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is any set of characteristics, and

Xp Xj* •••» Xr

a set for which \\ is unity, then

XiXi» X2X2' • " ' XrXr

is a set of characteristics.
Returning to the irreducible representation of the group in the

form «,' — "?
X, = 2,a,tmXt,

*n e £x* (x* +1) homogeneous products of the second degree of the x's
are transformed lineai'ly among themselves by every operation of the
group; and, for this representation, the sum of the multipliers of
any operation is equal to the sum of the homogeneous products two
together of the multipliers in the above irreducible form. Hence, by
similar reasoning to that employed above, there must be positive
integers e,-,, such that

# = *ofax2 (fc,» = l , 2 , . . . f r ) f ( i i )

where 4*1 ia the sum of the homogeneous products two together of
the multipliers whose sum is xi- In this way it may be shown that,
if any symmetric function be formed of x' symbols, a system of
equations of the form (ii), in which the e's are positive integers,
must hold when i/̂  is the symmetric function formed.from, the multi-
pliers whose sum is xi- In particular, the products of the multipliers
for each set of conjugate operations in any representation of the
group constitutes a set of characteristics for which \i 18 unity.
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This paper consists mainly of applications of the theory of group-
characteristics given in the preceding paper to groups of odd order.
It is shewn in the first section that a group of odd order has no self-
inverse set of characteristics. From this it follows at once that such
a group when represented as an irreducible group of linear sub-
stitutions must contain substitutions whose coefficients are not all
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real. In other words, a group of linear substitutions of odd order
the coefficients in which are all real is necessarily reducible. Another
consequence is that the order of such a group and the number of sets
of conjugate operations which it contains are congruent to each other
(mod. 16).

The chief result of the second section is that a group of prime
degree which is not doubly transitive must be metacyclical. It
follows that there are no simple groups of odd composite order and
prime degree.

In the third section I have extended from degrees not exceeding 50
to degrees not exceeding 100 the result obtained by Dr. Miller,* viz.,
that corresponding to such degrees there are no simple groups of
odd composite order. The method used is such that in only four cases,
namely, for degrees 57, 81, 91, and 99, is any detailed discussion
necessary ; and I have no doubt that by it the lower limit for the
degree of possible simple groups of odd composite order might, with-
out much labour, bo carried considerably beyond 100.

The results obtained in this paper, partial as they necessarily are,
appear to me to indicate that an answer to the interesting question as
to the existence or non-existence of simple groups of odd composite
•order may be arrived at by a further study of the theory of group-
characteristics .

I.

1. A doubly transitive percnutation group has obviously only two
quadiutic invariants, viz., the sum of the squares of its symbols and
the sum of their products two together.

Let G b e a simply transitive gi"oup in the symbols

and let O, be the sub-group of G which leaves x, unchanged. G, will
interchange the remaining n — 1 symbols in m ( $ 2 ) transitive sets.
For each suffix s these sets will be denoted by

where one or more of the ife's may be unity. .

* JProc. Land. Math. Soc, Vol. xxxiii . , pp. 6-10.

M 2
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Suppose that 8 and S' are any two substitutions each of which
changes xl into xlt BO that

The set of symbols aj,)(i, xn>i, ..., xU)ki

which are interchanged transitively by Gv must be changed by S into
a set, equal in number, which are interchanged transitively by G>
Hence it may be assumed that

£ ( f f i i , i ) £c1Ii2, . . . , » i U i ) = ( « „ , ! , x,hi, . . . , x,i,kl)-

Suppose, if possible, that

8'(xU)l, xUt2, ..., JCn,*,) = (yx, ys, ...,!/*,)»

where the y's constitute some other set which are interchanged
transitively by G.. Then 8~lS' changes the set

® H , 1 » xt\, 2> • • • » * r t , *,

into the set y,, y,, ..., y*,.

But 8~X8\ leaving a;, unchanged, belongs to G,; and the former set
are interchanged transitively among themselves by G,. Hence

It follows that a correspondence may be established among the-
transitive sets in which the different sub-groups G, interchange the
symbols such that for all values of the suffixes s and t every
operation of G which changes a;, into xt also changes the set

into the set xt]>i,, x,,,t „ ..., xtPt kp

(p=l,2, . . . ,m).

Consider now the quadratic function

It is clearly invariant for every operation of G; and, apart from a
possible numerical factor, it is the smallest quadratic invariant of G
which contains x,x,Xii. No one of the n brackets contains a repeated
symbol, and every one of the n symbols must enter in the brackets
the same number of times, viz., kr Hence, gathering together those-
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products -which have the same second symhol,

... +y,kt)»»

and every operation of 0, must interchange among themselves the
symbols in the bracket multiplying x,. These symbols must, there-
fore, constitute one or more complete transitive sets for 0,; and, since,
from the first form of / , there are substitutions in 0 which change
any one product x, xth\ of/ into any other, the i/'s must constitute a
single transitive set of G,. Suppose, first, that

( y , u 2/«2, ••-, y . k t ) = ( a . i . i , ^ i , 2 ' • • •> ^ . I , * , ) -

Then every product of two symbols must occur twice in / , and there-
fore nhx must be even. If O is a group of odd order, this is im-
possible, and tlio two sets must be distinct; Hence, for a group of
odd order the /c's are equal in pairs and m is even. Further, vi is
clearly congruent to 0 or 2 (mod. 4), according as n is congruent to 1
or 3 (mod. 4) ; and the number of independent quadratic invariants is

1 + —. For a group of even order

if the group contains a substitution of order 2 which transposes .'c, and
(Bsl)). In this case no statement can be mado as regards the parity of
m, and the number of independent quadratic invariants is greater than

2. The result thus obtained for groups of odd order will now be
applied to a particular case. Let y be a-group of odd order «, repre-
sented as a regular permutation group in n symbols ; and let g be the
simply isomorphic permutation, group* in the n symbols, each of
whose substitutions is permutable with every substitution of g. The
group {g, g'}, whose order is nljn\ where ri is the number of self-
conjugate operations of g, is such that its sub-groups which leave one
symbol unchanged interchange the remaining n—1 in r—1 sets (loc.
cit.), where r is the number of conjugate sets in g. Since ra-is odd,
r is odd, and the number of independent quadratic invariants- of

The group {g, g'}, being a permutation group, is reducible, and it.is*

* Theory of Groups, p. 146.
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shown in my paper " On the Continuous Group defined by any given
Group of Finite Order" (Proc. Lond. Math. Soc, Vol. xxix., pp. 558,
559) that the r sets of linear functions of the original variables,
there denoted by

fii, £.2. -M &mt (* = 1. 2, ..., r),

are each transformed among themselves by the operations of {g, g'}.
The total number of these linear functions is n; they are shown
(loc. cit.) to be linearly independent. Since the original form of
{g, g'} is real, it follows that, if

£ » i j (at • • • > tiH>,-

are transformed among themselves, so also are

t n > £«> •••> « » i j )

where £ and ? are conjugate imaginaries.
Moreover, these 2mf functions either must be linearly independent

or each of one set must be linearly expressible in terms of the other
set. In fact, if m'(<mi) linear functions of the Recond set were
expressible in terms of the first set, these m functions would be
transformed among themselves by all the operations of {g, g'}, and
therefore also by all operations of the continuous group {(?, G'\; and
this is shown (loc. cit., p. 558) not to bo the case.

Now, for every group of linear substitutions of finite order in
m variables, at least one Hermitian form,

exists which is invariant for the group.* Let such a Herraitian
form be constructed for each of the r sets of variables in which {gr g'}
has been expressed. If

fell) £ i 2 ? • • • > S im j

are linearly independent, the Hermitian forms for these two sets are
identical, and the two sets so give rise to a single real quadratic
invariant for {g, g'}. If, on the other hand,

fill t<2> •••! fim<

are expressible in ten as of

C«l» t i l » • • • » • s i m p

• This theorem was given independently by Prof. A. Loewy (Comptes Hendtis,
Vol. oxxm., pp. 1C8-171), and by Prof. E. H. Moore (Math. Ann., Vol. L.,
pp. 213-219).
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then this single set gives rise to a real quadratic invariant for {g, g'}.
Since, in any case,

C / l j ? i 2 » • • • > € i m , > S i b • • • > <aimi

are linearly independent of the variables

C ' l > €f"2» • • • > V / » v

belonging to any other distinct set, the quadratic invariant of {g, g'}
which arises from this latter set is essentially distinct from that which
arises from * > >

£ f l 5 S i 2 i • • • > fciwj-

Now, when i is unity vt( is unity, and the corresponding £,, is real,

viz., the sum of the original variables. This set by itself gives rise
to one quadratic invariant, and therefore, unless the remaining r—1
sets occur in pairs, such as

so that each pair gives rise to a single real quadratic invariant, the
number of independent quadratic invariants would exceed -g(r-hl).
But^(r-f-l) has been shown to be the number of such invariants.
Hence for each value of i except unity

S i l » fci2> • • • » € i « i p "

b i l , fci2j • • • » feinij

are linearly independent; and therefore, with the same limitation,

the multipliers of these two sets of functions in It, are distinct.
In other words, a group of odd order has no self-inverse set of

group-characteristics except the first; and therefore in each such
set some at least of the characteristics must be imaginary.

This involves that when a group of odd order is represented as an
irreducible gx'oup of linear substitutions some of the coefficients must
be imaginary; or, that a group of odd order cannot be expressed in a
form which is at once real and irreducible.

3. This result appears to me of such importance for the theory of
groups of odd order that I give a second independent proof of it.
Suppose, if possible, that every characteristic of a set, other than the
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first, is real; and let the characteristic of an operation S of order m be

where w is a primitive m-th root of unity, and a0, a,, a2, ... are positive
integers or zeroes. Then %x is also the characteristic of S'1, which belongs
to the inverse set to that containing 8. Moreover, if S" (x prime
relatively to m) does not belong to the same set as either 8 or S'1, no
more does S~*; and, if the set containing 8X has \ i ^or ^a
characteristic, so also has the set containing 8~*. Hence, of the
conjugate sets containing powers of S whose indices are relatively
prime to m, an even number 2,u must have \ , for characteristic.
Suppose, now, that when o> is replaced by each primitive m-th root in
turn X\ takes the s distinct values

X i > X 2 » • • • > X « *

Then for each of these as characteristic there are 2/i conjugate sets
containing powers of S whose indices are relatively prime to vi; and
the conjugate sets which contain such powers of S ai'e thus exhausted.
Moreover, the number of operations in each such set is the same.
Hence 2 h\ for these sets is an even multiple of

and this latter quantity is a rational positive or negative integer (or
zero). Hence, for this system of conjugate sets IS h% is even. Now all
the sets except the first may be arranged in such systems, and therefore
S//.x for all conjugate sots except the first is even. Since the group is
of odd order, the characteristic of the identical operation is necessarily
odd ; and the equation

V hkXk = 0*

would involve that the sum of an even and an odd number fs zero.
This contradiction shows thei'efore that the supposition that all the
characteristics of the set were real was incorrect; and hence that
a group of odd order can have no self-inverse set of chai'acteristics
except the first.

From this result a relation between w; the order of the group, and
r, the number of sets of conjugate operations, maybe at once deduced.

* Thifi relation is the particular case of the relation

which results from taking j = 1.
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In fact, for two inverse sets

XJ = x| = 2fc+1, an odd number.

Hence (x',)3 + (x',')2 = 2 (2Jc +1)' = 2» m o d - 1 6 5

and therefore, since x\ — 1»

M = 2(xi)2 = r, mod. 16.
i

Similarly, it may be shown that, if every factor of n is of the form
2/cm+l, where m is an assigned odd integer, then

n = r, mod. l(>»i.*

4. The relation 2x1x1 = 0, Zgfefc',

becomes for a group of odd order, by taking k for I,

and, combining this with 2 xix*> = T~»

t \q ^* / i , t \ Q till

As an application of these formula;, I consider a group whose
order is divisible by 3, and I suppose the order of the operations of
the /c-th set to be 3. Then

where w is a primitive cube root of unity and a/, aj, «J are positive
integers or zeroes,

and therefore 3% (aj —a')2 = -— = 2mki

* For the smaller values of r the determination of all groups of odd order with
a given number of conjugate sets presenta no difficulty. Thus for values of r less
than 16 the only groups of odd order which have no self-conjugate operations are
the following :—For r » 6, « «= 7 . 3 ; »• = 7, « = 11 . 6, 13 . 3 ; »• <= 9, n = 19 . 3 ;
»•= 11, « = 6 2 . 3 , 31 . fi, 29 .7 , 1 9 . 9 ; r = 13, « =» 31 . 3, 41 . 5, 4 3 .7 , 37 . 9 ,
23 .11 , 34.13 ; »• = 15, n = 37 . 3, 3: | . 13. These groups are all metacyclical with
the exception of those of orders 52 .3 , 33 . 13, and 34 .13. This list is in marked
contrast to the corresponding one for groups of even order. Again, omitting
groups with self-conjugate operations, the latter is :—for r =» 3, n = 3 . 2 : »• = 4,
n = 5 . 2, 2a . 3 ; r •= 5, n = 7 . 2, 5 . 22, 2:i. 3, 22 . 3 . 5 ; r = 6, « = 3 2 . 2, two
types, 32 . 2 s , 23 . 3 . 7. In this list two simple groups appear, though the number
of conjugate sets does not exceed 6.
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where mk is the order of the greatest sub-group which contains one
of tlio o|>cratioriK of the /.-th set self-conjugately. Hence, unless mk

is a multiple of 27, there must be at least one pair of inverse sets of
characteristics for which a\—a*2 is not a multiple of 3. The product

of the multipliers for such a 'set would be iiA~aa, that is worw!; and
the group therefore would have a self-conjugate sub-group of index 3,
formed by those operations for which the product of the multipliers
is unity. In particular a group of order 3m or 32m, where m is odd
and prime relatively to 3, has a self-conjugate sub-group of order m.
Suppose now that 5 is a factor of the order, and that the k-th set is
of order 5. Then

where e is a primitive fifth root of unity and

%-xi. = (o!-aj)(«-o + (« -«J)(«f-O.
If this is not zero, there must be a second set for which

Hence 52 {(a;-<)2+(a;-a;)2} = 2mk,

where the summation is extended to all pairs of sets such as the t-th
and j-th.. If mk is not divisible by 5s, there must be at least one
set for which

(a\-a\y+ (aj-oj)« ^ 0, mod. 5 ;

and therefore a\—a^ + 2 {a[— cfy ^k 0, mod. 5.

For such a set the product of the multipliers of an operation of the
Ar-th set is a primitive fifth root of unity. Moreover, if 5 is an un-
repeated factor of the order, mk cannot be divisible by 25. He.nce, a
group of order 5m, where in is odd and prime relatively to 5, has a
self-conjugate sub-group of order in.

II.

5. In his memoir " Ober die Darstellung.der endlichen Gruppen
durch lineare Substitutionen" {Berliner Sitzungsberichte, 1897,
pp. 994-1015) Herr Frobenius has proved the theorem that, if two
groups of linear substitutions in the same number of variables are
simply isomorphic, and if the sums of the multipliers of correspond-
ing operations in the two groups are the same, then the one group is
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the result of transforming the other by some substitution of non-
vanishing determinant. This theorem is clearly of fundamental im-
portance in dealing with groups of finite order. In any representation of
a group as a group of linear substitutions the sum of the multipliers for
every operation of the h-th conjugate set is of the form 22 «,xl> where
a{ is a positive integer (or zero) which is the same for all the sets,
and SttjXi *s ̂ e number of variables (Proc. Lond. Math. Soc, Vol. xxix.,
pp. 564, b6$>). Hence, by taking a, sets of xj variables for each suffix i,
and forming in each set the irreducible group which has tha character-
istics xi> X̂> •••>X!» a group of linear substitutions is set up simply
isomorphic with the given group, and having the same total number
of variables and the same sum of the multipliers for each operation
that the given group has. The theorem therefore shows the possibility
of transforming any group of linear substitutions of finite order in
such a way as to represent it as the result of an isomorphism
established among a number of irreducible groups in independent sets
of variables. These irreducible groups will here be spoken of as the
irreducible components of the given group of linear substitutions.
Apart from transformations of the irreducible components themselves,
this reduction will be a unique process if no one of the irreducible
components is repeated, but not otherwise.

A permutation group is never irreducible. In fact, the sum of the
variables is unaltered by every operation of the group. If

* " l » <^it • • • > 3 J »

are the variables of a permutation group </, and if

are a set of linear functions of the aj's which are transformed among
themselves by. an irreducible component of g of which

Xi» X » •••> X r

are the characteristics, then

must be linearly transformed among themselves by an irreducible
component whose characteristics are

Xi. Xa> —i X*--

Fov a group of even order this may be the same component as the
previous one, but for a group of odd order it is necessarily distinct.
For a transitive group of odd order the number of irreducible com-
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ponents is therefore odd and congruent (mod. 4) to the degree of the
group. Moreover, since the coefficients of a permutation group are all
rational, it follows that, if it has an irreducible component for which
the characteristics are

X i » Xs» • • •> X «

it must have irreducible components whose characteristics,
/ / . /

Xl> X*> • • •» Xn
are derived from the previous set by replacing any irrationality that
.occurs in them by one of its conjugate values.

6. Let g be a transitive permutation group in the n symbols

xlt x3i ..., a:,,.

When the reduction of g is completely effected, let

£n (=x1 + x.2-\-...+xn);

fc21> t 2 2 > • • • > • & < » , »

fc*l> % « > • • • > C t n i j t

be the sets of symbols which are transformed, each among themselves,
by irreducible components of g ; so that the £'s form a set of n inde-
pendent linear functions of the #'s. Every opex'ation of the continuous
Abelian group H, >> __ a >

( * = 1 , 2, ..... mf),

(*= 1, 2, ...; *),

is permutable with every operation of g. This continuous group J[
is not, however, necessarily the most extensive group every one of
whose operations is permutable with every operation of g. Jn fact,
if two (or more) sots of the £'s, such as

6., I* .... £•„,,.
a n d $jU t#, ..., £Jmjt

contain the same number of symbols (so that m,- = mj), and if these
two sets undergo identical trans formations corresponding to the same
substitution of g, then

tl t (

L ( i = 1 ,2 , ... m.)
I
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is a linear substitution not contained in II, and permutable with every
operation of g. No such linear substitution, however, is permutable:
with every operation of H\ and therefore, if such substitutions
exist, the most general continuous group G each of whose operations
is permutable with every operation of g is not Abelian.

Conversely, if the most general continuous group G whose
operations are permutable with every operation of g is Abelian, i t
must be the group H; and each set of function^ which occur in con-
nexion with the same multiplier in H are transformed among them-
selves by an irreducible component of g.

The form of G, in terms of the X'B, may be obtained as follows. Let.

x'f = av (r ~ 1, 2, ..., n)

be any operation of g. The linear substitution

x', = 2 a,,x. (r = l, 2, ..., n)

will be permutable with this operation if

x'r = 2 a,,av

and x'r = 2 a^tx,

are the same substitution ; that is, if

a,.. = a,.,, (r, s = 1, 2, ..., n),

X,J and x, being the symbols in which a;,, and a:, are changed by the
operation of g considered. Hence the necessary and sufficient con-
dition that •=»

x, = S a,.,x, (r = 1, 2, ...,»)

should be permutable with every operation oig is that the coefficients
a,.t should be equal in sets; any two a,., and apq being equal if g con-
tains a substitution which changes x,. and x, into xt, and xq re-
spectively.

Since g is transitive, au = ai3 = ... = a,m,

and no one of these symbols is equal to a,.s, if r and s are different..
If tj is doubly transitive,

a,., — aliqi

where r, s and p, q are any two pairs of distinct symbols ; and the
general operation of G takes the foi*m

( r = 1,2, . . . ,«).
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If g is not doubly transitive, the general operation of G, with the
notation of p. 163, will be

t.m
x\ = aox, + % at {x,t> j+x , t > 3 + . . . + x,t<

The order of 6? is, therefore, m + 1, where m is the number of
transitive sets in which a sub-group of g that leaves one symbol un-
changed interchanges the remaining n — 1, and the number of irre-
ducible components of g is equal to or is less than 1+TO, according as
0 is or is not Abelian, It may be noticed that the necessaiy and
sufficient condition that 0 should contain a permutation is that at
least one of the numbers kv /c2, ..., km should be unity; i.e., that a
sub-group of g which leaves one symbol unchanged leaves more than
one. If Q is not Abelian, g must have at least three irreducible com-
ponents ; and, if 0 is Abelian, the number of irreducible com-
ponents of g is equal to the order of G. Hence, j/must have more than
two irreducible components, unless it is doubly transitive; and, if g
is doubly transitive, it has just two irreducible components. One of
these is the component of order unity corresponding to the sum of the
variables, and the other may be represented as a group of linear
substitutions in the n — 1 differences

It is not difficult to show that, if g is primitive, then G must be
Abelian.

7. Let g be a simply transitive substitution group of prime degree
p containing the operation P or

and let g be resolved into its irreducible components in such a way that
in eacli of them 1J appears in canonical form. In the first component
•corresponding to the sum of the variables the multiplier of P is unity.
Hence, in any other component the multipliers of P must be distinct
primitive j)-th roots of unity. Let

& = ««£« (t-1,2, . . . , O

be the operation coiuesponding to P in the (t + l)-th irreducible com-
ponent (t = 1, 2, ..., s). There is only one linear function of the
variables which P replaces by wit times itself, viz.,
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This therefore must be $u, and the p—l£'s of this form, correspond-
ing to the p— 1 primitive ^-th roots of unity, are transformed linearly
among themselves in s distinct sets by the irreducible components,
other than the first. The coefficients in these linear substitutions
are rational functions of any assigned p-th. root of unity o>. If to is
replaced by any other primitive root w', the sets of linear substitutions
giving g in its reduced form is unaltered as a whole, but individual
components may be interchanged..

Consider now the characteristic of P (i.e., the sum of its multi-
pliers) in one of the components, viz.,

When ui' is written for to this is either unchanged or it becomes
another characteristic of P. Hence, since P has no repeated multi-
pliers, this expression must be a " period " in the cyclotomic sense ;
and ?>i; must have the same value r for each of the irreducible com-
ponents, where

rs = p — 1.

Also, if q is a primitive root of the congruence

qr = 1 (moAp),

and if £ = x0

the form which any operatidn of g takes when expressed in terms of
the £'s is

it = 1, 2 s)*

Since the £'s are linear functions of the a's with powers of to as co-
efficients, the coefficients c*y in this substitution are rational functions
of w. Moreover, since by writing w* for w,

become £, &„, ..., $tq,._u

c\j must be the same function of w' as c{/ is of a/.

* The t in cf is not an index, but merely an affix.
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Consider now any operation of g whose order, q, is different from
and necessarily prime to p. Its characteristic in the t-th. component,

is the sum of r g-th roots of unity. But this sum is also a rational
function of w. Hence it must be a rational number", and therefoi'e
independent of t. Moreover, this sum, being a characteristic, is an
algebraical integer;. and therefore, being a rational number, it is
a rational integer. Represent it by \- Then l-\-s\ is the sum of the
multipliers (i.e., the number of unchanged symbols) of the operation
in g. If this were zero, x could not be integral; if it is unity, \ is
zero ; and, if it is greater than unity, x is a positive integer. Hence,
the only operations of g which displace all the symbols are the
operations of order p, and every other operation of g leaves 1-Nx
symbols unchanged, where x is zero or a positive integer. In each of
the s irreducible components, other than the first, that arise from the
reduction of g the characteristic of any conjugate set whose order is
prime to p is then the same positive integer ; and the characteristics
of a conjugate set whose order is p are the s values of

when for w each jj-th root is put in turn. Let x be the number of
conjugate sets whose characteristic in any one irreducible com-
ponent is ,._,

and v the number of operations in each set. Also, let vt be the
number of operations of g which leave just t symbols unchanged, so
that v, is zero, unless t is of the form 1 + s^. Then the equation

connecting a set of characteristics becomes

0 = —

Also th6 equation f̂ytXiXk' = 0 (l

k

becomes
0 = xv'S, ' " 1

where the sum is extended to the s different values of the product.
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To the condition %' =£,/ conresponds the condition that the " periods "

w +w« + ... + o.«'~l

and o>< + w'«+...+«->'«r'1

are distinct; and with this limitation the sum is easily shown to be
equal to —r. Hence, eliminating xv between the two equations,

This relation can only be satisfied by

l ' i+« — J/i+2« = ••• = »'i*(r-i)« = 0 ;

or, in words, the substitution group g has no operations, except
identity, which leave more than one symbol unchanged. The order
of such a group must be pr, where r is a factor of p — 1, and it con-
tains a single sub-group of order p.

A transitive group of prime degree must therefore be either
doubly transitive or metacyclical.

In particular, a group of odd order and prime degree is metacyclical.

8. Let g be a group of odd order and degree p*, where p is a prime,
and suppose that g contains an operation P of order p2. If to is a
2>2-th root of unity, the characteristic x of P i n an irreducible com-
ponent of g, other than the first, is a sum of powers of w, none being
repeated. Suppose, if possible, that \ contains both to and to1'. Since
oi1' is unaltered by writing wl*v for to, ^ must also contain to1*1',
wl+i", .... w

1+<p-'>''. If this does not exhaust all the ^3-th roots
entering in \, and if x contains to1, then it must also contain w<(1+J<),
w'<1+-"\ ..., ft/tWPr1)*!, and w'". The total number of roots of unity
entering in \ would, therefore, be a multiple of jp+1, which is im-
possible, since this number must be odd. Hence, that characteristic
which contains to cannot contain u>v. There must, therefore, be a
characteristic in which all the multipliers are j»-th roots of unity. The
group therefore must be composite and isomorphic with a group in
which P is represented by an operation of order p; in other words, g
is imprimitive, and therefore, by the foregoing result, soluble.

A similar result may be proved'for a group of odd order and degree
pq, where p and q are primes, which contains a regular substitution S
of order pq. Let w and w' be primitive p-ih and <j-th roots of unity.
Then, if ^ is the characteristic of S in one of the irreducible com-
ponents of the group, w and w' cannot both occur in %. Fox; if
they did, since to is unaltered on replacing to' by any other primitive

VOL. XXXIII.—NO. 7 4 9 . N
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3-th root, a)', u/*} ..., u)'9"1 would all occur; and this is impossible,
since the roots composing x, the inverse characteristic, must all be
distinct from those composing ^.. If wu/ and w occur in x, then in
the characteristics derived from x o n replacing w' by any other
primitive q-th root eveiy primitive pq-th root and every primitive^-th
root occur. Hence there must then be other characteristics which
consist solely of g-th roots. So also, if uu' and u»' occur in x, there
must be characteristics which consist solely of p-th. roots. The group
is therefore composite, and isomorphic with a grpup in which S is
represented by an operation of prime order; in other words, g is im-
primitive, and therefore soluble. Hence:—

A transitive group of odd order, and degree p* or pq where p and
q are primes, which contains a regular substitution of order equal to
the degree is imprimitive and soluble.

Tt appears highly probable that this result may be extended to any
group of odd order which contains a regular substitution of order
equal to the degree of the group; but I have not yet succeeded in
proving this.

III.
9. In conclusion, I propose to determine all the primitive groups of

odd order and degree not exceeding 100. Dr. Miller sent me a paper-
four months ago for communication to the Society, in which an
investigation, almost equivalent to this, was carried out for degrees
not exceeding 50. The method I follow is, to a considerable extent,
distinct from Dr. Miller's, and I have therefore allowed myself to
repeat the investigation already given by him for degrees less than 50.
This occupies but a small space, and serves to make the nature of
the process .clear.

In consequence of the theorem proved above for groups of prime
degree, it is only necessary to consider those groups whose degrees
are not primes. The method of the enumeration is as follows :—It is
assumed that corresponding to a given odd number n as degree a
primitive group g exists. Then a sub-group, g0, which leaves one
symbol unchanged must (p. 165) interchange the remaining n—1
symbols in 2vi transitive sets, the numbers in which are equal in
pairs. These numbers are represented by

™ l i ™4» • • • > " S » f

Moreover, 2m = n—1 (mod. 4).

Corresponding to each available value of m there will be a number
of sets of values of the VB which may be written down. No k can be
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unity, for the group would then be imprimitive. Now Jordan has
shown (" Traite des Substitutions," p. 284) that every prime which
divides the order of one of the transitive constituents of g0 must
divide the order of each transitive constituent. On this ground, a
large number of the sets of values of the Ai's may be put aside at once
as impossible, including all those cases in which two fc's are equal to
different primes. Moreover, the earlier determinations increase the
number of cases that may be so put aside in the later ones. For
instance, it is found at once that there is no transitive group of odd
order, and degree 9 or 15, whose order is divisible by 7; so that 7
and 9, or 7 and 15, are incompatible values for two k's. If each k is
the same prime, every transitive constituent of g0 is a metacyclical
group. In this case, g0 is metacyclical and simply isomorphic with
each of its transitive constituents. This is an immediate consequence
of a theorem due to Dr. Miller (Proc. Lond. Math. Soc, Vol. XXVIII.,

p. 534, Theorem I.). When all impossible sets of values of the k's
have been put aside, the orders of possible groups g corresponding to
the remainder are of known form. These are separately discussed,
with a view to showing that they are soluble. If n is not the power
of a prime, a primitive group of degree n is not soluble. Hence, if it
is shown that a group corresponding to a given possible order is
soluble, the group is non-existent when n is not the power of a
prime.

The number of cases which have to be thus dealt with is not con-
siderable, but some of the more troublesome ones may be avoided by
the following considerations:—If m — 1, the number of irreducible
components of the group is 3 (p. 174). Suppose, now, that the group
contains an operation of prime order p ( = 1, mod. 4) which displaces
all the symbols. If x is ^ s characteristic in one of the irreducible
components (other than that corresponding to the sum of the symbols,
for which the characteristic is unity), then x'? the conjugate of x> is
its characteristic in the other irreducible component; andx + x' + l>
the sum of the multipliers of the operation, is zero, since the opei'ation
displaces all the symbols. Hence, x cannot be real. But, if x is
imaginai'y, it must be at least a four-valued function of tlie p-th. roots
of unity ; and the four corresponding irreducible representations of
the group would necessarily appear among the irreducible com-
ponents of y. This is impossible ; and, therefore, for a group which
contains a substitution, regular in all the symbols and of prime
order p ( = 1, mod. 4), m cannot be unity.

I now proceed to the actual enumeration. This is given in some
N 2
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detail for the smaller values of n; but for the larger ones, except
when special discussion is necessary, the results are merely stated.

10. n = 9. There is no available value of m; so that the group
must be imprimitive. Its order is 39, 3s, or 3*.

n = 15. The only available value of m is 1, and the &'s are 7, 7.
The order therefore would be 15.7 or 15.7.3, containing less than
6 prime factors. The group, therefore, would be soluble,* which is
impossible. Hence the group must be imprimitive. The possible
orders are 3.5, 3.53, 3.53, 3*.5, or 35.5.

n = 21. -Then m = 2, and the 7c's are 5, 5, 5, 5 or 3, 3, 7, 7. The
second caBe is impossible. In the first the order would be 21.5, and,
for the same reason as in the previous case, such a group cannot
exist. The group is therefore imprimitive.

n = 25. If m = 2, the k'a would be 5, 5, 7, 7 or 3, 3, 9, 9, each of
which is impossible. If m = 4, the fc's are all 3, and the order is
25.3. There is such a primitive group. All other groups of this
degree must be imprimitive, their orders being powers of 5.

n — 27. If vi - 1, the fc's are 13,13. The order, then, is 27.13 or
"27.13.3. Primitive groups of these orders exist, containing self-
conjugate sub-groups of order 27. If m = 3, the k'n are 3, 3, 3, 3, 7, 7
or 3, 3, 5, 5, 5, 5, both of which are impossible. All other groups of
this order, then, are imprimitive and have powers of 3 for their order.

n = 33. If m = 2, the fc's are 7, 7, 9, 9 ; 5, 5, 11,11; or 3,3,13,13,
all of which are impossible. If ra = 4, two fc's at least are 3, which
is, again, impossible. The group is therefore imprimitive.

« = 35. If in = 1, the fc's are 17,17, and the order 35.17, the
product of 3 primes. There can be no such group. If m is 3 or 5,
two fc's must either be 3 or 5, leading, again, to impossibilities. The
group is therefore imprimitive.

«, = 39. If m = 1, the fc's are 19, 19, and the order 39.19,
39.19.3, or 39.19.9; in each case the product of fewer than
6 primes. There can be no such groups. The values 3 or 5 of m
lead to the samo impossibilities as in the previous case. The group
is, then, imprimitive.

n = 45. If m = 2, the fc's are 11,11,11,11; 9, 9,13,13 ; 7, 7,15,15;

• Theory of Groups, p. 367.
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5, 5, 17, 17; or 3, 3, 19, 19. All of these are impossible except the
first case. In that the order would be 45.11 or 45.11.5; and the
group again therefore is .non-existent. If in were 4 or 6, two A;'s
would again be 3 or 5, leading to impossibilities. The group is im-
primitive.

n =49. If m = 2, the fc's are 11, 11, 13,13; 9,9,15,15; 7, 7,17,17 ;
5, 5, 19,19; or 3, 3, 21, 21; all of which are impossible. If in is 4 or
6, two /c's at least must be 3 or 5, leading to impossibilities. If w = 8,
the /c's are all 3. No primitive group of order 49.3 can exist; for a
non-cyclical group of order 49 has 8 sub-groups of order 7, two at
least of which must be transformed into themselves by an operation
of order 3. The group is therefore necessarily imprimitive.

n = 51. If m — 1, the fe's are 25, 25. The order of the sub-group
that keeps one symbol fixed is of the form 3a. 5", and the group must
contain an operation of order 17 which, displaces all the symbols. It
has been shown (p. 179) that this is inconsistent with the condition
m = 1. If m = 3, the fc'a are 7, 7, 7, 7, 11, 11 ; 7, 7, 9, 9,9, 9; which
are impossible, or two /c's are 3 or 5, leading to impossibilities. If
m = 5, the 7c's are all 5, or two at least are 3, and, if m = 7, two fc's
at least are 3. All these cases are clearly impossible. The group is
therefore imprimitive.

n = 55. If m = 1, the /c's are 27, 27, and the order of the sub-
group that keeps one symbol fixed is of the form 3". 13*. Tho group
therefore has operations of order 5 which displace all the symbols,
and this is inconsistent with the condition m = 1. If m = 3, the fc's
are 9, 9, 9, 9, 9, 9 ; 7, 7, 7, 7, 13, 13; 7, 7, 9, 9, 11, 11 ; or two fc's at
least are 3 or 5. The only possibility is the first, in which case the
order of the group is 3".5.11. Such a group contains a self-conjugate
sub-group of order 3""1 or 3°~2, and could not be expressed as of
degree 55. If m is 5, 7, or 9, two fc's at least are 3 or 5, leading to
impossibilities. Hence the group is imprimitive.

n=ft7. If m = 2, the 7c's are 13, 13, 15, '15; 11, 11,17, 17;
9, 9, 19, 19 ; 7, 7, 21, 21 ; 5, 5, 23, 23; or 3, 3, 25, 25; of which
7, 7, 21, 21 is the only set giving a possible group. The order of the
sub-group that keeps one symbol fixed is of the form 3°. 7", and the
order of the group itself is 3"+1.7*. 19. If (S is unity, there must be
7; 19 sub-groups of order 3"°. Any two of these must have a
common sub-group of order 3°, and this must be self-conjugate in a
sub-group of order 3"+1.7, 3O+U9, or 3a+1.7.19. In either case tho
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group would be soluble, and it is therefore non-existent. Next
suppose (3>1. The sub-groups of order 7* are Abelian, and of degree
56. The greatest sub-group, g, common to two of them must keep
l + 7aj symbols fixed. Each of the corresponding sub-groups that
keep one symbol fixed, and no others, has at least one sub-group of
order 1* which contains g. Hence, the order of the sub-group which
contains g self-conjugat'ely is divisible by 1 + 7.r. Now the only
number of this form which is a factor of the order and not greater
than the degree of the group is the degree itself; so that g is self-
conjugate. Hence, again, in this case the group is non-existent.
If m is 4, each h is 7, or two fc's at least are 3 or 5; if m > 4, two fe's
at least are 3 or 5 ; and in all these cases the group is clearly
non-exiBtent. Hence the group must be imprimitive.

n = 63. If m = l, the /r'B are 31, 31, and the order of the group
63.31, 63.31.3, 63.31.5, or 63.31.15. The last is the only one
in which the order has 6 prime factors. Now, a group of order
.'Is.5.7.31 must contain a sub-group of order 3s,5, and in this a sub-
group of order 5 must be self-conjugate. The group then would con-
tain 1 or 31 sub-groups of order 5 and would be soluble. If m = 3, all
sets of values of the fc's lead to impossibilities. If m is 5, or greater,
two /IJ'B at least must be 5 or 3. Hence the group must be im-
primitive.

n = 6 5 . Whatever m is, all sets of fc's are found to lead to ini>>
possibilities. The group is imprimitive.

n = 69. If m = 2, the only possible set of values of the fc's is
17, 17, 17, 17. The order of the corresponding group would be
3.17.23, containing only 3 prime factors, and therefore necessarily
soluble. All other values of m lead to impossible sets of values of the
//s. The group is, then, imprimitive.

n = 75. If m = l , the 7c's are 37, 37, and the order is 75.37,
75.7.3, or 75.37.9. The last, alone contains 6 prime factors. A
group of order 38.5*.37 must have a self-conjugate sub-gi'oup of order
5 or 5s, and is therefore soluble. This case, then, cannot occur. All
other values of m lead to impossible sets of values for the fe's. The
group is therefore imprimitive.

n = 77. If m = 2, the only possible values of the A;'s are 19,19,19,19.
The order is, then, 77.19, 77.19.3, or 77.19.9, in each case con-
taining less than 6 prime factors. This case cannot occur, and all
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other values of m lead to impossibilities. The group, then, is im-
primitive.

n = 81. If m = 2,the only possible values for the fc's are 15,15, 25,25,
and the order of the group is 34+o.5* (/3^2). The sub-groups of
order 5* are Abelian and of degree 80. The greatest sub-group, g,
common to two of them muBt keep 1 + 5a; symbols fixed. Each of
the corresponding sub-groups which keep one symbol fixed must
contain at least one sub-group of oi-der 5" in which g is self-conjugate;
and the order of the greatest sub-group containing g self-conjugately
is therefore divisible by l + 5o;. The only factor of the order of the
group of this form which is not greater than 81 is 81. Hence g is
self-conjugate, and the group non-existent. All values of m greater
than 2 lead to impossibilities except m = 8 and all the ft'a 5. There
is, in fact, a primitive group of order 81.5, degree 81, and class 80.
All other groups of this order are imprimitive.

n = 85. The only sets of values of the fc's which do not lead to
impossibilities are 21, 21, 21, 21; 7, 7, 7, 7, 7, 7, 21, 21; and twelve
7's. In none of these cases is the order of the group divisible
by 5". Hence (p. 170) the group contains a self-conjugate sub-group
of index 5, which is intransitive. For a primitive group this is

" impossible. The group is therefore imprimitive.

n = 87. If m = l, the -fc's are 43, 43, and the order is 87.43;
87.43.3; 87.43.7; or 87.43.21, in each case containing less than
6 prime factors. All other values of in lead to impossible sets of values
for the /c's. The group, then, is imprimitive.

n == 91. If m = 1, the /c's are 45, 45. The order of a transitive
constituent of degree 45 cannot be divisible by 13 ; and the group con-
tains operations of order 13 which displace all the symbols. This has
been shown (p. 179) to be inconsistent with the condition m = 1. If
m = 3, the only possible values of the fc's are 15, 15, 15, 15, 15, 15
and 9, 9, 9, 9, 27, 27. If m is 5, the only possible values for
the 7c's are ten 9's. . In the two latter cases the order of the
group is 3".7.13. Two sub-groups of order 3" would have
a common sub-group of order 3a"2 at least, and this would be
one of 1, 7, 13, 21, or 39 conjugate groups. Groups of degreo
21 and 39 have been shown to be imprimitive. Hence this
case cannot occur. In the first case the order of the group is
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3".5^.7.13. The groups of order 5* are Abelian and of degree
90. If ft is unity, the group may be shown, as in the previous
case, to be non-existent. If ft is greater than unity, the
greatest sub-group, g, common to two groups of order 5s must keep
l + 5a; symbols fixed, and the-greatest sub-groap which contains g self-
conjugately must interchange the 1 + 5a: symbols transitively. The
only possible value of 1 + oaj is 81; and the group can contain no sub-
group with a transitive constituent of degree 81. Hence this case
cannot occur. No value of m greater than 5 gives a possibility. The
group, then, is imprimitive.

n = 93. The only possible values for a set of /c's are 23, 23, 23, 23.
The order of the group is then 93.23 or 93.23.11; in either case con-
taining less than 6 primes. This case, then, is impossible, and the
group is imprimitive.

w = 95. If m = l , the &'s are 47, 47, and the order contains less
than 6 prime factors. No other value of m leads to possible values
for a set of fc's. The group, then, is imprimitive.

n = 99. If m = 1, the k's are 49, 49, and the order of the group is
3">+o.7^.11, where ft is equal to or greater than 2. If ft were 2, the
group would contain 7 or 49 sub-groups of order 3i+*. 11, and would be
soluble. If ft > 2, let g be a greatest sub-group of a group of order 7fi

which leaves more than one symbol unchanged. Then g must leave
1 + 7a; symbols unchanged; and the greatest sub-group, h, in which, g is
self-conjugate must interchange the l + 7a; symbols among themselves.
Moreover, the order of the constituent of h which affects these 1 + 7.u
symbols is divisible by 7, and no one of them is left unchanged by
every operation of h. Hence, for some value of x' equal to or less
than x, 1-f- 7ic' must be a factor of the order of the group. No such
factor exists other than 99, and this case therefore is impossible.
The only other possible values of a set of fc's are two 7's and four 21's;
eight 7's and two 21's ; or fourteen 7's. In each case the order of the
group is of the form 32+o.7/9.ll; while the sub-groups of order 7* are
Abelian and of degree 98. If ft = 1, the group would obviously be
soluble; and, if ft > 1, the method used for degrees 81 and 91 will show
that the group cannot exist. The group is therefore imprimitive.

To sum up, the result of this enumeration shows that:—
Apart from metacyclical groups of prime degree, the only primitive

groups of odd order whose degree is less than 100 are (i.) a group of
degree 25 and order 25.3; (ii.) two groups of degree 27 and orders
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27.13 and 27.13.3 ; and (iii.) a group of degree 81 and order 81.5.
All groups of odd order whose degree is less than 100 are soluble.

[Note, January lbth, 1901.—Since the above enumeration was
made, I have succeeded in showing that a group of odd order and
degree 'dp, where p is an odd prime, is necessarily imprimitive. This
result, of which I hope to give the proof in a subsequent paper, would
materially lessen the number of cases that have to be considered.]

Oonformal Space Transformations. By T. J. FA. BROMWICH.

Received November Cth, 1900. Read November 8th, 1900.

The basis of the following note is a very suggestive method given
by the late Prof. Sophus Lie,* by which he found the expression for
a rigid-body displacement, assuming only that the distance between
consecutive points of the body remains constant in the displacement.
A slight extension of the same method is applied here to find the
conformal transformations of space ; and we are led to Liouville's
theorem that the most general conformal transformation is due to an
inversion, a uniform magnification, and a rigid-body displacement
(combined in various ways).t

Liouville's theorem was extended by Lie (in 1871) to space of any
number of dimensions and to non-Euclidian spaces ; Lie's methods
differ entirely from Liouville's and from what follows.J Lie has also
"•iven a determination of the infinitesimal conformal transformations
of ordinary space, by connecting points in space with circles in a

• Oeomctrie der Beriihrungttransformationcn, Kap. vi., § 3, p . 206. A similar
method was used by Beltrami for finding rigid-body displacements in a space of
constant curvature; my authority is an abstract given in Darboux's litdktin
(t. xi., 1876), where it is stated that the original paper waa presented to the Roman
Academy (dei Lined); but I have not been able to find it.

t Liouville, Journal de Mathematiques, t. xv., 1850, p. 103, where the theorem
appears without proof; which will be found in his notes to Monge's Applications de
Vanalyse a la geometric (Paris, 1850, p. 609). Another form of the proof is given by
J. N. Haton de Goupilliere (Journal de I Ecole Poly technique, t. xxv., 1867, p. 188).
Tho theorem was rediscovered in 1872 by Clerk Maxwell (Proc. Lond. Math. Soc.
Vol. iv., p. 117; Works, Vol. n., p. 297), whose method differs but little from
Liouvillo's.

X Math. Annalen, Bd. v . ; and Ob'tt. Nach., May, 1871.




