l - i y 3 ) , K = sinl5°. (201)

Whirling Catenary on a Cone.

32. If the cone is made to rotate about its axis with sufficient
angular velocity to make gravity insensible compared with the
centrifugal force, the differential equation of the catenary becomes
changed into ^ JS

where B = 4»-2 ( r2 - a2)2 - b\ (2)

giving the relation between 0 and r in the plane development of the
catenary.
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Now r ^ = tan0 = - ^ - , (3)
dr vJ£

( 4 )

so-that jp(r2-aa) =ifc8 (5)

in-the plane development.

This gives, as a particular case, when the cone itself is a plane,
the catenary formed on a whirling horizontal table, or the catenary
under a central force varying as the distance.

To reduce the relation (1) to the standard form of (A), put

2/4-1=0, (6)

i* = IPs, (7)

(8)

&c,

and the analytical development is practically the same as that which
follows for the trajectory of a particle on a smooth vertical cone.

The Trajectory of a Particle on a Cone.

33. The path of a particle on a smooth vertical cone (which can be
imitated by rolling a coin inside a conical cardboard lamp-shade, or
by the path of a bicycle on the banked conical turnings of a racing
track) is given by

*•#=*, (1)

= 2<7COta (#~a) , (2)

sec2 a— = 20cota(a~a.) r , (3)
(tt Q>

. , . . 2 « * # JET1

so- that sin' a -—— = — —^——

It9

o ) a j 8 A ! « > K '

on. putting H2 = %gk* cot a ;
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rdO _ 6 * J 5 r .
°V dr

in the developed curve, where

2i! = 4(r~a)r2- i 8 . (6)

Then s i n v ,= &! (7)

6'so that p = r sin p = — , (8)

or p2(r~a) = b3, (9)

is the curve which is the development of the path of the particle on
the cone.

Since p has no stationary values, this curve has no points of
inflexion ; but the projection on a horizontal plane of the trajectory
on the cone can have points of inflexion.

In particular, if a = 0, the curve becomes

•2r*cos|tf = b*f (10)

a central orbit described under a constant central force.

The arc s is given by

an integral similar to those occurring with the paraboloid.
If the developed curve is described as a central orbit, with

velocity v,

and the central force, given by d\v*/dr, is constant.
So also, if the developed catenary on the cone is treated as a plane

catenary under a central force at the origin, and if T denotes the
tension

r = ^ = £(r-2a), (13)
p b-

and the central force, given by dT/dr, is also constant.

But, if this catenary is described as a central orbit, the force varies
as r—2a; and, if a = 0, we obtain the rectangular hyperbola, as
before.
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With a central force (realisable with an elastic thread)

P = ar+b, (14)

(15)

so that -• ^ = (lr* + 2brs + cr + O-h\ (17)

r dv~

Or, more generally, with (Legendre, F.E.I.} p. 557)

(18)

^ £ -ar-h? - B, (19)

suppose ; or, with r = l/«,

^ CT, (20)

suppose; so that 6 = f ̂ ^ , (21)

a form which can be compared immediately with Abel's results.

Generally, if the trajectory on the cone is described under a
central force P, acting through the vertex of the cone, we find that

(22)

where 2F=/t8sin2a, (23)

so that P is the same as for the plane development of the trajectory,
described as a central orbit, and this explains why the developed
curve is described as a central orbit under a constant central force.

Again, for instance, the equation of the development of a plane
section of the eight circular cone being of the form

— = l + ecosA;0, (24)
r

the central force P = Ar^-^Br^. (25)
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34. Comparing equation (5) with the standard form in (A), we
must take y + 1 = 0 ; (26)

or, employing the forms given on p. 449, L.M.S., xxvn,

( 2 a - l ) - ^ - , (27)

so that either m = 0, which must be rejected, or

a=i; (28)

and this makes % — — -, •-- vo, (29)
(1 — 2m)2

m (30)

_ m*(3-2m) , 3 1 )

(32)

2 — sr~sf> — 3 — 4??z, + y / (8m—3)
""*.-«/»" ~ 27(8m-3)

y/(8m—3)

- 3 ) } , (34)

-3 )} . (35)

When 8m—3 is positive, the parameter

v = wj+/w8, (36)

and there are three cases to distinguish :

(i.) When 1// is an odd integer,

(37)

sr-s (v) = = -——-, (40)

a—m 1 —2m

and this must be negative; so that

(41)
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(ii.) When 1// is an even integer,

«.>»,>»* (42)

K2 = s(>~sy = 4m—3—y(8m—3) , ^
sa—sy 4m—3+y(8m —3)'

-* _ 8.-8, 2y(8m-3) ,44x
" " ~~* A ' J i / / O O\ ' ^ '

£ o — 5 y 4*W7» — O -j~ \/ [O17I — O)

and sy—s (v) is negative; so that

m>f (45)

(iii.) When 1// is half an odd integer,

sy>s.>sfi,

—3)

and sy—s (v) is positive, so that

i>w>f . (48)
When 8m—3 is negative, the parameter

«=/««', (49)

and K\ K'> = | { I T V-H' -+O | (50)

In the upper limited branch of the trajectory, described by the
particle sliding on the inside of the upper sheet of the cone, take

= 4(r, —r.r2—r.r8—r),
oo>r8>r>r2>0>r1>—c».

Writing <r for 8 (v), then, we put

r = -Mi(s+^ = iP(tT-8),

a—r = ilf2*,

B = Jlfflf.

(52)

I (53)

(54)

(55)

(56)
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(57)

(58)

(59)

( 6 0 )

and now the standard integral (A)

dr

and (Legendre, Fonctions ElUptiques, r, p. 256)

a0 zv0 K sin 0 cos 0

and F0 = dn"1 ^/ (^^), (62)

K2==?iZ^i} (63)

so that Afy = ^iUli, (64)
?• —rx

sin" ̂  = J -1. 3. (65)

35. Also, for the time integral,
j 2

r 2 | j = k«osa7i5, (66)

or, putting ĝr cos a = oa,*2,
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The expression for the time is simpler if reckoned from the upper
limit of the trajectory ; and now

= ±PM--/*---\B, (68)

where F+ = sn"' / ( ^ 8 - r ) = en" J ^ A = dn'\ IIr^Zll

(69)

If rs = r8, as in steady motion in a horizontal circle, then

'rl = = Ir3>

a n d K = 0 , F<f> = E<i> = <{>;

so that n« = .. r s 0 . , (71)
-/(»-»-»-»-i)

and the small oscillations synchronize with a simple pendulum of
length I, such that

n j l - <
Y

or Z = X ri =2seca- lL- = f OQ, (72)
w* a(r8-r,) rj,-?^

if the normal to the cone meets the axis in G.

But, if the particle describes the same circle, suspended from 0, as
a conical or spherical pendulum, then it will be found that the
small oscillations synchronize with a pendulum of length

Qg (73)
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36. In the unlimited branch of the trajectory, described by the
particle sliding on the outside of the lower sheet of the cone, it is
convenient to change the sign of r, rv rs, r8, and to make

= 4.r-r,.r—rs.r-r8, (74)

oo>r>r,>0>rs>r8>—oo. (75)

We now put r = M3 (s + x) = M2 («-<r), (76)

r + a^lPs, ** (77)

B = M°S, (78)

^ A (79)

and now I (v) = £ I —* —
J., s-o

v^> ( 8 0>
where

V yr—Tf/ y \r—raJ

(81)
and, in the expression for the time,

. [r rdr

W £ r > + ( r i - r i ) 6 e ^ } ^ ' (82)

in which (Legendre)

f secs $ Q = tan $&<f> + K^F^-E^. (83)
Jo . A 9

We might also have started from r = oo, and then

but now the expression for the time will introduce an infinite con-
stant.
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We notice that, while r = 0 corresponds to the elliptic argument or
parameter u = v = WJ+ZWJ, the value of r = a in the upper branch,
or of r = — a in the lower branch, corresponds to the argument

u = 2v = 2/WJJ.

37. Suppose we begin by taking / = £; then 2v = w8, so that r=Fa
must be a factor of It, which requires 6 = 0; and the trajectory lies
in a vertical plane through the vertex.

Next take/ = | , when m = 1, . (85)

x = ~2, y = - l , M2 = |a, 68 = ia8, (86)

[L.Jf.S., xxvn, (364), p. 460] ; and, from (38) and (39), § 34,

(87)

In the upper limited branch of the trajectory,

r = ^ i (2-s ) , (88)

a-r — ias, (89)

(90)

- 1 ) a, (91)

and the corresponding pseudo-elliptic integral

so that

and the apsidal angle

i(M1) (95)
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Changing the sign of r in the open unlimited branch of the
trajectory on the lower half of the cone,

r = |o(«-2), (96)

%as, (97)

(98)

(99)

and now the corresponding

•* — ¥ B l n a

( 1 0 0 )

leading, on diffei'entiation, to

- _ 2 K i-27r

3t/5 3

so that fl = - = ^ + 2 J , (102)

F<f> = ai\-\l(^£), &c, (103)
V Xr—Ti/

and now the apsidal angle, in going from rx to infinity is given by

If

^ (104)

W i t h / = £ , and
t> = Wl + ±ws, (105)

the equation obtained from putting in (329) (L.M.S., xxvn, p. 450)
8y—st = 0 and a = i- gives

2»ts—4m+ 1 = 0 (10l»)

or m = l ± v / 2 (107)

of which the upper sign must be taken so as to make w>f in (45) ;
and then ; s ,

î . = -J- = 2-y2. (108)
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Now, in the upper limited branch of the trajectory,

B = 4 (a-r) r*-(2-y/2) a8

., . a ^2—l=fc-/(2'/2—1) /11AX

so that r8 = — , r,, r, = ^ ^ * a; (110)

and we shall find that the associated pseudo-elliptic integral is

= i sm

leading, on differentiation, to

—

Avhere sin"</> = r " ~ r , &c, (114)

and, on reduction,

so that 8 - mF<j>-2I, (116)

where m = i { l - ( v / 2 - l ) y ( 2 y 2 - l ) } , (117)

and the apsidal angle G = mK—\ir. (118)

In the lower unlimited branch, changing the sign of r, so that

Ii = 4 (r+a) rs - (2 - ^2) a8, (119)

, , , = ±^4=^^±la, n = -£. (120)
and we take
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= } Bin"1

leading, on differentiation, to

so that 0 = 2I-mF<f>, (123)

where sins£ = ^—^, &c, (124)

r-r%

and now the apsidal angle, in passing from r, to infinity, is given by

9 = f'jr-mK. (125)
38. The other value of vi,

• m = 2 - 1 ^ 2 , (126)

makes -^- = 2+^/2, (127)
a

and J? has now two imaginary roots, so that'the ti'ajectory consists
of a single infinite branch.

As another specimen of a trajectory of this character, we may take
the one based upon I(fwj), in which

x = y = - 1, (128)

so that $ = 4s (s-iy-1, (120)

as in the Transformation of the Eleventh Order (L.M.S., xxvu,
p. 424), and in Abel's (Euvres, in, p. 142.

We have now to put

a = M\ (132)

6s = a8, &c, (133)

in the pseudo-elliptic integral

icos '

VOL. xxix.—NO. 653. 2 u
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, , , T , .,27*+ ar—a% ,
so that I = 1 cos * '—; Ja

2r*

(134)

_ 8 • -. f a i n

2r*

r* + 2a*r + 2ar* + a*

=2I-|P ^ ' \ (137)

2r

= | cos" • ̂ ^ » v w " J - ^ T ^ ; - ' * V ) (1 3 5 )

leading, on differentiation, to

so that $

To reduce this elliptic integral of the first kind to Legendre's
function /''<£, we must determine the real root of 11 = 0, or S — 0;
or else determine m from the cubic equation

2m3- (2m - I)8 = 0. (138)

39. If the particle, instead of moving freely under gravity on the
cone, is attached by a light thread to another particle, hanging
freely at the end of the thread, the thread passing through a smooth
hole at the vertex of the cone, there is no material change in the
analytical equations; so that the preceding equations can be applied
without essential modification. Thus, if the particles balance, the
trajectory on the cone develops into a Cotes's spiral.

The cone, for instance, can be replaced by a flat smooth horizontal
table, along which the particle is projected, attached to the second
particle by a thread passing through a hole in the table.

When the particle is replaced by a ball, spinning and rolling on
the cone, the- dynamical equations are of the same form (llouth,
liitjid Dynamics), but we have an additional constant at our disposal,
as the restriction of (20), § 34, is no longer required.

If the cone is made to rotate with constant angular velocity about
its axis, the function 11 rises from the third to the fourth degree, and
the differential equations are of the same form as those given in §33.

In a stereoscopic representation we sliould take a thalioey procession
of particles spaced at equal timeiutervals(IIadaniard, Liouvillc, 1897).
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The Geodesies on a Quadric of Revolution.*

40. These geodesies have been discussed recently by Prof.
Forsyth, in the Messenger of Mathematics, 1896; they are introduced
here as another illustration of the Elliptic Integral of the Third
Kind in the notation employed in this paper.

In the geodesic on the oblate spheroid, generated by the revolu-
tion about Oy of the ellipse

«d\b , , o \
or8 - p = A-, V)

as
or ds* = dx* + dy

2+xid+i=:-?j dif,2; (3)

and therefore, with y — — ̂ (ar—x1), (4)
a

^ ^ . ) ( £ ) (6)

Put X = 1H \S —a), ifi)

— 1» •—• 7 1 } " I <? —— tf I I M I

e'

a«-«» = i»8 (« , - * ) , (10)

so that «>.T>A;,

and *s>s>*a>*. (12)

Since s3—o is positive, the parameter v of the integral is a fraction
of the imaginary period, or

«=/«*. (13)

Then d\b = ^ — 7 v"//1—: ; ^s»
7)1 (S—O) o/KS^ — S.S — S3)

Lcgcndre, FonH'wm Elfiptii/itex, t. i, $ in, 360.

2 u 25
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and, putting x = 0, s = a,

—.—m*(Sl—<i), (15)

a1 = m* 0?j-<r), (16)

fc' = m ' ( s 8 -a ) , (17)

e' = ^ , (18)

«l_«9_^f8_f# (l9)

Then, with S = 4 (s-sJCs-^Cs-fi,), (20)

S = 4((r-j?1)(<r-s,)(<T-ss)> (21)

— »2

P (*-*)-y(-s)

(23)

But P or P (v) is connected with P (<«»i + v) by the relation

/L^2 (24)

so that \f/ = -y—^-J—* "̂  .FA—J(u), (25)

o _ o -r9 —X-* a9— r* / i»_ P V a

where sin © = = -;——, cos © = -5—-5, a <j> = -? — .
So—s, a —k a—«r a — e «

The first requirement of an algebraical geodesic is that

P(«,+A»,) = 0; (27)

but, as pointed out by Halphen (F.E., 11, p. 275), this relation
implies a negative discriminant for the cubic S and two imaginary
roots, which is excluded by the conditions of the problem; the same
applios to the geodesies on all the other quadric surfaces.
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We shall find that, in Glaisher's notation,

v\si 8s)

661

> »P(fab) - Z 8 / K ; & C , (28)
v\si—si)

41. On the prolate spheroid, generated by the revolution of the
ellipse about Ox, we find in a similar manner, from

and we put

Putting

and

so that
We now find

y + -Ti

y = 0 or s = a,

<r—s s .< r—.
m2b*

— a {a—

)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

with s i n ^ =

(42)

- e + e S 7 - . (43)
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42. In the geodesies on the hyperboloid of one sheet, generated
by the revolution about Oy of the hyperbola

^AvV-a'), (44)
a

jf=k, (45)
as

(46)

where X = a ' - a 2 . ^ - ~.x--h\ (47)
er

and the parameter v =/w3. (49)

When Jc1 < a3, the geodesic extends over the whole hyperboloid ; and

(i.) oo>x2>a2>4>*S> (50)
e

s>s, >s2>si>tr, (51)

and we put a2 = m2 (s—<r), (52)

(54)

(55)

nnd find, as before,

1 • n ft ^ ~ A<
>V I l " I c r> 111 u> ^— " T ~7jt

The condition

fui+0

h'

1-/)M,
-%)

a2

" e1

r2 a '

(56)

(57)

(58)

makes s2 = S3, K = 0, and gives the generating lines.

(ii.) oo>3 2 >a 2 >&>4- ; (59)

and s3, A;2 and — change places, and we find
0
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- ( 6 0 )

»4
where sin2 <j> = - , &c. (61)

(Hi.) » > i t 1 > t I > i . 1 > x , (62)

the geodesic extends from the circle of radius h to infinity, and

r.2 a2

re ^
where sin2 <j> = ^ , &c. (63)

43. On the hyperboloid of two sheets, generated by the revolution
of the hyperbola

(64)

about Ox, y 2 i = K (65)
as

,
leading to # = i— - J ^ y ^ . ^ V (66)

We take f = m2 (s-<r), (67)

jf-ft« = »»(.-»,), (68)

y -\~l> = ffi {s—S3), (*0)

and s> sl> <r>s3>S3, (71)

so that v = wj-f-/w3, (72)

and r ==
 Y — 7— V i- 'W» v'"y

siivd) = — -, cos2 (j> = '^ .-,, &2<p = ; ;—. (74)



664 Mr. A. G. Greenhillon the Catenary, and Trajectory, [March 12,

44. The parameter obtained by the bisection or trisection of a
period will serve as an illustration of the general theory; it was
employed in Mr. Dewar's stereoscopic diagrams given here.

For the oblate spheroid, and the parameter

v = > 8 , (75)

we shall find that the projection of the geodesic can be expressed by

(77)

where e=Kt _ £ = 1 ^ £ = _ L ; (78)
and now the apsidal angle

J ^ | (79)

By trial it will be found that

¥ = ^a-, when K = sin 58°, (80)

so that a closed geodesic can be constructed with these data.

With the parameter v = w, + |w3, (81)

we shall find that the equation of the geodesic on the prolate
spheroid may be written

' ( J Q (82)

bS(htf), (83)

b2 ft?
_ = _ = 1_K > j = K, (84)

with an apsidal angle

( f | (85)

By taking, as in § 21,

K = 0-77384 = sin 50° 42', (86)

we make ¥ = $7r,

and thus obtain a closed geodesic.
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On the hyperboloid of one sheet, with a parameter

« = *•* (87)

the geodesic is given by

(i.) « * a i n { 2 * - ( l + « ) ^ } = ^ ( a F - r f . « l - . £ ) , (88)

v/C*2-fc2). (89)

and e ' ^ 1 , 4 = T ^ . (90)

(ii.) aJ
asin{2^-(l + ic)2?'̂ } = ^ ' - a 2 . ^ - ^ ) , (91)

ic)^} = ay(l + * ) t / (* a -7 ) . (92)

= ^ = &c

(iii.) aj2sin{2^-(l + 0 ^ } = - / (* ' -a 1 -a 2 -

(93)

- ^ ) , (94)

On the hyperboloid of two sheets, with a parameter

we shall find that the geodesic is given by

(97)

= 61=5 v/^+fc2), (98)

^ = aa, e2 = —. (99)
ic

45. On the surface ** =o;a+2/2 = a8cha- , (100)
a

the modified catenoid, the geodesies are given by
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an equation of the same nature as that required for the geodesies on
the hyperboloid of one sheet, so that these geodesies are analytically
equivalent; this is obvious when we consider that the two surfaces
are deformable into each other, without stretching or tearing.

But the catenaries and trajectories are intractable.
Either of these surfaces can also be dsveloped into a skew helicoid,

so that the geodesies on this surface are of the same analytical charac-
ter, which, it may be remarked, is the same as that of Poinsdt's
herpolhode.

£46. Legendre points out that the integral required in the deter-
mination of 3>, the angle of the sector in the development of the
surface of the oblique cone on a circular base, is exactly the same as
that which gives the angle \p in the geodesic on a quadric surface of
revolution ; this is evident from the substitutions

s/ \ f9 sin9 oi /ino\
mr (8a —8 ) = 75 •'— , rr:, (102)

v s l tf + Crycosu/)1' v '
m9 (. -8i) = VH'-f™*), (103)

f • s in a)

in his integral for $ on p. 331, t. I, Fonctions EUiptiques.

Then, writing n for cos to,

o r 4/'(l

H'+r»-2r/,= +/'and with m9 (or-s) = ^ + / r y c y / ' (108>
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in which W + r*—2r/c + c2 is the squared radius vector, and fa+ (r—fc)2

is the squared perpendicular on the tangent of the development;
this makes f i / f _ s \ ,?»

<s> = \>SL-*1 * (HO)

or = *y(-s)f*-
fi2—<r J 8—< V8'

(111)

exactly as for the determination of \\r in the preceding geodesies.]

On a Regular Rectangular Configuration of Ten Lines. By F.
MORLEY. Received May 28th, 1898. Read June 9th, 1898.

1. The Construction.—I shall say that a straight line is normal to
another when they intersect and are perpendicular. Three lines in
space form three pairs, and each pair has a common normal. The
three lines, with the three normals, form a rectangular hexagon.
The three pairs of opposite sides of this hexagon give three more
lines—their common normals. It will be shown that these last three
have one common normal. Thus, if, starting with three lines, we keep
on constructing all possible common normals (excluding the common
normals of intersecting lines) we get only ten lines in all, forming a
regular configuration in the sense that each line has three normals.

2. The Points at Infinity.—Taking five points a, b, c, d, e in space
and cutting the ten lines such as ab and the ten planes such as abc
by an ai'bitx'ary plane, Ave get a well-known configuration (Fig. 1).

[Cf. Cayloy's Math. Papers, Vol. I., p. 318.]

a>a,

Ktf. 1.




