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On the Theory of Screws in Elliptic Space (Third Note).

By A. BUCIIHEIM, M.A.

[ReadJtiue With, 1SS(J.]

This Note is a continuation of two previous Notes of mine on the
same subject which have appeared in these l'roceedings (Vol. .\iv.,
p. 83, and Vol. xvi., p. 15). In the last two sections of the second
Note, I gave some formula) relating to inliuitosimal motions, applicable
to the throe kinds of uniform space of three dimensions. In the pre-
sent Note I consider finite motions.

Starting with Prof. Cayley's expression for an orthogonal matrix
in terms of a skew matrix, I show how this is connected with the
screw denning the motion. Then, transforming the matrix to its
canonical form, I obtain formula? relating to the distances and angles,
through which points, lines, and planes are moved by a given screw.
In this part of the paper I make use of Grassmann's methods, and of
the theory of matrices, as presented in my paper on the subject in
these Proceedings (Vol. xvi., p. G3). In the remaining part of the
paper I make use of biquatcrnions, referring to my paper in the
American Journal of Mathematics (Vol. vn., Pt. 4), and obtain the
following theorem:—Any screw motion is represented by a bi-
quaternion, in such wise that, if Q is a biquaternion, and p any bivector,
QpQ* is the bivector into which p is transformed by tho motion
defined by Q; and, if Q is brought to the form

the motion defined by Q is the motion defined by the screw a-fwa'.

I.

In any kind of space a motion is a linear transformation which
leaves tho absolute unaltered. If we refer the absolute to a self-
conjugato tetrahedron, and reduce its equation to the form

^ + 2 / 2 + s2 + wa = O,

we sec that a motion is a linear transformation by which tf + if+^ + io*
is unaltered,* that is to say, it is an orthogonal transformation, and

* To u scalar factor pres ; but wo can always supposo this factor to bo unity.
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the condition that a matrix <p may be orthogonal is 00'= 1, if 0' is the
conjugate of 0.

Now, let 0 be any orthogonal matrix, and let

, 1 — 0

Thon f
1 -

1-0
1+0

That is, i/> is a skew symmetric matrix, and therefore any orthogonal
matrix may bo written in the form

where ^ is a skew symmetric matrix. For actual calculation, it is more

2
convenient to write 0 = ; r — 1.

1 + y
Since <p is a function of ip, we see that the latent points of 0 are the
same as those of \p, and that, if X is a latent root of \p, the correspond-

ing latent root of <j> will be

I proceed to consider the latent points and roots of a skew symmetric
matrix, ty. Let eu e2... be the latent points, \v A3... the latent roots. I
shall assume that \p is not a derogatory matrix, so that X̂  &fc. are all

unequal. We have Se* $ek = Xs iSe,-eA.

But Set 4>ek = 8ek i '̂e,-

= - 8ek \pe>,

because \p is a skew symmetric matrix, = — X,- /S'e< ek.

Therefore, either X̂  + X, = 0 or 8c,ek = 0. JSIoreover, by taking i=k,
we see that either X; = 0 or T""^ = 0. If, then, we attend only to
those latent points for which the corresponding latent root docs not
vanish, wo see that all these points arc on the absolute, that they

VOL. XVII.—NO. 268. it
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group themselves in pairs for which the sum of the latent roots is
zero, and that any two points not forming a pair are on a generator
of the absolute.*

I shall now confine myself to matrices of the fourth order. Let

»|/ = ( 0 h —g a ) .

-h 0 f b

9 - / 0 c

—a —b —c 0

Then wo find that the latent roots are given by

Now, write a9 for a8 8, and let

)* = 0.

thon wo havo
4

and, writing X2, yna for tho roots of this equation, we get

\3 Ji ,
= — a siu" 2 '

Hi= — «2 cos8 -£-.
a

Wo see that tho latent roots of ^ aro

iuitsin •—,

and that, therefore, tho latent roots of

aro

•at sin-^ l + «icos-^- 1 —oisin-^- 1— aicos^-
£> 2 2 2

'.OS J—1—ai sin *- 1—ui cos -^ a i s i n cu cos

* For if a, $ arc smy two points, T- (\o + t̂)3) = A-y-a + 2\nSa& + n"T-fl, and therefore
vanishes for all vahiua of A, n if 'l^a = Sa& = T-& ~ 0; and therefore, if these thrco
conditions aro £ullillud, the lino [a/9] is a generator of tho absolute.
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It will be worth while to give the actual value of

If /3 = af+bg + ch, A = l + as+ft\ we find (Crelle, t. 32, 184-6)

( A* = l+f-g*-hi + Vi + ci-a?-fi\ 2(-7i-a&+/gr-c/3),

2(h-ab+fg+c(i),

2(-g-ca+hf-b(l),

2 (gf-ca + /i/+&/3), 2 (-a + bh-cg-ffi)

2 ( - / - be + j / / i - a/3), 2 ( - 6 + cf-ah-gft)

2(c+ag-bf+hfi),

Wo have also A = 1 + a_ i.^j."*?* '̂

4

= (1 + a8 cos8 J - ) ( 1 + a8 sin8

II.

Let a = acjeg + beje!+ cele3+/eie4 + 5fe9e4 + /i('8e4 bo any screw,
a; = »e1+ye8+ze5+toe4 any point.* Then, if xa = Z, we have

whero ^ is the same matrix as, in (1). We sec, therefore, that to a given
screw a appertains a certain skew symmetric matrix, and it follows from
what was proved in (1) that the latent roots of the matrix are

* ± iTa sin - |K ±iTa cos -£-,

where Ta, )̂ are the tensor and the pitch of a respectively.

It appears, therefore, that the connexion between a motion and a
Bcrew is as follows : the motion is defined by an orthogonal matrix,

* The general formula for any kind of spaco can bo got from this by writing
ea, eb, cc, for a, b, c in the valuo of A, and in the throo first columns of tho matrix.

f I t will be convenient to denoto screws, points, and pianos by thoir first coordi-
nates : thus, " tho plane I" means tho piano (Imnp).

R 2
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to this corresponds a skew symmetric matrix, and this skew matrix
appertains to a certain screw. And conversely, given a screw, we can
find the skew symmetric matrix appertaining to it, and then an ortho-
gonal matrix corresponding to this skew symmetric matrix, and this
orthogonal matrix defines a motion given by the Bcrew.

We have now to reduce these matrices to their canonical forms,
and to see what our metric functions become.

III.

The latent roots of the orthogonal matrix * have been given in (1),
and we see that they are of the form a, /3, a"1, /3"1. Call the latent
points e1e9e3e4, as before; then e,e2, e1e3, eae3, e8e4 are generators of
the absolute, and we see that, since the edges of the tetrahedron of
reference are generators, the equation of the absolute must be of
the form xz—\yw = 0. It will bo necessary to work out the three
transformed equations of the absolute.

If eu e,, e3, et are four points on the absolute, such that exev eve^
e2es, eaet are generators, it can be vex'ified without difficulty that the
four points

rJls=el + es, J73 = e2 + e4, ?/3 = ex — e3, f]i = el — ei

are the vertices of a self-conjugate tetrahedron.

Now, for any self-conjugate tetrahedron, the fundamental metric
functions are x* + if + zi+%o\ l*+m?+n*+p\ a8+&2+c8-r/

3+</a+/i8 for
points, planes, and lines, respectively; and we can therefore suppose
that the tetrahedron I^I^I^I^ was originally taken as the tetrahedron
of reference.

It will be convenient to begin by considering the transformation of
lino coordinates. Now, a condition that has to be satisfied is that
qf+bg + ch shall be transformed into itself, and not into a multiple
of itself.

This condition is not satisfied if we take the values of r/u &c, just
given; but it is satisfied if we take *

values which give
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We find

2 (eae8, efr

= ( - 1 ,

0,
- 1 ,

- 1 ,

o,
1,
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»,e4, eac

o,
-2i,

o,
o,
o,
o,

*» e8e4)

i, - 1 ,

0, 0,
—i 1

— *i — 1 »

0, 0,

-i, - 1 ,

0, i

0, 0

0, i

0, -i

2i, 0

0, i
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Now, let the coordinates of any line be (abcfgh) with respect to
e1e2e8e4, and {ABCFGH) with respect to ViViViVt > then we must have

«e8e4
ae2es + 6e8e,

Substituting for e2e3, &c, their values in terms of
paring coefficients of »/a »?3, &c, we get

j , &c, and com-

and therefore

or

It can be easily verified that we have

AF+BG+CH= af+bg + ch.

If we consider the transformation of point coordinates, we shall find,
if (xyzw) are the cooi'dinates of a point with respect to eje2e8e4, and
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(XYZW) are its coordinates referred to I / ^ J*?^

= 2(xz-yw).

IV.

We have now to consider the canonical form of the screw itself on
which our transformations depend. I use w as in my second note on
the theory of screws, to denote the operation of taking the conjugate
with respect to the absolute; so that, whatever x may be, OKB is its
conjugate with respect to the absolute. The points of reference e<
were determined as the latent points of a certain matrix, which
appertained to a certain scrow; call this screw a, then the equation
determining the latent points is

d a = Xj we,-.

Now, let ABCFGH be the coordinates of a referred to the tetra-
hedron e,e2e3«?.l. Then we liavo

But

Therefore

Again,

Therefore F = 0, B = A,.

The equation e8a = — X,WP8 gives (7 = 0, and we get, as the canonical

form, X3<

or iTa ( ± s i n -^ c8Cj ± cos -|- e,e4 J,

where there is nothing so far to determine the signs; but if we
remember that we must have

2Xj X, = Ta sin 0,

it is obvious that the two signs must be different, and we can take

a — iTa f sin $- ese,—cos -2- eseA*

• This transformation can also bo effected by supposing the screw to be referred
to viViV^Vn &nd then using the equations defining e^e^e^, and their expressions in
terms of i^a^i?*.



1886.] Theory of Screws in Elliptic Space. 247

and we see at once that the axes of a are eseu eae4. It should be
noticed that we have now fixed the correspondence between the latent
roots of $, the matrix defining the motion, and the points elese8e4, viz.,
the order of the latent roots is

l+iT<zcos|- l-iTasia-^ l-i

I shall denote them as a, /3, a~\ /3'1.

V.

It will be worth while to give a few results connected with
the transformations in the last two sections. I shall suppose that we
take e1e2e8e4 as tho tetrahedron of reference.

Let a = (abcfgh) be any screw ; then we have

Sad = af' + a'f—ch'—c'h—bb'—gg',

and therefore u a = (a, —g} — c, / , —b, —h),

2*a=(2a, 6-0 ,0 , 2/, g-b, 0),

2»,a = (0, b + g, 2c, 0, b + g, 2h),

$a = 0 if a = / = & — g = 0,

rja=0 if c = /t = b+g = Q.

Two screws a, a are ^-parallel if

JL — b—g _ j _
a' b'-g f"

they are ij-parallel if — = r; •--, = -r; •
c o +<7 n-

The coordinates of a ^-generator are

(0, X , - 1 , 0, X, \ 2 ) .

The coordinates of an »j-generator are
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The equations of a ^-generator are

z—\y = 0,

w—XJB = 0.

The equations of an 17-generator are

z-\w = 0,

y-Xa>=0.

VI.

We have seen that the matrix * defining the motion can be reduced

to the canonical form <b - a e i » f a " ' ' ^ ^ ' e < .
e» e8, es, e4

It follows that, if the coordinates of a point referred to the tetra-
hedron e^e^ are (xyzw), those of its new position referred to the
same tetrahedron will be

ax, (3y, a"'z, fl'ko.

Let P, P'be the two positions of the point. The distance between the
points (xyzw) and (x'y'z'io) is given by

cosPP'= xz' + xz-yio-y'w
,y2(xz—yw) -/2 (JCV—2/V)'

and, therefore, for the two positions of P,

Now,

And, therefore,

Moreover,

e,e,, we have

and

«) ,

= (x e,+y<%+zes+weA) ezex

T3 (Pe8e,) = 2yw*

— 1 , and therefore, if $ is the distance of Pfrom

sm8 8 =
xz—yw

cos8 6 —
xz—yw.

* If ^^ ^^
system of coordinates

^p^^ s I is any plane, we have, in the present
= 2 (lm—np).
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We have, therefore,

cos PF = cos A cos* 0+cos A sia8 0>

where

cos A = —?r- >

and AD 9 are obvionsly the distances through which points on e^,
e3e4 are moved. As regards these points, we see at once that points
on either of these axes remain on the same axis. I proceed to find
the simplest expressions for Dn Dr We have

008 A = ^

1 + iTacosl- l-iTacoa^r 1-T2acos2£

1-iTacoa^- 1 + iTacos*-

and therefore tan —l- = Ta cos -|-.
2 4

In the same way, we find

tani^^asin-J-.
2 2

tan-^
We have L = tan -̂  ,

* A 2

tan^i
and tan -̂ - is what Sir Robert Ball calls the pitch of the screw.

We found

cos PJP' = cos D = cos A cosS ^ + 8^n A 8^n* ®'

Now, if P is taken on a fixed line, we have

sin8 0 = sin8 0j cos2 5+sin8 0, sin8 5,

cos3 0 = cos8 0i cos8 $ •+• cos8 0a sin8 2,

if 0n 09 are the shortest distances between e9e8 and the line, and 5 is
the distance of P from the point where one of the perpendiculars
cuts the line.
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We have, therefore,

cos D = cos Dj (sina 0 coss 5+sin8 09 sin8 3)

+cos I), (cos8 0X cos8 3+cos8 0, sins 8)

= cos Aj cos2 S+cos A2 sin8 5,

where cos Aj = cos D, sin8 0, + cos JD2 cos8 du

cos A2 = cos 7>i sin8 0a+cos D2 cos8 02,

and A,, A, are obviously the displacements of the points where the
two shortest distances cut tho line.

VII.

In this section I investigate the application of biquaternions to tho
representation of motions in any kind of space. In this application
we have to consider a motion as a linear transformation of line co-
ordinates ; that is to say, we consider space as made up of screws.

I use the notations explained in my paper on biquaternions in Vol.
vn. of the American Journal of Mathematics.

If a linear tranformation of line coordinates is to represent a motion,
it must transform a line into a line, and it must leave the angle
between two lines unaltered. It is obvious that if these conditions
are to be satisfied, af+bg + ch and ei(ai-\-bi + ci)+fi+gi-\-h2 must be
unaltered by the linear transformation. But if we represent the line
by a bivector p, the two expressions just written are QNp / 2 and UNp
respectively, and we see that a linear transformation represents a line
if, and only if, it leaves Np unaltered. Now consider the bivector tar
given by the equation

vf = QpQ~\

where Q is a biquaternion ; is is obviously got by operating on p with
a certain linear transformation, and since all quaternion identities
hold for biquaternions, we see that Nvt — Np. It follows that the
operator Q( ) Q"'i operating on a bivector, represents a motion. More-
over, we easily Ree that, if p = VQ, w = p, and therefore the motion is
specially related to the screw VQ.

In § 3 of the paper on biquaternions already referred to, I have
shown how we can find the axis of a given biquaternion by dividing
it by a certain biscalar. Now if we have vt — QpQ'\ it is obvious
that we can divide Q by any biscalar without altering w, and we can
therefore suppose Q to be a special biquaternion. This remark
simplifies the biquaternion formuloa, and is important as reducing the
disposable constants in the value of vt from seven to six.
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Now, if Q = A + A is any quaternion, and P a vector, we have

2)+2AFAP-2AgAP
~ A9-A8

We have to use this formula, remembering that all the quantities in-
volved are biquaternions. I write

II = tsr-fwtar', P = p+wp', A = S-fwci', A =

I shall also suppose that Q is a special biquaternion. This condition

gives $&=. Seta',

Our object is to determine B, S' so that the motion represented by
Q ( ) Q~x may be the same as that represented by the screw u + ua'
according to the principles used in the first part of this paper. To
do this I suppose our coordinates chosen in such wise that

a + wa' = gj + bioj.

Then we must have* a = c = / = h = 0 in the value of <b given in (1).
I shall only consider one edge of the tetrahedron of reference.

I take P = i; we get

NQ.n = i(hi + h*i-g2-e2b3)-2k ( ^ + e2a/fc)~

But, using the value of $ given in (1), we get

A.<**,=

And therefore, since
A

A . * (e,e4) = — Ug e^—26 (1 — g9

Now

and e9e8 = wi, ejeg = wfc, e!e4 = i, eae4 = A;.

* The Bcrew (abcfyh) is here represented by {fi + gj+ hk) + u (<ii + bj+ ck) and not
(is in my pa^er on biquaternions.
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We see that the two expressions agree if we take

and therefore we have the theorem.
If Q = 1 + a-f w (Saa+ a'), then the operator Q ( ) Q'1, operating on

a bivector, represents the motion due to the screw a + wa'.

VIII.

In this and the following section I use the results of the last section
to investigate formulae for the angles and distances through which
lines are moved, and for the composition of motions. The bi-
quaternion Q will be supposed to be any special biquaternion, and
will be taken as defining the motion. We have

II(A2-A2) = P(A2+A2) + 2AFAP-2A#AP.

This gives
SUP. (A2-A2) = P2 (A2 + A2)-2^AP.

This equation gives us expressions for the distance and angle through
which P is moved. In the special case in which P is a lino cutting
the axis of A at right angles, we have

DP2 = 0,

SAP = 0,

and wage* „, , ( P n ) =

and therefore

We have also es [HI] =

It will be convenient to introduce the following notations : Q being
any special biqnaternion, let

• I use the notation of my paper on biquaternions: NQ = QKQ, T3Q —
I t is convenient to write V2Q, n?Q for (UQ)2, (nQ)2 respectively.
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We see, then, that for a lino cutting VQ at right angles, we have

(PH) = 2 (Q),

It is not hard to get expressions for (PII) and [PIT] in the case of
any screw P.

We have NQ . SUP = P2 (A2 + A2) -2/S2AP,

which breaks up into

NQ . USliP = UP3. U (A2 + A2) + e2OPsO (A2 -|- A2)

-2U2iSAP-2e2fi2
(S'AP,

NQ. toSHV = OP2. to (A2 + A2)+e2nP2U(A2 + A2)-4OSAP.UiSAPJ

and therefore, since TH = TP, SAP = SQP,

cos (nP) = cos2 (Q) + sin2e [P] es {Q} - 2 cos1 (QP) -2 sin8 e[QP],

es [IIP] = es {Q} +sinae [P] cos 2 (Q)-4cos (QP) es [QP].

IX.

If we have cr = QpQ~\

we have QVQ"1 = Q'Q . P (Q'Q) "\

and therefore to compound two motions we multiply the correspond-
ing biquaternions together.

It is important to prove that the product of two special bi-
quaternions is a special biquaternion. A special biquaternion is
defined by the equation

QNQ = 0.

Now let Q, Q' be two biquaternions; we have

toN (QQ') = toNQNQ'= VNQvNQ'+vNQtoNQ',
and therefore QN(QQ') vanishes if toNQ, toNQ' both vanish.

We have, if Q"= QQ',

^ S Q Q ' = cos2
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Moreover,

{ ) ^ $ f S ' = i 008 (QKQ') es

If Q, Q' are given in the standard form, so that we have

Q = 1 + o + w (8aa'+a) = l + w&aa' + A,

we have
'= l + e2Saa'Sala[+VSAAl

= 1+T 2 ^ 2 % es [A] es [A,]-TATAl cos (AA,),
4

= 8aa!+ 8aia[

P A ; ? [ A J _ r A r A i es [AAJ>

and we can, if we choose, substitute these values in the values of
cos2 (Q")>es {Q"} given above.

As regards the connexion of the angles (Q), [Q] with the pitch
and tensor of the screw defining the motion, I add the following
formulae:—

es ] W i = ^ 5 — , m 2 .

es [A]

~ (1 + 2™A eoai[A])(l + 0 * 2 ^ 6 8 ^ ^ ] '
Lastly, I l'emark that, if USQQ' does not vanish, the screw result-
ing from two biquaternions is

VQQ'
USQQ''


