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where the meanings of the symbols have been already explained. A

formula substantially equivalent to this, but in a different (and scarcely
properly explained) notation, is given, * Aoust, Théorie des coor-
données curvilignes quelconques,” Annali di Matem., t. ii. (1868), PP
89—64; and I was, in fact, led thereby to the foregomg further in-
vestigation.

As to the deﬁmtmn of the radius of geodesic curvature, I remark
that, for a curve on a given surface, if PQ be an infinitesimal arc of the
curve, then if from @ we let fall the perpendicular @M on the tangent
plave at P (the point M being thus a point on the tangent PT of the
curve), and if from M, in the tangent plane and at right angles to the
tangent, we draw MN to meet the osculating plane of the curve in N,
then MN is in fact equal to the infinitesimal arc QQ mentioned near
the beginning of the present paper, and the radius of geodesic curva-
ture p is thus a length such that 2p. MN = Fq.

On certain Tetrahedra specially related to four Spheres meeting in
a Point. By Sawver Roserrs, F.R.S.

[Bead April 14¢h, 1881.]

At our last meeting I mentioned an elementary theorem relating to
a tetrahedron. Namely, if on each of the edges we take an arbitrary
point, and describe & sphere through each vertex, and the three
arbitrary points taken on the three adjacent edges, the four spheres
meet in & point.

In this shape, the result is easily shewn by means of inversion. The
needful preliminaries are as follows :—

(a) The analogue in plane space is this,—If an arbitrary point be
taken on each side of a triangle, the three circles passing each through
& vertex, and the two arbitrary points on adjacent sides, intersect in
one point. - This is a known result.

If we invert with regard to any point outside the plane, we get the
following theorem :—

(b) If three circles on a sphere meet in a point forming by their in-
tersections two and two together a triangular figure whose sides are
circular, then, if we take any point on each of the circles and draw
another circle through each simple intersection and the two arbitrary
points taken on the circles to which the intersection belongs, these
three circles last drawn meet in & point. This is the analogne on the
sphere of the plane theorem. The resulting figure is, it will be ob.
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served, perfectly symmetrical, consisting of six circles intersecting
three together in eight points, and two together in six points.

Now, take a tetrahedron ABCD, and the arbitrary points a, @', a”, b,
¢, d on each of the edges. Suppose a sphere B passes through B, g,
c¢.d; a sphere O through O, a’, b, d; and a sphere D through D,
a”, b, ¢, :

Let the circle repX, meeting the side ADB in 7 and the side BOD in
p, be the intersection of the spheres B and D. Similarly, let the circle
¢bpK, meeting the side AOD in ¢ and the side BOD in p, be the inter-
section of the spheres 0 and D. Then K, p are the triple-intersections
of the spheres B, C, D. If now a sphere be described throngh daa’”,
the points r, g, and a corresponding point s in the side ABC, become
triple points of intersection of the spheres (4, B, D), (4, 0, D), and
(4, B, O) respectively. Then, by the analogue (), the three circles
(ars), (a"rq), (a’qs) meet in a point which mast be the point K, and
lies on the sphere A ; that is to say, the four spheres 4, B, C, D meet
in a point.

It is perbaps worth while to regard the theorem from another point
of view, taking as our data foar spheves intersecting in & point. I had
not worked out the question in this form when I presented the theorem
which now becomes porismatic as in the corresponding plane case.

Consider the section of the three spheres B, C, D by any plane BCD,
passing through p, a triple intersection of the spheres. Let BCD be
any triangle so drawn that each side passes through an intersection of
two of the section circles, and each vertex is on the section circle
passing through the intersections on the adjacent sides.

Through BC, CD, DB respectively describe planes passing also
through s, ¢, r respectively, the three other triple intersections of the
spheres, s being the intersection of the spheres A4, B, C; g that of the
spheres 4, 0, D; and r that of the spheres 4, B, D. Suppose that
these planes meet in A’. And, as before, let the spheres B, 0, D meet
BA', 04, DA’ in a, o', a” respectively. Then the sphere through 4,
a, @, ¢” passes through K, the other triple-intersection of the spheres
B, 0, D, and through g, , 8. This sphere therefore remains the same
when fhe triangle BCD is porismatically varied, and is, in fact, the
fourth given sphere 4.

The series of triangles is singly infinite, and we shall see that the
locus of 4’ is not the sphere 4, but & circle thereon. Buat BCD may
be any plane through the point p, and a system of planes through a
point is doubly infinite. Hence the series of tetrahedra completely
taken is trebly infinite. : '

If we consider the plane BCD as fixed, but the base triangle BCD
variable, the edge A (for instance) meets the two circles arsK, Bepd,
and the straight line sd. Hence in its different positions AD forms a
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system of generators of a hyperboloid of one sheet, opposite to sd, which
is also a generator. Moreover, the circles -arsK, Bedp are circular
sections of opposite systems, and the sphere A meets the hyperboloid in
another circle through A parallel to the circle Bepd.

In like manner, the simultaneous movements of 40, 4D generate two
other hyperboloids, and the circle through A4 parallel to the base plane is
common to them all. For a given position of the triangle, the same
point A is the intersection of the corresponding generators through
B, 0, D respectively.

This follows at once from the remark, that if in the plane BCD, or in
any parallel plane, we take a circle, and from any point thereof draw
lines parallel to pB, pO, pD respectively, and through their remaining
intersections with the circle draw lines parallel to the corresponding
sides of the triangle, these last lines meet in a point on the circle.
This theorem (c) is obvious when the figure is drawn.

It is easy to frame a line model exemplifying the foregoing conclu-
sion, if we take for our bage any three circles meeting in & point, and
in a parallel plane any other circle.*

If now we move the plane BOD about p, the movement of AB
generates a system of hyperboloids having in common. & fixed circular
section arsK and a common generator pK (in fact, the radical axis of
the spheres B, 0, D) of the same system as AB. This series of
hyperboloids is doably infinite, linear in two parameters.

Suppose now the base BCD and the circles thereon are given, also
the circle through 4, parallel to the base and the generator p X common
to three hyperboloids, obtained as above, indicated. It is plain that, if
through any point K of Kp, we take three circular sections of the

“hyperboloids opposite to the sections in the base respectively, we have
the same singly infinite series of tetrahedra, but different sets of
spheres, the three corresponding to B, 0, D having the same radical
axis. :

‘When the plane BOD is given, the maximum tetrahedron is that one
whose base is a triangle having its sides respectively perpendicular to
pb, pe, pd.

And for any plane through p, that is to say, for four given spheres,
generally the maximum tetrahedron bas its sides perpendicular to the
lines drawn from the quadruple intersection to the triple intersections ;
or, what amounts really to the same thing, the vertices of the tetra-
hedron are determined by the extremities of the right lines drawn
through the quadruple intersection and the centres of the four spheres.

The minimum tetrahedron is represented by the line Kp common to
the series of hyperboloids,

. # The author exhibited a modol of this kind.
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The plane analogue (a) is immediately extended by gencral projec-
tion to the system of three comics having three triple intersections,*
and it is nataral to infer a similar generalization of the solid theorem.
‘We have to consider the system of four conicoids, having a common
plane section, a common quadraple intersection, and four triple inter-
sections. With the assistance of the system of hyperboloids, a proof of
the spherical case can be established which admits of immediate ex-
tension to the generalised form.

Thus (in outline) the four spheres being given, and any plane BCD
through p a triple intersection, construct the hyperboloid generated by
lines meeting the circles Bedp, Krs, and the line Kp, and the other two
hyperboloids similarly related to the circles Cbdp, Dbcp, &c. These
three hyperboloids intersect again in a circle through 4 parallel to the
plane BCD. The spheres on which this circle and the opposite sec-
tions through K lie, coalesce in one sphere determined by the point K.

For the generalised case, we have, instead of circles, conics meeting
oune and the same conic on a given plane, namely, the common plane
* section of the four conicoids ; instead of opposite ocircular sections of
the hyperboloids, we have conics passing ‘through the points (a, 8),
(7, 9) respectively, a, B, v, 8 denoting the four points in which the
hyperboloid in question meets the common conic. Moreover, the
theorem (¢) is similarly extended by general projection. The reasoning
in the case of spheres can now be immediately transferred to the
generalised system of conicoids.

Observe that the conics in the base plane, and the conic through
the vertex corresponding to the circle through A4 parallel to the base,
are not parallel for finite positions of the common plane section.

The extended result can be also shewn by the theory of homologous
figures in space of three dimensions.

Historical Note on Dr. Graves’s Theorem on Oonfocal Oonics.
By Samuer Roseers, F.R.S.

[Read April 14th, 1881.]

Dr. Graves’s theorefn for plane conics (1841) is as follows :—If two
tangents be drawn to an ellipse from any point of a confucal ellipse,

#® Or, if two conics a, B intersect in the points 4, 3, ¢, d, and through ¢ we draw a
transversal meeting ain k, and Bin /, and if pis a fixed pomt on a and ¢ a fixed
point on B, we see at once by anharmonic ratios, taking four positions, that the in-
tarsection of the lines kp, /g moves on a conic through g, §, ¢, p, ¢.



