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VARIOUS EXTENSIONS OF ABEL'S LEMMA

By T. J. 'A. BroMwics.

(Received June 5th, 1907.—Read June 13th, 1907.]

Tue following paper contains a collection of various inequalities which
are all, in a certain sense, extensions of Abel’s lemma, that if the sequence
of factors (v,) is real, positive and decreasing, then

})
he, < Za,v, < He,.
1

where H, /. are the upper and lower limits of

aFag+ ... +an,
as n varies from 1 to p.

These results do not seem to have been published in a general form
hitherto, although no doubt special cases have been used by many authors.
A systematic use of them has enabled me to shorten the proofs of a
number of known theorems on limits, and to obtain various exteusions of
such theorems. Some of these applications are given in connexion with
each of the inequalities obtained below ; of these the only actual novelties
appear to be the theorems on divergent series given in §§ 1 and 4-7, and
some of the results on double series in § 5.

1. Real, Decreasing Positive Factors.

Suppose that the sequence (v,) consists of posibive terms only, and
never increases, then by the familiar transformation (due to Abel) we have

»
(1) 2 anvn = $; (0,0 +85(La—vg)+... + 851 (V1 —0p) + 50y,
1

where Sy = a;+ay+...+a,.

Let m be any index less than p and take H, /. to denote the upper and
lower limits of s, Sy, ..., Sw—1, While H,, ,, denote those of su, Smi1, ..., Sp.
Then the sum on the right of (1) is increased if we put H in place of
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Syy Sgs ey Sm—1y 80d Hp in place of su, Smy1, ..., 5, because all the factors
V) — Vg, Vg—7s3, ..., Vp_1—V;, Up ate positive. Thus

’)
? AnVn < H[(’Ul— vg) +(’l)2-—’03) +...+ (p _"L‘m)]
» +Hm [(U'm_ vm+l) + (U'M'H-l _77m+2) + s + (vp—l - Up) +'Up:l
or ﬁ QAnVp < H ('U]_ —Vm) +Hp V-
1

By a similar argument with regard to %, )., we establish the complete
inequality

2 b @y —vm) +hnon < }1: UV < H (0 —0,)+H,, v,

which 18 the extended form of Abel's inequality.* We get back to Abel’s
result by taking m = 1.

Applications.—The inequality (2) leads at once to the cases of chief practical interest of
the generalized form of Abel’s theorem given by Mr. Hardy.t Suppose, in fact, that the factor
7y is & function of a variable z, and that 2, (z) tends to the limit 1 as 2 tends to 1, while
vy = ¥, = Uy = ..., for values of z less than 1.

Then, if Za, converges to a sum s, we can choose n: so that ., H,, lie between s—e, s+e,
however small e may be, and however great p may be. Thus (2) leads to

h(vg—vu) + (5 =€) v < f apty < E(”o—vm) + (‘9 +€) Ty

Now, as « tends to 1, the right and left sides of the last inequality tend respectively to (s—e) and
(s +¢€), since vy and v, both tend to 1. We have therefore
s—e £ lim Za,0, < M 3aur, < s+e.
r—1 r—>1
Since ¢ is arbitrarily small, these inequalities caunot be true unless

. E3
lim a4, =s.
ar—>1 v

But when Zay is divergent, m can be found so that %, > N, however great & is; and so
* -
3 a2k (Co=vu) + Now.
0

Repeuting the foregoing argument we see that

lim a2, = V.
z—>1

©
Hence lim X a,2, = »,
>l 0

a result which appears to be novel, although an immediate extension of one due to Abel. s a

simple example we note that
an 1 FA

1+ n 1+av

* If Za,v, is separated into two parts, from 1 to s2—1, and from m to p, Abel’s inequality
can be applied to each part ; but the limits obtained are not so close as in (2).
+ Proc. London Math. Soc., Ser. 2, Vol. 4, 1906, p. 249 (especially § 3).
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tend to infinity as . tends to 1. Of course this conclusion is verified at once by the obvious
inequalities -
s s i3 =4 L.
L+2" -

L2 >%=i"=%log(ll )-

n 14zt “n —z

The inequality (2) can also be used to establish the comparison theorems for divergent series to
which we shall be led later (see § 6).

There is an inequality corresponding to (2) in the case of increasing
factors, but this seems to be of less practical importance; we record the
result without proof beyond the remark that the factors v,—wv,, vy—v,,
ey Vp_1—Up are negative in (1). We then find

)l
Ho,— (H—H,,) v)— (Hp— ) vp < Zanv,
1

< Iw1+(hm_]1') U+ (Hp—ltm) Vp.

In particular, with Jiw=h and H, = H,
we find Hoy— H—=1) vy < = @y, < hoy+(H—1) v,
1

9. Inequalities for Integrals corresponding to § 1.

The analogy between Abel’s inequality and the so-called second theorem
of the mean at once suggests the following theorem :—

If the function v(z) never increases with x, but s always positive in
an tnterval (a, b), then

b
B Alv@—v@]+hovi) < J v (@) f(z) dz < H [v(@)—v () ]+ H.v(c),
where H, h wre the wpper and lower limits of the integral
3
j f(x)dx

as & ranges from a to ¢, while H,, h, ave those found as & ranges from
ctob. Here v(w) and v (c) are used to denote the limits v(a+0) and
v (c—0) respectively.

If the function v(x) is supposed differentiable the inequality (3) is most
easily proved by integration by parts (compare p. 65 below); but, in the
general case, the inequality can be obtained by a simple modification of
Pringsheim’s proof * for the case ¢ = b.

Let the interval (a, b) be divided into # sub-intervals by inserting

* Miinchener Sitzungsberichte, Bd. xxx., 1900, p. 209.
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points z,, z,, ..., Z,-1, and let z,=a, x, = b; write further v, = v ("),
or if v (z) is discontinuous at z,, we take v, as the limit* of v(z) as z
approaches z, from smaller values of z.

’ b Ty 41
Then, if J = j v(z) f (z)d=, J,.=J v (2) f(z) dz,
and K, = j' f(@) dz,
n-1
we find J= 2 J,
r=0
and Jr—V, 1 K, = 5 M|:'u () —vr+1) f(2) dz.

Sr

In the last integral the bracket is positive and less than v,—v,41, in
virtue of the decreasing property of v (z) ; thus

'z
Z,

| Jo—v, i K, | < (1).-—1»,~+1)5 | fl) | de.

Consequently if u is the maximum value of

(%o
), |f@]de

for all the sub-intervals, we find

I Jq‘—v'r+1 I{'r I < ,U-(T'r_"-'r+l)-

J—' E U;-.*.].ll’;,-
r=0

< MV,

n—1
Hence |

Now, if we take z, to coincide with ¢, we see from the inequality (2)
of §1 that
n—1

I[v () —2(e) ]+ hevic) < EO Ve I < H[v(@)—v )]+ H.v{c),

because K,+K+..+K,.= jf () dr.

Consequently we have

h[w(@) —v @]+ kv @) —mo (@) < T < H [v()—2 () ]+ H.v ) +uv(@).

# That this limit exists follows from the monotouic property of v (2).
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Now, let all the sub-intervals ﬁend uniformly to zero, then u also tends to
gzero, provided that the integral

b

is convergent; and v(z,) tends to the limit v (a40), or v(a) in our present
notation. Then, since J is independent of thé mode of choosing the sub-
intervals, we find

v —z(©]+hv() <J < Hv@—v(c)]+Ho ().

0
Pringsheim has shewn, however, that the absolute convergence of J’ JS(z) dz is guperfluous;

and that the convergence of this integral together with that of ro(z) f(z)dz will suffice to
establish the result. a

In fact, under these conditions, we can find a finite number (p) of intervals enclosing all the
discontinuities of f(x), and such that |L,| < ¢ and |lg| < ¢, where L,, L, denote the
integrals of f(z) and of f(z) v (z) respectively taken over the s-th of these intervals,

For any part of the range (a, b) outside these p intervals we can argue as above, and deduce
that the corresponding contribution to (J—3u,,; K,) is less than uvy, where u can be made as

small as we plense. But for these special intervals, the difference is numerically less than
13tenL | + | ZLL| < pe+ | 30oL. | < pe (L +12y),
and so we arrive finally at the same inequality as before.

Applications.—The arguments of § 1 need no further alteration in order to establish such
theorems as the following :—
If v (2, 1) is a decreasing function of z (¢ > 0) whick tends to the limit 1, as ¢ tends to 0, then

lim | o0 f(2)de = f fla)dz,
t—>»0Ja +Ja

if the latter is convergent. Also  lim j v(z, ) f(z)de = =,
t—>0

a

=
if j‘ S (z) dz diverges to infinity.

As another application, we consider Jordan’s theorem :*—

ZLet v (x) be a function decreasingt as x incveases from aw to b; and let f(x, t) be a function of x, ¢,
sneh that

(1) The integral I Js flz, t)dz l < K, where £ lies between «, b and K is independent of §
a
and t.

{(2) The limit lim r Sz, t) dz ts independent of § and equal say to L, provided that E de-
t—>»xn Ja
longs to any sub-interval (o', b'), from which a is excluded ; and the convergence to the limit s wni-

form in the sub-interval.

* Cours d’ Analyse, t. 11., 2me éd., 1894, p. 228.

+ By taking the difference of two such functions we pass ut once to Jordan’s fouction 4
variation bornée; and since the operation of subtraction will not affect the final result, there is no
real loss of generality in restricting the function at the start.
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¢

Then lim j v (2) f(z, t) do = Lv (a),
= Ja

where v () denotes the limit of v (2) as & approaches a through larger values.

For, suppose ¢ to be any number greatcr than ¢, then we have, from (3),
J.E o (2) f (%, t)dz < H[v(a)—v(c))+ Hw(c) = (H— H.)[v (a)—v(c)] + He (a),
w

where, for brevity, we suppress the left-hand sides of the inequalities.

Now, in virtue of condition (1), H~ H, < 2K, and choose ¢ 80 a8 to make 21 [v (a)—v(c)}<e,
then, since lim H, = L, we have
t—>w .

lim’ r v (2) f(z, t)de < Lv(a)+e.
t—>»x n

Similarly the other sides of the inequalities give

lim rv (#)f(z, t)dz 2 Lo (a)—e.
t—>»o Ja

Thus lim J.s v (2)f(z, t)dv = Le (a).
t—>»o Ja

Clearly in the foregoing f'(z, ¢) may be complex, since the argument can be applied to the
real and imaginary parts separately. Thus we have, for example,

€ x .
lim tj ¢e-dx = lim (1—e=') =1, andso lim (J e-try(z)da = v(0), (£>0),
t—>n 0 t—>»on t—>»o [V] .

where ¢ is complex and tends to infinity along any path which makes its real part tend to
positive infinity (compare Picard, Traité d' Analyse, t. 11., ler &d., p. 171).

3. Complex Factors.

If the factors v, are complex, we assume (following Dirichlet) that the
series -
? I V™ Vn+1 |

3

is convergent. It follows that the series S (v,—v,41) converges, and
1
therefore v, tends to a definite limit as » tends to infinity. Write then

n = “ 'Un_'Uu+1I + l'vn+l_vn+2| +...to ® : +"lll>]i | v, I ’

and it follows that V= Vas1 = | va—0ni1} -
Hence Vo=V >|va—v,|, i p>n,
and so Vaz|val,

by making p tend to infinity.
It follows from (1) of § 1 that, if o is any number (real or complex)

m—1 =1
<2 W(Vn_ V'n+1)+ = ’lm.(]"-n."' I’sz+l)'+"’l7n. Vp
1 i
=7 (V1 — V)t Vun

sp—0 | as n ranges from 1 to m—1,

. 7)
(4) E Ay Vo — 0'7.71
1

where 7, 7, are the upper limits to
and from m to p respectively.
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Applications.—We can extend the argument of the small type on
p. 59 to this case, provided that Za, is convergent.

For suppose that ) a, = o, and that lim », = 1, so that
0 r—>1

lim (Vo_ V'") = lim : l”o_"’ll + IDI-le +--'+ lvm—]'—vml : =0.
a—>1 *=—>1
Then, if im V us finite, we have
x—>1

o
lim X q,v, = o.
r=>1 0
For we can choose m so as to make 5,V less than ¢, and when m is fixed,
since 7 18 finite, we hav .
7 ’ ®  lim p(V,—Vw) =0;

a—>1

thus we find I | Sav,—a | <e,
~>1

which gives the desired result.

The only fresh condition introduced is that lim ¥, must be finite.
»—>1
l —
Thus, for example, with v, = z*, we find that lim |__1__a;_| must be finite,
—>1 1—| T I

which implies that the path by which z tends to 1 must lie within the
inner loop of a certain limacon.

For. if we write x = 1—peiv,
we find from the condition M-z} < k{l—|z]} (k>1),
the equivalent form plh=1) < 2k (1= cos ¢),

which represents the inner loop of a limagon, with u node at p= 0 (i.c.,, 2 =1). Stolz and

Gmeiner have used the limagon 4p = 2 (1—4 cos ¢), which is similar to the above curve, but of
~maller linear dimensions.

In Pringsheim’s paper* the area used is bounded by a circle und two lines which intersect at
the point z = 1: it will be seen that this area falls within the limagon.

Similarly, if v, = 1" Py (cos 6),
it is proved in my paper just quoted (see § 2, p. 206) that
Vo < o/(1—2rcos 043/ (1—1),

and so the path of approach to the point » =1, 6 = 0 must lie within an
area of the unit-circle which is bounded in the same way as for a power-
series.

¢ Jiinchener Sitzungsberichte, Bd. xxx1., 1901, p. 514. Pringsheim’s figure is given also in
my paper (Fig. 1), on ¢ Series of Zonal Harmonics’’ (Proc. London Math. Soc., Ser. 2, Vol. 4,
1906, p. 204). The limacon used here is drawn on p. 211 of my book on Infinite Sevics..
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On the other hand, when Za, ts divergent, we cannot infer that

o
lim £a,v, = o.
~>1 0
In fact the argument of § 1 obviously depends on the fact that v, is real, and in the simplest
case (v, = 2") Pringsheim has proved that, even when a, is real and positive and Za, diverges,

the limit may depend on the path by which z approaches 1. Pringsheim gives as an example
the series obtained by rearranging in powers of z the series

1) _ 101 1 11
P { =ap) ~ et s G s e
(

If this series is denoted by Za,z", it is clear that «, is positive ; and Zay diverges, because, if z
tends to 1 along the real axis, 1/(1—z)? tends to infinity, so that

lim %4,2" = 0 (0<z<l).
z—>1

Now, since a,, is positive, 2a, must either converge or diverge; and if convergent we shonld
have, by the familiar form of Abel’s theorem,

lim Zau2” = Za, (0<3z<l),
a—>1

but this limit is infinity, so that Za, must diverge.
But yet, if we write 1 —z = pei?, as above (p. 64), we find

|exp { ZI—IT)-} l = exp(-s_;-cos2¢).

~ which tends to zero with p, if cos 2¢ is negative, or if ¢ > }=.

It is perhaps natural to enquire if the inequality (4) cannot be modified
8o a8 to apply to a complex integral; in this case the result 18 obtained
most rapidly by the method of integration by parts. This is permissible
here.because the function v (z) is supposed analytic and v(z) is therefore
differentiable. If we write

g (@)= S S d=,

b v
it follows that J f@v(@)de = g(b)v(b)——J g(e) ' (x) dz,

and so if H is the upper limit of |g(z)| on the path of integration, we have

Sbf(w)v(m)dm’<HV,

i
where V:j |v'@)].|dz|+|o@®)|.
a
This method has been recently used by Mr. Berry* to prove that
Ry
lim j [ ar 0,
B> J-1 £

* Messenger of Mathematics, Vol. xxxvir., 1907, p. 61.

sER. 2. VOL. 6. No. 979. F



66 Mkr. T. J. I’A. Brouwicu [June 18,

when the path of integration is a semicircle joining the points — R, R, and passing through the
upper half of the complex plane.
In fact, if f(z) = ¢* and v (z) = 1/z, we find that

V= (r+1)/R,
and |r fiz) d:l = l l.(e“—e"”) l <2,
R i
because ' les| <1,

: R
so that IJ e""d—zl< 2(’”'1),
-R

z R
which gives the desired result. .
The same method will give (for the same path)

lim r e L@ gy — g,
R—>» J - ()

if P (=) and Q (2) are polynomials in z of which the first is of degree one less than the second.

4. Imequalities corresponding to those of § 1 for Double Sertes.

Suppose that v, . is a real positive sequence which decreases with
respect to both indices, in the sense that

Vm, n— Vm+1,n = 0, Vs, Vm, n+l 2 >0,
Am, n = vm, n_lvm+1 n‘_'UuL n+1+vm+1 n+1 > 0

Then it is known that*

p=-1 g=-1 p—
(5) mz “2 a’m, n 'Um n = ',21 'n§ Am, n sm. n+ -' Alu sm '1+ 2 An s}’ n+sp, U] ’DP 1
where A, = Vm, g~ Vm+1, 0 A, = Vp,n=—Vp,n+1-

Here, using the ordinary geometrical representation, s, , denotes the
sum of all the terms contained within a rectangle whose sides are m and n.
It should, perhaps, be remarked that (5) is an algebraical identity, and
does not depend on the preceding inequalities.

Now suppose that for all values of m and n between 1, p and 1, ¢ re-
spectively, the upper and lower limits of s.,. are H, h; then since Ay, x,
A, Ag, vy, are all positive it follows at once from (5) that

P Q
(6) hvl, 1< 22 Qm, n O, n < H’U], 1)
1 1

which is the immediate extension to double series of the ordinary form of
Abel’s lemma. To see that (6) is correct, we need only note that to put

* Hardy, Proc. London Math. Soc., Ser. 2, Vol. 1, 1903, p. 124 ; from the results given there
it is easy to infer the truth of our inequalities for any number of variables of summation.
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$m,»= H 18 equivalent to writing H in place of a; ; and 0 in place of all
the other a’s.

To obtain the inequality corresponding to (2) of § 1, let us suppose
that H,, h, are the upper and lower limits of s, , when m >v, n>v;
H, I being the upper and lower limits for s, . if either suffix is less
than v. We then obtain

(7) h (vl, l—vv, v)+h'vvy, v < é i a’m, n vm, n < H (vl, l—vv, v) +Hv'vv, v
1

gince, to obtain the right-hand side, we have to write H, for s,, . if
m, n > v, and otherwise H. But this is equivalent to writing a,, = H,
a,,, = H,—H, which gives the right-hand side of (7). Similarly for the
left-hand side.

It is possible to extend (7) to complex factors by a method similar to
that of § 8.

Applications.—The inequality (7) enables us to give o new proof and extension of results
already communicated to the Society.*

Suppose, in fact, that the series 33 @m, » 18 convergent in Pringsheim’s sense and satisfies
0 ¢
the condition of finitude,t then if v, , is a function of 2, ¥ which satisfies the inequalities pre-
scribed at the beginning of this article, and tends to the limit 1 as #, y tend to 1, we have

. ® o
lim 2 S aun Vmyn = 8
x y—>»1 0 0

where # is Pringsheim’s sum of the double series =Zu,,, .
For, in fact, we can find v, so that

s—e< h, < II, € s+e,
and —-C<h, H< C,
by the condition of finitude.
Thus (7) yields}
—C(vo,0—,,,) + (s—€). < % % G, w1 < C(V0,0—0,, ) + {8+ €) v, .

Since g, and v,, , both tend to 1 as z, y tend to 1, we find
—_— ® ®
§—¢€ $ ll_ﬂ z3 Qut, n iy n s s+e.
ry—>i v 0
Since ¢ i8 arbitrarily small, these inequalities can only be true if

. © ®
lim 33 @y, Py n = S
Hy—>»1 0 0

¢ Bromwich and Hardy, Proc. London Math. Soc., Ser. 2, Vol. 2, 1904, p. 161 (see §3,
p- 164) ; the case discussed there is given by writing v, » = #"y* and supposing ZZa,, . con-
vergent.
t So that |s., .| < €, where Cis independent of m, u.
1 The convergence in Pringsheim’s sense of the double series =Xa.u,n vum, follows from
Hardy’s paper quoted on p. 66 above, or can be p:oved by a direcl application of the inequality (6).
F 2
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Pass next to the case of divergence, say to + o0 ; it will de assumed that the divergence is not

due to the presence of any singly divergent row or column. Thus, when v is fixed we can determine a
constant C,, such that
l S, n I <G,

provided that either of 1, n is less than v ; thus, for example, we may have m increasing without
limit, provided that #n < ».
Let » be now found so that
Sun >N, if myn v,
this is possible in view of the divergence of the double series 33a,, . ; thus 4, = N. Also
h ? - cw

and so we have

o M8

% “;u, wm, u > Nv,, e—=C,(v0,0~¢, ).
Thus repeating the former argunment, we find

@™ ™
lim 3 X4y 0tma = &,
z, y—>1 o0

. o @
and so we must have lm = Zap,atmn=o.
ry—>»10 0

5. Inequalities for a Quotient.

We consider the quotient X, = R,/Q,.

. » »
where B, =2bava,  @Qp= Z .
1 1
Yor brevity write A, = a,+a,+...4+au,

B, = b+ by+...+ ..
Then, as in § 1, we find
R, = B, (v;—vp)+ By(va—vg)+ ...+ By-1(vp1—v,) + By vy
Now, suppose that a,, @y, ..., @s, ... are all positive and consider the
sequence of quotients
4 4 ByJAy, ByJdq ..., Byjd,.

Let H, h be the upper and lower limits of the whole™ set of quotients,
while H,, k.. are those for which the suffix is not less than m ; so that

H>H,, and <.
Thus, if the sequence (v,) is positive and decreasing, we find
R, < H[A4,(0,—v)+4yws—v9+ ... + Am1 W1 —0m))
+ Hop[ A @n—041) F A1 @ng1—Vns) F .. FApor @y —0) + 47 0]
Thus R, < H,, @+ (H—H,)(@Qu—Anvn), -

* Note the distinction between this case and that of § 1.
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and since H> Hy, we find (on including the corresponding expression

with &, &),

hm Qp—(h—km) Qm < Rp < Hm, Qp+(H-—H-1)I) Qm'
That is '

® =) &2 < B < ) .
P P »

Again, if the sequence (v,) s positive and increasing, we find that
Rp < h [-A i ('01_ 02) +A2 (1)2_'03) + “ee +Am—l ('vm-l ‘—'L’m)]
4R [Am @i Vns1)F Amr1 Oas1— Vs + ...+ Ap—l (‘vp—l - vp]
+ H'm Ap Upr

because here all the differences are negative, but v, is still positive.
Hence, as before, we get

.Rp < hm Q7)+ (Hm,— Tow) f-lp 'Up+ (hm —h) (Amvu— Qm) )

and since hn,—h and Q. are positive, we may omit the last term in the
last bracket. Thus, summing up, we find

Hm'—(Hm_ h’m) M —(H'— Hm) M < & )
(9) : Ql’ er QP
L]jﬂ < ot (Hu— ) 4y + (w—") il‘ 2 D .
» Ql’ Q?'

Finally, if the sequence (v,) first increases to a mazimum v, and after-
wards steadily decreases, there is no difficulty in modifying the foregoing
work to prove that, if m < u,

{h'""— (H—H,) Ay Un - (Hm_'h'm) A_“v“ < _Rig

(10) . R Q}’ l Q‘l" . QP
' e < Hm+ ]m—]):L,Dm + Hm.—]’m) ,L’D,,.
2 =B =g, T @

‘We note that the method of § 2 can be at once applied to deduce in-
equalities for the quotient of two integrals from (8)-(10). Thus, if f(r)
is a positive function from a to b and v(z) decreases in the same interval,
we can obtain limits for the quotient

b b
S g (@) o) cl.v/j f@ v (@)dzx

¢ ¢
in terms of those of 5 g(z) dz / S (@) dx.



70 Me. T. J. I’A. Brouwice [June 18,

I do not stay to write these-out, as the reader should have no difficulty
in recognizing the necessary changes in (8)—(10) ; and up to the present I
have not made any practical use of these inequalities.

Applications.—Comparison Theorem for Divergent Sertes.

Suppose that Za, is a divergent series of positive terms, and that
(v,) 18 & decreasing sequence of functions of z, such that

lim v, = 1.
a—>1
Then, if lim (B,/4.) =1,
n—>un
we have also lim (§ bu v / § a,,v,b) =1
1 \o 0

For then we can choose m so that

l—t‘ < hm < Hm < l+€,
and then (8) gives

Qm Qm
e—{h +)Qp<Qp<++( G)Q,,

If 2 anv, is divergent, @, will tend to infinity with p, and theun the in-
0
equality becomes R,

l—e <L lim =2 < e
,JELQ,,

and since these limits are independent of m, we must have

p Il
lim (2 b.v, lZam'v,.) =],
0 0

pr—>o

® : P
so that 2 b,v, is also divergent, and the quotient of Z b,v, by ian Un
0 0 0

tends to the limit L
On the other hand, if (as happens in the most interesting special

cases) 2 a,v; converges, it follows from § 1 that
0

lim (2 a,.v,.) =,
0

—>1

g0 that lim 2 AnVp / > a,gu,, =

—>1
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If we apply thia result to the inequality for R,/Q,, first allowing p to tend
to infinity, we find that

I—e<Tm (2 b,,vn/z auvn) < L4,
0 0

=1

or lim <E Oy Un / z a,,.v,.) =1
0 0

a—>1

This is an extension of the well known result, due to Cesaro, that

lim (E bnz" / % a,,a:”) =1,
—>»1 \0 0

when b,, a, are related as already specified.
As another simple example, we take

. w zn -4 zll,
i (300 5/ o ) =

Another simple application is to establish a result given recently by Mr. Hardy,* In fact,

if we write
by = anon, Yn = CufGn,

and suppose that %a,., :20,. are both divergent, we find
Ry = cyop +¢10,+ ...+ Cpoy,
Q= ¢ + ¢ +...+¢,,
B, = awq+ a0+ ...+ ap0y.
Suppose that B,/ 4, has a definite limit / as p tends to infinity, then we can choose m so that
l-e< by <H, L lte

Thus, if ¢a/an i3 @ decreasing sequence, we have, from (8),

l—s—(/t—l+e)%ﬂ <?Q?L' < et (Hl—e) g_
{4 P P

Thus, since Q, tends to infinity with p, we find as in the last piece of work, that

lim (R,/Qy) = .

p—>o
This result is due to Cesaro;+ but Hardy has succeeded in extending it. to the case when c,fa,, is
an increasing sequence subject to the condition

(ag+ a4 ... +ap)fay, < K{cog+ey+...+¢p)fep
Sor all values of p.
For the last condition gives A0, < KQ,,

and so the inequality (9) leads to

I~@E—1)e=(H-l—) 22 ¢ Bo o 1 QR 1) 4 (tmlime) L,
Q, Q 14
from which we get as before lim (R,(Q,) =1
p—>n )

* Quarterly Journal, Vol. xxxvir., 1907, p. 269.
Y Bulletin des Sciences mathématiques, (2), ¥. xmx., 1889, p. 51.
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6. Eztension of § 5 to the Case of Complex Factors.

If the factors », are complex we suppose, as in § 8, that the series
21 l Up— Ungt1 I

i8 convergent, and we write again
Vo = {|va—vni1|+| vas1—0nsa| +... to @ | + lim |o,].

We suppose that the terms a, which appear in the denominator @), are all
real and positive, though the terms &, may be complex ; then write 5 for
the upper limit to the differences

| ByJd,—o |, |Byds—ca|, ..., |Bpld,—a],
and nm for the upper limit when the sufiixes are not less than m.
We get at once, since Vy— Vi = |vu—0us1|, Va|va]| (see p. 68),
| By—0 Q| < n[d,(Vi—V+A4,(Vo—Vo+ ...+ A1 (Vs — Va) ]

+’lm [Am(Vm_ an+])+ eee +A,u—1 (Vll—l_ Vﬂ) +APVP] .
Now, let us write

M, =a,Vi+aVo+...4a,V,
= A1(V1— Vz) +A2(V2—' Vs)"’l’ voet Ay (Vuca— Vi) + A0V,

and then |Rp—a'Qp| < 9 My (Mp— M),
Thus
'll
a1 |<m ) (M
) o 7 IQ,,I'H" M) o

Application.—The Theorem of Comparison for Complex Divergent
Serzes.

The direct application of (11) is not so easy as that of (8), owing to the
fact (already mentioned on p. 65) that we cannot infer the divergence of

lim X @, v, from that of £a,. To avoid this difficulty we introduce the
0 0
idea of uniform divergence, as suggested by Pringsheim ; this implies that

for all points z under consideration

hm-(Zan /‘Za,.'v,.j<11

|

where K is fixed.
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Making this hypothesis, it follows that

lim E An Uy , =

w ’
—>1 i
: (-]
because ' im 2 a,V,= o,
—>1 0
in virtue of § 1.

Then (11) yields at once

[{Ebeva) [ (B anon) = H<E {ruto— w(Ear)(Ear))

A
and by the usual argument this can be proved to tend to zero as «x
approaches 1, provided that », tends to zero as m tends to infinity. Thus

s (5 )/ o)

This result includes Pringsheim’s for the case of power series, and also the result proved in
4 6 of my paper on ‘¢ Zonal Harmonics

= lim (B./4.)

n—>w

,”” quoted above.
Thus for power series v, = 2", and

lzi* [1=2|/{1~|=| }
8o that the above test for uniform divergence gives

lim [1=2! ezl

< K,
—>1 l_l"'l ‘2“11"'"| ’
which in Pringsheim’s treatment is divided into two separate conditions

U=zl g Eawlzl?
1-|z] [ Zanz”|
Similarly for zonal harmonics, we get

¥n = 1P, (cos6) and V¥, = p"[{1-)),
where

pt = 1—2rcos +122

sae a0
Then the condition becomes = lim —*

< K,
1—1 | S d, (cus 8} |
which was also split up into two separate conditions in my paper (see pp. 205, 213)

7. Extension of § 5 to Quotients of Double Series.
Let us consider the quotient

Rpx (I/ QZ’; q»
pd q
where @y, = mzl n§ Qin, 0 Om, n s
U
R, , )

E bm, n Om, 0
m=1 n=1

78
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and a,, , is positive, while v,, , is positive and decreasing with respect to
both indices (in the sense defined at the beginning of § 4).

We shall now use the notation 4,, , and B, , to denote the sums to
m, n terms X2 ay, » and 2Zb,, ,; so that 4, . is what was denoted by
smnin § 4. Then Hardy’s equation [see (5), § 4] gives

=1 ¢=1

Rp,q =23 2 Am an, n+ Am m,q+ 2 A‘ﬂ D “+BP,'1'DP:

m=1 n=1

Suppose that H, /. are the upper and lower limits of B, n/4u . for all
values of m, n» between 1, p and 1, ¢ respectively, while H,, %, are those
when both m, n are greater than ». Then we see that R, , will be in-
creased by writing HA,, . or H, A4, , in place of B, »; thus we find

'RP, Ui < HQP, qa (H_ V) (Qp, q+ Qv, v_-Qp, V—Qv, q)y
or RP. 1 < Hu Qp. q+(H—Hv) (Qp, v+ Qv, - Qu, v)-

Now H—H, is positive and 8o is @), ,; thus @, , may be omitted from the
last inequality, and we find (on including the corresponding lower limit)

12 h—(h—h Wl < By, < H,+(H—H,) Qbﬁ'_Q_v,q,
D q naq Y

which is the extension of (8) given above. The inequalities corresponding
to (9) and (10) are necessarily more complicated; and at present I do
not see that they are likely to prove of much use in practical applications.
I do not, therefore, write them out here.

Application.—The Theorem of Comparison of Two Divergent Double
Sertes.

It is evident that (with the same interpretation of v,, . as we have used
in § 4) we can infer from (12) the theorem

& } . .
lim - (2 2 bm. a O, n) /(2' 2 Wy, v, Oy, n) - = lim (-Bm, n/Am, )
= v 00 ) (m, n)

provided that for any given value of v,

. et v o » -]
lim { ( z 2 Am, n U, n) / (2 > @y, 0. O, f,,,) ) = 0’
(@,9) m=0 n=0 0 0

and lim { ( 53 § A, 1 O, n) / (% % @, n Vn, ,,)} =0.

(z, ¥ m=0 n=0

There does not seem to be any way of avoiding these two conditions, nor
any way of dividing them into simpler forms in general.
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Consider now the specially interesting case v,,, = z™y", and suppose
further that the coefficients a., . are also divisible into factors; so that
O, n =fmgn;
where Zfn., ¢, are two divergent series of positive terms. Then

E 2 am " x'myn —_— <Efmxm) (zgnyw) ,
00 0 0

and E Za‘, A, 0 T"Y" = (% fm:c’") (% gny">,

m=0 n=0

so that our first condition reduces to

tim (2g.57) [ (2 gu) =
1 \o [}
which is certainly satisfied since

lim ( Jn y") =
: y—>1

(a vesult proved in § 1).

Similarly the second condition is satisfied.

Thus, if we write

Fm =f0+f1++fnn Gu = go+g1+...+gn,

we find lim f(E 2 by, nx™ J") / <% f,,,x’") (% gn y’") ] = lim (Bm ol Fu GP).

(€N} (m, n)
This enables us to give an immediate proof of the extension of Frobenius’s
theorem to double series,* by writing

f'"b =1, gn_——]--

Then 2 faa" = (1—2)7", 2 nuy" =Q1—y,
0
and so, if bm, n = Sm,n — 2z Ci,j,
i=0 j=0
we have 2 2 bm, n men - (1_37)_1(1‘?/)_1 2 2 Cn, nzmyn ’
00 0 o0

a.nd then hm (2 z Cm,n -'Emy") = lim ssyl;)ni

@, ) (m, n)
if M+ D41 O, = T 3 s, .,

i=0 j=0

using the notation of the paper quoted.

¢ Bromwich and Hardy, Proc. London Math. Soc., Ser. 2, Vol. 2, p. 161 (see § 8, p. 173).
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Similarly we can extend the theorem to cases of greater complexity by
writing . ®
' Sfaz" =U—2)"% Zg.y"=Q0—y)
0 0

where a, 3 are positive integers ; this gives a kind of extension of Holder’s
theorem, although the means employed will correspond to those used for
the summation of single series by Cesaro, rather than those introduced by .
Holder.* Thus, taking a = 2 =3, we get
m n

- @2 Z T G+DG+Ds:,
lim (ZZ Cm, n Z"Y™) = lim i=24=0 .
@9 \0 0 m,ny (m+1)(m=4-2)(n+1)(n+2)
The analogue to Holder’s theorem would have on the right the limit

@

hm sm., ny
(m, n)

n n
where m+1)n+1)sP, = T T s¥,

m, n .
i=0 j=0

the sums s{), being themselves defined by arithmetic means.

* Cowmpare the form of the theorem given in Art. 123 of my book on Jnfinite Sevies.



