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X[. On the Convergencq of Fourier's Series. By W. WILLIA]~[S i 
B.Se., Royal College of Science, London*. 

I. 

T H E  convergency of Fourier's series is a subject which 
has been so tully investigated by eminent mathemati- 

cians that it is necessary to offer some apology/'or venturing 
to discuss it afresh. I t  is, however, a subject of such singular 
difiieulty,--a difficulty which has only been partially over- 
come,--and the investigations connected with it are so 
laborious and abstruse in character, that any simplification 
that may be effected in the method of attack is of value quite 
apart from any fresh light that may be thrown upon the con- 
vergency itself. The chief difficulty connected with the 
investigation is that of assigning the neeessa~'2 conditions to 
be fulfilled by the function which determines the coefficients 
of the series, and this difficulty arises from the highly general 
manner in which the term " f u n c t i o n "  is defined and employed 
in modern analysis. Of course, if we confine ourselves to 
the comparatively simple functions which occur in the prac- 
tical applications of the series, functions, for example, which 
are continuous and obey the laws of the differential calculus, 
much of this difficulty disappears. But  it is necessary that 
we should, in such a case, state clearly the limitation which 
we make, as otherwise our invesSgation partakes of a too 
general character, and proves too mud, For, as we shall 

* Communicated by the Author. 
Pldl. ~lag. S. 5. Vol. 42. No. 255. Aug. 1896. L 
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126 Mr. W. Williams on tl~e 

afterwards see, even when we limit ourselves to functions 
which are finite and continuous, the limitation is too general, 
and we cannot determine whether Fourier's series is con- 
vergent or not until we know something of the nature of the 
continuity of the function. 

2. The object of the present paper is to simplify the 
investigation of the subject, to bring it within the reach of 
the student acquainted only with the elements of the Infini- 
tesimal Calculus, and to exhibit in an elementary manner the 
nature of the difficulties that have to be surmounted and the 
principal results obtained. At the same time, in addition to 
simplifying the discussion, and rendering it perhaps more 
interesting and instructive, it is hoped that some additional 
light will have been thrown upon the question of the con- 
vergency, and that the limits within which the convergency 
holds will be found to be to some extent widened and more 
clearly discussed. 

3. The literature of Fourier's series is very extensive, few 
mathematical subjects having, perhaps, been so widely dis- 
cussed. A very valuable account, both critical and historical, 
of the chief investigations into the subject has been given by 
Arnold Sachse (" Versueh ether Geschichte der Darstellung 
willkiihrlieher Functionen ether Variabeln dureh trigonome- 
trischen Reihen," Gbttlngen, 1879) in an essay which has been 
translated and published in the Bulletin des Sciences 2lfat]tg- 
matiques, vol. iv. (1880). It is not proposed to enter here 
into the history of the subject, or to discuss the elementary 
properties of Fourier's series, such properties being treated 
and illustrated in ordinary text-books. We have here to take 
Fourier's series in its most general form, as it stands, and 
determine the conditions under which it is convergent. 

4. Fourier showed that if an arbitrary function of x can 
be expanded into u series of the form 

F(x)----½a0 + ~an cos nx+~b, ,  sin nx, 
1 1 

the coefficients will be determined by the definite integrals 

v being written for x under the sign of integration. To 
investigate the possibility of the expansion, it is, therefore, 
necessary to determine the most general conditions which the 
function must satis~ in order that the series thus defined may 
be convergent and tend to the limit F(x). 

5. Of the different methods that have been employed in 
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Convergency of Fourier's Series. 127 

this investigation, there are two of particular importance on 
account of the results to which they have led, and the fact 
that they are still the methods most generally employed in 
mathematical text-books. These are the methods of Poisson 
and Dirichlet. 

6. Poisson proceeds * by forming, from the given Fourier 
series, another derived from it by multiplying each term of 
the latter in succession by ascending powers of a quantity g 
less than unity, and then finding to what limit this derived 
series tends when g tends to the value 1. This method has 
given rise to numerous and interesting investigations. In 
particular, the method in the hands of Stokes in England led 
to the discovery of the infinitely slow convergence of a 
periodic series in the neighbourhood of a discontinuity. 
Stokes showed that when a periodic series represents a dis- 
continuous function, the rate of convergence of the series 
increases indefinitely at the point of discontinuity, or that, 
if a certain number of terms is required to represent the 
continuous portion of the function to a given degree of 
approximation, the number required to represent the function 
to the same degree of approxim~ttion becomes greater and 
greater as we approach a discontinuity. This important 
discovery was published, in Dee. 1847, in a paper " On the 
critical values of the Sums of Periodic Series" (Cambridge 
Philosophical Society). The subject was independently in- 
vestlgated, and the same result discovered by Seidet, and pub- 
lished in 18~8 (Journal of the Bavarian Academy, 1847-49), 
another remarkable instance of two investigators proceeding 
independently along the same line of inquiry. 

7. Dirlchlet's method of proceeding is ~ form an expres- 
sion for the sum of the first n terms of the series taken in 
order, and to find the limit to which this tends when n is in- 
creased indefinitely. This method was given by Diriehle~ in 
1829 (Journal de CreUe, vol. iv. p. 157), in a paper which 
contains the first rigorous investigation into the convergency 
of Fourier's series. The method is more direct than Poissou's, 
it enables us to investigate the limitations more simply and 
effectively, and it has fbrmed the basis for most of the 
researches that have been subsequently made into the subject. 

8. Dirichlet starts with the finite series 

1 " F ( v ) ~ v + - Z c o s n x  F(v) cosnr~)v 
~]rl w 

1 '~ ~ J ~ F  + - £  sin n. (v) sin nv?v, 
7r 1 

l~ldmob'es de l'Acaddmie des Sciences, 1823, p. 574. 

L 2  
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128 Mr. W. Williams on the 

which becomes Fourier's series when n----oo. Grouping to- 
gether corresponding terms in nx~ and summing the series 
so formed, he gets 

v 1 ~ F(v)~v + ) (cos nx cos nv +sin nx sin nv)~v, 
7r 

F c v ) a v ÷  cos (v- )av, 

= ~=~ ~(v) [~ + ~ cos n(v ~ X~ lay, , , j_  

= l_f~~ F(v) sin (2~+s_~n~l)~(v--.~) bv, 

where sin (2n+ 1)~0~--x ) 
~in ~ (v-~) is the value of [~ + Z~ cos . ( v - ~ ) ] ,  

1 

by a well-known summation in ordinary trigonometry. 
This final expression may be called the integral sum of the 

series. It involves two variable% or rather it involves the 
same variable twice over, namely~ once in determining the 
coefficients of the serie% and then in assigning to the series 
its different values. This double use of the same variable is 
denoted by the different symbols employed in the two case% 
namely~ v in the one cas% and x in the other. We may, 
~herefor% call v the variable of integratio% and x the variable 
of summation. Denoting the expression by S,, Dirichleffs 
problem is to determine the limiting value of S~ when n=~¢ 
for all values of x between 3- ~r. This limiting value we may 
conveniently denote by S~. 

9. As a result of his investigation, Dirichlet proved tha~ if 
the function F is finit% and single-valued between 3-~r, and 
h~ts only a finite number of discontinuities and maxima and 
minima between those limits, then Fourier's series is con- 
vergent, and tends to the value F(x) for aI1 values of x 
except those which correspond to the discontinuities and the 
limits + w ; the value of the series at a point of discontinuity 
being the mean of the values of the parent function on either 
side of the discontinuity and infinitely close to it, and its 
value at either limit the mean of the values of the parent 
function at the two limits. This result has been made the 
subject of further inquiry by later mathematician% notably 
Riemann, Heine, Cantor~ and P. Du Bois-Reymond, the 
inquiry relating to the necessity for the conditions laid down 
by Dirichlet. For an account of these investigation% and of 
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Converge~wy of l~burier's Series. 129 

the results obtained, reference must be made to Sachse's paper 
already mentioned. 

10. The method employed by Dirichlet to determine the 
value of S n when n.=c¢ is to break up the integral into the 
sum of elements which are alternately positive and negative, 
that is, into an alternating series with terms of finite magni- 
tude. The manipulation of this series is, however, very 
laborious, and the method of evaluating S, by means of it is 
long, and highly involved and indirect, and consequently is 
not suited to the needs of the average mathematical student. 
The investigation given in the following paper is a simplified 
form of Dirichlet's in the sense that it depends upon the 
evaluation of the same integral S~. But tile difficulties at- 
tending Dirichlet's evaluation are avoided by breaking up 
the integral into three portions, two of which are of finite 
range, the limits being--Tr to--h ,  and h to ~r respectively, 
while the third portion is taken between -t-h, h being infi- 
nitely small. It is then easy to show in a simple and 
straightforward manner that the two first portions vanish 
when n---=~, and that, therefore, the value of the integral 
depends only upon the infinitely thin strip taken between 
+__h. By this means we are enabled not only to evaluate S~ 
more easily and directly, but to investigate the limitations to 
which the function F(x) must be subjected in a simpler 
manner. For, as we shall see, the conditions that have to be 
fulfilled by the function F (x) in order that the terms of the 
series may be finite and determinate, and that the nth term 
may be infinitely small when n = ~ ,  which are conditions 
that have to be fulfilled in the case of every series, are sufficient 
to ensure that the two portions of S~ which lie outside the 
limits + h vanish when n = ~ .  The difficulties attending the 
determination of the remaining conditions to be fulfilled by 
the function are thus removed to the infinitely small portion 
of it which lies between +h.  The investigation is given, 
first, for the case of funetlons which obey the laws of the 
differential calculus, this being the only case which occurs in 
ordinary analysis. Afterwards, the case of functions in which 
this condition is not fulfilled is taken up. 

II. 
11. Let F(x) be a finite, single-valued, and continuous 

periodic function ; and where continuous, let it be differen- 
tiable. Then, since F is periodic, and of period 2~', the limits 
of integration may be shifted through any distance at pleasure, 
provided the interval between them remains unaltered and 
equal to 27r. Hence, whatever may be the value of the sum- 
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130 Mr. W.  Williams on the 

mation variable x, we get, by putt ing (v - -x ) - - -6  and inte-  
grat ing between ±Tr, 

1 " s.= + (2.+sin 

so that the function under  the sign of integration becomes 
infinite only when 0 - -0 .  

12. In  the particular case when F ( O + x )  has a constang 
value c all the terms on the r ight  in (11) vanish except the 
first, the value of which is c. Hence in this case S~ =c .  If ,  
in addition, the limits of integr:~tion are from --Tr to 0, or 
from 0 to ~r, instead of from --Tr to ~r~ we get S®=½c. 
These results will be required later. 

13. Since the function under  the sign of integration becomes 
infinite when 0=-0, we have to break up the integral  into 
three portions A, B~ C, taken respectively between the limits 
--Tr to - -h ,  - -h  to h, and h to ~r*. W e  shall now show that  
A and C vanish when n ~ - ~  for values of h as small as we 
please, and therefore that the value of S® depends only upon 
the infinitely thin strip B within which the function integrated 
becomes infinite. 

14. Consider first the portion C. Let  (2n+l)½0=~b~ and 
put F(O+x) 

sin-~0 =X(-~0)" Then 

1 ~'(:'+')~/ 4, "~ • 

V~ ha ever n may be~ we can always choose h ? so that (2n + 1)~h 
is a multiple of 7r. The integral can therefore be broken up 
into a number  m of elements in each of which the range 
is 2~r, and one element at the upper limit in which the range 

qr 3qr 
is 72 or -~-. This latter element will have a finite value a. 

For  a given value of n let p be the value of the numerically 
greatest  of the remaining m elements. Then the sum of the 
(m + 1) elements lies between 4- mp 4- a ; and therefore C lies 

between +p-4 ~ r ( 2 n + l ) ;  s i n c e 2 ~  is < 1 .  But  when n 

• The reasoning is precisely the same if the limits are --~r to --h, 
--h to g~ and g to or, h and g being independent sraall quantities. 

t Or, if (2n+l)~h is not a multiple of ~r, each element of range 2¢r 
can he broken up into four portions in each of which sin qb preserves the 
same sign, so tlmt the reasoning of (14) is still applicable. 
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Convergency o/Fourler's Series. 131 

increases without limit, p diminishes without limit. For  each of 
the above m elements can be broken up into two parts of equal 
range 7r, in one of which sin 4) is positive, in the other nega- 
tive. The value of each e|ement will therefore be of the form 

2 (px--p2)where pl is some value of X (2-n + l )  takenbetweenthe 

limits of the first portion of the element, and p~ between those 

when 4' changes by 2~" diminishes ; and since X is everywhere 
finite and continuous, pl and p~ tend tm the same value. Hence 
by increasing n sufficiently, we can make Pl--P~ as small as 
we please; and therefore in the limit when n = ~o it vanishes. 

In other words, since as n increases X ( ~ )  tends to 

remain constant during the integration of any element while 
sin ~b passes through all the values included between +_% 1, each 
element tends to the value zero, the value it would really have 

if X ( 2 n ~ ) r e m a i n e d  absolutely constant during the inte- 

gration. 
15. This holds for all finite values of h however small. 

When h is very small, @1 and p~ will have their greates£ 
values in the neighbourhood of ~b = (2n + 1)½h, in which case 
(putting x = 0  for convenience, the reasoning being applicable 
for any value of x) 

[~ F(h+t) --F(h)] [Fi I') F@ 2(P*-P2)=L / ,  l ,+t J J' 
29T 

where t is some value lying between 0 and 2-~+-1' and is in- 

finitely small compared with h. (pl--P~) can therefore be 
made as small as we please for values of' h as small as we 

t F ( h + t )  --F(h) 
please provided h is so chosen that ]~ and h 

are both infinitely small. But since F is everywhere conti- 
nuous, and n is to be increased without limit, this condition 
can always be satisfied. Hence the limit of p, and therefore 
of C, is zero for values of h as small as we please ; and in 
the same manner we may show that the limit of A is zero. 
The value of S® therefore depends only upon the value of 
the infinitely thin strip B of breadth 2h within which the 
function integrated becomes infinite, and is independent of 
t]te values of F(O+x)  outside this strit~. Consequently, we 
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132 Mr. W. Williams on the 

may~ outside the strip B~ assign to F(0+x)  any continuous 
finite values at pleasure. 

16. Since within the strip B the range of integration is 
infinitely small, we may replace F (0+x)  by F(x) 4 0F/(x). 
We then get, putting ½0for sin ½0, 

S , =  F(x)f .  a s i n ( 2 n ÷ ~  -h - ~  1)½0_^dr + F'(X)~r j ~nsin_h (2n+ 1){0~0, 

which reduces to the first term on the right because the 
integral of the term involving Fl(x) is  zero. The value of 
S,, wl~en n.-~-~ is therefore the same as the value it would have 
V F(0+x)  remained constant throughout and equal to F(x). 
Hence S®--F(x) by (12). 

17. If  we change the limits of integration in S, fl-om --~r 
and ~ to --qr and 0~ or 0 and ~r respectively~ we can evaluate 
the integral exactly as before. For since the portion taken 
between --~r and --h, or between h and ~r, vanishes when 
n=~¢,  the value of the integral depends only upon the infi- 
nitely thin strip taken between -- h and 0, or 0 and h. Hence, 
replacing F(O+:c) in this strip by F(x)+  0F'(x), it follows, 
as before, that the value of the integral is the same as the 
value it would have if F(0 + x) remained constant throughout 
and equal to F(x). Hence in this case S®=}F(x) by the 
latter portion of (l 2). 

From this it follows that in the original integral taken 
between +~r, F ( 0 + x )  may change abruptly in value or 
experiencea discontinuity when 0 = 0 ;  for we can break up 
the integral into two portions at the point 0=0~ and evaluate 

A" A" 

each portion by t;he above as if the other were absent. I f  
F(O-t-x) is discontinuous when 0=0,  it will have different 
values at that point according to whether 0 attains the value 
zero from the negative or from the positive side. 

Thus, let 0 have a small numerical value ~, and let OA= --~, 
OB = ~, AA I = F (x-- ~), BB' = F (x + ~). Then when ~ vanishes, 
F(x--~) becomes F(x--0)  or OA//, and F(x+~)  becomes 
F ( x + 0 )  or OB". If, then, we evaluate each of the above 
portions as if the other were absent we get ½0A" or {F(x--0)  
for the first portior~ and ½OB ~I or ~F(x + 0) for the second. 
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Convergency of Fourier's Series. 133 

Hence in such a case S~ =-~ i F ( x -  0) + F ( x  + 0)]  *. F (0 + x) 
, l ay  have such discontinuities for other values of 8 as well, 
provided their number is finite. For  if we break up the 
integrals A and C between neighbouring discontinuities into 
separate portions, we may show, as in (14) and (15), that each 
of these portions vanishes when n = ~ .  Hence, since there is 
only a finite number of them, their sum vanishes, and there- 
fore A and C vanish when n = o o ;  so that, as before, the 
value of S® depends only upon the value of the infinitely thin 
strip which lies between ±h .  Consequently F ( 8 + x )  may 
have any .finite number of discontinuities between ± ~r~ the 
value of S~ at any discontinuity being the mean of the values 
to which F ( 8 + x ) t e n d s  as the discontinuity is approached 
from either side. 

18. I f  F ( 0 + x )  is not periodic, we may regard the portion 
of it included between ±~r as a wave of an arbitrary periodic 
function with, in general, finite discontinuities at +__~r, ± 3~r, 
&c.; so that when x= +_~r, S .  = ~ [ F ( - - T r ) + F ( T r ) ]  by (17)*. 

* Or thus, 

l [F°F(O+x)Sin(Pn+])~O yo h s_in (Pn+])~0 0] 
2-~ v - a  ~ e Be+ F(e+x) ½e 

1 h • • 

=  _Jo Er(x-0)+ r(x s'n 

Hence, applying to this the method of (16), we get 
[F(x-0)+F(x+0)]. 

? Or thus :--If F(6Tx) is not periodic, 

S.= F(0+x) sm (2n+l)½0 D0. 
j -~-z sin ½8 

If x lies between 0 and ~r, 

if . . . .  
S~= F(O.4_x)Sm(Pn-4-1)½O..a_ 1 ~ . . . . .  sin(Pn+])~0 ~ o~,-v w- I ~(¢J-t-x--'~) ~ OU, 

,~ --~ mn ~(/ "~Irjn -x 

and if x lies between 0 and - It, 

1 /" ..... (2n+l)~O~a± 1 C~,nj_x~Sin (2n+I)~8 Be 
2 , , / _ ~  ° s in  ½O .) _=_z sin ~0 " 

In both cases the function under the sign of integration becomes infinite 
only when 8=0, and the integration can therefore be effected by the 
me{hods given above. 

Putting x=~r in the former, or x= - =  in the latter, we get 

z~rj_, sin½0 + (-7r+8) sm (2n +-1)½~ D S ' s i n  ~8 

the limit of which, when n=oc, is 
s ~ = ~ C v ( - . )  + F( .)  ] 
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134 Mr. W. Williams on the 

19. Hence, finally, if F is finite, single-valued, and con- 
tinuous between ±~r, o U if'not continuous, has only a finite 
number of finite discontinuities, and where continuous is 
difi~rentiable, then Fourier's series is convergent, and tends to 
the limit F(x) ibr all values of x except those corresponding to 
the discontinuities and the values + 7r, _+_ 37r, &c. The value of 
the series at a point of discontinuity is {iF (x--0) + F(x + 0)],  
the mean of the values to which the function tends when ap- 

• preaching the discontinuity from either side ; and its value at 
i v ,  &e., is ½[F(Tr) +F(--~r)] ,  the mean of the values of the 
function at tim two limits. 

I II .  

20. The simplification in the above method of evaluating 
tile integral Sn consists in having first proved that the two 
portions A and C taken respectively between the limits --~r 
to --h, and h to ~r vanish when n=z¢ hozoever near to the 
value zero toe take the ordinates + h, so that the value of the 
integral depends only upon the value of the infinitely thin 
strip B taken between _+h. S~ is therefore independent of 
the values of F (0+  x) outside the strip B, and consequently 
is the same as if F (0+x)  remained constant throughout and 
equal to its mean value F(x) within B. That is, S =F(x ) .  

21. The vanishing of A and C when n =  ~ depends upon the 
fact that the function integrated, namely %(~/9) sin (2n + 1)~0 
has an infinite number of f inite oscillations (that is, oscillations 
of finite amplitude) between --~r and--h ,  and between h 
and 7r. Hence, since the number is infinite and the ampli- 
tudes finite, neighbouring oscillations differ infinitely little 
from each other, and therefore the area included between the 
ordinates --rr and - -h ,  or h and rr, and the portions of the 
function and the axis of 0 intercepted by them is infinitely 
small. In other words, the mean value of the function from 
--~r to --h, and from h to ~r is zero, and therefore the integral 
of the function between the same limits is also zero. But the 
function itself is not zero: it is merely indeterminate,--the 
oscillations beiug, as it were, too fine-grained to be traced 
individually. The transformation (2n+l)~0=~b, however, 
resolves these oscillations, however fine-grained they may be, 
into oscillations of finite period cutting the axis of 0 at equal 
intervals ~'. We are therefore enabled to deal with each 
individual oscillation instead of with the oscillations as a 
whol% and so to determine the precise effect of each upon the 
value of S~. 

22. I f  we break up the portions A and C of the integral S,, 
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Convergency of .Fourier's Series. 135 

into ( m + l )  elements as above, without transforming the 
variable we can show as before that each element vanishes 
when n = ~ .  But the sum of the ra elements taken in this 
torm is not determinate when n = ~ .  For as n increases 
without limit, m also increases without limit, and therefore 
the sum tends to the indeterminate value ~ x 0, as in t;he 
case of any definite integral. We have thus no means of 
determining whether A and C vanish when n----~. But by 
means of the transformation (2a+ 1)~/9----~b~ we see that each 
element is really of the form 

1 (~a+2zr / f~ \ . 

1 
Here the integral~ independently of the facto r 7 r (2n+ l ) '  is 

1 
infinitely small when n =  ~ ,  and this multiplied by 7r(2n 4-1) 

gives us an infinitesimal of the second order. Hence the 
sum of the m elements is not really (~ x 0), but ( ~  x 0:), 

or ( -~  x 0), and the form ~---when l o o k e d c ¢  into is found to be 
m 

derived from -2n-n+--l' whose real limit is < 1. I t  is this that 

determines the convergence of S, to its limiting value. 
23. I t  is necessary to remark that in general an element of 

4qr 
the integral S~ in which the range of integration is 2~ + ~  

vanishes when n = ¢~ only when 8 is, numerically, not less than 
h, and h is not less than the value necessary to ensure that 
t and F(h+_t)--F(h) h -~ h are both infinitely small, t being 

2~-  
= or < 2 ~  (see 15). Of course, since t can be diminished 

without limit by increasing n without limit, and F ( 0 + x )  
is continuous, this condition can be satisfied for values of h 
less than any assignable finite limit, however small. But as 
n increases without limit, the two infinitesimals t and h must, 
diminish at different rates ; for whereas t tends to the value 
zero at a constant rat% h must do so at a constantly dimi- 

27r 7r 
nishing rate. Thus, t being 2-~-1 '  h may be 1-ogn' &e. Tho 

consequence of this is that in the integral 

f.hhF(0+ x ) s i n _  (2n+{o 1){0 ~0' 
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136 Mr. W. Williams on the 
although h is infinitely small and F ( 0 + x )  is continuous 
between 0 and h, we cannot without a special examination 
treat F(O + x) as constant in the integral, and write 

F(x) f ~  40 
1 

For, since ~ must be infinitely small compared with h ~, 

sin (2n+ 1){8 has an infinite num- however small h may be, ½8 

ber of oscillations between 0 and h. In such a case we must 
write the integral in the form 

sin 1030 ' ~'x)J-h~" . Ch sin (2n + l )~O ~O + ~_[aF(x + O)_ F (x) (2n + 1)½0 

and determine under what conditions, if any, the second term 
vanishes. 

24. Now although the function F (O+x) is continuous 
between 0 and h, and therefore F ( x + 0 ) - - F ( x )  is infinitely 
small between the same limits, it by no means follows that 
the second term in the above vanishes when n = m .  Its 
vanishing depends upon the nature of the continuity of the 
function F, and we have only proved that it vanishes when 
the continuity is such as to admit of the existence of a derived 
function F'. In  modern analysis, a function F(x)  is said to 
be continuous at the point x if, $ and e being positive quan- 
tities as small as we please, and 0 a any positive quantity at 
pleasure between 0 and 1, we have for all values of 0 
F(x+_O$)--F(x) less in absolute magnitude than e (Cayley, 
art. "Function," Encyc. Britt.). In  other words, F(x) is 
continuous at a point x if a region (x--S) to ( x + $ )  can be 
found such that the values of the function for all points within 
this region (that is, F(x+_03) for all values of 0 between 0 
and 1) differ from its value at x by a quantity < e, e being 
infinitely small : the function may vary in any manner what- 
soever within this region provided only the diffbrence between 
its greatest and least values is not greater than e. Hence a 
function may be continuous according to this definition with- 
out admitting of a differential coefficient, for the existence of 
a differential coefficient implies, in addition to the above, that 
lira F ( x + $ ) - - F ( x )  

3 = 0 [  - 3  ~ has everywhere a determinate value, 

or, geometrically speaking, that F (x  + 8 ) - - F ( x )  is ultimately 

* 0 is here the symbol for a positive fraction, and not the variable of 
integration. 
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Con~ergency of Fourier'.~ Series. 137 

a small straight element inclined at a definite angle to the 
axis of .v. 

25. A function which is differentiable wherever it is con- 
tinuous is said to possess ordinary continuity. We thus see 
that ordinary continuity is only a particular kind of continuity. 
I t  is, however, the ldnd exclusively dealt with in the Infini- 
tesimal Calculus ; for the processes of the Differential Calculus 
are based upon the properties of the differential coefficient, 
and, practically at least, integration is treated as the inverse 
of differentiation. While, however, every finite and con- 
tlnuous function has an integral, only some possess a di~'eren- 
tial coe~cient. Here, then, the inverse operation is always 
admissible (though it cannot always he formally effeeted), 
whereas the direct operation is not always admissible. For 
this reason Weierstrass, in his lectures, once made the definite 
integral the starting-point for the investigation of the pro- 
perties of functions, and especially of the condition for the 
existence of a differential coefficient. 

26. Examples of functions which are continuous and per- 
fectly determinate, but not differentiable, were first given by 
Weierstrass*. The essential feature in the case of such func- 
tions is that the loci consist of an infinite number of infinitely 
small zigzags and oscillations (for otherwise the functions 
would be differentiable). The functions are thus perfectly 

determinate and continuous; but 

cannot anywhere have a determinate value, and the processes 
of the Differential Calculus are therefore inapplicable. When 
drawn the locus of a function of this kind is indistinguish- 
able from that of a function having ordinary continuity, and 
whose values at the different points are the mean of the 
values of the given oscillating function at the same points. 
But we cannot treat the two as analytically the same. Thus, 
to borrow an illustration used by Prof. Greenhill, the zigzag 
locus C D is indistinguishable from the straight line A B 
when the zigzags are infinitely small and infinitely nu- 
merous. But we cannot treat it as having the properties of a 
straight line. For  the length of the zigzag locus is always equal 
to the sum of the lengths of C E and E D, however small we 
make the zigzags, provided they do not alter in form. If, then, 
we treat the zigzag locus as a straight line when the zigzags 
are infinitely small and infinitely numerous, it follows that 
the third side of a triangle is equal in length to the sum of 

Cayley's article "Function," ~neye. Britt. 
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138 Mr. W. Williams on t£e 

the other two. This illustrates the nature of the difficulties 
encountered in dealing with functions of this kind, and the 

c O 

a B 

danger of applying to them, without a special examination, 
processes which have been derived only from the stud)" of 
functions possessing ordinary continuity. I t  is precisely in 
the case of' functions of this kind that the integral 

t " rEo + F (2n. 1) a ½e 

becomes indeterminate in wlue when n =  ~ .  I f  the function 
possesses ordinary continuity we know that the integral va- 
nishes; otherwise the integral may be quite indeterminate. 

For  the infinite number of oscillations of sin (2n + 1)-~8 when 

= ~ may conspire with the oscillations of F (x + 6) -- F (x) to 
produce any value whatever, finite or infinite. In cases of this 
kind we can determine nothing as to the value of the integral 
until we know something as to the nature of the continuity of 
the function; for the ordinary definition of a continuous 
function is too genera], and does not confer upon the function 
enough properties to enable us by means of known processes 
of integration to evaluate the integral. 

27. The conditions under which Fourier's series has been~ 
up to the present, proved to be convergent are : - -  

i. That the function F(x)  must not become infinite. 
ii. I t  must be continuous and determinate except at a 

finite number of points, where it may change abruptly in 
value or experience a discontinuity. 

iii. I t  must~ wherever it is continuous~ possess ordinary 
continuity. 

These conditions are sufficient for all the cases that occur 
in ordinary analysis. The third condition~ moreover, is 
necessary in all such cases, since processes involving differ- 
entiation constitute an essential part of the Infinitesimal 
Calculus. From the point of view of the general theory of 
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Convergency of Fourier's Series. 139 

functions, however, it is necessary to consider the cases in 
which this condition does not hold. 

28. The investigation of Dirichlet involves the first and 
second of these conditions, but not the third. The third is 
replaced by the more general one that F(x) must not have an 
infinite number of maxima and minima between +~'. In. 
Dirichlet's investigation this condition is applied--to the 
function throughout the whole extent of the integral S,, that 
is for all the values of the variable of integration t~. This, 
however, is not necessary. For it has already been shown 
that the portions A and C of the integral vanish when n=- 
if only the function is finite and continuous--the nature of 
the continuity being immaterial. The third condition should 
therefore apply only to the infinitely small range of values of 
F ( 0 + x )  which lie on either side of 0=0 .  We shall now 
show that this condition is sufficient to ensure that the 
integral 

h[F(O+x ) sin (2n + 1)½0 
n -F( .v) ]  -~0 50 

vanishes when n = ~ ,  and that therefore S®-----F(x). 
This integral can be put into the form 

h being infinitely small, while m is infinitely great and ~(0) 
infinitely small between 0 and h. Since ~(0) has not an 
infinite number of maxima and minima, it will ultimately 
preserve the same sign, and either constantly increase or 
constantly diminish between 0 and h. Let it constantly de- 
crease. Then, dividing the variable by n b we get 

/ 0xs in  0 

This integral can now be broken up into the sum of a series 
of elements which are alternately positive and negative and 

constantly diminishing numerically (since Sine0 and ~.(m.0)- 

diminish numerically). Hence the integral becomes an alter- 
nating series with constantly diminishing terms, and its value 
is therefore less than the first term, which is itself infinitely 
small. That is, the integral vanishes. Again, let ~(0) con- 
stantly increase between 0 and h. Then its greatest value 
will be ~b(h), and [~b(h)--~b(O)] will therefore constantly 
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140 Mr. W. Williams on the 

diminish. Hence the integral 

f o> J % 
vanishes by the above when n = o e .  But this integral is 
equal to 

and therefore, since the first term and the difference of the 
two are both infinitely small~ the second term must also be 
infinitely small. Thus in both eases the integral vanishes, 
so that S®=F(x) .  I t  is interesting to note that the alter- 
nating series which appears in Dirichlet's investigation appears 
also here, hut in a different manner. For whereas in the 
former case it appears with terms of finite magnitude, here its 
terms are infinitely small, because the two portions of the 
integral S~ which "iie outside the infinitely thin strip bounded 
by + h  have already been disposed of. There is therefore no 
trouble in manipulating the series ; for all that we have to do 
is to show that the terms decrease numerically, since the 
series can then be neglected, the first term being infinitely 
small. 

29. Functions having an infinite number of maxima and 
minima are of two kinds, according as to whether the ampli- 
tudes of the oscillations are finite or infiMtely small. In tim 
former case the functions are discontinuous, for they violate 
the definition in (24) ; in the latter case they are determinate 
and continuous. Dirichlet maintained that all functions 
which have only a finite number of indeterminate values, and 
are elsewhere continuous, give rise to convergent Fourier 
series*; but Du Bois-Reymond and Schwarz have given 
examples of functions which are determinate and continuous, 
but for which Fourier's series is divergent'f. These functions 
are of the class mentioned in (26) for which the integral 

~0 n [F((~ + x) -- F (x) ] sin (2n + 1){/9 b 0 
½0 

is infinite or indeterminate. 
30. The condition that F ( 0 + x )  must not have an infinite 

number of maxima and minima is not a necessary condition 
in order that Fourier's series may tend to the value F(a 0. 
For Lipschitz :~ has shown that the series may be still con- 

* Sachse's Essay, p. 19. t Ibid. p. 49. :~ Ibid. p. 21. 
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Convergency of Fourier'n Series. 141 

vergent, and tend to the limit F(x), even when F(8+x)  has 
an infinite number of maxima and minima, provided that at 
all the points where the function oscillates, the numerical 
value of F(x + 0 ± 5) -- F (x + 0) is always less than B3 ~, when 
3 tends towards the value zero, B being a finite eonsfant, and 
a a positive exponent. Here again it is really necessary to 
apply the condition only to the infinitely small range of 
values of the variable of integration which lie on either side 
of 0=0 ;  for if the condition is satisfied for these values, the 
integral 

f : ~ F ( x  + sin (2a+ 1)}8~8 8) 38 
vanishes, and therefore, as before, S~---F(x). This integral 
vanishes under the given conditions because its value cannot 
be greater than the value it would have if sin(2n+l)½8 
were replaced by unity, and all the negative values of 
F(x+8)--F(x) made positive. Hence, since for all values 
of 0 between 0 and h, h being infinitely small, the numerical 
value of F(x+O)--F(x) is <B0 =, the integral cannot be 
greater than 

B~f8 2BA~ 2 ~-1~8, or - - ,  

which is infinitely small, since a is afinite exponent. Thus, 
the function may have an infinite number of maxima and 
minima of this type, and still give rise to a convergent 
Fourier series, whose converging limit is F(x). 

31. I t  is not necessary that F ( 0 + x )  should he finite 
throughout between +_~r. It may become infinite at a finite 
number of points al a~ . . .  provided that 

~=o 0+x)58 

vanishes,/~1 and/~ being any independent positive fi'aetions. 
For if this vanishes, then 

lira [~"+~"F(8 + x) 
58 e--~-0J~_~,, sin 0 

I 

also vanishes, unless t7 passes through the value zero, for R 
tends to the value 

1 r l im f'~+~" n i_--~ | F(8+~)3zt 
sin a [e  = v)._~,,. _~" 

Phil. Meg. S. 5. Vol. 42. No. 255. Aug. 1896. M 
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142 Mr. W. Williams on the 

Hence, any element of the form 

f f + ~  sin mO~8 
F(0 +z) 

_,,, sin 0 

must vanish when e = 0 ,  provided F has not an infinite 
number of oscillations at the point a, for it cannot exceed the 
value it would have if sin rh0 were put equal to 1 all through. 
The sum of the finite number of elements of this form which 
occur in the integral S~ at the points al a 2 . . .  is therefore 
zero. Again, since F ( 0 + x )  is continuous up to (a--/zie) and 
beyond (a + I~e), we can always choose for t a value such that 
F(a -2-_/~e-t- t) -- F (a _-2 #e) is as small as we please, however small 

~ e m a y b e ,  tbe ing  = or < 2n+-----~, and n = o ~ .  Hence, by 

(14), the elements p which occur in the neighbourhood of 
the infinite values of F (0 + x) are infinitely small when n---- ~ ,  
and therefore, as before, A and C vanish when n - ~ .  if, 
then, F ( 0 + x )  is not infinite when 0 = 0 ,  S = F ( x ) ,  provided 
the conditions relating to the portion B are fulfilled ; but if 
F(0+.~) isinfinite when 0----0, the value of B is o~, and 
therefore S~----oe, or the series is divergent, as we should 
expect. Hence, if the function contains a finite number of 
infinite values of the above kind, Fourier's series is, ceteris 
pa~qbus, convergent for all values of x except those corre- 
sponding to the infinite values, and for these values of x the 
series is divergent. 

32. I f  the function F(0-bx) is indeterminate over a finite 
range of values of .v---for example, if it has an infinite number 
of discontinuities, or maxima and minima of finite amplitude, 
over that range-- the coefficients of the series and therefore 
S, cannot be determinate. But the function may have an 
infinite number of discontinuities, or maxima and minima of 
finite amplitude, or singularities in the neighbourhood of a 
finite number of points ; for, since the range within which 
these singularities occur in the neighbonrhood of one of 
these points is infinitely small, and the function is never in- 
finite, the elements of the integrals which determine the 
coefficients and S~ corresponding to this range must be 
infinitely small. Hence, since there is only a finite number 
of such points, the sum of the elements corresponding to them 
vanishes, so that the values of the integrals are determined 
only by the continuous portions of the function. Hence, the 
coefficients of the series are finite and determinate, and S o 
tends to a definite limit for all wl~es of x except those corre- 
sponding to the ~ndeterminate points in the function; and 
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Convergency of Fourler's Series. 143 

for these points the integrals 

sin (2n + 1)½8_ (x 0) ff 

are indeterminate in value. 
33. W e  may therefore summarize the conditions under 

which Fourier 's  series is convergent as follows, taking first 
the case where the function F has no infinite values--the 
case of a function having infinite values being discussed 
later. In order that the series 

v ) b v +  - 2 c o s  ~.z' v) cos n v b o  
71" 1 

" 2 ?  + 1_ 2 sin nx iv) sin nv•s 
9T 1 

may be convergent when n - - ~  for any value of x 
(i.) The coefficients must be finite and determinate ; 
(it.) The nth coefficient must vanish When n----- ~ .  
These are conditions that hold in the case of every series, 

independently of its particular character. They are therefore 
necessary conditions, but they are not su~cient. 

34. The firs~ condition is satisfied if the function which 
determines the coefficients is not indeterminate or discon- 
tinuous over a finite range of values of the variable, but is 
continuous and determinate except, possibly, in the neigh- 
bourhood of a finite number of points where it may have any 
number whatever of discontinuous, indeterminate, or singular 
values. The second of the above conditions is also fulfilled 
under the same circumstances. For,  if  we take the coeffi- 
cients 

and divide the variable all through by n, we get 

. - -  cos v~v, sh~ 
n ~ J  \ n  n~-j_,~ \ n /  

Then breaking up each integral into n elements of range 2~r 
and applying the method of (14) we can show that the lute.. 
grals vanish when n is infinitely great. 

35. The condition given above to ensure that the coefficients 
of the series are finite and determinate (namely, that F(v) 
must be determinate and continuous, except in the neighbour- 
hood of a finite number of points) is a special case of 
Riemann's general condition as to the integrability of a 

M 2  
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144 Mr. W. Williams on the 

function *. Riemann's condition is as follows :--Consider a 
Function F(x)  between a and b. Divide (b--a) into intervals 
gx $~- . .  g~, so that (b--a)  = (~1 + g~ + . .  • + ~-). Let  D denote 
the numerical value of the difference between the greatest and 
least values of F ( x ) w i t h i n  the interval 81; similarly D~ for 
the interval ~,  &e. Then D.  is called the oscillation of the 

function within the interval ~.. In order that F ( x ) ~ x  
may have a determinate value, 

must tend to the value zero when ~1 ~ . . .  ~. are diminished 
without limit, the necessary and sufficient condition for which 
is that the sum of the intervals within which the oscillations D 
are greater than a given finite quantity cr, however small, 
must be infinitely smttll when the intervals are infinitely 
small. I f  the oscillation within an interval $ taken on either 
side of a given point is always > a when 8 is diminished 
without limit, the function is said to be discontinuous at that 
point, and the point is spoken of as a point of discontinuity; 
and, on the other hand, if the oscillation is <o-, the point is 
a point of continuity. I f  every point within a finite segment 
is a point of discontinuity, the function is said to be discon- 
tinuous over that segment, as, for example, a function which 
has an infinite number of maxima and minima of finite am- 
plitude over a finite range of points. I f  witMn a given segment 
the points of continuity are finite in number, the segment 
can be broken up into a finite number of other segments, 
over which the function is discontinuous. But if between two 
points there are no segments of discontinuity, there may, 
nevertheless, be any number whatever, finite or infinite, of 
points of discontinuity. In the first case the function is 
not integrable, since the sum of the intervals of discontinuity 
is finite. In the second case, Hankel, who has investigated 
this matter with the view of rendering Riemann's condition 
less indeterminate in character, has shown that the sum of the 
intervals of discontinuity cannot be finite t .  Hence, the 
function is, in such a case, integrable, and accordingly, Rie- 
mann's condition may be more precisely stated as Follows : - -  
A function is integrable between a and b i f  it is finite and de- 

* "Ueber die Darstellbarkeit einer Function dutch eine tligono- 
metrisehe Reihe ; " Abhandlungen der k. Gesellsehaft der Wissenscha.ften 
zu Gb'ttingen, vol. xiii. This paper has also been translated~ and published 
in the Bulletin des Sciences Mathdmatiques, 1873, p. 35. 

¢ " Untersuchungen ueber die unendlich oft oscillirenden und unsto- 
tigen Funciionen ;" Tubingen, 1870. 
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Convergency of Fourier's Series. 145 

termtnate, and is not discontinumls over a finite range of values 
of the variable between a and b. Thus stated the condition is 
more general than the one given above, for it does not imply 
that the function is continuous: it may have any nmnber 
whatever of discontinuous points, but not of discontinuous seg- 
ments. The coefficients of Fourier's series are finite and deter- 
minate, and the nth coefficient vanishes when n =  ~ whenever 
Riemann's condition as to integrability is fulfilled. For, if the 
function integrated is never infinite, and the sum of the 
intervals 313~... 3, containing the points of discontinuity can 
be made infinitely small, the sum of the elements correspond- 
ing to these intervals in any integral can contribute nothing 
to the value of that integral. For this sum cannot be greater 
than the product of the greatest value of the function, which 
is necessarily a finite quantity, into the stun of the intervals 
(31+ 3 2 + . . .  +3,,), which is infinitely small. The value of 
the integral is therefore the same as the value it would have 
if tile function were not discontinuous at the given points. 
But we have proved that in this case the coefficients are 
finite and determinate, and that the nth----0 when n = ~ .  

36. Now, the conditions which ensure that the coefficients 
of the series are finite and determinate are el,co the conditions 
which ensure that the portions A and C of the integral S. 
vanish when n = ~ ,  for we have only to replace F(v) sinnvin 
the coefficients b~ by X(~0) s in (2n+l )~0  and apply the 
reasoning of (14). Hence, whenever the coefficients of the 
series determined by Fourier's method are finite and determi- 
nate, the value of the series depends only upon the infinitely 
thin strip ;:F(o+ sin + 1) 0. X) 

and therefore the remaining condition to be fulfilled in order 
that the series may be convergent is that this integral must 
have a determinate value when n = ~ .  Writing this integral 
in the form 

F(x) ~'h sin (2n+l)X0 h • ~J_^ ½0 ~ ? 0 +  l f [ F ( O + x ) _ F ( x ) ] s m ( 2 n + l ) { O a O  

the value of the first term is F(x). Hence, if the series is to 
be convergent, the second term on the right must vanish or 
tend to a definite limit. In the former case the series repre- 
sents the function for the given value of x. In the latter 
case it does not. 

37. The general conditions under which the second term 
in the above vanishes, or has a finite limiting value when 
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146 Mr. W. Williams on the 

n = ~ ,  have not been determined. I f  the function is con- 
tinuous, and 

i. l(f the continuit.y is ordlnarj continuity ; or 
ii. I f  tl~e function has not an infinite number o] oscilla- 

tions ; or 
iii. I f  the infinitely numerous oscillations satis]~ Li}~scJdtz's 

condition; 
then the term vanishes, and Soo-----F(x). In  all other cases 
the term must be treated as indeterminate. We may, of 
course, investigate its values for different types of continuous 
functions, and so widen the limitations of the function F. But 
we cannot determine the general nature of these limitations 
because we cannot evaluate the integrals 

fo  ~ [F(~  + O) - - F  (~)] sin (2n + 1) ½0 ~)e 
- _~ 

by known methods of integration until we are provided with 
conditions other than those involved in the definition of a 
" continuous funct ion,"--such other conditions, for example, 
as i., ii., and iii. above. 

38. I t  is necessary to remark that a series of the form 

al sin x + a~ sin 2x + . . .  + a,, sin n ,v . . .  

may bo convergent, and tend to a definite limiting value 
which we may denote by F(x)  for all values of x, and yet  it  
may be impossible to derive the coefficientslby Fourier 's  
method from F (x )  because F(x) may not be integrable 
according to Riemann's definition. Riemann has given an 
example of such a series in the paper already mentioned. In  
a case of this sort,; however, since the coefficients are not 
determined by Fourier 's  method, the series is not really a 
Fourier  series. For  a Fourier  series is one in which tho 
coefficients are defined by the definite integrals 

and the object of our investigation is to determine the most 
general conditions under which the series thns defined is 
convergent. 

Hence, since it is necessary that the function should be 
integrable in order that the coefficients to be derived from it 
may be finite and determinate, we get when the function has 
no infinite values the following necessary and suj~cient con- 
ditions for the convergency of a Fourier  series : - -  
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Convergency of Fourier's Series. 147 

i. T]~e function must not be indetermiJ~ate or discontinuous 
over a.finite range of values of the variable ; 

it. T]~e integrals 

~o h F sin (2n + 1)~e be + ~) 
- ~ 

must vanish, or tend to definite limiting values, when n = ~  
and h is infnltely small. 

39. This last condition is somewhat analogous to the con- 
dition which holds in the case of Taylor's Theorem when applied 
to numerical functions, namely, that the " remainder"  after the 
nth term must vanish when n is increased without limit ; - - a  
sort of test to be applied to each individual function deal~ 
with, because we have no means of determining in a general 
manner when the condition is fulfilled. I f  the first condition 
is satisfied, the coefficients of the series are finite and deter- 
minate, the nth coefficient vanishes when n =  ~ ,  and the value 
of the series at any point x depends only upon the infinitely 
small portion of the function F which lies on either side of 
that point. I f  the second condition is satisfied, the series is 
convergent, and if, further, the integral involved in this con- 
dition vanishes, the converging limit of the series is F(x).  I f  
the first condition is not satisfied, the coefficients of the series 
are indeterminate and meaningless, and the series cannot 
therefore be formed. Whether  the function can still be 
represented by an harmonic series in such a case--the coeffi- 
cients being determined otherwise--is a matter with which 
we are not now concerned, nor are we concerned with deter- 
mining whether the same function can be expanded harmoni- 
cally in more ways than one. We are concerned only with 
determining the most general conditions under which Fourier 's 
method of expanding functions into harmonic series is appli- 
cable. In cases where it fails, we have no general method of 
proceeding. 

40. I f  the function has infinite values, two cases may arise 
according as the function has or has not an infinite number 
of maxima and minima where it is infinite. In  the former 
case, as shown above, the series is convergent (except, of 
course, at the points where the function is infinite) pro- 
vided the function becomes infinite only at a finite number 
of points, and that its integral vanishes when taken between 
limits infinitely near to and on either side of each of these 
points. In  the latter case, for example in the case of 
1 1 1 
xCOSx, where x- is infinite when x = 0 ,  and cos lx has an 
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148 Mr. I{. Appleyard on .Dielectrics. 

infinite number of maxima and minima values, Riemann has 
shown in the paper already refer'red to that this condition is 
not sufficient. For, although the integral of the function 
taken at. the point where it is infinite may wmish, this integral 
when the function is multiplied by cos nx or sin nx where 
n----~ may become infinite. In the first case the oscillations 
of the function mutually compensate each o~her, but in the 
second case the factors sinnx or cosnx may destroy this 
compensation when n _ o v ,  for the oscillations of the two 
factors may conspire to produce a resultant function which 
is infinite without oscillations. The value of the integral in 
such a case is, of course, indeterminate, and so it is not suffi- 
cient merely to know thai the integral of the function vanishes 
at the point where it is infinite. 

41. The complete investigation of the convergency of 
Fourier's series ultimately resolves itself into a discussion of the 
conditions of integrability and the nature of functions. We 
thus see that the inquiry leads us to the very tbundations of 
the Infinitesimal Calculus, and in this respect Fourier's series 
differs essentially from Taylor's. For in the case of the latter 
series the field of investigation is, at the very outset, restricted 
for us by the nature of the coefficients, since the process of 
differentiation limits us to functions of a comparatively simple 
kind. 

X[I. Dielectrics. B y  ROLLO APPLEYAItD *. 

S OME experiments upon the change of resistance of certain 
dielectrics with the duration of the testing-current, and 

with the testing-voltage, ~ere described in a paper t which I 
read before the Physical Society two years ago. In continua- 
tion of this research some further tests have been made, the 
principal object being to determine the effect of temperature 
upon the dielectric resistance. For this purpose, mica and 
paraffined paper, in the form of condensers~ have been 
chosen. 

The resistances are measured by the "direct deflexion" 
method~ and are expressed in megohms pro microfarad. The 
testing-voltage is the same throughout all the ~ests (450 
volts), and each measurement is computed from the galvano- 
meter-reading noted after the testing-current has been 
applied for one minute. 

Two paraffin-paper condensers, each of one mierofarad~ 

Communicated by the Physical Society : read May 22, 1896. 
"Dielectrics," Prec. Physical 8oc. xiii. p. 155, 1895; Phil. 5Iag. 

Oct. 1894~ p. 396. 
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