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then the order of the resultant is

For the equations may be written

where the h,p are to be affected successively with the suffixes 1, 2, ...&,
and 0 may be considered = 1. Now these equations may be regarded
as having coefficients of the constant order h, but the weight of every
coefficient of 0r equal to r/n. This being so, the degree of the resultant
in the uneliminated variables will be the sum of its order and weight

calculated on these suppositions. But its order is hip3p»"-lht or —lip,
Pi

due to the coefficients of the first equation, — Tip due to the coefficients

of the second, and so on; while its weight is /ullp. Hence the entire
order of the resultant is

as stated above.

March XOth, 1870.

Prof. CAYLEY, President, in the Chair.
Mr. E. A. L. Bradshaw Smith was elected a Member, and Messrs. A.

and W. M. Ramsay were admitted into the Society. Visitor, Prof.
Oppermann of Copenhagen.

Mr. Tucker read two communications by Mr. Clerk-Maxwell: the
one on " Topographical Geometry" (on which paper the President aud
Mr. Archibald Smith made some remarks) ; the other

On the Displacement in a Case of Fluid Motion.

In most investigations of fluid motion, we consider the velocity at
any point of the fluid as defined by its magnitude and direction, as a
function of the coordinates of the point and of the time. We are sup-
posed to be able to take a momentary glance at the system at any time,
and to observe the velocities; but are not required to be able to keep
our eyo on a particular molecule during its motion. This method,
therefore, properly belongs to the theory of a contiuuous fluid alike in
all its parts, in which we measure the velocity by the volume which
passes through unit of area rather than by the distance travelled by a
molecule in unit of time. It is also the only method applicable to tho
case of a fluid, the motions of the individual molecules of which are not
expressible as functions of their position, as in the motions due to heat
and diffusion. When similar equations occur in the theory of the con-
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duction of heat or electricity, we are constrained to nse this method,
for we cannot even define what is meant by the continued identity of a
portion of heat or electricity.

The molecular theory, as it supposes each molecule to preserve its
identity, requires for its perfection a determination of the position of
each molecule at any assigned time. As it is only in certain cases that
our present mathematical resources can effect this, I propose to point
out a very simple case, with the results.

Let a cylinder of infinite length and of radius a move with its axis
parallel to z, and always passing through the axis of x, with a velocity
V, uniform or variable, in the direction of x, through an infinite, homo-
geneous, incompressible, perfect fluid. Let r be the distance of any
point in the fluid from the axis of the cylinder; then it is easy to show
that, if a?0 is the value of x for the axis of the cylinder, and x that of the

point, and <p' = -^ (x—x0), and ^ = (l— 3 ) 2/»

V^ will satisfy the conditions of the velocity-potential, and V\^ that of
the stream function;* and, since the expression for \p does not contain
the time, its value will remain constant for a molecule during the whole
of its motion.

If we consider the position of a particle as determined by the values
of z, r, and \p, then z and yp will remain constant during the motion,
and we have only to find r in terms of the time. For this purpose we
observe that, if we put \p in polar coordinates, it becomes

and — = - -~ = V 11 j ) cos 0.
dt r dO \ rV

Expressing cos 9 in terms of r and 1//, this becomes

If we make v/(4a2+»/>2) +i// = 2/3, and -^ = c,

then /3 will be the valuo of y when the axis of the cylinder is abreast of
the particle, and

dr V ,10
dt r2

• The velocity-potential is a quantity such that its rato of variation along any
line is equal to the velocity of the fluid resolved in the samo direction. "Whenever
the motion of tho fluid is irrotational, there is a velocity-potential.

Tho stream function exists in every case of the motion of an incomprossiblo fluid
in two dimensions, nnd is such that tho total instantaneous flow ar.ross any curve,
referred to unit of time, is equal to the difference of the values of the stream fuue-
tion at the extremities of the curve.

r,2
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and if we now use instead of r a new angular variable x such that

A r 2r

then we can express / Vdt or x0 in terms of elliptic functions of the

first and second kinds,

y*Vt« = a!o = /3cotx v/(l-c2sin8
X)+/3 }EC(X)-Fe(x)},

where the position of the axis of the cylinder is expressed in terms of
the position of a molecule with respect to it.

Now let us take a molecule originally on the axis of ?/, at a distance
tj from the origin, and let the cylinder begin to move from an infinite
distance on the negative side of the axis of x; then

^ = >;, and 2/3 = y/(4ia2 + if) -f »j, and — = c;

and when the cylinder has passed from negative infinity to positive in-
fiuity in the direction of as, then the coordinates of the molecule will be

B S = - ? « ( F . _ E e ) , and -y =

It appears from this expression, thtit after the passage of the cylinder
every particle is at the samo distance as at first from the plane of xzt

but that it is carried forward in the direction of the motion of the
cylinder by a quantity which is infinito when y = 0, but finite for all
other values of y. "

Tbe motion of a particle at any instant is always inclined to the axis
of x at double the inclination of the line drawn to the axis of tlie
cylinder. Hence it is in the forward direction till the inclination of
this line is 45°, backward from 45° to 135°, and forward again after-
wards. The forward motion is slower than the backward motion, but
lasts for a longer timo, and it appears that the final displacement of
every particle is in the forward direction. It follows from this that tho
condition fulfilled by the fluid at an infinite distance is not that of
being contained in a fixed vessel; for in that case there wonld have
been, on the whole, a displacement backwards equal to that of tho
cylinder forwards. The problem actually solved differs from this only
by the application of an infinitely small forward velocity to tho infinito
mass of fluid such as to generate a finite momentum.

In drawing tho accompanying figures, I began by tracing the stream-
lines in Fig. 1, p. 8G, by means of tho intersections of a system of
straight lines equi-distant and parallel to the axis, with a system of
circles tonching the axis at the oi-igin and having their radii as the
reciprocals of the natural numbers. (Sec Prof. Rankine's Papers on
Stream-Lines in tho " Phil. Trans.")

Tho cylinder is finch radins, and the stream-lines arc originally
•fo inch apart.
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I then calculated the coordinates, x and y, of the final form of a
transverse straight line from the values of the complete elliptic functions
for values of c corresponding to every 5°. . The result is given in the
continuous curve on the left of Fig. 2, p. 87.

I then traced the path of a particle in contact with the cylinder from,
the equation _2fa

t a n | 8 = e ° ,
where x = xo+a cos 6 and y = a sin 0.

The form of the path is the curve nearest the axis in Fig. 3. The
dots indicate the positions at equal intervals of time.

The paths of particles not in contact with the cylinder might be cal-
culated from Legendre's tables for incomplete functions, which I have
not got.

I have therefore drawn them by eye so as to fulfil the following
conditions:—

The radius of curvature is - „ . J ;, which, when w is large com-
2 arain'd+y*

pared with a, becomes nearly —-.
2y

The paths of particles at a great distance from the axis are therefore
very nearly circles.

To draw the paths of intermediate particles, I observed that their
two extremities must lie at the same distance from the axis of x as the
asymptote of a certain stream-line, and the middle point of the path at
a distance equal to that of the same stream-lino when abreast of the
cylinder; and, finally, that the distance between the extremities is the
same as that given in Fig. 2.

In this way I drew the paths of different particles in Fig. 3. I then
transferred these to Fig. 2, to show the paths of a series of particles,
originally in a straight line, and finally in the cm*ve already described.

I then laid Fig. 1 on Fig. 2, and drew, through the intersections of tho
stream-lines and the paths of the corresponding particles in the fluid
originally at rest, the lines which show the form taken by a line of
particles originally straight as it flows past the cylinder. This method,
however, does not give the point where the line crosses the axis of x.
I therefore calculated this from the equation

aj r + | a l o g ,
r + a

calculating r for values of x differing by \ inch.
The curves thus drawn appear to be as near the truth as I could get

without a much greater amount of labour.
If a maker of " marbled" paper were to rule the surface of his bath

with straight lines of paint at right angles, and then to draw a cylin-
drical ruler through tho bath up to the middle, and apply the painted
lines to his paper, he would produce tho design of Fig. 1, p. 86.
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Fio. 1.
Fluid flowing past a fixed cylindor.
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FIG. 2.
Paths of particles of the fluid when a cylinder moves through it.

oo

Fio. 3.

Paths of particles at different distances from the cylinder: radius of cylinder,
$ inch. At great distances (0) the path is a circle of radius —, and in this circle

2/9
tan - - _ .




