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XI. Onthe Convergency of Fourier's Series. By W. WILL1IAMS;
B.8e., Royal College of Science, London™®.

I

TEHE convergency of Fourier’s series is a subject which
has been so fully investigated by eminent mathemati-
cians that it is necessary to offer some apology for venturing
to discuss it afresh, Itis, however, a subject of such singular
difficulty,—a difficulty which has only been partially over-
come,—and the Investigations connected with it are so
laborious and abstruse in character, that any simplification
that may be effected in the method of attack 1s of value quite
apart from any f{resh light that may be thrown upon the con-
vergency itself. The chief difficulty connected with the
investigation is that of assigning the necessary conditions to
be fulfilled by the function which determines the coefficients
of the series, and this difficulty arises from the highly general
manner in which the term ¢ function *’ is defined and employed
in modern analysis. Of course, if we confine ourselves to
the comparatively simple functions which occur in the prac-
tical applications of the series, functions, for example, which
are continuous and obey the laws of the ditferential calculus,
much of this difficulty disappears. But it is necessary that
we should, in such a case, state clearly the limitation which
we make, as otherwise our investigation partakes of a too
general character, and proves too much. For, as we shall
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afterwards see, even when we limit ourselves to functions
which are finite and continuous, the limitation is too general,
and we cannot determine whether Fourier’s series is con-
vergent or not until we know something of the nature of the
continuity of the function.

2. The object of the present paper is to simplify the
investigation of the subject, to bring it within the reach of
the student acquainted only with the elements of the Infini-
tesimal Calculus, and to exhibit in an elementary manner the
nature of the difficulties that have to be surmounted and the
principal results obtained. At the same time, in addition to
simplifying the discussion, and rendering it perhaps more
interesting and instructive, it is hoped that some additional
light will have been thrown upon the question of the con-
vergency, and that the limits within which the convergency
holds will be found to be to some extent widened and more
clearly discussed.

3. The literature of Fourier’s series is very extensive, few
mathematical subjects having, perhaps, been so widely dis-
cussed. A very valuable account, both critical and historical,
of the chief investigations into the subject has been given by
Arnold Sachse (“‘ Versuch einer Geschichte der Darstellung
willkiihrlicher Functionen einer Variabeln durch trigonome-
trischen Reihen,” Gottingen, 1879) in an essay which has been
translated and published in the Bulletin des Sciences Mathé-
matiques, vol. iv. (1880). It is not proposed to enter here
into the history of the subject, or to discuss the elementary
properties of Fourier’s series, such properties being treated
and illustrated in ordinary text-books. We have here to take
Fourier’s series in its most general form, as it stands, and
determine the conditions under which it is convergent.

4. Fourier showed that if an arbitrary function of « can
be expanded into a series of the form

F(z)=4a,+ ia',, cos na + D'SZ)” sin na,
1 1

the coefficients will be determined by the definite integrals

aﬂ:lj" F(v) cos nvdw, bﬂ:ljw F(v) sin nvgo,

o . g

-

v being written for # under the sign of integration. To
investigate the possibility of the expansion, it 1s, therefore,
necessary to determine the most general conditions which the
function must satisfy in order that the series thus defined may
be convergent and tend to the limit F ().

5. Of the different methods that have been employed in
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this investigation, there are two of particular importance on
account of the results to which they have led, and the fact
that they are still the methods most generally employed in
mathematical text-books. These are the methods of Poisson
and Dirichlet.

6. Poisson proceeds * by forming, from the given Fourier
series, another derived from it by multiplying each term of
the latter in succession by ascending powers of a quantity g
less than unity, and then finding to what limit this derived
series tends when ¢ tends to the value 1. This method has
given rise to numerous and interesting investigations. In
particular, the method in the hands of Stokes in Kngland led
to the discovery of the infinitely slow convergence of a
periodic series in the neighbourhood of a discontinuity.
Stokes showed that when a periodic series represents a dis-
continuous function, the rate of convergence of the series
increases indefinitely at the point of discontinuity, or that,
if a certain number of terms is required to represent the
continuous portion of the function to a given degree of
approximation, the number required to represent the function
to the same degree of approximation becomes greater and
greater as we approach a discontinuity. This important
discovery was published, in Dec. 1847, in a paper “ On the
critical values of the Sums of Periodic Series” (Cambridge
Philosophical Society). The subject was independently in-
vestigated, and the same result discovered by Seidel, and pub-
lished in 1848 (Journal of the Bavarian Academy, 1847-49),
another remarkable instance of two investigators proceeding
independently along the same line of inquiry.

7. Dirichlet’s method of proceeding is to form an expres-
sion for the sum of the first n terms of the series taken in
order, and to find the limit to which this tends when = is in-
creased indefinitely. This method was given by Dirichlet in
1829 (Journal de Crelle, vol. iv. p. 157),in a paper which
contains the first rigorous investigation into the convergency
of Fourier’s series. The method is more direct than Poisson’s,
it enables us to investigate the limitations more simply and
effectively, and it has formed the basis for most of the
researches that have been subsequently made into the subject.

8. Dirichlet starts with the finite series

?1;5ij {(®)ov+ %r % cos anjFF(v} cos nrv

1z . " .
+ 7-3_2 sin n(vj‘ F(v) sin nvdo,
1 -7

* Mémoires de I Académie des Sciences, 1823, p. 574.

L2
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which becomes Fourier’s series when n=w . Grouping to-
gether corresponding terms in n#, and summing the series
so formed, he gets

2—1—J‘r F(v)ov +71—;§; ) F(v) (cos nz cos nv + sin na sin 2v) Jv,
T)—x

1 —m

=:217J;F(v)av+%§l " F(v) cos n(v—2)dm,

-

= 2| P G+ Seosnto—a) o
) . 1
1Y Fv) S0Cnt Dy(v—a)y

A sin L(v—a)

sin (2n+ 1)} (v—z) .

where - t 1.  —
Snl(o—2a) is the value of [} +12cos n(v—wa)],

by a well-known summation in ordinary trigonometry.

This final expression may be called the integral sum of the
series, It involves two variables, or rather it involves the
same variable twice over, namely, once in determining the
coefficients of the series, and then in assigning to the series
its different values. This double use of the same variable is
denoted by the different symbols employed in the two cases,
namely, v in _the one case,and # in the other. We may,
therefore, call v the variable of integration, and x the variable
of summation. Denoting the expression by 8,, Dirichlet’s
problem is to determine the limiting value of S, when n=w0
for all values of @ between 4-7r. This limiting value we may
conveniently denote by Sw.

9. As a result of his investigation, Dirichlet proved that if
the function F is finite, and single-valued between + 7, and
has only a finite number of discontinuities and maxima and
minima between those limits, then Fourier’s series is con-
vergent, and tends to the value F(z) for all values of &
except those which correspond to the discontinuities and the
limits +7 ; the value of the series at a point of discontinuity
being the mean of the values of the parent function on either
side of the discontinuity and infinitely close to it, and its
value at either limit the mean of the values of the parent
function at the two limits. This result has been made the
subject of further inquiry by later mathematicians, notably
Riemann, Heine, Cantor, and P. Du Bois-Reymond, the
inquiry relating to the necessity for the conditions laid down
by Dirichlet. For an account of these investigations, and of
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the results obtained, reference must be made to Sachse’s paper
already mentioned.

10. The method employed by Dirichlet to determine the
value of 8, when n=c is to break up the integral into the
sum of elements which are alternately positive and negative,
that is, into an alternating series with terms of finite magni-
tude. The manipulation of this series is, however, very
laborious, and the method of evalnating S, by means of it is
long, and highly involved and indirect, and consequently is
not suited to the needs of the average mathematical student.
The investigation given in the following paper is a simplified
form of Dirichlet’s in the sense that it depends upon the
evaluation of the same integral S,. But the difficulties at-
tending Dirichlet’s evaluation are avoided by breaking up
the integral into three portions, two of which are of finite
range, the limits being —m to —A, and % to = respectively,
while the third portion is taken between +4, & being infi-
nitely small. It is then easy to show in a simple and
straightforward manner that the two first portions vanish
when n=3w0, and that, therefore, the value of the integral
depends only upon the infinitely thin strip taken between
+h. By this means we are enabled not only to evaluate S,
more easily and directly, but to investigate the limitations to
which the function F(#) must be subjected in a simpler
manner. For, as we shall see, the conditions that have to be
fulfilled by the function F(z) in order that the terms of the
series may be finite and determinate, and that the nth term
may be infinitely small when n=0co, which are conditions
that have to be fulfilled in the case of every series, are sufficient
to ensure that the two portions of S, which lie outside the
limits +7 vanish when n=w. The difficulties attending the
determination of the remaining conditions to be fulfilled by
the function are thus removed to the infinitely small portion
of it which lies between +A4. The investigation is given,
first, for the case of functions which obey the laws of the
differential calculus, this being the only case which occurs in
ordinary analysis. Afterwards, the case of functions in which
this condition is not fulfilled is taken up.

1L

11. Let F(x) be a finite, single-valued, and continuous
periodic function; and where continuous, let it be differen-
tiable. Then, since I is periodic, and of period 27, the limits
of integration may be shifted through any distance at pleasure,
provided the interval between them remains unaltered and
equal to 2. Hence, whatever may be the value of the sum-
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mation variable x, we get, by putting (v—a) =6 and inte-
grating between +,

_1(- ~sin (2n+ 1)30
Ba= Z;_LF O+8)=Ggn10 09

1 * 1 n "
- z_wj_f(om)am ﬁjj(em) cos nd0;

so that the function under the sign of integration becomes
infinite only when 6=0.

12. In the particular case when F(6+2) has a constant
value ¢ all the terms on the right in (11) vanish except the
first, the value of which is¢. Hence in this case S,=e¢. 1If,
in addition, the limits of integration are from —mr to 0, or
from O to =, instead of from —= to =, we get S.=1c.
These results will be required later.

13. Since the function under the sign of integration becomes
infinite when 6=0, we have to break up the integral into
three portions A, B, C, taken respectively between the limits
—a to ~h, —h to h,and k to w*. We shall now show that
A and C vanish when =90 for values of 72 as small as we
please, and therefore that the value of S, depends only upon
the infinitely thin strip B within which the function integrated
becomes infinite.

14. Consider first the portion €. Tet (2n+1)36=¢, and

F(O+a
put—s(iﬁe)=x(§0). Then
B 1 @tk o g .
0—7"(2”"‘1) (zn+1)52€(2”+1)sm $0¢-

‘Whatever n may be, we can always choose 4 T so that (2n+1)4A
is a multiple of . The integral can therefore be broken up
into a number m of elements in each of which the range

is 2r, and one element at the upper limit in which the range

T

is 5 or 3?71- This latter element will have a finite value a.

For a given value of n let p be the value of the numerically
greatest of the remaining m elements. Then the sum of the
{m+1) elements lies between +mp+ a; and therefore C lies

a . m .
—(@nT1)’ since 5= is < 1. But when »n
* The reasoning is precisely the same if the limits are —a to —4,
—hto g, and g to m, h and g being independent small quantities.
t Or, if (2n+4-1)3% is not a multiple of x, each element of range 2
can be broken up into four portions in each of which sin ¢ preserves the
same sign, so that the reasoning of (14) is still applicable.

between +p+
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increases without limit, p diminishes without limit. For each of
the above m elements can be broken up into two parts of equal
range T, in one of which sin ¢ is positive, in the other nega-
tive. The value of each element will therefore be of the form

2(py— pz) Where p; is some value of y (2—7%1) taken between the
limits of the first portion of the element, and p; between those
of the second. But as n increases, the change in x(ﬁ:ﬁ)

when ¢ changes by 27 diminishes ; and since  is everywhere
finite and continuous, p; and p, tend to the same value. Hence
by increasing n sufficiently, we can make p;—p, as small as
we please ; and therefore in the limit when n=o0 it vanishes.

In other words, since as » increases —L tends to
7 X In+1

remain constant during the integration of any element while
sin ¢ passes through all the values included between + 1, each
element tends to the value zero, the value it would really have

if x( 27%—_—1) remained absolutely constant during the inte-

gration.

15. This holds for all finite values of A however small.
When % is very small, p; and p, will have their greatest
values in the neighbourhood of ¢p=(2n+1)44%, in which case
(putting #=0 for convenience, the reasoning being applicable
for any value of )

2(pr—ps) = [ij> T gf:;.)] =[fF0) RIELEI0]]

where ¢ i3 some value lying between 0 and ,and isin-

2
2n+1
finitely small compared with A. (p;—p;) can therefore be
made as small as we please for values of % as small as we
Fh+6—F(h)

h
are both infinitely small. But since F' is everywhere conti-
nuous, and n is to be increased without limit, this condition
can always be satisfied. Hence the limit of p, and therefore
of C, is zero for values of % as small as we please ; and in
the same manner we may show that the limit of A is zero.
The value of S, therefore depends only upon the value of
the infinitely thin strip B of breadth 2A within which the
function integrated becomes infinite, and s independent of
the values of F(0+a) outside this strip. Consequently, we

please provided % is so chosen that ]thand
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may, outside the strip B, assign to F(6+«) any continuous
finite values at pleasure.

16. Since within the strip B the range of integration is
infinitely small, we may replace F(6+2) by F(z)+ 0F/(x).
We then get, putting 18 for sin 36,

S _ F(w)J‘h sin (2n+1)%eae+ qu(r-fv) hsin (2n+1)%030,
~h

2w ), 10

which reduces to the first term on the right because the
integral of the term involving ¥’(z) is zero. The value of
S, when n=c0 is therefore the same as the value it would have
if F(0+a) remained constant throughout and equal to F(x).
Hence S,=F(2) by (12).

17. If we change the limits of integration in 8, from —m
and 7 to — and 0, or 0 and = respectively, we can evaluate
the integral exactly as before. For since the portion taken
between —ar and —A, or between % and m, vanishes when
n=w , the value of the integral depends only upon the infi-
nitely thin strip taken between —h and 0, 0or 0 and . Hence,
replacing F(6+ &) in this strip by F(2) + 6F'(=), it follows,
as before, that the value of the integral is the same as the
value it would have if F(f + z) remained constant thronghout
and equal to F(z). Hence in this case S,=4F(z) by the
latter portion of (12).

From this it follows that in the original integral taken
between +m, F(0+z) may change abruptly in value or
experience a discontinuity when 6=0; for we can break up
the integral into two portions at the point =0, and evaluate

A A
B ” B ,
A 0 B

each portion by the above as if the other were absent. If
F(0+ ) is discontinuous when #=0, it will have different
values at that point according to whether @ attains the value
zero from the negative or from the positive side.

Thus, let 6 have a small numerical value 8, and let OA= —38,
OB=§,AA’=F(x—8),BB'=F(2+498). Then when & vanishes,
F(x—8) becomes F(x—0) or OA”, and F(z+8) becomes
F(2#+0) or OB”. 1If, then, we evuluate each of the above
portions as if the other were absent we get OA’ or $F(2—0)
for the first portion, and $0OB” or }F(x +0) for the second.
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Hence in such a case S, =}[F(z—0) + F(z+0)]*. F(f+a2)
may have such discontinuities for other values of 6 as well,
provided their number is finite. For if we break up the
integrals A and C between neighbouring discontinuities into
separate portions, we may show, as in (14) and (15), that each
of these portions vanishes when n=o0. Hence,since there is
only a finite number of them, their sum vanishes, and there-
fore A and C vanish when n=o0; so that, as before, the
value of 8,, depends only upon the value of the infinitely thin
strip which lies between +A4. Consequently F(6+x) may
have any finite number of discontinuities between +, the
value of 8, at any discontinuity being the mean of the values
to which F(8+=z) tends as the discontinuity is approached
from either side.

18. If F(6+ ) is not periodic, we may regard the portion
of it included between +7r as a wave of an arbitrary periodic
function with, in general, finite discontinuities at +, +3m,

&c.; so that when z= +, So =3[F(—=)+F()] by (1)1
¥ QOr thus,
1 0 i 1 k in (2n+1)16
o [J‘ F(6-+2) sin (in;—l),éae_}_j\ F(0+4) sin ( ;L;- )3 39]
—h 2 0

2n+41)10

1) .
=21,,j (F(z—6)+F(a+6)] 52 0.
0 2

Hence, applying to this the method of (16), we get
3[F@—0)+Fz+0)].
+ Or thus :—If F(+2) is not periodie,

1 (™= in (2n+1)46
S,,=§; F(g_l_x)im_(si’:%g)’}-aﬁ.

—7—Z
If 2 lies between O and =,
1 sin (2n41)360 O sin (2rn+1)39
Ba= g;—rj‘_F"(G-i-.'l)Waa"}' o ﬂlj§0+x_2”)W 24,

and if = lies between O and — ,

8, = él;rf 0 42 SR DI0 +2L1r j‘ o4z SR Cn DI 5 g

—r sin £6 —p—z sin 40

In both cases the function under the sign of integration becomes infinite
only when =0, and the integration can therefore be effected by the
methods given above.

Putting # = in the former, or #= —= in the latter, we get

14{¢ sin(2n+1)30 . 1 { 7 sin (2n41)36
== SRR eV 4 | F(—wt+8) 2220
n=on | FOHO—3G 15 +3; . (=m+6) =370 o,
the limit of which, when n=w0, is

Sy =3[F(—m)+F(m)].

m
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19. Hence, finally, if T is finite, single-valued, and con-
tinuous between -+, or, if not continuous, has only a finite
number of finite discontinuities, and where continuous is
differentiable, then Fourier’s series is convergent, and tends to
the limit F(xr) for all values of & except those corresponding to
the diseontinuities and the values +, 43w, &c. The value of
the series at a point of discontinuity is 4[F(2—0) +F(«+0)],
the mean of the values to which the function tends when ap-

- proaching the discontinaity from either side ; and its value at

+, &e., is $[F(7) + F(—m)], the mean of the values of the
function at the two limits.

III.

20. The simplification in the above method of evaluating
the integral S, consists in having first proved that the two
portions A and C taken respectively between the limits —ar
to —#, and /4 to  vanish when n=9% howerver near to the
value zero we take the ordinates +h, so that the value of the
integral depends only upon the value of the infinitely thin
strip B taken between +hk. S_is therefore independent of
the values of ¥ (84 z) outside the strip B, and consequently
is the same as if F(6+ ) remained constant thronghout and
equal to its mean value F'(2) within B. That is, S_=F(z).

21. The vanishing of A and C when n=o20 depends upon the
fact that the function integrated, namely x(£6) sin (2n+1)18
has an infinite number of finite oscillations (that is, oscillations
of finite amplitude) between — and —A, and between A
and 7. Hence, since the number is infinite and the ampli-
tudes finite, neighbouring oscillations differ infinitely little
from each other, and therefore the area included between the
ordinates —m and —£%, or & and 7, and the portions of the
function and the axis of @ intercepted by them is infinitely
small. In other words, the mean value of the function from
—~arto —A, and from % to m is zero, and therefore the integral
of the function between the same limits is also zero. But the
function itself is not zero : it is merely indeterminate,—the
oscillations being, as it were, too fine-grained to be traced
individually, The transformation (2n+1)30=¢, however,
resolves these oscillations, however fine-grained they may be,
into oscillations of finite period cutting the axis of € at equal
intervals . We are therefore enabled to deal with each
individual oscillation instead of with the oscillations as a
whole, and so to determine the precise effect of each upon the
value of S,.

22. If we break up the portions A and C of the integral S,
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into (m+1) elements as above, without transforming the
variable we can show as before thut each element vanishes
when n=0c0. But the sum of the m elements taken in this
form is not determinate when n=2=., Ior as n increases
without limit, m also increases without limit, and therefore
the sum tends to the indeterminate value «© x 0, as in the
case of any definite integral. We have thus no means of
determining whether A and C vanish when n=w . But by
means of the transformation (2n+1)40=¢, we see that each
element is really of the form

1 a+2w ¢ ;
m(2nt 1)L X (s 1)5”1 $o¢.
. . 1 .

Here the integral, independently of the facto, @ 1) is
. B . - 1
infinitely small when n=120, and this multiplied by 7 @n+1)
gives us an infinitesimal of the second order. Hence the
sum of the m elements is not really (w0 x0), but (= x0?),
or (% X 0), and the form % when looked into is found to bhe

A m
derived from ¥l

determines the convergence of S, to its limiting value.
23. It is necessary to remark that in general an element of

, whose real limit is <1. It is this that

. . . . N ©
the integral S, in which the range of integration is Tntl
vanishes when n =00 only when 8 is, numerically, not less than
h, and % is not less than the value necessary to ensure that
¢ F(h+t)—-F()

7 and —g

2 . N
=or< 271—-7:-”1 (see 15). Of course, since ¢ can be diminished

are both infinitely small, ¢ being

without limit by increasing n without Hmit, and F{8+ )
is continuous, this condition can be satisfied for values of 4
less than any assignable finite limit, however small. But as
n increases without limit, the two infinitesimals ¢ and 7 must
diminish at different rates ; for whereas ¢ tends to the value
zero at a constant rate, h must do so at a constantly dimi-
nishing rate. Thus, ¢ being 5712—_7;—1, I may be Eg_n , &. The
consequence of this is that in the integral

A .
F(9+w)sm (27;;—1)-}060,
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although % is infinitely small and F(8+=2) is continuous
between 0 and A, we cannot without a special examination
treat F'(6 + &) as constant in the integral, and write

sin (2rn+1)% 9
F(z) j‘_h—ﬁ—e

For, since L st be infinitely small compared with 27,
2n+1 sin (2rn41)16
however small & may be, —T—— has an infinite num-
2

ber of oscillations between 0 and A. In such a case we must
write the integral in the form

Fa )j\ sm(2n+1) Hag_i_j\ [F(o+6)—F (e Jsin(?né—gl)%t‘)

and determine under what conditions, if any, the second term
vanishes.

24. Now although the function F (¢+«) is continuous
between 0 and %, and therefore F(x+0)—F(2) is infinitely
small between the same limits, it by no means follows that

-the second term in the above vanishes when n=w, Its

vanishing depends upon the nature of the continuity of the
function F, and we have only proved that it vanishes when
the contlnulty is such as to admit of the existence of a derived
function FY.  In modern analysis, a function F(a) is said to
be continuous at the point # if, & and € being positive quan-
tities as small as we please, and 6% any positive quantity at
pleasure between O and 1, we have for all values of 8
F(a+66)— F(.a:) less in absolute magnitude than e (Cayley,
art. “ Function,” Lncyc. Britt.). In other words, F(z) is
continuous at a point z if a region (#—38) to (£+96) can be
found such that the values of the function for all points within
this region (that is, F(2+88) for all values of & between 0
and 1) differ from its value at # by a quantity <e, ¢ being
infinitely small : the function may vary in any manner what-
soever within this region provided only the difference between
its greatest and least values is not greater than e. Hence a
function may be continuous according to this definition with-
out admitting of a differential coefficient, for the existence of
a differential eoefficient implies, in addition to the above, that

lim [F(z4+8)—F(2)

5=0 5 ] has everywhere a determinate value,

or, geometrically speaking, that F(z +8) —F(#) is ultimately

* @ is here the symbol for a positive fraction, and not the variable of
integration,
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a small straight element inclined at a definite angle to the
axis of a.

25. A function which is differentiable wherever it is con-
tinuous is said to possess ordinary continuity. We thus see
that ordinary continuity is only a particular Aind of continuity.
It is, however, the kind exclusively dealt with in the Infini-
tesimal Calculus ; for the processes of the Differential Calculus
are based upon the properties of the differential coefficient,
and, practically at least, integration is treated as the inverse
of differentiation. While, however, every finite and con-
tinuous function has an integral, only some possess a differen-
tial coefficient. Here, then, the inverse operation is always
admissible (though it cannot always be formally effected),
whereas the direct operation is not always admissible. For
this reason Weierstrass, in his lectures, once made the definite
integral the starting-point for the investigation of the pro-
perties of functions, and especially of the condition for the
existence of a differential coefficient.

26. Bxamples of functions which are continuouns and per-
fectly determinate, but not differentiable, were first given by
Weierstrass*. The essential feature in the case of such fune-
tions is that the loci consist of an infinite number of infinitely
small zigzags and oscillations (for otherwise the functions
would be ditferentiable). The functions are thus perfectly

lim F(.z:iS)——F(‘v):'

determinate and continuous ; but 520 5

cannot anywhere have a determinate value, and the processes
of the Differential Calculus are therefore inapplicable. When
drawn the locus of a function of this kind is indistinguish-
able from that of a function having ordinary continuity, and
whose values at the different points are the mean of the
values of the given oscillating function at the same points.
But we cannot treat the two as analytically the same. Thus,
to borrow an illustration used by Prof. Greenbill, the zigzag
locus CD is indistinguishable from the straight line A B
when the zigzags are infinitely small and infinitely nu-
merous. But we cannot treat it as having the properties of a
straight line. For the length of the zigzag locus is always equal
to the sum of the lengths of CE and E D, however small we
make the zigzags, provided they do not alter in form. If, then,
we treat the zigzag locus as a straight line when the zigzags
are infinitely small and infinitely numerous, it follows that
the third side of a triangle is equal in length to the sum of

# Cayley’s article  Function,” Encye. Britt.
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the other two. This illustrates the nature of the difficulties
encountered in dealing with functions of this kind, and the

Sy
~~a_
>
al Y
~——

E
A B

danger of applying to them, without a special examination,
processes which have been derived only from the study of
tunctions possessing ordinary continuity. It is precisely in
the case of functions of this kind that the integral

"TF(0+2)—F ()] 20

sin (2n+1)36
10
becomes indeterminate in value when n=o0. If the function
possesses ordinary continuity we know that the integral va-
nishes ; otherwise the integral may be quite indeterminate.
- a R sin (2n+1)16
For the infinite number of oscillations of — g when
2
n=00 may conspire with the oscillations of ¥'(x+0) —F () to
produce any value whatever, finite or infinite. In cases of this
kind we can determine nothing as to the value of the integral
until we know something as to the nature of the continuity of
the function ; for the ordinary definition of a continuous
function is too general, and does not confer upon the function
enough properties to enable us by means of known processes
of integration to evalnate the integral.

27. The conditions under which Fourier’s series has been,
up to the present, proved to be convergent are :—

i. That the function F(2) must not become infinite.

ii. It must be continuous and determinate except at a
finite number of points, where it may change abruptly in
value or experience a discontinuity.

iii. It must, wherever it is continuous, possess ordinary
continuity.

These conditions are sufficient for all the cases that occur
in ordinary analysis. The third condition, moreover, is
necessary in all such cases, since processes involving differ-
entiation constitute an essential part of the Infinitesimal
Calculus. From the point of view of the general theory of
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functions, however, it is necessary to consider the cases in
which this condition does not hold.

28. The investigation of Dirichlet involves the first and
second of these conditions, but not the third. The third is
replaced by the more general one that F(z) must not have an
infinite number of maxima and minima between +=. In
Dirichlet’s investigation this condition is applied to the
function throughout the whole extent of the integral S,, that
is for all the values of the variable of integration 6. This,
however, is not necessary. For it has already been shown
that the portions A and C of the integral vanish when n=x
if only the function is finite and continuous—the nature of
the continuity being immaterial, The third condition should
tlierefore apply only to the infinitely small range of values of
F(6+«) which lie on either side of 8=0. We shall now
show that this condition is sufficient to ensure that the
integral

3 3 1
[F(0+a)—F(e)] S0 @2+ 130 g
—h 10
vanishes when n=o, and that therefore S, =F(z).
This integral can be put into the form

f”me) s 63,

% being infinitely small, while m is infinitely great and ¢(6)
infinitely small between O and k. Since ¢(6) has not an
infinite number of maxima and minima, it will ultimately
preserve the same sign, and either constantly increase or
constantly diminish between 0 and 4. Let it constantly de-
crease. Then, dividing the variable by m, we get

i "8(2) 2 %e.

This integral can now be broken up into the sum of a series
of elements which are alternately positive and negative and

constantly diminishing numerically (since sin 6 and ¢(%)

0
diminish numerically). Hence the integral becomes an alter-
nating series with constantly diminishing terms, and its value
is therefore less than the first term, which is itself infinitely
small. That is, the integral vanishes. Again, let $(6) con-
stantly increase between O and A. Then its greatest value

will be ¢(%), and [p(R)—¢p(8)] will therefore constantly
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diminish. Hence the integral

sin mé

| to0n—g0 52 0

vanishes by the above when n=oco. But this integral is

equal to
b A <
E(ﬁ)j z«xmem(?a‘9 j‘ 0) ngmaao;

and therefore, since the first term and the difference of the
two are both infinitely small, the second term must also be
infinitely small. Thus in both cases the integral vanishes,
o that B, =F{z). 1t is interesting to note that the alter-
nating series which appears in Dirichlet’s investigation appears
also here, but in a different manner. For whereas in the
former case it appears with terms of finite magnitude, here its
terms are infinitely small, because the two portions of the
integral S, which lie outside the infinitely thin strip bounded
by +A have already been disposed of. There is therefore no
trouble in manipalating the series ; for all that we have to do
is to show that the terms decrease numerically, since the
series can then be neglected, the first term being infinitely
small.

29. Functions having an infinite number of maxima and
minima are of two kinds, according as to whether the ampli-
tudes of the oscillations are finite or infinitely small. In the
former case the functions are discontinuous, for they violate
the definition in (24) ; in the latter case they are determinate
and continuous.  Dirichlet maintained that all functions
which have only a finite number of indeterminate values, and
are elsewhere continuous, give rise to convergent Fourier
series *; but Du Bois-Reymond and Schwarz have given
examples of functions which are determinate and continuous,
but for which Fourier’s series is divergentt. These functions
are of the class mentioned in (26) for which the integral

3 ; 1
f [F(0+2)—F ()] 2222 Db
0 2
is infinite or indeterminate.

30. The condition that F(0+2) must not have an infinite
number of maxima and minima is not a necessary condition
in order that Fourier’s series may tend to the value F(2).
For Lipschitz { has shown that the series may be still con-

# Sachse’s Essay, p. 19. t Ibid. p. 49. 1 Ibid. p. 21.
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vergent, and tend to the limit F(«), even when F(6+2) has
an infinite number of maxima and minima, provided that at
all the points where the function osclllates, the numerical
value of F(a 468 +8) —F (2 +0) is always less than B8", when
0 tends towards the value zero, B being a finite constant, and
a a positive exponent. Here again it is really necessary to
apply the condition only to the infinitely small range of
values of the variable of integration which lie on either side
of 8=0; for if the condition is satisfied for these values, the
integral

sin ( 2rz+ 1)%639

j [F(z+6)—F(2)]
vanishes, and therefore, as before, S —F(w) This integral
vanishes under the given conditions “because its value cannot
be greater than the value it would have if sin (2n+1)30
were replaced by unity, and all the negative values of
F(z+0)—T(z) made positive. Hence, since for all values
of @ between O and 4, % being infinitely small, the numerical
value of F(z+0)—F(z) is <B6*, the integral cannot be

greater than
A a
2By 6°"'98, or 2Bh ’
0

-3

which is infinitely small, since « is a finite exponent. Thus,
the function may have an infinite number of maxima and
minima of this type, and still give rise to a convergent
Fourier series, whose converging limit is F(z).

31. It is not necessary that F(@+a) should be finite
throughout between +m. It may become infinite at a finite
number of points a, a, . .. provided that

lim (Tatrae
e=0jv F(6+2)o6

a—p @

vanishes, u; and p, being any independent positive fractions.
For if this vanishes, then

lim j‘“+"”F(0+m)

of

¢=0),_,. siné

also vanishes, unless 6 passes through the value zero, for it
tends to the value

atpge
_1 rlim j (6 +2) ax

sina e

Phil. Mag. S. 5. Vol 42 No. 255. Aug. 1896. M



Downloaded by [University of Arizona] at 22:23 10 June 2016

142 Mr. W. Williams on the

Hence, any element of the form

J‘”M -Big-oji) sin m6d80

u—pe SN G

must vanish when e=0, provided F has not an infinite
number of oscillations at the point a, for it cannot exceed the
value it would have if sin mf were put equal to 1 all through.
The sum of the finite number of elements of this form which
occur in the integral 8, at the points a; ;... is therefore
zero. Again, since ¥ (0 + ) is continuous up to (¢ —uq€) and
beyond (a + pge), we can always choose for ¢ a value such that
Fla+pe+t) —F(a+ pe) is as small as we please, however small
pe may be, t being = or < %—1, and n=o . Hence, by
(14), the elements p which occur in the neighbourhood of
the infinite values of F (8 + &) are infinitely small when n=e0,
and therefore, as before, A and C vanish when n=w. If,
then, F (€ + ) is not infinite when 8=0, S_=TF (2), provided
the conditions relating to the portion B are fulfilled ; but if
F(0 + ) is infinite when 6=0, the value of B is oo, and
therefore S_ =, or the series is divergent, as we should
expect. Hence, if the function contains a finie number of
infinite values of the above kind, Fourier’s series is, ceteris
paribus, convergent for all values of z# except those corre-
sponding to the infinite values, and for these values of x the
series is divergent.

32, If the function F(0+ &) is indeterminate over a finite
range of values of a-—for example, if it has an infinite number
of discontinuities, or maxima and minima of finite amplitude,
over that range—the coefficients of the series and therefore
8, cannot be determinate. Bui the function may have an
infinite number of discontinuities, or maxima and minima of
finite amplitude, or singularities in the neighbourhood of a
finite number of points ; for, since the range within which
these singularities occur in the neighbourhood of one of
these points is infinitely small, and the function is never in-
finite, the elements of the integrals which determine the
coefficients and S, corresponding to this range must be
infinitely small. Hence, since there is only a finite number
of such points, the sum of the elements corresponding to them
vanishes, so that the values of the integrals are determined
only by the continuous portions of the function. Hence, the
coeflicients of the series are finite and determinate, and S_
tends to a definite limit for all values of # except those corre-
sponding to the indeterminate points in the funetion; and
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for these points the integrals

th(wie) sin (271;— 1)%089
0 2
are indeterminate in value.

33. We may therefore summarize the conditions under
which Fourier’s series is convergent as follows, taking first
the case where the function F has no infinite values—the
case of a function bhaving infinite values being discussed
later. In order that the series

2—177_ ;F(U)Bv+ i—r%cos ne 1TF(v) cos nv o v

+ ;— >sin na,f F(v)sinnvdw
T .

may he convergent when n=ow for any value of &

(1) The coefficients must be finite and determinate ;

(ii.) The nth coefficient must vanish when n=1=.

These are conditions that hold in the case of every series,
independently of its particular character. They are therefore
necessary conditions, but they are not suficient.

34. The first condition is satisfied if the function which
determines the coefficients is not indeterminate or discon-
tinuous over a finite range of values of the variable, but is
continuous and determinate except, possibly, in the neigh-
bourhood of a finite number of points where it may have any
number whatever of discontinuous, indeterminate, or singular
values. The second of the above conditions is also fulfilled
under the same circumstances. For, if we take the coeffi-
cients

7%: _"F(z,) cos nv 9o, % j}“(u) sin nv Jv,
and divide the variable all through by n, we get

L F (E) cos vQv, L F(g) sin vdv.
AT ) \2 AT | _pe \R2

Then breaking up each integral into n elements of range 2w
and applying the method of (14) we can show that the inte-
grals vanish when « is infinitely great.

35. The condition given above to ensure that the coefficients
of the series are finite and determinate (namely, that F'(v)
must be determinate and continuous, except in the neighbour-
hood of a finite number of points) is a special case of

Riemann’s general condition as to the integrability of a
M2
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function*. Riemaun’s condition is as follows -—Consider a
function F(2) between a and 5. Divide (b—a) into intervals
8;8y... 8, s0 that (b—a)=(8;+8,+...+8,). Let D denote
the numerical value of the difference between the greatest and
least values of F(«) within the interval &;; similarly D, for
the interval 8;, &. Then D, is called the oscillation of the

b
function within the interval 8,. In order thatf F(z)ox
may have a determinate value, “

(8D, +8;D,+8D; +. ..+ 8,D,)

must tend to the value zero when 8, 5,...38, are diminished
without limit, the necessary and sufficient condition for which
is that the sum of the intervals within which the oscillations D
are greater than a given finite quantity o, however small,
must be infinitely small when the intervals are infinitely
small. If the oscillation within an interval & taken on either
side of a given point is always >o¢ when & is diminished
without limit, the function is said to be discontinuous at that
point, and the point is spoken of as a point of discontinuity;
and, on the other hand, if the oscillation is <a, the point is
a point of continuity. If every point within a finite segment
is a point of discontinuity, the funclion is said to be discon-
tinuous over that segment, as, for example, a function which
bas an infinite number of maxima and minima of finite am-
plitude over a finite range of points. If within a given segment
the points of continuity are finite in number, the segment
can be broken up into a finite number of other segments,
over which the function is discontinnous. But if between two
points there are no segments of discontinuity, there may,
nevertheless, be any number whatever, finite or infinite, of
points of discontinuity. In the first case the function is
not integrable, since the sum of the intervals of discontinuity
is finite. 1n the second case, Hankel, who has investigated
this matter with the view of rendering Riemann’s condition
less indeterminate in character, has shown that the sum of the
intervals of discontinuity cannot be finite . Hence, the
function ig, in such a case, integrable, and accordingly, Rie-
mann’s condition may be more precisely stated as follows :—
A funetion is integrable between a and b if it s finite and de-

#* “Ueber die Darstellbarkeit einer Function durch eine tiigono-
metrische Reihe;” dbkandlungen der k. Gesellschaft der Wissenschaften
zu Géottingen, vol, xiil, This paper has also been translated, and published
in the Bulletin des Sciences Mathématiques, 1873, p. 35.

1 ¢ Untersuchungen ueber die unendlich oft oscillirenden und unste-
tigen Functionen ;" Tubingen, 1870.
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termuinate, and ts not discontinuous over a finite range of values
of the variable between a and b. Thus stated the condition is
more general than the one given above, for it does not imply
that the function is continuous : it may have any number
whatever of discontinuous points, but not of discontinuous seg-
ments. The coefficients of Fourier’s series are finite and deter-
minate, and the nth coefficient vanishes when n=9o whenever
Riemann’s condition as to integrability is fulfilled. ~For, if the
function integrated is never infinite, and the sum of the
intervals 8; 8, ... 8, containing the points of discontinuity can
be made infinitely small, the sum of the elements correspond-
ing to these intervals in any integral can contribute nothing
to the value of that integral. For thissum cannot be greater
than the product of the greatest value of the function, which
is necessarily a finite quantity, into the sum of the intervals
(814 63+ ... +38,), which is infinitely small. The value of
the integral is therefore the same as the value it would have
if the function were not discontinuous at the given points.
But we have proved that in this case the coefficients are
finite and determinate, and that the nth=0 when n=w .

36. Now, the conditions which ensure that the coefficients
of the series are finite and determinate are alco the conditions
which ensure that the portions A and C of the integral 8,
vanish when n=co , for we have only to replace I'(v) sinnvin
the coefficients b, by x(36)sin(2n+1)40 and apply the
reasoning of (14). Hence, whenever the coeflicients of the
series determined by Fourier’s method are finite and determi-
nate, the value of the series depends only upon the infinitely
thin strip

A i 1
f F(0+2) sin (27:;-1)2930,
and therefore the remaining condition to be fulfilled in order
that the series may be convergent is that this integral must
have a determinate value when n=co. Writing this integral
in the form

F % gin (2n41)40 1A
fa(:-)j_;.mn(z;_) aH%ﬁhF(ew)_F(z)] v

the value of the first term is F(z). Hence, if the series is to
be convergent, the second term on the right must vanish or
tend to a definite limit. In the former case the series repre-
sents the function for the given value of z. In the latter
case it does not.

37. The general conditions under which the second term
in the above vanishes, or bas a finite limiting value when

sin (2n+1)460

99,
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n=o0, have not been determined. If the function is con-
tinuous, and

i. If the continuity is ordinary continuity ; or

ii. Jf the function has not an infinite number of oscilla-
tions ; or

ili. If the infinitely numerous oscillations satisfy Lipschite’s
condition;

then the term vanishes, and S_=F(«). In all other cases
the term must be treated as indeterminate. We may, of
course, investigate its values for different types of continuous
functions, and so widen the limitations of the function F. But
we cannot determine the general nature of these limitations
because we cannot evaluate the integrals

by known methods of integration until we are provided with
conditions other than those involved in the definition of a
% continnous function,”’—such other conditions, for example,
as i., ii., and iii. above.

38. It is necessary to remark that a series of the form

a;sin z+assin 224 ...+ a,sinne ...

may be convergent, and tend to a definite limiting value
which we may denote by F(«) for all values of 2, and yet it
may be impossible to derive the coefficients by Fourier’s
method from F(z) because F(z) may not be integrable
according to Riemann’s definition. Riemann has given an
example of such a series in the paper already mentioned. In
a case of this sort,” however, since the coeflicients are not
determined by Fourier’s method, the series is not really a
Fourier series. For a Fourier series is one in which the
coefficients are defined by the definite integrals

a,‘-_—-}f F(v) cos nvdv, bu= l—j F () sin nvdv,
T L

and the object of our investigation is to determine the most
general conditions under which the series thus defined is
convergent,

Hence, since it is necessary that the function should be
integrable in order that the coeflicients to be derived from it
may be finite and determinate, we get when the function has
no infinite values the following necessary and swficient con-
ditions for the convergency of a Fourier series :—
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i. The function must not be indeterminate or discontinuous
over a finite range of values of the variable ;
il, The integrals

[0 -py o iy

must vanish, or tend to definite Umiting values, when n=ow
and k is infinitely small.

39. This last condition is somewhat analogous to the con-
dition which holds in the case of Taylor’sTheorem when applied
to numerical functions, namely, that the “remainder” after the
nth term must vanish when n is increased without limit ;—a
sort of test to be applied to each individual funection dealt
with, because we have no means of determining in a general
manner when the condition is fulfilled. If the first condition
is satisfied, the coefficients of the series are finite and deter-
minate, the nth coefficient vanishes when n=c0 , and the value
of the series al any point # depends only upon the infinitely
small portion of the function I which lies on either side of
that point. If the second condition is satisfied, the series is
convergent, and if, further, the integral involved in this con-
dition vanishes, the converging limit of the series is F(z). If
the first condition is not satisfied, the coefficients of the series
are indeterminate and meaningless, and the series cannot
therefore be formed. Whether the function can still be
represented by an harmonic series in such a case—the coeffi-
cients being determined otherwise—is a matter with which
we are not now concerned, nor are we concerned with deter-
mining whether the same function can be expanded harmoni-
cally in more ways than one. We are concerned only with
determining the most genéral conditions under which Fourier’s
method of expanding functions into harmonic series is appli-
cable. In cases where it fails, we have no general method of

roceeding.

40. If the function has infinite values, two cases may arise
according as the function has or has not an infinite number
of maxima and minima where it is infinite. In the former
case, as shown above, the series is convergent (except, of
course, at the points where the function is infinite) pro-
vided the function becomes infinite only at a finite number
of points, and that its integral vanishes when taken between
limits infinitely near to and on either side of each of these
points. In the latter case, for example in the case of

1 1 1. . .. 1
208 -, where = is infinite when #=0, and cos —~ has an
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infinite number of maxima and minima values, Riemann has
shown in the paper already referred to that this condition is
not sufficient. For, although the integral of the function
taken at the point where it is infinite may vanish, this integral
when the function is multiplied by cosnz or sinnz where
n=co may become infinite. In the first case the oscillations
of the function mutually compensate each other, but in the
second case the factors sinnx or cosnma may destroy this
compensation when n=w, for the oscillations of the two
factors may conspire to produce a resultant function which
is infinite without oscillations. The value of the integral in
such a case is, of course, indeterminate, and so it is not suffi-
cient merely to know that the integral of the function vanishes
at the point where it is infinite.

41. The complete investigation of the convergency of
Fourier’s series ultimately resolves itself into a discussion of the
conditions of integrability and the nature of functions. We
thus see that the inquiry leads us to the very foundations of
the Infinitesimal Calculus, and in this respect Fourier’s series
differs essentially from Taylor’s. For in the case of the latter
series the field of investigation is, at the very outset, restricted
for us by the nature of the coefficients, since the process of

differentiation limits us to functions of a comparatively simple
kind.

XII. Dielectries. By ROLLO APPLEYARD *.

SOME experiments upon the change of resistance of certain

dielectrics with the duration of the testing-current, and
with the testing-voltage, were described in a paper T which 1
read before the Physical Society two years ago. In continua-
tion of this research some further tests have been made, the
principal object being to determine the effect of temperature
upon the dielectric resistance. For this purpose, mica and
paraffined paper, in the form of condensers, have been
chosen.

The resistances are measured by the “direct deflexion”
method, and are expressed in megohms pro microfarad. The
testing-voltage is the same throughout all the tesis (450
volts), and each measurement is computed from the galvano-
meter-reading noted after the testing-current has been
applied for one minute.

Two paraffin-paper condensers, each of one microfarad,

* Communicated by the Physical Society: read May 22, 1896.

t *¢ Dielectrics,” Proc. Physical Soc. xiii. p. 165, 1895; Phil. Mag.
Oct. 1894, p. 896.



