240 Mr. A Buchheim vn the [June 10,

On the Theory of Screws in Llliptic Space  (Third Note).
Ly A. Bucunemn, M.A.

(Bead June 104k, 1886.]

This Note is a continuation of two previous Notes of miue on the
sate subject which have appeaved in these Proceedings (Vol. xiv.,
p. 83, and Vol. xvi, p. 15). Ia the last two scctions of the sceond
Note, I gave some formnule relating to inlinitesimal motions, applicable
to the three kinds of uniform space of three dimensions. In the pre-
sent Note I consider finite motions.

Starting with Prof. Cayley’s expression for an orthogonal matrix
in terms of a skew matrix; I show how thig is connccted with the
screw dcfining the motion. Then, transforming the matrix to its
canonical form, I obtain formuls relating to the distances and angles,
throngh which points, lines, and planes are moved by & given screw.
In this part of the paper I mako use of Grassmann’s methods, and of
the theory of matrices, as presented in my paper on the subject in
these Proceedings (Vol. xvr., p. 63). In the remaining part of the
paper I make use of biquaternions, veferring to my paper in the
American Journal of Mathematics (Vol. vu., Pt. 4), and obtain the
following theorem :—Auny screw motion is represented by a bi-
quaternion, in such wise that, if @ is a biguaternion, and p any bivector,
QpQ~"' 1s the bivector into which p is transformed by the motion
defined by ; and, if @ is brought to the form

l1+a+w (Sad +a’),
the motion defined by @ is the motion defined by the screw a+wa’.
L

In any kind of space a motion is a lincar transformation which
leaves tho absolute unaltercd. If we refer the absolute to a self-
conjugate tetrahedron, and reduce its equation to the form

G4yt 240t =0,

we sce thatl amotion is a linear trausformation by which &*+5°+ 2* +w°
is unaltered,* that is to say, it is an orthogonal transformation, and

* To u scalar factor prés ; but wo can always supposo this factor to be unity.
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the condition that a matrix ¢ may be orthogonal is ¢¢'= 1, if ¢’ is the
conjugate of ¢.
Now, let ¢ be any orthogonal matrix, and let

—1=¢
¢_1+¢'

’ l_ /
Then = —ﬁ
¥ 1+9¢
— 1=~
=17,
—_1—¢
1+9¢
=—1.
That is, ¢ is a skew symmetric matrix, and therefore any orthogonal
matrix may bo written in the form

=1=¥
¢ - 1 + 4/’
whero  is a skew symmetric matrix. Foractual calculation, it is more
. . 2
convenient to write = ——1.
nveni 1 9= !

Since ¢ is a function of , we sec that the latent points of ¢ are the
same as thosc of ¥, and that, if X is a latent root of Y, the correspond-

. . 1-A
latent root of 11 b —
ing latent root of ¢ will be i
I proceed to consider the latent points and roots of a skewsymmetric
matrix, . Let ¢, ¢, ... be thelatent points, A, A, ... the latent roots. I
shall assume that ¢ is not a derogatory matrix, so that \;, &c. areall

unequal. We have Se; e, = A Seiex.
But S({; Ve, = Se Ye;

‘ = — Se, Ye;,
because Y is a skew symmetric matrix, = —A; Se; e, .

Thercfore, either A+ X; = 0 or S¢;¢; = 0. Moreover, by taking ¢=k,

we see that either A\, =0 or r%¢; = 0. If, then, we attend only to

those latent points for which the corresponding latent root docs not

vanish, wo see that all these points ave on the absolute, that they
VOL. XVIL.—NoO. 268. &
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group themselves in pairs for which the sum of the latent roots is
zero, and that any two points not forming a pair are on a generator
of the absolute.*

I shall now confing myself to matrices of the fourth order. Let

v=( 0 h —g a).

-h 0 f b
9 =f 0 ¢
—a —=b —¢c 0

Then we find that the latent roots are given by
NN (@' +V+ S+ + ¢+ 0D + (af +bg +ck): =0
Now, write «® for a*+b*+¢*+f°+¢*+ 2% and let
sing = 2 (af+bg+ch)

a?

3 3 3 a’sin® (’J
then we have A= Nad — =0,
and, writing A%, g for tho roots of this equation, we get

N = —dsin? 2,
2
3 — _ Sond P
p = —a’cos 5
We sce that the latent roots of Y arve
Zat sin %, +aicos -g—,

and that, thorefore, the lutent voots of

1-y

1+¢
. 14ai sin% 14 aicos % 1 —aisin %— 1 —atcos -g—
L9 - ! . ¢
1—atsin o 1—a«tcos % 14 azsin g l+uu,os£—

* 1%or if @, B arc any two points, 7% (Aa + uB) = A*T"a + 2AuSaB + u* I, and thercforo
vanishes for all values of A, u if 7% = Saf = 1“8 = 0; and therefore, if these thrco
conditions arc fullilled, the line [«8] is a guncrator of tho absolute.
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It will be worth while to give the actual value of

_1-y
¢—1+4,'

If 8 =af+bg+ch, A =1+a"+/ we find (Crelle, t. 32, 1846)
(A8 = 14f'mg' 414 P, 2 (—h—ab+fg—cp),

2 (h—ab+fg+cB), 1+ =W —f++a*—0"—f3,
2 (—g—ca+hf—b8), 2 (f—be+gh+af),
2 (a+bh—cg+1R), 2(b+cef—ah+4gp),
2 (g—ca+hf +08), 2 (~a+bh—cg—f3)
2 (—f-be+gh—ap), 2(—=b+cf—ah—gfB3)
1+ —frmgt—c*+a’+ U — (¥, 2(—c+ag—bf—hf3)
2(c+ag—bf+h/3), l—a’—b’—c’+f’+g’+h“_ﬁ1
‘We have also A=14+a*+ a_‘_s_iﬂ

= (1+u’cos" -g—) (1+ o? sin’—%).

II.
Let a = acye; + beye, + ce e, + fere, + gese, + hege, be any screw,
& = xe, +ye;+2¢;+we, any point.* Then, if za = [, we have
(bnup) = (Y Peyaw),t

where y is the same matrix ag in (1). We sec, therefore, that to a given
screw a appertains a certain skew symmetric matrix, and it follows from
what was proved in (1) that the latent roots of the matrix are

Zx1Ta sin -g-, +1T'a cos —g—,

where Ta, ¢ are the tensor and the pitch of a respectively.

It appears, therefore, that the connexion betwcen a motion aud a
screw is as follows : the motion is-defined by an orthogonal matvrix,

* The gencral formula for any kind of space can be got from this by writing
ea, eb, ce, for @, b, ¢ in the valuc of A, and in the threo first columns of the matrix.

+ It will be conveniont to denoto scrows, points, and planos by thoeir first coordi.
nates : thus, ‘‘ the plane /'’ means tho plano (imnp).

R 2
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to this corresponds a skew symmetric matrix, and this skew matrix
appertains to a certain screw. And conversely, given a screw, we can
find the skew symmetric matriz appertaining to it, and then an ortho-
gonal matrix corresponding to this skew symmetric matrix, and this
orthogonal matrix defines a motion given by the screw.

We have now to reduce these matrices to their canonical forms,
and to see what our metric functions become.

I11.

The latent roots of the orthogonal matrix ® have been given in (1),
and we see that they are of the form a, 3, a”!, 371, Call the latent
points e, ¢;e,e,, as bofore; then ee, ee;, ¢, ee, are generators of
the absolute, and we see that, since the edges of the tetrahedron of
reference are generators, the equation of the absolute must be of
the form wz—Ayw = 0. It will be necessary to work out the three
transformed equations of the absolute.

If e, e, ¢, ¢, are four points on the absolute, such that ee, e e,
eye, €36, are generators, it can be verified without difficulty that the
four points

m=ete, n=ete, Uy=e—ey, 1,=6—¢
ave the vertices of a self-conjugate tetrahedron.

Now, for any self-comjugate tetrahedron, the fundamental metric
functions are '+ y*+2*+ %, I'+m’+al+p?, o'+ b+ + 2+ g*+ A for
points, planes, and lines, respectively; and we can therefore suppose
that the tetrahedron n,nynyn, was originally taken as the tetrahedron
of reference. :

It will be convenient to begin by considering the transformation of
line coordinates. Now, a condition that has to be satisfied is that
af +bg +ch shall be transformed into itself, and not into a multiple
of itself.

This condition is not satisfied if we take the values of n;,, &c., just
given; but it is satisfied if we take

n= -‘}—'2 (ete), ny= ‘\—z/'é (este), m= 3% (a—e)

1
N = 7/—2' (e—e,),
values which give

= M+ an, — 'lg+'i'la . Th—ny — 'Ig"’i'u
el /2 1] e’_\/.—_‘z’ €y = \/2 1) ed—‘\/'——é.
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We find

2 (64 €361, €163 €164, €184, €38,)

= ( -1, 0, i, —1, 0, ¢ ?Z’h'ls, NNy Mgy MMy NgN4y ’13’74)-

0, =24, 0, O, 0, 0
-1, 0 -3 1, O

-1 0, —4, -1, 0, —¢

o, 0 O 0 2, O

1, 0, —i¢, -1, 0, <

Now, let the coordinates of any line be (abcfgh) with respect to
e,085p, and (ABCFGH) with respect to nymymem,; then we must have

ae,es+ bege, + cereg+ fere + gege, + hege,
= Angng+ Bngn, + Cnyng+ Fayng+ Gogng+ Hugn,.

Substituting for e,e;, &e., their valucs in terms of 1y, &c., and com-
paring coeflicients of », 1y, &c., we get

24=—(atf)+(h—0),
2B = — 2b,

20 =i {(a—f)—(h+0c)},
2F = —(a+f)—(h—c),
24 = 21y,

2H=1i{(a—f)+(+0)};
and therefore

4 (4+B+C+FP+ G+ HY)
= (a+f)'+(h—c)’—4b'~ (a—f) —(h+c)®
+(a+f)'+ (h—c)'—4g"—(a—f)"~(k+0)’
_ = 8 (af—ch)—4 (b*+9°),
or A4+ B+ C+F+ G+ H = 2 (af —ch)— (U +¢°).
It can be easily verified that we have
AF+BG+ CH = af+bg+ch.

If we consider the transformation of point coordinates, we shall find,
if (xyzw) are the coordinates of a point with respect to eee.e, and
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(XYZW) are its coordinates referred to nnynyn,
X+ Y 4+ 22+ W? = 2 (22 —yw).
1v.

We have now to consider the canonical form of the screw itself on
which our transformations depend. I use w a8 in my second note on
the theory of screws, to denote the operation of taking the conjugate
with respect to the absolute ; so that, whatever @ may be, wz is its
conjugate with respect to the absolute. The points of reference e
were dctormined as the latent points of a certain matrix, which
appertained to a certain scrow ; call this screw a, then the equation
determining the Iatent points is

ca = Al' we; .

Now, let ABCFGIH be the coordinates of e referred to the tetra-

hedron g,c,eqe,, Then we have

e, = Ae,e05+ Geeqe+ Heyoge,.

But we, = 6,604,
Therefore G=\A,,
_ A=H=0(.
Again, e;n = Begese, + Fegeye,,
Wey = — €46,8; == €646, .
Therefore F=0, IB=A,.
The equation e¢;a = — A\ we; gives C=0, and we get, as the canonical
form, Aege,+ A e,
or iTa (d:sin % 036,008 % e,c,),

where there is nothing so far to determine the signs; but if we
remember that we mnst have

2A Ay = TPasin ¢,

it is obvious that the two signs must be different, and we can take
a=1Ta (sin % €56, —COS 2 e,e.,),*

)

-

*® This transformation can also be effected by supposing the screw to be referred
to mmgmany, and then using the equations defining eergey, and their expressions in
terms of nyngnam,. '
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and we see at once that the axes of a are ee, e;¢, It should be
noticed that we have now fixed the correspondence between the latent
roots of ®, the matrix defining the motion, and the points e,e.ee,, viz.,
the order of the latent roots is

, ¢ . - . 3 ——1
1+:{Ta cos 5 1—1Ta sin ) 1—+:Ta cos 5 144Tasin 5

N g b 1] ) .
1-iTacos & 1+iTasin®d 1+iTacos L 1—iTasind
2 2 2 2
I shall denote them as a, 3, a~!, 8-,

V.

It will be worth while to give a few results connected with
the transformations in the last two sections. I shall suppose that we
take e,e.64¢, a8 tho tetrahedron of reference.

Let a = (abcfgh) be any screw ; then we have

Tha = 2 (af—ch)— (b +4Y),
Sad’ = af'+df —cl' = ch—bb' —g7,
and therefore wa= (a, —g, —¢, f, —=b, —h),
2ta = (2a, b—yg, 0, 2f, g—1, 0),
2na = (0, b+g, 2¢, 0, b+g, 2h),
ba=0 if a=f=b—g=0,
na=0 if c=h=b+g=0.

Two screws a, a’ are i-parallel if

they are n-parallel if il Gt R

The coordinates of a ¢-generator are
(0, A, =1, 0, \, AY).
The coordinates of an n-generator are

(11 )‘a 01 >‘,7 —)" O)'
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The equations of a &-generator are

z—\y =0,
w—2Az = 0.
The equations of an 5-generator are
z—\w =0,
y—Az =0.
VI.

We have seen that the matrix ® defining the motion can be reduced

to the canonical form & =

ae,, Bey, a e, B¢,
ey €y 6 €
It follows that, if the coordinates of & point referred to the tetra-

hedron eeeee, are (zyzw), those of its new position referred to the
same tetrahedron will be

az, ﬁy, a’'z, B'w.
Let P, P’ be the two positions of the point. The distance between the

v’

points (vyzw) and (2’7’ is given by

PP = v +2z—yw' —y'w
008 V2 (zz—yw) /2 (a7 —yw')’

and, therefore, for the two positions of P,

cos PP= (a+a™') —% (345 —&

2 (z—yw) 2 (zz—yw)’
Now, Peye, = (:é e+ ye,+ zey+ wey) ey
= —yesey6Hwesese.
And, therefore, T? (Pege,) = 2yw*

Moreover, T7 (ee,) = — 1, and therefore, if § is the distance of P from

. w
ese,, we have sint=— 4% |
2z —yw
xz
and cos’f =
Lz—Yyw.

* If legege, + megerey + nejese, + pegesey = | is any plane, we have, in the present
system of coordinates, 7% =.2 (Im—np).
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‘We have, therefore,

cos PP = cos D, cos’ 6+ coé D, sin®6,

) -1
where cos D, = “"'2" ,
-1
cos D, = B+2B ,

and D, D, are obviously the distances through which points on e,
e,e, are moved. As regards these points, we see at once that points
on either of these axes remain on the same axis. I proceed to find
the simplest expressions for D,, D,, We have

_a+ta!
cos D, = 5
1+¢Ta cos Ld 1—iTacos ¥ 1—Tacos? 2
Y 2 +1 2 2
- 2 2 - H
1—iTacos % 1+ ¢Ta cos —"20— 14T cos? g-
and therefore tan Dy = Tacos 2.

2 2
In the same way, we find .
tan —‘Z—’ = Tasin 2.

2
tan D,
We have 2 _tan? ,
4 D, 2
an —2—-

and tan % is what Sir Robert Ball calls the pitch of the screw.
We found
" cos PP’ = cos D = cos D, cos’ 0 +sin D, sin’ 6. '
Now, if P is taken on a fixed line, we have
' gin® @ = gin® 6, cos® 6+ sin® §, sin’ 3,
cos? 6= cos’i 0, cos® 3+ cos® 8, sin’ J,

if 6, 6, are the shortest distances between es¢; and the line, and & is
the distance of P from the point where one of the perpendiculars
cuts the line.
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We have, therefore,
cos D = cos D, (sin® @ cos® § + sin® 6, sin® 3)
+ cos D, (cos® §, cos® 3+ cos® §; sin® 9)
= cos 4, cos® § +cos A, sin’ J,
where cos A, = cos D, sin®6, +cos D, cos* 6,
cos A, = cos D, sin® 6,4 cos D, cos’ 6,

and A, 4; are obviously the displacements of the points where the
two shortest distances cut the line.

VIL

In this section I investigate the application of biquaternions to the
representation of motions in any kind of space. In this application
we have to consider a motion as a linear transformation of line co-
ordinates ; that is to say, we consider space as made up of screws.

I use the notations explained in my paper on biquaternions in Vol.
vit. of the American Journal of Mathematics.

If a linear tranformation of line coordinates is to represent a motion,
it must transform a line into a line, and it must leave the angle
between two lines unaltered. It is obvious that if these conditions
are to be satisfied, af+bg+ch and & (a®+b°+¢’) +1+g*+1* must be
unaltered by the linear transformation. But if we represent the line
by a bivector p, the two expressions just written are QNp /2 and UNp
respectively, and we see that a linear transformation represents a line
if, and only if, it leaves Np unaltered. Now consider the bivector o
given by the equation

o= QQ
where @ is a biquaternion ; & is obviously got by operating on p with
a certain linear transformation, and since all guaternion identities
hold for biquaternions, we see that Nw = Np. It follows that the
operator Q() Q', operating on a bivector, represents a motion. More-
over, we easily see that, if p = V@, o = p, and therefore the motion is
specially related to the screw VQ.

In §38 of the paper on biquaternions already referred to, I have
shown how we can find the axis of a given biquaternion by dividing
it by a certain biscalar. Now if we have w = @QpQ"', it is obvious
that we can divide @ by any biscalar without altering w, and we can
therefore suppose @ to be a special biquabernion This remark
simplifies the blquatermon formule, and is important as reducing the
disposable constants in the value of & from seven to six.
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Now, if @ = A+ A is any quaternion, and P a vector, we have
M= QPQ-' = LQ QPEQ

— P(A'+4") +24VAP —245AP
A=A

We have to use this fonﬁulu, remembering that all the quantities in-
volved are biquaternions. I write

N=o+wa’, P=p+w’, A=0d+uwd, A=a+twad’
I sliall also suppose that @ is a special biquaternion. This condition
gives 30'= Sad’,
NQ =&+ ~a’—é'a”.

Our object is to determine &, &' so that the motion represented by
Q () Q' may be the same as that represented by the screw u +wa’

- according to the principles used in the first part of this paper. To
do this I suppose our coordinates chosen in such wise that

a+wa'= gj+ buj.

Then we must have* a = ¢ = f = h =0 in the value of & given in (1).
I shall only consider onc edge of the tetmhedron of reference.

I take P =1¢; we get
NQ.M=1(8+8"—g*—eb*) — 2k (39 +€*3'b) ~ 4bgwi—2 (8b+d'g) wk.
But, using the value of ® given in (1), we get
A.de, = (146P) {(1—-g") 6 —2g6,},
A.®e, = (1+4°) {(1—€'b*) 6,—2b¢,}.
And therefore, since
A =(1+g)(1+€b),
A.® (e, e) = —4bge,e;—2b (1 —g*) e
’ + (1 —g*) (1 —€°) e16,—2g (1—e*) eye,.
Now NQ=8+d"+g'4+ €',

and ooy = wi, ee=uwk, ee, =1, ee =k

* The screw (abefyk) i8 here represented by (fi+gj+hk)+w (ai + &/ + ck) and not
as in my paper on biquaternions.



252 Mr. Buchheim on the [June 10,

We see that the two expressions agree if we take
d=1,
&'=—bg,

and therefore we have the theorem.

If @ = 14a+w (Saa’+a’), then the operator @ ( ) @, operating on
a bivector, represents the motion due to the screw a+ wa’.

VIIIL

In this and the following section I use the results of the last section
to investigate formul® for the angles and distances through which
lines are moved, and for the composition of motions. The .bi-
quaternion @ will be supposed to be any special biquaternion, and
will be taken as defining the motion. We have

II (A—A?) = P (A4 A?) + 2AVAP—2ASAP.

This gives
SIP. (A’—A?) = P? (A’+A?)—28°AP.

This equation gives us expressions for the distance and angle through
which P is moved. In the special case in which P is a line cutting
the axis of A at right angles, we have

QP =0,
SAP =0,
3+ 8%+ o’ + fa”®

and we get cos (PII) = Ty —ga

and therefore
v} 3378
cos® § (PII) = k00

T B 48— al—Pa?

We have also es[PII] = 5 409

F e — e

Tt will be convenient to introduce the following notations: @ being
any special bignaternion, let

cos’ (Q) = z_s_(l%)_* = %%@,*

* I use the notation of my paper on biquaternions: NQ = QKQ, 7?Q = UNQ.
It is convenient to write U?Q, a2Q for (UQ)? (0Q)? respectively.
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s0 that sin® (Q) = “;vg’ Qr_ T;‘;Q,
and let es{Q} = 465 2—0-1—5'%@2

We see, then, that for a line cutting VQ at right angles, we have
(P11) =2 (Q),
[rm] = {Q}.

It is not hard to get expressions for (PII) and [PII] in the case of
any screw P.

We have NQ. SIIP = P? (A*+ AY) —28%AP,
which breaks up into
NQ .GSIIP = UP? . G (A4 A?) + QP Q (A2 + A%)
| — 21 SAP—26QSAP,
NQ.QSIIP = UP*.Q (A’+ AY) 4+ QP'C (A% + A%) —4Q SAP, U‘SAP
and therefore, since TII = TP, SAP = SQP,
cos (ITP) = cos 2 (Q) +sin?e [P]es { @} —2 cos? (QP)—2 sin’ 6 [QP],
es [IP] = es { Q} +sin’e [P] cos 2 (Q) —4 cos (QP) es [QP].

IX.
If we have o= QpQ",
we have QeR'=QQ.p(QQ)7,

and therefore to compound two motions we multiply the correspond-
ing biquaternions together.

It is important to prove that the product of two special bi-
quaternions is a special biquaternion. A special biquaternion is

defined by the equation
QNQ = 0.

Now let Q, @ be two biquaternions; we have
QN (QQ) = QNQNQ'=QNQUNQ +UNQQNQ),

and therefore QN (QQ) vanishes if QN Q, QNQ both vanish.
We have, if Q'= QQ,

cont (@) = BEQTHIEIQG

= cos® (QKQ) +¢’es’[QEQ].
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Moreover,

s {Q}= 4”3%%%‘2@@ = 4c08 (QEQ) es [QKQ).

If @, @ are given in the standard form, so that we have
@ =1l+a+w (Sad'+a’) =14 wSaa'+A4,
@=1l+a,+w(Sqyaj+aj) =1+wSaai+A,,
we have
UVSQQ'=1+¢'Saa’Saa;+USAA,
=1 +941; TIAT?A, es [A] es [A,]— TATA, cos (AA,),

Q8QQ = Sad’+ Sa,a;+2SAA,

_TPAes[A] TAjes[A
2

5 J TATA es[AA]],

and we can, if we choose, substitute these values in the values of
cos? (@), es {Q"} given above.

Asg regards the connexion of the angles (Q), { '} with the pitch
and temsor of the screw defining the motion, I add the following
formule :(— .

T°A .
1+ é'Sfaa’

A
e »
14+ —2’% T'Aes’[A]

tan® (Q) =

) 4Saa
= 1
o { Q} 1+é8%aaq,+T°A
4T*A es[A]
T A+ 1A e [AY) (L + ¢ IPAes 5 [A]
Lastly, I remark that, if USQQ does not vanish, the screw result-
ing from two bigquaternions is

yeq
vSQQ"




