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ON A FOKMULA FOR AN AREA

By W. H. YOUNG.
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PART I.—Introduction.

1. In the treatment of the area of a curve, it has been usual to suppose
the curve to be a simple Jordan curve, in other words, a curve denned by
a continuous (1, 1) correspondence with a straight line or circle. Such a
curve, when closed, divides the plane into two distinct parts, the " inside "
and " outside " of the curve, the former of which is a simply connected
region. Such a curve can be approximated to by polygons, without loops,
internal and external to the curve, and the area is denned as the common
unique limit, whenever this exists (as it will if the curve is rectifiable), of
the area of these polygons ; and this area is the same as the content of
the set of points inside the curve, together with, or omitting, the points
•of the curve itself, as we please.*

The idea, however, that an area, when given by a formula, is not always
to be conceived of in this sense, is a familiar one. Thus, for example,
the formula

A = i\ \%dy — ydz\,

which in the case of a simple closed Jordan curve gives its area, when it
exists, leads, when the integral is taken round a curve in which there are
loops, only to the sum of the areas of those loops, when the area is re-
garded as a directed quantity (directed area), got by attaching an appro-
priate sign to the content of the inside of the loop, this sign being -f-
when a point, describing the curve in the manner prescribed by the equa-
tions denning it, has the inside of the loop on its left (anticlockwise
motion), and — when the inside of the loop is on the right (clockwise

* All these results arc discussed in Chapters x and xm of the Theory of Sets of Points,
and references given.
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motion). Thus in the case of the lemniscate, we are led to the value
zero.

2. In the theory of the transformation of the variables in a multiple
integral, based though it frequently is on geometrical representation, no
application, as far as I know, of the idea of directed area is to be found.
This is no doubt connected with the fact that it has been usual to regard
the independent variables as always preserving their own sign, and either
steadily increasing, or steadily decreasing. The moment, however, we
introduce integration with respect to a function of bounded variation, this
peculiarity in the process of integration disappears. The function of
bounded variation will not, in general, be monotone, and may change
sign. This fact may be of importance, even in one dimension. Thus in
the method of integration by substitution, it is worth while to state the
fundamental theorem in the case of a single variable in such a manner as
to permit of the old variable x being a not necessarily monotone function
of the new one t. This corresponds in the theory of lengths to the mode
of estimation which consists in regarding journeys over the same ground
in opposite directions as cancelling one another. The formula which
lies at the basis of the theory is

\dx=x = \

and, as is well known, is true if x is any (absolutely convergent) integral
with respect to t, and dx/dt denote any one of its derivates.*

When we come to two dimensions, the question becomes at once more
difficult and more interesting. Under what conditions, we ask, may we,
in a multiple integral taken with respect to x and y, substitute for x and
y functions of two new variables u and v ?

Just as in one dimension the problem we have to solve is in its
simplest form the determination of a formula for a directed length as the
integral (or sum) of directed lengths, so, in our case, it is the problem of
determining a formula for a directed area as the integral, i.e. the limit of
the algebraic sum, of directed areas.

The problem is a more difficult one, not only owing to the comparative
unfamiliarity of the concept of " directed area", but also because the
analysis required involves considerations of a more subtle character.

* H. Lebesgue, Lecons sur Vintegration. See, for instance, my paper on "Functions of
Bounded Variation," Quarterly Journal, Vol. 42 (1910), p. SI.
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The directed area formula itself, on the other hand, is well-known:
it is

[[ d(x, y) 7 .
A •= \\ 7T-—tJ—dudv,

JJ (){U, V)

where *'/' , denotes the Jacobian
c(u, v)

vx
cu'

dx

cy_
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Here —, ^-, —̂ and ^~ are in the first instance, ana in the cases

ou ou ov vv

usually considered, the actual partial differential coefficients of the func-
tions x and y with respect to u and v. But they may evidently without
any inconvenience be regarded as any partial derivates, provided only
they exist as differential coefficients, except at a set of plane content zero
of values (u, v). What is required then is to establish this formula under
conditions which have no reference to the sign of the Jacobian, or even to
the signs of the partial derivates, a suitable definition having been pre-
viously devised for area.

3. At this point, however, it may be well to deal with the question
which may already have suggested itself to the reader, as to the value of
such considerations. It might be sufficient to reply generally by adducing
merely the advantage of possessing a more general form for so funda-
mental a formula as that which constitutes the expression of the rule for
the transformation of the variables in a multiple integral. The fewer the
restrictions imposed on the functions with which it is concerned, the
greater the potential usefulness of the formula. It is a great advantage
not to have to prove a priori that such conditions are satisfied, even when
in point of fact, a posteriori, this turns out to be the case. Moreover the
greater generality of the statement of a theorem will often involve the
necessity for devising a new method for proving it, and this may be
actually not only more powerful, but more fruitful than that which pre-
sents itself more naturally in the simpler case. This occurs in the present
instance; for the method to which I have been led enables us, even in
the simpler case, to dispense with a number of useless restrictions, which
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are seen to have their origin merely in the imperfections of the older
method of proving the formula.

The mere fact that in one dimension these considerations are funda-
mental, is of itself sufficient reason for attempting to generalise them. I
may say, however, that it is in the progress of researches into the area of
curved surfaces that the necessity for modifying the usual definition of
the area of a plane curve has been forced on my mind. It has been the
modification which I have made in that concept, and the introduction of
the analogous concept for the area of a skeio curve, that have enabled me
to overcome the difficulties in this theory which seem to have baffled all
previous investigators. It has thus been rendered possible to evolve a
simple and harmonious treatment not only of the concept of the area of a
curved surface, but also of the analogous concepts in the case of curved
manifolds of any number of dimensions in space of any number of
dimensions.

4. To return to the generalisation of the concept of the area of a
closed curve, it is clear that this should be such that it reduces in the
particular case when the curve is a simple Jordan curve to the usual
definition. As a particularly simple formula for the area of such a Jordan
curve is known to us, it is open to us to attempt either to generalise the
definition itself, or to devise a new definition to which this simple formula
is still applicable. The latter will naturally suggest itself, if practicable ;
for it is desirable that in any case this formula should continue to hold
good.

We are thus at once led to the following definition, which, it will be
seen, is applicable to every closed curve for which the formula in question
has a meaning, and accordingly certainly whenever the curve is rectifiable,
i.e. has a length in Jordan's sense, or more generally if, the curve being
defined by the equations

x = x(u), y =

at least one of the continuous functions x{u) and y{u) has bounded
variation.*

* The necessary and sufficient condition that the curve should be rectifiable is, as Jordan
showed, that both x (u) and y (tt) should be, not only continuous, but of bounded variation. If
one of these functions at least has bounded variation, both being continuous, the plane con-
tent of the curve is easily shown to be zero.
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Definition.

Inscribe in the curve, which we shall now suppose closed, any polygon
in the usual way, so as, when the curve is rectifiable, to form an approxi-
mation to the length of the curve. Imagine vectors to be represented in
respect of magnitude, line of action, and sense, by the sides of this polygon,,
supposed described in the sense in which u increases. Take the moments
of these vectors about any point 0 in the plane. Then it may be shewn
that—

(i) The algebraic sum of these moments is independent of the position of
the point 0; it is, of course, the moment of the couple equivalent to the
imagined vectors, regarded as forces, and is equal to twice the area of the=
polygon in the usual sense, when the polygonal line does not cut itself.

(ii) The number expressing this sum has a unique limit 2.4, as the
number of the sides of the polygon is indefinitely increased and their
lengths indefinitely decreased, so that the perimeter of the polygon has-
the length of the curve, if rectifiable, as unique limit.

(iii) The formula holds,

A = £ \x (u) dy (u)—y(u)dx («.) \.

This quantity A is defined to be the area of the curve.

5. It is not necessary for the purposes of this paper to give any other
definition, but it will be easily seen that the area so defined is equivalent,
to the following, which may be regarded as the generalisation of the usual
definition of the area of a simple Jordan curve.

The polygonal line inscribed in our closed curve may be thought of a»
forming a number of loops, some described in a clockwise, and others in an
anti-clockwise manner. The sum of the areas of these loops, taken with
proper sign, is identical with half the sum of the moments used in our defi-
nition, and will accordingly lead to the same unique limit A. And it should
be noted that, though there is a certain degree of arbitrariness in the
choice of these loops, the figure taken as a whole is perfectly definite in
each case, and divides the whole plane up into connected sets of points,
which, from the point of view of area, have a definite multiplicity. Thus
certain points will be counted so many times positively, others nega-
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tively, while the rest will be regarded as external to the figure. As
we proceed to the limit, certain of these sets will in essentials not change,
just as in the gradual generation of the black intervals of a perfect set by
means of increasing sets of intervals finite in number.

6. We are now able to state the main result of the paper:—

Taking first the case of two dimensions, let

x = x (u, v), y — y {u, v),

be functions of (it-, v) possessing the property of having all their partial
derivates toith respect to u and v bounded for all values of (u, v) in the
fundamental rectangle {a, c; b, d), that is

a < w < c, 6 < v < tf,

and let A be the area of the curve in the (x, y)-plane which is the image
of the perimeter of this rectangle.

Then A = du\
Ja Jb

CX OX (J1J OV
where •*?-, -5-, ^-, -*r represent any of the partial derivates of x and 11ou av ou cv J J

with respect to u and v.
More generally the same is true, if the partial derivates are not

bounded, provided only the following conditions are satisfied :—

(i) x{u, v) is an integral with respect to u, and an integral with
respect to v ;

(ii) y{u, v) is an integral with respect to u, and an integral toith
respect to v;

(iii) -^- and ^- are, except for a set of values of v of content zero,

numerically less than summable functions of v alone, fx(v) and M{v) say;

(iv) the same as (iii) with u and v interchanged, or more generally

II *r-fJi(v)dudv, II -^-M{v)diidv, exist as absolutely convergent integrals.

It will have been noticed that the conditions in the theorem just given
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are stated to be sufficient; there is no suggestion that they are necessary.
But this is in accordance with what might be expected, as long, at least,
as the conditions are expressed in terms of the quantities in the integrand.
We know of no necessary and sufficient conditions in the case of the
analogous problem in one dimension. Thus no knowledge of the nature
of the derivate of a function constitutes a necessary as well as sufficient
condition that its primitive function should be the integral of it. The
analogy between the cases of one and two dimensions is not only of in-
terest but it appears to belong to the nature of things: we are in presence,
in fact, of a generalisation other than the usual one, of a function of a
single variable, namely, of a functional relation between two planes which
generalises for two dimensions the notion of a function of bounded varia-
tion of a single variable, and also that of integral. For the development
of this idea I must refer my readers to a communication which I am
making elsewhere.

7. I have not contented myself with proving these results in this
general form, but I have begun by shewing how, by simpler methods,
results, which, though less general than these, are none the less con-
siderably more general than any hitherto formulated, may be obtained.
I have hoped in this way to be of service to the worker in a double
capacity, both as pioneer and guide, and this the more because I was
actually led to the most general of my results by passing through the
intermediate stages.

8. The expression for an n-dimensional volume which corresponds to
that for an area in two dimensions, is formally an immediate generalisa-
tion of the latter. The actual proof of the more general formula, which
involves for its proper comprehension a somewhat more developed analy-
tical machinery, and a certain insight into the nature of the concept of
surface, volume, and their generalisations, I have thought best to defer
till after the publication of some of my results connected with the theory
of these concepts. I have also not entered into the general question,
referred to above, of the transformation of the variables in a multiple
integral, connected as it is with the generalisation of the formula for, and
of the concept of, a hyper-volume.
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PART II.—On the Notion of Area.

10. As indicated in the introduction, we define the area of a curve as
follows:—

Let the curve be defined by

x = x(ii), y = y(u),

where x(n) and y(u) are continuous one-valued functions of u, for values
of u in the interval (a ^ u ^ b), having the same values at a and b, viz.

x{a) = x(b), y(a) = y(b),

so that the curve is closed, and may be called a circuit, or contour.
Divide the range of u up into any finite number of stretches, by means

of dividing pointsp0 = a}, plf p2, ..., pm = b, each stretch being of length
less than a certain norm e. Join the corresponding points

A, Jri, JT2, . . . , X m-l> A

on the curve to form an inscribed polygon.
Imagine forces, represented in magnitude, line of action, and sense,

by the sides of this polygon in order, supposed determined in the sense of
u increasing.

Denote by F the sum of the moments of these forces about any point
in the plane, i.e. the moment of the resulting couple, counted positive
when anti-clockwise in sense. Then, if, as the norm e tends to zero, so
that m-> oo, the number F has a unique limit 2.4, the limit A is called
the area of the curve.

It is immediately evident that, with this definition, the area of the
perimeter of a triangle is the area as defined in elementary geometry of
the triangle, and that the area of an ordinary polygonal line, bounding a
simply connected region is the area in the usual sense of that region.

THEOREM.—If x = x{u), y = y(u) be any recthfiable* closed curved it
necessarily possesses an area. Moreover this area is given by the formula

A = i \x(u)dy(u) — y{u)dx(u)} ...,

* More generally, if one of the continuous functions x (u) and y (u) has bounded variation
(sec footnote to § 4), in which case also the expression (I) is perfectly defined.

t Jordan curve in the general sense, not necessarily simple.
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the integrals being " Eiemann " integrals, taken loith respect to the func-
tions of hounded variation x (it) and y (u).

Let xQ, y0 be any fixed point in the plane of {x, y). Then the algebraic
sum of the moments of the forces about (xQ, yQ) is equal to

x0, x(u), x(u + h)
^ XW—Xv x{ll-j-h)—X{u)

y0, y&), yfa+h) - ^
y(u)—yo, y{u+h)—y(u)

i, i, i

where u is the coordinate appertaining to any one of the points of division
Po» Pu •••, Pm-i, and u-\-h that appertaining to the next point.

The coefficient of x0 is

-Z\y(u+h)-y(u)\ = 0 ;

similarly that of y0 is zero. Thus

F = 2 \y{u+h)x{u) —y(u)x(u-\-h)}

= 2[ | y{u'+h) —y(u) \ x(it) — \x{u+h) —x(u) \ y(u)].

But, since the curve is rectifiable, the continuous functions x(u) and y(u)
have bounded variation,* and therefore each has a " Riemann " integral
with respect to the other. In other words,

2 {x(u+h)—x(u)\ y(u)

tends, when the norm e tends to zero, to a unique limit, and this is the
Riemann integral

y{u)dx{u),

a similar statement holds, with x and y interchanged. Therefore,
as e -> 0,

F-> j \x{u) dy(u) — y(u) dx(u) \.

This proves the theorem.

11. We now consider a correspondence between two planes, in which

* See footnote supra: it is only necessary that one of the functions should have bounded
variation for the argument here.
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the coordinates are respectively (x, y) and (u, v), defined by the equations

x = x(u,v)t y = y(u,v).

Denote by the term fundamental (w, v)-rectangle, the rectangle
(a, c ; b, d), that is (a ^ u ^. c), (b ^ v ^ d) in the (u, v) -plane, through-
out which the correspondence is supposed to hold.

Corresponding to this rectangle we shall obtain a certain configuration
of points in the (x, ?/)-piane, differing very essentially in character, in
general, from a rectangle; we shall call this configuration the rectangle-
image, and denote it by S.

We shall not suppose the correspondence (1, 1) in the two planes, but
we shall at once make the hypothesis that the image of every stretch on a
straight line, parallel to a side of the {u, v)-rectangle, and terminated on
its periphery is a rectifiable* curve. This is equivalent to the condition
that x(u, v) and y(u, v) should both be continuous functions of bounded
variation of u for each fixed value of v, and also continuous functions of
bounded variation of v, for each fixed value of u.

With this understanding it follows at once from the previous article,
that the curve in the (x, ?y)-plane which is the image of the perimeter of
any rectangle in the (u, v)-plane, whose sides are parallel to the axes of u
and v, has an area.

In the case of the perimeter of the fundamental (u, •yj-rectangle, the
area of the perimeter-image is moreover given by the formula

Cc

A = \ \x{u, b) dy(u, b) —y(u, b) dx{u, b) \

Ja

Cd

+ 1 \x(c, v) dy (c, v) —y(c, v) dx (c, v) \
Jb

— I •[ x (u, d) dy {u, d) — y {u, d) dx {u, d) \

Ja

hi

— 1 \x(a, v)dy(a, v)— y{a, v)dx(a, v)}, (II)
Jb

which, if x{u, v) and y{u, v) are integrals with respect to v, when u is

* Or at least such a more general curve that the above formula holds, see previous foot-
notes.
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constant, and integrals with respect to u, when v is constant, becomes*

A = \ \ x{u, b) J ^ —x(u, d) J \ —y(u, b) —^—-
Ja I VU OU J OU

+ y{u,d) ^( j- du

;(c, o)V —
ov

• x.(c, v) - ^ x(a, v) - ^ y(c, v)

(a, «) —))^— f d». (IF)

12. Our object is to transform this expression for A into an integral
of the form

A = T du f ? 7 ^ - dw^, (III)

with the minimum of additional conditions which the circumstances-
permit.

It' we make sufficient additional assumptions the transformation is
almost immediate.

Thus, if we suppose that, not only x {u, v) and y (u, v), but also their

partial derivates -^-, —̂, are integrals with respect to v, and *$-, -^- in-v au ait ° r ov ov

tegrals with respect to u, so that also x ^— and y ?r- are integrals with

respect to v, and x -J- and y ^- are integrals with respect to u, we may

directly carry out the process of transformation of (II') into (III), by
writing (IF) in the form

A = \ du 5- \ y{u, v) —̂—• x(u, v) \ - dv
Ja JbOV [J OU 0U j

3 f , Ju(u,v) .dy(u,v)) ,

* Readers of my memoir on " Integration with respect to a Function of Bounded Varia-
tion " in these Proceedings, Ser. 2, Vol. 13 (1914), pp. 111-150, should notice that the formula

= \!'f(x)g'(x)dx,
Ja

when g (x) is an integral, though not expressly given there, follows easily, by the methods
there explained, from the particular case in which /(a.) is a simple ! or u function, in which
case the formula is manifestly true.
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which, when we differentiate out and cancel the terms that appear in each
of the two integrals, reduces to (III).

We notice that this direct process of transformation fails, when the
O II C>X

mixed repeated differential coefficients •T~4~, V ^ , do not exist at every

point of some set of positive content: even when they exist almost every-

where, the process fails if ^-, ^- are not integrals with respect to v, and
p. ^ au on ° f »
-K- , Y~ integrals with respect to u.

13. We have accordingly to employ an indirect method, if we are to
obtain results of anything like a general character.

For this purpose ifc is convenient to use the fundamental property of a
system of forces, namely that it is not altered by the introduction of any
number of pairs of equal opposite forces.

Imagine the fundamental (it, v)-rectangle divided up in any manner
into a finite number of sub-rectangles, by parallels to the axes of u and ?>.
Then divide each sub-rectangle into a pair of triangles by the diagonal
which intercepts positive lengths on both axes (i.e. sloping down from
left to right).

u,t

Ut hvv.

FIG. l.

Denoting by (a, v) that vertex of such a triangle at which there is a
right angle, and by (11 +h, v) and (u, v + Jc) the other vertices, the area of
the triangle is tyik. Adjoined to each such point (u, v) of division, there
will then be two* pairs (h, k), in one of which h and k are both positive,
and in the other both negative (Fig. 1).

We shall denote by 7t and k the greatest of the absolute values of all

* Exception of course made of the points (u, v) marked on the perimeter of the funda-
mental rectangle, which have each one piir (h, k). It will be readily seen that this does not,
affect our reasoning, and need not therefore be specially referred to in detail.
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the /i's and k'a which occur in this division of the whole fundamental
rectangle into sab-rectangles. The vertices of the triangles we shall for
brevity refer to as the " marked points " at this stage.

14. Let the corresponding marked points in the (x, y)-plane in the
same order as their correspondents,

be

(u, v), (u+h, v), (u, v + k)

(x,y), (x-\-Ax,y+Ay), (x+b'x, y+b'y).

(x + A'x,

(x + Ax, y + Ay)

{X + AX, y + Ay)

V)

FIG. 2.

With the usual convention as to sign, the area being here a directed
quantity, the area of the triangle in the (x, y) -plane having these ver-
tices is

x, y, 1

x+kx, y + Ay, 1

S + A'J, y+A'y, 1
= ^(Ax A'y — i\'x Ay) = \ {x(u+h, v) — x(u, v)} [y(a, v + k)—y(u, v) \

— I \x{u,v+k)—x{u,v)} \y(u+h, v)—y(u,v)},

and is positive or negative according as the order of the vertices so
arranged is anticlockwise or clockwise. The area may even be zero, if
the three points in the {x, 7/)-plane are collinear, or if two or more
coincide.

15. It will be remarked that it is only the vertices (marked points) of
the triangles in the two planes which "correspond", not the sides. It is
convenient to speak of the two triangles as being "related". The " rela-
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tion " is completely determined by, but not identical in general with,
our "correspondence". It is only the three-point, so to speak, in the
(x, y)-plane, and not the three-side which is the image of the " related"
figure in the (u, u)-plane, images being determined by the correspondence

x = x(u, v), y = y(u, v).

It is clear, however, that we can utilise the areas of these triangles for
the purpose we have in view. In fact the sum of their areas, taken with
propei1 sign, is precisely half the moment of the system of forces repre-
sented by the polygonal figure in the (x, ?/)-plane whose vertices correspond
to the marked points in order on the perimeter of the fundamental
(u, ̂ -rectangle. To see this we merely have to replace the directed area of
each triangle, regarded as a couple, by forces along the sides, represented
also in magnitude, line of action and sense by these sides, the sense being
that given by the order of the vertices. Each side of such a triangle
which is not " related " to a stretch on the perimeter of the fundamental
(u, ?;)-rectangle, will occur as a common side of two triangles, as in the
(w, v)-plane, and the two forces along it will necessarily be of opposite
sense, and accordingly cut one another out.

We thus arrive at the conclusion that the area A for which we are
seeking a second expression, this time as a double integral, is the limit of
the area of the polygonal figure, when h -*• 0, k -> 0.

16. Along the perimeter of the fundamental {u, v) -rectangle, x and y
are functions of a single variable t, which for two of the sides of the rect-
angle is denoted by u, and the increment by h, and for the other two
sides of the rectangle is denoted by v, and the increment by k.

It follows accordingly, by the theory of the " Riemann " integral, since
A has been expressed by the sum of such integrals (Formula II), that it is
immaterial whether we make the h's and k's approach zero simultaneously
or consecutively. The sum of the areas of the triangles has accordingly
necessarily a unique double limit, while it is open to us to calculate this
double limit by any process by which li and Jc approach zero.

We shall find it convenient to make first one of these quantities tend
to zero, and afterwards the other. We are thus able to deal with the
separate terms which occur in the expression for the area of each triangle.

It is not indeed evident, and probably not true, that, on the hypotheses
which we propose to make, the double limit is unique, unless all the terms
due to all the triangles are taken into account at one and the same time.
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17. We have thus to consider the summation o! pairs of expressions,
one member of each pair being of the type

I {x{u+h, v) —x(u,v)} {y{u, v+k)—y{u, v) \

—£ \x(u,v+k)— x(u, »)[ \y(u+h, v)— y(u, v)\,

where h > 0, h > 0, and the other of a similar type, except that then
h < 0, k < 0.

We proceed to discuss the summation formed from one member of
each pair separately, and write, with an obvious notation

e d

Ft = £ 2 2 \x(u+h, v) —x(u, v) \ {y(u, v+k) —y{u, v) \,
a b

(h>0,k>0) or (fc<0, k<0).

It follows by the theory of the " Riemann" integral, as already
utilised, that, equally whether h and k are always positive in the summa-
tion, or always negative, this expression tends, if we make k->0, to

£ \ 2 \x{u-\-h, v)—x(ut v)} dy{u, v).
Jb a

Accordingly, treating the other terms in the same way, we get

A = Lt £ 1 2 {x(u-\-h, v)— x(u,v)} dy(u, v)

— 2 {y{u+h, v)—y(u, v) \ dx(u, v) , (IV>

where each (u, v) appears in two terms, one with h > 0, and one with
h < 0.

18. We have now to make such assumptions as will enable us, in the
result just obtained, actually to proceed to the limit with h.

There is, however, one case so simple that it is best treated by means
of the double summation.

THEOREM.—If x(u, v) and y(u, v) are such functions tliat the partial

differential coefficients g—, ^ - , p~, and -*r- everywhere exist and are

continuous functions of (u, v), then the area A tof the fectangle-image is
given by the expression

A = V du \ ^—^r dudv.
Ja Jb v(u, V)

8ER. 2. VOL. 18. NO. 1347. 2 A
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By the Theorem of the Mean for Differential Coefficients, we may write

Fx = J 2 S ~—'—:— -—'-x —hk,
a b OU> OV

where | d1 | < 1, | 0 a | < l .

Now we may suppose the division of the fundamental (u, v) -rectangle
such that the oscillation of each of the partial differential coefficients

5~» 3~» T~> 2 is le s s than e [since these differential coefficients are con-
ou ov ou ov L

tinuous functions of (u, «)], in each of the sub-rectangles into which the
fundamental (u, v)-rectangle has been divided.

Thus the expression may be written

^ +04e t hk.

Accordingly the whole area may be obtained by considering a sum-
mation of the form

a b { OU OV OV Oil)

"where M is a bounded function of the various quantities concerned, and
making all the &'s and k's diminish without limit.

By the theory of the double integral, we then necessarily get a quantity
which differs from the required double integral by a quantity of the type
6eB, where | 6 | ^ 1, and B is a finite constant. As e is as small as we
please, this proves the required result.

19. We shall now, as in (II'), suppose that x {u, v) and y (u, v) are
each integrals with respect to v for each fixed value of u, and integrals
with respect to ufor each fixed value of v.

Then our formula (IV) takes the form*

A = Lt I fi[{x(u+h, V)-x{u, V)\ O1J{"'V)

A-»0 Jb a L OV

- {y(u+h, V)-y{u, V)\

* In formulae like the present involving (1) a variable with respect to which we sum,
assuming a finite number of values at each stage, and therefore in all a countably infinite set
of values, dense everywhere, and (2) a continuous variable with respect to which we integrate.
I use small letters u, v for the former and capitals U, V for the latter. It may be remarked
that, as regards the fixed values, the supposition made so far only applies to the countably
infinite sets u, v.
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In our method of procedure, and therefore in this formula, we may
change u into U, and V into v, if at the same time we interchange h and
k, and therefore write k in place of h.

20. What we have first to consider is the circumstances under which
we can proceed to the limit in the formula (V) under the sign of integra-
tion. We shall employ the known pair of sufficient conditions*

(1) the integrands have a unique limit, when h -> 0, except for a set
of values of v of content zero ; and

(2) the integrands form a bounded succession, or, more generally, are
all numerically less than one and the same summable function.

It is, of course, not necessary for the existence of the unique limit in
(V), that the integrand should have a unique limit. In point of fact in
§§ 24-31 we shall utilise this circumstance to obtain more general condi-
tions. It would seem, however, that even the results we are about to
obtain in the paragraphs which immediately follow, constitute a con-
siderable advance on any hitherto formulated.

21. Making use of the conditions (1) and (2) just stated, we are able
to prove the following theorem :—

THEOREM 2.—If x{u, v), y(u, v) are functions satisfying the following
conditions :—

(JX (J1J (3aC G7J

(i) The four partial derivates ^—, 5% ^—, 5^ are bounded functions
of {u, v); and

* W. H. Young, " On Semi-integrals and Oscillating Successions of Functions," §27.
More general conditions are given in § 23. I take this opportunity of pointing out that, in
§ 24 of that paper, the reasoning employed does not prove the theorem stated, but only that
obtained from it by adding the restriction that the succession should be bounded below
>(above). The following corrections are therefore necessary :—

P. 309, between lines 3 and 4, read " bounded below (above)," and line 5, delete " no."
Line 6, delete " positive (negative)," and insert " zero for unique double limit."
After line 6, insert " If the succession is bounded below, we may suppose the functions

all positive, so that it is sufficient to show that there is no positive double limit."
Line 7, after " obvious " insert " then."
P. 310, §25. In the enunciation insert after "functions" the words " bounded below

(above)," and delete in the last line " above (below)."

The corresponding corrections in the proof and in § 26 can be easily supplied by the reader.

2 A 2
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ox viz
(ii) 7T- and ^ are continuous with respect to v, except at the points

(u, v) of a plane set of content zero ; or

•^ and ~r are continuous with respect to u, except at the points (u, v)

of a plane set of content zero.*

Suppose first for definiteness that J^- and *r- have the continuity

properties specified in the statement of the theorem, so that, in particular,

s2- is for each fixed value of v, which does not belong to a certain set of

values of v of zero content, continuous with respect to u, except for a set
of values of u of zero content.

Then, except for a set of values of v of zero content,

which is the first term in the integrand of V, certainly has a unique limit

# It is this theorem which corresponds most closely with that obtained by E. W. Hobson
in these Proceedings, Ser. 2, Vol. 8 (1909), pp. 22-39, " On some Fundamental Properties of
Lebesgue Integrals in a Two-Dimensional Domain." More especially pp. 32-39.

Though only a special case of the general theorem obtained below, it appears to differ
essentially only from that due to Hobson in the omission of some of Hobson's restrictions.
These latter are seen in fact to be unnecessary in the light of the methods employed in the
present paper. Among these unnecessary restrictions, it may be particularly noted that in
our statement the set of zero content need not be closed, moreover it is not necessary to
hypothecate that the corresponding (x, y)-set should have zero content.

The most striking simplification is that which corresponds to the omission of all those
conditions entailed by the supposition, necessarily made by Hobson in his method of treat-
ment, that the correspondence between the two planes should be (1, 1), and that further it
should be what he calls a "normal " correspondence, this latter involving quite a series of
conditions given on p. 37 loc. dt., relating to an intermediate transformation, obtained by
eliminating v, between the equations giving x and y in terms of u and v.

It may fairly be contended that this series of conditions is only introduced ad hoc. They
constitute a part of the scaffolding, and a priori reasons would accordingly lead to the con-
clusion that their removal must be possible. If I lay stress on this point it is because nothing
could better illustrate the necessity of a treatment of area such as that employed in the pre-
sent paper.

It may be added that, while in theory the limitations there introduced are serious, in
practice the determination of whether the correspondence is "normal" or not, even if the
elimination could be carried out, might well present difficulties.
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when / t-»0. In fact, as * - is bounded, x(U, V) is an integral with

Oil

•respect to XJ, and therefore ^k, regarded as a function of U, has an in-

tegral with respect to x(U, V) for each fixed value of V not belonging to

a set of zero content, namely,

dy(U, V)

Indeed the condition for the existence of this " Riemann " integral is
that, V being fixed, the variation of x(U, V) over the set of points U

where ^ is discontinuous with respect to u, should be zero : this will be

the case provided this set of points u has zero content, since x(u, v) is an
integxal with respect to u. Hence by the definition of a Riemann in-
tegral with respect to a function of bounded variation, the first term of
the integrand in (V) has this " Riemann " integral for limit, when Ji -> 0.

Precisely the same reasoning applies of course to the second term of
the integrand in (V), interchanging x and y. Thus this second term
tends to

as h -> 0.
On the other hand, the first case of condition (2) of § 20 is clearly

satisfied, since the integrand in (V) consists only of bounded functions,
x(it, v) and y(u, v) being now necessarily continuous functions of (u, v),
owing to the boundedness of all their derivates.

If secondly it be 5- and ^ which have the continuity properties, the

argument is the same, except that the parts played by u and v are to be
interchanged, the corresponding alteration being also effected in the
formula (V). In this case h tends first to zero and then k.

Thus our theorem is proved.

22. It should be remarked that our reasoning does not permit us to
deduce the same result from the possession of the continuity property by

•JZ and ^r-, for example. This will be clear if we reflect that, though A
(}U OV

is known to be the unique double limit of our summation, it is not known
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that the two constituent summations, whose difference is the whole
summation, have each a unique double limit. Our method shews that,
with the hypothesis of Theorem 2, they both have repeated limits in the
particular order determined by whichever of the alternative hypotheses
(ii) we take. The difference of these two repeated limits may be therefore
used to calculate A as a repeated limit in the same order. But we should
not be justified in asserting that A was the difference of the repeated
limit of one constituent summation in one order and the repeated limit in
the other order of the second summation.

28. It will be noticed that the reasoning employed in proving
Theorem 2 really gives us more than is stated in that theorem. But it
does not seem worth while to delay passing on to the general result of the
paper. As, however, in Theorem 2, the derivates are all bounded, it is
perhaps worth while to give the following simple enunciation, which
avoids this assumption, though in some respects its demands are greater
than those of Theorem 2, or even of Theorem 1.

THEOREM 8.—If x(u, v) and y{u, v) are functions of hounded variation
of (u, v), and are integrals with respect to ufor each fixed value of e, and
integrals with respect to v for each fixed value of u, then

=17
Jo Jb

s, , dudv.
o(u, v)

We may again employ the formula (V).
That the integrand in this formula has a unique limit follows from a

fundamental property of a function of bounded variation in two variables,*
namely, that the mixed differential coefficients of the second order
necessarily exist and are finite, except for a plane set of content zero.
Hence it follows that the continuity property in the enunciation of
Theorem 2 holds for the partial derivates of the first order, and therefore,
as before, each of the two terms in the integrand in (V) leads to a unique
limit when li -*• 0.

Further, that we may introduce the limit under the integral sign, is
easily seen as follows.

* W. H. Young, " Sur la derivation des fonctions k variation borage " , Comptes Rendus,
Vol. 164 (1917).
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We may write
x(u, v) = xx(u, v)—x2(u, v),

y(u, v) = yx(u, v)—y2(u, v),

where each of the functions xlt x2, yx and y2 is a (+ , +)-monotone in-
creasing function of [u, v), that is a function whose increment with respect
to each variable is a positive ( ^ 0 ) monotone increasing function of the
other variable : the same is therefore true when we replace the increment
by the upper or lower derivate, or differential coefficient.

~» / \ " * / •

Hence 0 < * \ — < * \ , {% = 1 or 2),
^ ov ^ dv

OIJi(c, V) , ,

and -^-K = M.W,

being one of the derivates of a monotone function of v, is a summable
function of v.

Therefore, for i = 1 or 2, j = 1 or 2,

0 < 2 {a;j(i/ + /t, «) —^(w, y)} ^p' < /*i(v) 2 )arj
a OU a

< fn(v) \XJ(C, v) —xj(a, v)) < m(v) \XJ(C, d) —Xj(a, b) \.

Thus the first term in the integrand in (V) becomes the sum of four terms
with proper signs, each of which is ^ 0 and not greater than a summable
function of v. The same applies to the second term in the integrand
of (V).

For each of these terms, therefore, the more general criterion (2) of
§ 20 is satisfied, while a unique limit when h-> 0 exists, since #» and yif

like x and y, are functions of (u, v) of bounded variation. Thus we may,
for each of these eight terms separately, introduce the limit under the
integral sign, and therefore we may proceed to the limit under the integral
sign, when the integrand is that given in (V). This proves the theorem.

24. Hitherto we have required that the integrand in (V) should, except
at a set of content zero, itself have a unique limit when h-> 0; in other
words, we have based our reasoning on the theory of integrable successions
of functions. The moment we let this hypothesis drop, we require the
methods of the much more difficult theory of the integrability of oscillating
successions of functions.
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If we suppose the integrand in (V) to be bounded, we are at once sure
that the limits of the two terms whose difference is the summation tend-
ing to A as limit, must lie between the integrals of the upper and lower
limits of the corresponding part of the integrand, and accordingly between
the integrals with respect to v of the " Darboux " upper and lower inte-

grals of £• taken with respect to x (it, v), for constant v, and of .3- taken

with respect to y (u, v), for constant v. As the " Lebesgue " integral
always lies between the " Darboux " upper and lower integrals, it is
natural to attempt to formulate theorems in which the " Lebesgue " in-
tegral, though not approached by the integrand is, when integrated with
respect to v, the required limit.

25. For our present purpose it is convenient to write the formula (Y)
as follows:—

W dv du W~\dU'
(VI)

We shall now transform the two terms under the limit, writing, for in-
stance, the first of these in the form

dx(U,V) fyr(l7, V)
dU {)

where we have introduced an auxiliary function <pr at the r-th stage in
our passage to the limit, when li assumes the value hn of a certain
sequence

This function <pr(U, V) is defined as equal to ?/(«, V) in the half-open in-
terval (w<^ U <u-\-h), for each of these intervals in the division made
at the r-th stage. Accordingly <j>r(U, V) is, for constant V, constant in
stretches.

Taking any point U, such that

u< U<n+h,

we then have <t>AU, V) = y{u, V), (/3)
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so that, for constant U, <j>r(U, V) is an integral, and

fyriU, V) _ Byte, V)
dV ~ dV ' (y)

which gives the expression (a) as equivalent to the first term under the
limit sign in (VI).

26. As we proceed, stage by stage, the point U being fixed, the point
u will either coincide with U, or will move up to u as limit. In either
case, since y(U, V) is a continuous function of U, y(u, V) tends to y(U, V)
as unique limit, when u-*U. Thus

Lt <j>r(U,V) = y(U, V).

Since therefore y(U, V) and <f>r(U, V) are both integrals with respect to
V, we may write

27. We consider first, for simplicity, the case when the partial deri-
vates of x and y with respect to u and v are all bounded. It will be seen
that we require no further condition, if this be assumed. We have, in
fact, the following theorem :—

THEOREM 4.—If the partial derivates ^- , —, *r . ^ are all bounded,
T J r du ov oil ov

then
_ p fd d(x,y)

h 3(w, v)-rr
JaJb

For, if the derivates all lie between +M, the functions -*& also lie

between + M, for all values of r, U and V, by reason of (y): they form
therefore, as r -> oo, a bounded succession, whose integrals converge to
an integral, by the relation (S). By a well-known theorem,* we may then

insert the bounded function — ^ — under the integral sign on both

sides of the relation (8). Thus

T p dx(U, V) 80,(17, V) _ [d tix{U, V) dy{U, V) , „

iJ.J, du dv dV-)b ~~W~ dv dV'

* W. H. Young, " Successions of Integrals and Fourier Series," Proc. London Math. Soc,
Ser. 2, Vol. 11 (1912), p. 62, see also below § 32.
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Since these integrands, and therefore the integrals, are bounded func-
tions of U, we may now integrate term-by-term with respect to U, and get

Changing the order of integration, we see by (a) that the first term
under the limit in (VI) leads, when ?•-> oo, that is 7i->0, to the integral
on the right in the last equation. Interchanging x and y, as we may,
since the hypotheses are symmetrical, we get the second term in (VI).
Thus, subtracting, we get the required result.

28. We have stated and proved Theorem 4 separately, because of its
great simplicity of treatment, and the relative ease with which it is proved,
oscillating successions being particularly easy to deal with when they are
bounded. This facility, however, is really largely due to the fact that we

are then able to assert with certainty that the integral I fn(x)dx of the
JE

typical function fn(x) of the succession over a set E, has, as the content
E tends to zero, and simultaneously n -> oo, the unique double limit zero.
Now the convergence of this integral to zero is also secured when \fn{x) \,
without being bounded, is less than or equal to a summable function,
independent of n, and we are naturally led to enquire whether the condi-
tion of boundedness of the partial derivates may not be replaced by the
corresponding more general condition. In the next theorem it will be
proved that this is the case. We must, however, it will be noticed,
specifically introduce into the conditions the fact that x and y are integrals
with respect to each variable separately, a condition which fulfils itself
when the derivates are bounded.

THEOREM 5.—If

(i) x(u, v) and y(u, v) are integrals loith respect to u, for each fixed
value of v, and integrals with respect to v, for each fixed value of u ;

. (ii) each of the partial derivates of x and y with respect to v is, ex-
cept at most for a set of values of v of content zero, numerically less than,
or equal to, a summable function of v independent of u;*

* We might only postulate this condition for a countably infinite set of values of u, dense
everywhere. We should, however, only formally gain in generality, since when the condition
is satisfied in this form, it is satisfied in the form given in the text.

In fact, if for a countably infinite set of values of u, dense everywhere, we have, except
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(iii) the same as (ii) with u and v interchanged;

fc [d d(x v)
then A = \ \ 3, , dudv.

Ja)bO(u,v)

29. In the proof of Theorem 5 we shall make use of the following
theorem on the integration of oscillating successions of functions, the
proof Avill be given in a subsequent article:

If the integrals of a succession of summable functions fi(x), f%{x), ...
converge to an integral,

Lt I fn{x) dx = I q(x)dx,
n-><» J J

then toe viay insert under the integral signs any the same function g(x),.

provided \ fn(x)dx and \ fn(x)g(x)dx, both have the uniaue double limit
JE JE

zero, when E-+0, n-> 00, and the various integrals exist.

30. To prove Theorem 5, we start once more with the formula (VI),.

for a set of values of V of content zero,

- M (F)< ^ T / K F X M H . (I)'

we see, integrating with respect to V, that

?/(w,F)+L(y)dy and [n(V)dV-y(u,r)

are monotone increasing functions of V. But, if we write

Zx (U,V) will be, like yiJJ^V), a continuous function of U, and therefore a monotone in-
creasing function of V, since it is the limit of Z, {it,V), when u tends to Cas limit by means,
of the points of our countable set. Similarly,

is a monotone increasing function of V. Therefore, except for a set of values of V of content
zero,

° n ( V ) , (lay

for all values of U. This proves the above statement.—[Note added May 11th, 1919.]
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and consider the expression (a) of § 25, viz.

f(^Ffc dx(U,V) d<t>AU,V)
Jb

dU. (a)

Supposing \(U) and /JL(V) to be the functions hypothecated greater

than ac(i7t v)
dU

dx(U,V)

and , V)
dV

respectively, we have, by (y),

, V)
dU

ox(U,V) dy(u, V)
dU dv

<X(U)fi{V).

Therefore, as E -> 0 and r -> QO , we have, integrating over a set E,

a n d

(1)

(2)

Since then the integrals of the succession of functions ^ ' — , for

constant U, converge to an integral, namely, a3 shewn in § 25,

th (TJ V) ~ f dulJJ V) ~

it iollows from the theorem on oscillating successions just quoted, that,
for every fixed value of U,

d dx(U, V) d<f>r(U, V)? _ [d dx(U, V) dy(U, V) ~
dU dV Jb dU dV '

since these integrals certainly exist.
Moreover, since each of these integrals is numerically

that is a summable function of U, we may integrate the equation last
obtained term-by-term with respect to U, and write

Lt [ du\d

i—>« Ja Jb

dx [c , r 7 T , [d dx dd>rjXr [c jTJ[
ddx ay ,T7= \ dU Lt ^ ^ \ d V = \ dU ^77 ^hdV,

Ja r-̂ 00 Jb dU dV Ja Jb vU dV

whence, the hypotheses being symmetrical with respect to x and y, the
required result follows, as before (§ 27), from (VI).
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81. We may here remark that the assumptions made in Theorem 5
secure the boundedness with respect to {u, v) of the variation of each of
the dependent variables x and y with respect to one of the independent
variables u, v, the other being regarded as a parameter. Hence also x
and y. are themselves bounded functions of {it, v).

dxf
Indeed, by (i), the total variation of x is I

as a parameter, and
du, v being regarded

\x{u,v)—x{a,v)\ = \\ -y^-du < I Jl dw <
1 I J f t OU Ja OU Ja

where \{u) is the suminable function hypothecated as

\(u) du,

dx
du

This

suggests that this property, which does not seem to entail necessarily the
hypotheses of Theorem V, may be used in place of one of the conditions
there imposed. It is easily seen, in fact, that our reasoning in § 80 was
more general than is required for the mere proof of Theorem V. We
have accordingly the following slightly more general, if less elegant
theorem:—

THEOREM YI.—If

(i) x{u, v) and y(u, v) are integrals with respect to u for each fixed
value of v, and integrals loith respect to v for each fixed value of u ;

(ii)
dV

dx(u,V)
dV M{V),

where u(V) and M(~l') are mmmable functions of V independent of u ;*

(iii) the total variations of x{U, V) and y(U, V) with respect to U
for constant V are bounded functions of V and therefore of (U, V); or
more generally possess absolutely convergent integrals with respect to the
integrals of fx(V) and M(V) respectively ;

then =17
Ja Jb

dd(x,y)
dudv.

d (u, v)

For, if X{U, V) denote the total variation of x(U, V) for constant V,

* This condition need only hold for a countable everywhere dense set of values of u.



366

we have, by (i),
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and, by (iii), is either a bounded function of V, or is at any rate such that
n(V) X(U, V) is summable with respect to V,

X(U,V)dV = dx(U, V)
dU

dU.

Therefore, since the integrand is positive, we may change the order of
integration, and write

dx(U, V)
dU

Hence u(V)
dx(U, V)

da(17, V)
dU.

du

is a summable function of F, except possibly for a set of values of U of
content zero. Therefore, excepting these values of U,

dx(U, V) d<t>r(U, V)
aU dV

dV
, V)

dU
fji(V)dV-*0,

as in (2) in the proof of Theorem 5. The relation (1) of course still holds,
as well as the relation (S) of § 26. Therefore except for a set of values
of U of content zero,

T f VX

But these integrals, which certainly exist, are numerically

dx
W fi(V)dV,

which is a summable function of U, its integral being, as we saw,

= \d
 fJ.(V)X(UiV)dV.

Jb

Therefore we may integrate our equation term-by-term with respect to V,
whence as before the theorem follows.
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PART III.—On Oscillating Successions of Functions.

32: We now proceed to prove the theorem on successions, quoted in
§ 29, for any number of variables.

If x denote any ensemble of variables, finite in number [e.g. x = (u, v),
when we are working in a plane], and the integral sign be understood to
imply multiple integration of the proper number of dimensions, a sum-
mable function f(x) has the characteristic property that its integral over
any set of points of content E tends to zero, as E -> 0. We write this

IE
f(x) dx -* 0,

reserving the symbol \f(x)dx for indefinite integration over any "in-
terval " (rectangle, block, &c, according to the number of dimensions of
x). In particular, it fix) is independent of one or more of the variables
implied in x, this property holds; or if fix) = fxiu) f2iv), is the product of
a function of certain of the variables, denoted by u, and a function of the
remaining variables, denoted by v.

We have already used [tacitly in (2) of § 19] this property of a sum-
mable function of a single variable, in connection with the theorem on
successions of functions which states that the analogous condition

f
E

fnix)dx=0,

where the limit is now a double one, is sufficient in order that the
succession of summable functions fiix), f2ix), ..., which converges except
at a set of content zero to a summable function f(x), should be absolutely
integrable, that is,

Lt Mx)dx = fix)dx,
>i—>oo JS JS

integration being over any and every set of points S.
As already remarked, this same condition plays a part of some import-

ance, when we merely know that the integrals of the succession converge
to an integral. We have, in fact, the following general theorem:—

THEOREM.—If the integrals of the succession of summable functions
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converge to an integral

Lt \fn(x)dx = \g(x)dx, (1)

and the usual condition is satisfied, namely,

Lt f fn(x)dx = 0, (2)
/»—>oo\ JE
U->o;

then we may insert under the integral sign in (i) any the same function
g(x), such that all the functions fn(x)g(x), as well as q{x) g(x), are
summable, and

Lt f fn(x)g(x)dx = 0.
/«->«\ JE

Moreover in this case integration may be over any set S.

COR. 1.—The theorem holds if for all values of n,

\Mx)\ < <p(x),

where (j>(x) is a summable function of the variables x, such that <p{x)g{x}
is summable.

COR. 2.—If x denote the ensemble of certain variables, denoted by u,
and certain other variables, denoted by v, it is sufficient in order that we
may insert a function g(x) under both integral signs in the relation
{supposed to hold)

\fn(x)dx-+\q{x)dx, (1)

if for all values of u,

where <p(u) and \fs{v) are functions only of the variables implied in u and
v respectively.

33. The proof of these results in the explicit case of two variables
x = {u, v), is given here for reference; the reasoning is perfectly general
for any number of variables, when we regard u and v as implying each a
combination of other variables.

The proof of the main theorem requires certain Lemmas.
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LEMMA I.—If Lt fn(x)dx = O,
/ii—>» \ JE

U - H W

then also Lt | fn (x) | dx = 0.
(n—>v>\ JE
\E->0)

For let E be any set and divide it into two parts E'n and E"n, such that,
in E'n the function fu (u, v) is > 0, and in E'n it is < 0. Then, if E -+ 0,
E'n -» 0, and j£" -» 0. Therefore the first of the above relations is satisfied
when we replace E by E'n, or by E'n; subtracting we therefore get the
second of the above relations.

LEMMA 2.—If, integrating over any rectangle,

| /„. (x) dx -> J q (x) dx, (n -><»), ft>

then the same is true over any set of points, provided

(x) dx = 0. (2).Lt f /„

Indeed (1) being true over any rectangle, is true over any finite
number of non-overlapping rectangles. Now, if S be any closed plane set,.
we can enclose it in a finite number of squares, having points of S as
centres, and sides of length e parallel to any two given directions at right,
angles. These squares in general overlap ; but producing their sides in-
definitely, we divide them up into non-overlapping rectangles, finite ia
number, containing the whole set S inside them or on their perimeters.

Denoting these rectangles by D and the complementary set to S in
these rectangles by E, we see that, as e —*• 0, the content E also tends to
zero. For otherwise there would be at least one point belonging to all
the sets E, and this is not the case, since S is a closed set, and is therefore
itself the complete inner limiting set of the set of squares, as e -*• 0.

Thus I fn (x) dx = \ fn (x) dx+1 /„ fcc) dx,
JD Js JE

where the latter integral tends, by our hypothesis, to zero when e -> 0h

and therefore, as we have seen E -> 0.

Again, 1 q(x)dx=\ q{x)dx+\ q(x)dx,
JD JS JE

SER. 2 . VOL. 18 . NO. 1348. 2 B
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where the latter integral also tends to zero, by the fundamental property
of a summable function of x = {u, v).

Thus, since (1) has been shewn to hold for integration over D, so that

/„ (x) dx-f fn{x)dx->\ q {x) dx+\ q (x) dx,
JS JE J.S JE

we have in consequence of what has been pointed out

( fn{x)dx->\ q{x)cU.
JS Js

This proves that (1) holds for integration over any closed set.
But if S is any measurable plane set, it is the sum of a closed plane

closed set 2 and a set E whose content may be taken to be as small as we
please. Thus we express our double integral over S as the sum of one
over 2 and another over E, of which the lasc tends to zero, if we take a
succession of such sets (2, E) with E -> 0. Since the equation (1) holds
for integration over the closed set 2, we have

f f [ [
/» (x) dx— f, (x) dx -> q {x) dx — q (x) dx,

Js JE J.s J/-:

which leads again to

/„ (x) dx -* q {x) dx,
Js J.<

since the other two integrals tend to zero when E -> 0. This proves the
equation (1) for integration over any measurable set S.

LEMMA 3.—If in addition to the conditions (1) and (2) of Lemma 2,
we have

!/»(«,») |<0(w) , (3)

we may take q{u, v) in (1) to be such that

\q(u,v) | < 0 ( w ) . (4)

For, if not, for some point {u. v),

<f>{u) <\q (u, v) | ,

and therefore <p (u) -\-e < | q (u, v) \,

for some value of e.

Let us take together all the points (u, v) at which this last relation
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holds good for one and the same e, and q (u) ^ 0, and denote this set by
S. We then have, by Lemma 2, for a sufficiently large n, "

[<l> (u) + e]dudv < 11 q(u, v)dudv < \\ f*(«*, «) diidv+%eS,

which is obviously only possible if S is a set of zero content. Since this
is true for all positive values of e, it follows that, except at a set of con-
tent zero, we have, when q{u, v) is not negative,

q {it, v) ^ <p (u).

Similarly, except at a set of content zero, when q{u, v) is negative,

— 0(M) < q(u,v).

LEMMA 4.—If 11 fn {a, v) du dv -> 0,

•the succession of integrals

11 /,, (w, v) dudv

is hounded and oscillates uniformly and homogeneously.

To prove that the succession of integrals is bounded, let us determine
Eo and uQ, so that, for E <EQ and u > uQ,

— e < fn {u, v) du dv < e.
JjE

Next let us determine an integer k so that

kEQ>(d-b)(c-a).

Then, if S be any set in the rectangle (a, b; c, d), and we divide the whole
rectangle into k equal parts, each of these parts, and therefore each of the
sub-sets of S in them, has content less than I?o. Hence, by the above,
for n > %,

— ke < 11 fn {u, v) dudv < ke.

Thus the whole set of integrals, from u = u0 onwards, is bounded, and
therefore the whole set is bounded.

2 B 2
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To prove the oscillation uniform and homogeneous, let us add to and
subtract from the set S any sets Elf E2, where Et->O, E2-> 0. Then,
denoting the new set by T,

1 ] fn(u, v)dudv = fn (u,v) dudv + I fn (w, v) dudv — 11 fn(u, v)du\dv.

By hypothesis the second and third integrals on the right tend to zero.
Therefore the lowest and highest double limits on the left are respectively

the lowest and highest limits of fn(u,v)dudv. In other words, the

succession of integrals oscillates uniformly; Moreover, this is true whether
we let u describe all integers or only a sub-set of integers tending to in-
finity ; thus the oscillation is uniform and homogeneous.

This proves the theorem.

COR. 1.—The results of the theorem are still true if ice substitute
\fn(x)\forfn(x).

COR. 2.—There is in every succession of the integrals a sitbsuccession
which converges uniformly to an integral.

COR. 3.—If the integrals converge, they converge uniformly to an
integral.

34. We can now prove the theorem given in § 32.

re r<t re ru
THEOREM.—If I I fn(u,v)dudv-+ \ \ q(u,v) dudv, (1>

J»Jb JaJb

and, when E —>0, n-> oo ,

f ] fn(u, v)dudv^»0, (2>

then we may insert in (1) under each integral sign any function g{u, v)-
such that fn(u,v)g(u,v) for all values of n and g(ut v) q(ti, v) are
sumviable, and when E-+0, n-> oo,

II fn{u,v)q{u,
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For, by (2), using Lemma 2,

fn(u,v)dudv^> q(u, v) dudv, (4)
JJs JJ.s'

where S is any set.
This remains true when we insert any constant c under the integral

sign on both sides, and therefore, also, when we add together any finite
number of such relations. That is, denoting by g{u, v) a function which
assumes only a finite number of values :

\\ fn(", v)g(u,v)dudv -> \\ q(u, v)g(«., v) dudv. (5)

But any bounded function g{u, v) being given, we can find a function of
the type just considered, say gr(u, v) differing from g{u, v) at every point
by less than 1/r. Hence, as n -> 0,

(c rd re rd

\ /»(u, v)g{u, v) du dv—\ /„ (u, v) \ g(u,v)—gr {u, v)} du dv
ajb JaJb

re rd re ra

-> I I q(u,v)g(u,v) du dv — I I q (u, v) {{u, v) gr(u, v) \ du dv,
}ajb JaJb

or, which is the same thing,

re rrt Cc Cd

1 \ fa (u, v) g (w, v) du dv — 6 \ \ \ fn {u, v) \ du dvjr
Jrt Jb Ja Ja

re rd re ra
-> I \ q (u, v) g (it, u) du dv — 6' \ \ \q (u, v) \ du dvjr,

Ja Jb Jajb

where 101 < 1, | 0' \ < 1.
But, by Lemma 4, the second terms on each side are numerically less

than a finite constant divided by r, and therefore are as small as we please,
r being large enough. Thus we obtain again the relation (S),g(u, v) being
any bounded function.

Finally, when g(u, v) is merely summable, we divide it into the difference
of two functions, each of which is ^ 0 and summable. It is therefore
only necessary to consider one of these.

Let then g{u, v) ^ 0, and define an auxiliary bounded function gr(u,v)
equal to g{u, v) except at the points of the set E where g(u, v) > r, since
g(u, v) is summable, E -> 0 when r -» <x>.
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Since, by what has been shewn, the theorem is true for gr{;iL, v), we
have, since g—gr = 0, except on E when g—gr =• g,

\ fn(u, v) g{u, v)dudv— I /„ (u, v)g{u, v)dudv

fc fd ((
-> \ q(u,v)g (M, v)du dv— q {u, v) g (u, v) du dv.

Ji'Jh JjE
By (3), the relation (5) again results, since by hypothesis g(u, v)q(u, v) is
summable. This proves the relation (5) for any suinmable function g(u, v)
satisfying the conditions of the enunciation. Hence the theorem is true.
The proof of the corollaries may be left to the reader.


