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VARIOUS EXTENSIONS OF ABEL'S LEMMA

By T. J. I'A. BROMWICH.

[Received June 5th, 1907.—Read June 13th, 1907.]

THE following paper contains a collection of various inequalities which
are all, in a certain sense, extensions of Abel's lemma, that if the sequence
of factors (vn) is real, positive and decreasing, then

i

where H, h are the upper and lower limits of

a1+a2+...+an,
as n varies from 1 to p.

These results do not seem to have been published in a general form
hitherto, although no doubt special cases have been used by many authors.
A systematic use of them has enabled me to shorten the proofs of a
number of known theorems on limits, and to obtain various extensions of
such theorems. Some of these applications are given in connexion with
each of the inequalities obtained below; of these the only actual novelties
appear to be the theorems on divergent series given in §§ 1 and 4—7, and
some of the results on double series in §5.

1. Real, Decreasing Positive Factors.

Suppose that the sequence (vtl) consists of positive terms only, and
never increases, then by the familiar transformation (due to Abel) we have

v
(1) 2 anvn = Sj (vj—v2) +s2(vo—u3) + . . . +Sj,_i (vp-i—vp) +spvp,

i

where s,,. = a1-\-a2-\-...-\-an.

Let in be any index less than p and take H, h to denote the upper and
lower limits of sv s2> •••> s»i-i> while Hm, hm denote those of sm, sm+i, ..., sp.

Then the sum on the right of (1) is increased if we put H in place of
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*i> S2> •••! sm-i> a n d Sm in place of sm sw+1, . . . , .?,„ because all the factors
vx —-y2, v2—v3, . . . , Vp_!—vp, vp are positive. Thus

i>

2 anvn < H [(«!—u2) + (t>2—fla) "K • • + («».i—r J ]

p
or 2 a n u n < f i (vx —»J +Hm vm.

I

By a similar argument with regard to h, hm, we establish the complete
inequality

• / -

(2) h («j—vm) -K^»m < 2 a(l urt < i f (yx —y j + i f M l v u l ,
i

which is £/&e extended form, of Abel's inequality* We get back to Abel's

result by taking m = 1.

Applications.—The inequality (2) leads at once to the cases of chief practical interest of
the generalized form of Abel's theorem given by Mr. Hardy.f Suppose, in fact, that the factor
r,, is a function of a variable *, and that vn (x) tends to the limit 1 as x tends to 1, while
tfo ^ *i ^ V2 ̂  •••> f° r values of a; less than 1.

Then, if 2«B converges to a sum s, we can choose »« so that //.,„, !£„, lie between s —«, * + €,
however small e may be, and however great p may be. Thus (2) leads to

h(vo-vm) + (s—e) v,n < 2 auvH < H{i>Q—vm) + (s + e) f,,,.

Now, as x tends to 1, the right and left sides of the last inequality tend respectively to (s—e) and
(•* + e), since v0 and v,n both tend to 1. We have therefore

s— e ^ limSflut?,, ^ l im Sff^t',, ^ n + e.

Since e is arbitrarily small, these inequalities cannot be true unless

lim 2 a,,vH = s.
.r—>i o

But when Son « divergent, m can be found so that A,,, > JV, however great iV is ; and. so

2 ctnV.t ^ h (%—vm)
o

Repeating the foregoing argument we see that

lim 2«,1t»

Hence lim 2 »„!<'„ = co ,

a result which appears to be novel, although an immediate extension of one due to Abel. As a
simple example we note that

2 _ir 5 _L
1 + a;"' « 1 + a;"'

• If 2a,,t>» is separated into two parts, from 1 to m — 1, and from m to /?, Abel's inequality
can be applied to each part; but the limits obtained are not so close as in (2).

+ Proc. London Math. Soc, Ser. 2, Vol. 4, 1906, p. 249 (especially §3).
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tend to infinity as .«,• tends to 1. Of course this conclusion is verified at once by the obvious
inequalities „.,, 1

The inequality (2) cau also be used to establish the comparison theorems for divergent series to
which we shall be led later (see § 6).

There is an inequality corresponding to (2) in the case of increasing
factors, but this seems to be of less practical importance ; we record the
result without proof beyond the remark that the factors vx—v2, v2—vn,
..., vp-i — vv are negative in (1). We then find

Hvl—{H—Hm) vM— {Hm—hm) vp < 2 anvn
l

< hi\-}-{hm—h)vm-\-{H:m—hm) vp.

In particular, with hm = h and Hm = H,

we find Hvx —(H— h) vp < 2 an v» < hvx+{H— h) vp.
i

2. Inequalities for Integrals corresponding to § 1.

The analogy between Abel's inequality and the so-called second theorem
of the mean at once suggests the following theorem:—

If the function v (x) never increases loith x, but is ahoays positive in
an interval {a, b), then

(3) h[v(a)-v(c)] +hcv (c) < ?v (x)f(x) dx ^H[v(a)
Ju

where H, h .ire the upper and loioer limits of the integral

f(x) dx

as £ ranges from a to c, while Hc, hc are those found as f- ranges from
c to b. Here v(a) and v (c) are used to denote the limits v{a-\-0) and
v{c—0) respectively.

If the function v{x) is supposed differentiate the inequality (3) is most
easily proved by integration by parts (compare p. 65 below); but, in the
general case, the inequality can be obtained by a simple modification of
Pringsheim's proof* for the case c = b.

Let the interval (a, b) be divided into n sub-intervals by inserting

* Miinchener Sitzungsberxchte, Bd. xxx., 1900, p. 209.
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points xlt x2, ..., #71-1, and let x0 = a, xn = b ; write further vr = v {xr),
or if v (x) is discontinuous at xr, we take vr as the limit* of v (x) as x
approaches xr from smaller values of x.

Then, if ,7 = [ v(x)f(x)dx, Jr = f'+' v(x)f(x)dx,
Ja ' Jxr

and Jfr = 1 f(x) dx,

7 1 - 1

we find / = 2 Jr,

and /,.—/yr+1iiT, £/• + !

In the last integral the bracket is positive and less than vr—vr+i, i
virtue of the decreasing property of v (x) ; thus

f'+1

,- —«r+l) |/(«
Jxr

Consequently if fx is the maximum value of

\"l\f(x)\dx
J/,.

for all the sub-intervals, we find

| Jr — Vr + \KT | < fJ.(vr

Hence J—
71-1

V ...

r = U
<

Now, if we take xm to coincide with c, we see from the inequality (2)
of § 1 that

M vr+1Kr < H\y{xl)—o (t:
r=0

because Zo+Kx + . . . + Jir-1 = / 0*0 ^ •

Consequently we have

h \v(xj -v(c)] + hcv (C)—/ULV (a)<J<H [v (xj—v (c)~\ + Hnv (c) +pv (a).

* That this limit exists follows from the monotoiiic property of v (x).
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Now, let all the sub-intervals tend uniformly to zero, then /UL also t9nds to
zero, provided that the integral

f \f(x)\dx

is convergent; and v(x^ tends to the limit ^(^+0), or v(a) in our present
notation. Then, since <7 is independent of the mode of choosing the sub-
intervals, we find

h [v(a)-v (c)]+ hcv (c) < J < H[v (a)-v (c)]+Hcv (c).

Pringsheim ha* shewn, however, that the absolute convergence of f(x) dx is superfluous;
J a

and that the convergence of this integral together with that of I v(x)f(x)dx will suffice to
establish the result. •'"

In fact, under these conditions, we can find a Jinite number (p) of intervals enclosing all the
discontinuities of f(x), and such that | Z, | < e and \]/s\ < ?, where Lt, L', denote the
integrals of f(x) and of f(x) v (x) respectively taken over the s-th of these intervals.

For any part of the range {a, b) outside these p intervals we can argue as above, and deduce
that the corresponding contribution to (/— 2f, + i A'r) is less than /xffl, where n can be made as
small as we please. But for these special intervals, the difference is numerically less thau

] 2ts + iZ | + | 2Z,J I < pe + 1 -Zr0Ls J < pe (1 +«•„),

and so we arrive finally at the same inequality as before.

Applications.—The arguments of § 1 need no further alteration in order to establish such
theorems as the following :—

If v (a-, t) is a decreasing function of x (t > 0) which tends to the limit I, as t tends to 0, then

lim f v {x, t) f(x) dx = f /(*) dx',
t—>0ja , hi

if the latter is convergent. Also lim v (x, t)f(x)dx = oc ,

if I y(a;) <te diverges to infinity.

As another application, we consider Jordan's theorem :*—

Let v(x) be a function decreasing^ as x increases from a to b ; and lot f(x, t) be a function of .v, t,
such that

(1) The integral f(x, t) dx < K, where £ lies between a, b and K is independent of {

and t.

(2) The limit lim f f [x, t) dx is independent of { and equal say to L, provided that £ be-
t—>x Ja

longs to any sub-interval (a1, b'), from which a is excluded ; and the convergence to the limit is uni-
form in the sub-interval.

* Cours d1Analyse, t. u., 2ine ed., 1894, p. 228.
t By taking the difference of two such functions we pass at once to Jordan's fonction a

variation bornee; and since the operation of subtraction will not affect the final result, there is no
real loss of generality in restricting the function at the start.
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Then lim P v (x)f[x, t) dx = Lv (a),

t—>» Jd

where v{a) denotes the limit ofv[z) as x approaches a through larger values.

For, suppose c to be any number greater than «, then we have, from (3),
v (*)/ (*; t)dx ^H [»(a) -v (c)} + Hcv (c) = (H- Ee) [v (a) -v (c)] + Hcv (a),

where, for brevity, we suppress the left-hand sides of the inequalities.
Now, in virtue of condition (1), R-Hc < 2K, and choose c so as to make 2E\y{a)—v[c)~]< e,

then, since lim He = Z, we have

liin v (x)f(x, t) dx < Lv (a) + e.
t—>* in

Similarly the other sides of the inequalities give

lim f v {x)f(x, t)dx ^ Lv(a)-e.

Thus lim f* v (x)f(x, t) dx = Lv («).
t—>» in

Clearly in the foregoing f(x, t) may be complex, since the argument can be applied to the
real and imaginary parts separately. Thus we have, for example,

n ,-f
lim t\ e-txdx= lim (1 -«-'«) = 1, and so lim t\ e-" v (x)dx = v(0), (f>0),

t—>x> Jo t—>x> t—>» Jo
where t is complex and tends to infinity along any path which makes its real part tend to
positive infinity (compare Picard, Traite d'Analyse, t. II., ler ed., p. 171).

3. Complex Factors.

If the factors vn are complex, Ave assume (following Dirichlet) that the

series OT

2 \vn—v)l+l\
i

y.

is convergent. It follows that the series 2 (vllf—vn+i) converges, and
i

therefore vn tends to a definite limit as n tends to infinity. Write then

Vn= {\vn—vll+1\ + \vn+1—vn+2\ + . . . t o oo J + U m \vv\,

and it follows that Vv — Vn+\ = | vn—vn-r\\ •

Hence Vn— Vp > | vlh—vp \, if p > n,

and so Vn > | vlt \,

by making p tend to infinity.

It follows from (1) of § 1 that, if a- is any number (real or complex)

(4)
p

I
anvn—crv1

m—1

1
r,(Vn-Vn+1)+ 2 >im(Vn-

m Vul,

where y, rjm are the upper limits to \sn—cr \ as n ranges from 1 to m— 1,

and from m to p respectively.
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Applications.—We can extend the argument of the small type on
p. 59 to this case, -provided that 2an is convergent.

CO

For suppose that 2 an = a; and that lim vn = 1, so that
0 .r—>1

lini (F0-Fm) =lim -; l ^ -^ i l + K - ^ l +•••+ \vm-x-vm\ \ = 0 .
>1 >1v->1

Then, if lim Fo is finite, we have
*•->i

CO

lim 2 anvn = <r.
.r—>1 0

For we can choose wi so as to make rjmV1 less than e, and when m is fixed,
since n is finite, we have H m V{VQ_ Vm) = 0 .

x—>\

thus we find lim | ^anvn—a- | < e,

which gives the desired result.

The only fresh condition introduced is that lim Fo must be finite.
j—»1

j \ X I
Thus, for example, with vn = x'\ we find that lim - — j — must be finite,

1 — | a; |which implies that the path by which x tends to 1 must lie within the
inner loop of a certain limacon.

For . if we wr i te ;v = 1 — pe'V,

we find from the condition | 1 —a; | ^ k { l — | x\} (h>\),

the equivalent form p (k- - 1) ^. 2fc {I — k co* <p),

which represents the inner loop of a liinacon, with a node at p =• 0 (i.e., x = 1). Stolz and
Grmeiner have used the limacon kp = 2 (1 — &costf>), which is similar to the above curve, but of
smaller linear dimensions.

In Pringsheim'fi paper* the area used is bounded by a circle und two lines which intersect at
the point x = 1 : it will be seen that this area falls within the limacon.

Similarly, if vn = r'\P»(cos 0),

it is proved in my paper just quoted (see § 2, p. 206) that

Fo < V(l~2rcos O+ftKl — r),

and so the path of approach to the point r = 1, 0 = 0 must lie within an
area of the unit-circle which is bounded in the same way as for a power-
series.

* Miinehener Sitzungsberichte, Bd. xxxi., 1901, p. 514. Pringsheim's figure irf given also in
my paper (Fig. 1), on " Series of Zonal Harmonics" (Proc. London Math. Soc, Ser. 2, Vol. 4,
1006, p. 204). The limacon used here is drawn on p. 211 of my book on Infinite Series..
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On the other hand, when 2an is divergent, we cannot infer that

lim 2anvn = oo .
0

In fact the argument of § 1 obviously depends on the fact that vn is real, and in the simplest
case («„ = xn) Pringsheim has proved that, even when an is real and positive and 2afl diverges,
the limit may depend on the path by which x approaches 1. Pringsheim gives as an example
the series obtained by rearranging in powers of x the series

i + + _ 2 _ + _ J L _ + .
(I-*)* 2! (1-z)4 3!( l -a , f '

If this series is denoted by 2«,,a;", it is clear that an is positive ; and 2«n diverges, because, if r
tends to 1 along the real axis, 1/(1 —a:)2 tends to infinity, so that

lim 2«)i#" = eo (0 < x < 1).
X—>1

Now, since an is positive, 2a,, must either converge or diverge ; and if convergent we should
have, by the familiar form of Abel's theorem,

lim 2«t»£" = 2«,, (0 <#<!),
r—>1

but this limit is infinity, so that %an must diverge.
But yet, if we write 1 —x = pe'*, as above (p. 64), we find

which tends to zero with p, if cos 2<̂> is negative, or if <p > £TT.

It is perhaps natural to enquire if the inequality (4) cannot be modified
so as to apply to a complex integral; in this case the result is obtained
most rapidly by the method of integration by parts. This is permissible
herebecause the function v{x) is supposed analytic and v(x) is therefore
differentiate. If we write

g (s) = fix) dx,
Ja

it follows that [ f{x)v(x)dx = g{b)v(b)—\ g<,c) v'{x) dx,
Ja Ja

and so if H is the upper limit of | g (x) \ on the path of integration, we have

II f{x) v {x) dx <HV,

where V= ['' | v'(x) \.\dx\ + \v(b) \.
Ja

This method has been recently used by Mr.' Berry* to prove that

lim \ " " - = 0,

* Messenger of Mathematics, Vol. xxxvn., 1907, p. 01.

SKK. 2 . VOL. 6 . HO. 9 7 9 .
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when the path of integration is a semicircle joining the points —R,li, and passing through the
upper half of the complex plane.

In fact, if f(z) = eix and v (x) = l/x, we find that

V=(ir+1)/B,

and f(x)dx
I JR

because \eiz\ ^ 1,

so that I [R e>* — .
\ i-R x li

which gives the desired result..
The same method will give (for the same path)

lim

2,

im f* e"
Q(x)

if JP(x) and Q (*) are polynomials in a; of which the first is of degree one less than the second.

4. Inequalities corresponding to those of § 1 for Double Series.

Suppose that vm> „ is a real positive sequence which decreases with
respect to both indices, in the sense that

&m, n ~~ ^ w , n ^ m + 1 , 7 1 V-IJI, u + l l " ^ ' i i i + 1 , n+1 ^ " •

Then it is known that*

p q p - l 5 -1 J J - 1 g - 1

(5) 2 tamnvm rt = 2 2 Awnsnl.u+ 2 A,Hsw f |+ 2 AnsPin+sPillvPtll,
•m=l n = l w = l ? i = l ' ' m = l Ji=l

where A w = vm>q—vm+hq, A« = «P,»—vPi.n+i.

Here, using the ordinary geometrical representation, sm> n denotes the
sum of all the terms contained within a rectangle whose sides are m and n.
It should, perhaps, be remarked that (5) is an algebraical identity, and
does not depend on the preceding inequalities.

Now suppose that for all values of on and n between 1, p and 1, q re-
spectively, the upper and lower limits of sm>n are H, h; then since A,n<n,
AOT, Aw, vp>q are all positive it follows at once from (5) that

v 5
(6) hvh i < 2 2 am< n vm,« < Hvi, x,

which is the immediate extension to double series of the ordinary form of
Abel's lemma. To see that (6) is correct, we need only note that to put

* Hardy, Proe. London Math. Soc, Ser. 2, Vol. 1, 1903, p. 124 ; from the results given there
it is easy to infer the truth of our inequalities for any number of variables of summation.
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Sm, n = H is equivalent to writing H in place of alt i and 0 in place of all
the other a's.

To obtain the inequality corresponding to (2) of § 1, let us suppose
that Hvy hv are the upper and lower limits of sm, n when m ^ v, n ^ v ;
B", h being the upper and lower limits for sW)W if either suffix is less
than v. We then obtain

p '/

(7) h{vltr— vv>,HU,,<n am,nvm,n<H(vh\—vv<„)-\-RvvVtv,
i i

since, to obtain the right-hand side, we have to write Hv for sm>n if
m, n^ v, and otherwise H. But this is equivalent to writing ah i = H,
aV)V-= Hv—H, which gives the right-hand side of (7). Similarly for the
left-hand side.

It is possible to extend (7) to complex factors by a method similar to
that of § 3.

Applications.—The inequality (7) enables us to give a new proof and extension of results
already communicated to the Society.*

CO CD

Suppose, in fact, that the series 2 2 «,„ „ is convergent in Pringsheim's sense and tiatisfies
0 0

the condition of finitude,t then if vm< „ is a function of z, y which satisfies the inequalities pre-
scribed at the beginning of this article, and tends to the limit 1 as x, y tend to 1, we have

lim 2 2 «,„,,, vm> H = s,
() 0

where a is Pringsheim's sum of the double series 22a,„,,».
For, in fact, we can find v, so that

s— e ^ hv < IIV ^ s + t,

and —C < h, H < C,

by the condition of finitude.

Thus (7) yields^

— 0 (v0, o—Vv, „) + (*— «) *-V „ < I 2 «,„,»«'„,. n < V (vo, o—«„, „) + (« + e) vBj B.
u o

Since vo, o and vw, „ both tend to 1 as x, y tend to 1, we find

«—e ^ lim 2 2 a,,, „*'„, „ < s + e.

Since € is arbitrarily small, these inequalities can only be true if

lim 2 2 a,,,, „«,„,„ = s.
J-, y—>1 0 0

• Bromwich and Hardy, Froc. London Math. Soc, Ser. 2, Vol. 2, 1904, p . 161 (see §3,
p. 164) ; the case discussed there is given by writing «,„,» = x"'yH and supposing 22am>), con-
vergent.

t So that | s,,(> „ | < C, where C is independent of m, v.

% The convergence in Pringsheim's sense of the double series 22«,,i, n vm< „ follows from
Hardy's paper quoted on p. 66 above, or can be p:oved by a direct application of the inequality (6).

P 2
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Pass next to the case of divergence, say to +00; it will be assumed that the divergence is not
due to the presence of any singly divergent row or column. Thus, when v is fixed we can determine a
constant Cv, such that

pi-ovided that either of m, n is less than v ; thus, for example, we may have m increasing without
limit, provided that n < v.

Let v be now found so that

SHI, n > -^j i f W, tl ^ V ',

this is possible in view of the divergence of the double series 22fl«i,..; thus hv ̂  JV. Also-

A ^ - Cv,

aud so we have 2 2 am uvm u > Nvu , — Cvlvo o~v», J).
00

Thus repeating the former argument, we find

lim 2 2 cm, „»„,,,, ^ 2Vr,
0 0

and so we must have lim 2 2 <*,„,,»vm< „
x, u—*\ 0 0

5. Inequalities for a Quotient.

We consider tke quotient Xp = JRP/QP:
P v

where Bp = 2 bnvn, Qp = 2 aHvlt.

For brevity write An = a!

Then, as in § 1, we find

Now, suppose that alf a2, -•-, ««, ... are all positive and consider the
sequence of quotients

Let if, A be the upper and lower limits of the whole* set of quotients,
while Hm, h,n are those for which the sufl&x is not less than m; so that

H ^ Hm, and h ̂  hm.

Thus, ^/ ̂ Ae sequence (vn) is positive and decreasing, we find

Bp < RlA^—«a)+iia(®a—'OB) + ---+^»-I(«III-I—««)]

+flTO[^TO(vm—ym+i)+^m+i (««+i—v«+a) + • • • 4-^p-i (^p-i—vp)+AI> vp].

Thus J2P < HmQp+(H-HJ{Qn-AmvJ,

* Note the distinction between this case and that of $ 1.
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and since J3"> Hm we find (on including the corresponding expression
with h, hm),

hmQp-(h-hm) Qm < Rp < HmQp+(H-HJ Qm.
That is

<8) hm-(h-hw) ^ < ^ < Hm+(H-Hm) % .

Again, if the sequence (yn) is positive and increasing, we find that

Bv < h [Ax {vx—y2) +A2(v.2—y3) + . . . -\-Am-x (ym_!—vj]

-\-hm[Am {vm— vm+i)+Am+i{v.M+l—vm+2) + ... -\-Ap_i (yj,_i — u j

because here all the differences are negative, but vp is still positive.
Hence, aa before, we get

BP< hmQp+(Hm—hm) ArVj,-\-(hm — h)(Amvm—QJ ;

and since hm—h and Qm are positive, we may omit the last term in the

last bracket. Thus, summing up, we find

±Zm—(ilTO— /i,J ' * —(i l — /l,») — T — < - ^ ,

-**j) 7

Finally, */ ifee sequence (vn) first increases to a maximum v^ and after-
wards steadily decreases, there is no difficulty in modifying the foregoing
work to prove that, if m < fi,

nm~ {11 — i l , J —yr (lira—/Im) —£• < 7 ^ ,

V/> V/- VJJ

i - " n ^ i r 1 / 7 , 7 , \ '**• -lit"^w

I ^ < li+Klt n)

We note that the method of § 2 can be at once applied to deduce in-
equalities for the quotient of two integrals from (8)-(10). Thus, if f (x)
is a positive function from a to 5 and v(x) decreases in the same interval,
we can obtain limits for the quotient

I g (x) v (x) dxl \ f (x) v (x) dx
Ja I J«

in terms of those of g (x) dx \ f(x) dx.
Ja I Ja
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I do not stay to write these-out, as the reader should have no difl&culty
in recognizing the necessary changes in (8)-(10); and up to the present I
have not mada any practical use of these inequalities.

Applications.?—Comparison Theorem for Divergent Series.

Suppose that 2a« is a divergent series of positive terms, and that
(vn) is a decreasing sequence of functions of x, such that

lim vn — 1.

Then, if lim {BnIAn) = I,
n—>v>
/co / c o \

we have also lim (2 bnvtl / 2 a^vA = I.
ar-M \0 / 0 '

For then we can choose ??i so that

I—e < htli < HM < l+e,
and then (8) gives

09

If 2 anvn is divergent, Qv will tend to infinity with p, and then the in-
o

equality becomes jj^
I—e ^ lim yf- ^ l-\-e,

and since these limits are independent of m, we must have

lim li^JIa^J =1,
jr^oo \0 / 0 /

0 0 P P

so that S bnvn is also divergent, and the quotient of 2bnvn by Y.anvn
0 0 0

tends to the limit I.
On the other hand, if (as happens in the most interesting special

00

cases) 2 anvn converges, it follows from § 1 that
o

lim ( 2 anvn) = <x>,

so that lim (2 Mn/2fl^J = 0.
x—>1 \ 0 / 0 /
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If we apply this result to the inequality for BPIQP, first allowing p to tend
to infinity, we find that

I—e < lim (2 &M«»/2 anvn) <
.i— l̂ \0 / 0 /

lim (2 bnvn/2.anvn) = Z.
x—>i \ 0 / 0 /

or

This is an extension of the well known result, due to Cesaro, that

lim (5 bnx
n/i:anx

n) —I,
ar->l \0 / 0 /

when bn, an are related as already specified.
As another simple example, we take

( oo x n f00 x'b \

Another simple application is to establish a result given recently by Mr. Hardy,* In fact,
if we write , ,

o,, = an<rn, vn = c,,/an,

and suppose that 2 «„, 2 cn are both divergent, we find
o o

Qp = c0 + e, +... +ep,

B,t = flo^o + a\G\ + • • • + ^p^j' •

Suppose that BP\AV has a definite limit I as p tends to infinity, then we can choose m so that

i - <= ^ /»„, < jHm ^ ;+«.

Thus, if Cn/on it a decreasing sequence, we have, from (8),

Thus, since Qp tends to infinity with p, we find as in the last piece of work, that

lim (Ep/Qp) = L
P—>»

This result is due to Cesaro ;f but Hardy has succeeded in extending it. to the oase when cn/a,, i*
an increasing sequence subject to the condition

... +ap)/ap < K(c0 + cx + ... + ep)/cp

for all values of p.

For the last condition gives Apvn < KQp,

and so the inequality (9) leads to

from which we get as before lim (RpjQp) = I.
p—>»

* Quarterly Journal, Vol. XXXVIII., 1907, p. 269.
t Bulletin des Sciences mathematiques, (2), t. xni . , 1889, p. 51.
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6. Extension of § 5 to the Case of Complex Factors.

If the factors vn are complex we suppose, as in § 3, that the series
CO

2 I vn— rn+1
I

is convergent, and we write again

Vn= \\vn— vn+1\~\-\ vn+i—•«w+2| + . . . to oo \-\- l im \v,\.

We suppose that the terms an which appear in the denominator Qp are all
real and positive, though the terms bn may be complex ; then write n for
the upper limit to the differences

\BJA1—<r\, \B2/A3—a-1, ..., \BvlAv-a ,

and ifa, for the upper limit when the suffixes are not less than m.

We get at once, since Vn— Vn+i = \ v^—v^i |, Vn > | vn | (see p. 63),

Now, let us write

Mn = a1V1+a2V2+...+anVn

and then | Bp—aQp \ < yMm+*im {Mp—Mm).

Thus

(11) — cr 1m
Mp , , v Mr

Application.—The Theorem of Comparison for Complex Divergent
Series.

The direct application of (11) is not so easy as that of (8), owing to the
fact (already mentioned on p. 65) that we cannot infer the divergence of

00 00

\im'2anVn from that of 2a» . To avoid this difficulty we introduce the
0 0

idea of uniform divergence, as suggested by Pringsheim ; this implies that
for all points x under consideration

lim -| (SanVn)/\ianvn \ < K,
I \ o / / o i

where K is fixed.
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Making this hypothesis, it follows that

lim
a—»1

2 anvn = 00

because lim 2 anVn
= °°,

x—>1 0

in virtue of § 1.

Then (11) yields at once

} <K (
{

and by the usual argument this can be proved to tend to zero as x
approaches 1, provided that rjm tends to zero as m tends to infinity. Thus

lim (2 bnVn) I (2 anvn) = lim (Bn/An).

This result includes Pringsheim's for the case of power series, and also the result proved in
{ 6 of my paper on " Zonal Harmonics," quoted above.

Thus for power series vn = x", and

so that the above test for tvniform divergence gives

i ^ : ' < i r

which in Pringsheim's treatment is divided into two separate conditions

1 - | a; | | 2 « n S " |

Similarly for zonal harmonics, we get

vn = »-»»P(1 (cos &) and Vn = pr»/(l - >•),

where p2 = 1 — 2r cos 6 + r2.

Then the condition becomes lim —p— — < K,
\—r\ 2«,,r"i'H (cos 6)|

which was also split up into two separate conditions in my paper (see pp. 205, 213).

7. Extension of § 5 to Quotients of Double Series.

Let us consider the quotient

Rp, q I Qp, q ,

V '/

where QPl n = 2 2 am, n vm, „,

V '1
Tt = T1 V 6 V
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and aw> n is positive, while vm> n is positive and decreasing with respect to
both indices (in the sense denned at the beginning of § 4).

We shall now use the notation Am< n and JBTO> n to denote the sums to
m, n terms 22am,« and 226,ll)M; so that Am>n is what was denoted by
sm<n in § 4. Then Hardy's equation [see (5), § 4] gives

p i < / i

Ptq= 2 2
m = l

Suppose that JEZ", h are the upper and lower limits of Bm< nIAm, n for all
values of m, n between 1, p and 1, q respectively, while Hv, hv are those
when both rti, n are greater than v. Then we see that BPt q will be in-
creased by writing RAm> n or HvAm>n in place of Bm> n ; thus we find

or I k , < ff,QP

Now £T—If,, is positive and so is QVt v; thus Qv> v may be omitted from the
last inequality, and we find (on including the corresponding lower limit)

(12) K-(K-h) QP-'+Q'-I <Iki<Hv+ (H-Hv) Qv,"

which is the extension of (8) given above. The inequalities corresponding
to (9) and (10) are necessarily more complicated; and at present I do
not see that they are likely to prove of much use in practical applications.
I do not, therefore, write them out here.

Application.—The Theorem of Comparison of Two Divergent Double
Series.

It is evident that (with the same interpretation of vm> n as we have used
in § 4) we can infer from (12) the theorem

^ /CO CO V I / O * CO \ I

l im -j 2 2 bmi1l vm< n / ( 2 2 aMt nvm>»I • = lim {Bm> n/Avli J ,
(x,y) \\0 0 / / \ 0 0 / ' (w, n)

provided that for any given value of v,

K C O V N / / C O C O X |

2 2 am> n vm, n) / (2 2 am, A vm,» = 0 ,
and lim ] ( 2 2 am,nvmj J / 2 2 am,nvm,n) \ = 0.

(*, y) \ \TO=0 W=0 I I \ 0 0 / /

There does not seem to be any way of avoiding these two conditions, nor
any way of dividing them into simpler forms in general.
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Consider now the specially interesting case vWi n = xmy'% and suppose
further that the coefficients am>w are also divisible into factors; so that

&w, n — Jm. ffn >

where 2/m, Hgn are two divergent series of positive terms. Then

£ 2 am, nx
myn = (ifmxm) (Zgn

0 0 \0 / \0

and 2 2 am, *x"y* = (s / . s") (£ M " ) ,
m=0n=0 \0 ' \0 /

so that our first condition reduces to

\im (l gny
n) /(l, gnyA = 0 ,

>l \ 0 / / \ 0 /

which is certainly satisfied since

lim (z M " ) = QO

(a result proved in § 1).

Similarly the second condition is satisfied.
Thus, if we write

we

• • • +fm, Gn = #0 + 01 ~K • • +9n ,

find lim j ( s 2 bm>nx"hA / ( £ / w x m ) (£ gr.y*)]- = lim(J5w, ^ . G " ) .
(*, y) { \ 0 0 / / \ 0 / \ 0 / / (TO, ii)

This enables us to give an immediate proof of the extension of Fi'obenius's
theorem to double series,* by writing

fm = 1, gn = 1.

Then £ fmxm = (1 -a;)"1, £ gnif - (1 - y ) - 1 ,
0 0

m n

and so, if &»,« = ««,»= 2 2 Cij,
i=0 j=0

we have £ £ bm, n xmyn = (1 -x) ~l(1 - ? / ) " 1 £ £ cm, nx
myn,

00 00

(
OO CO \

2 2 cTO, „ x1'^n) = lim s$ n ,
v , „, 0 0 ' (m, 7t) '

if ( + ) ( M ) S 1 (
i=0 ;=0

using the notation of the paper quoted.

• Bromwich and Hardy, Proc. London Math. Soc., Ser. 2, Vol. 2, p. 161 (see $ 8, p. 173).
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Similarly we can extend the theorem to cases of greater complexity by
writing

m = ( i - a ) - , 2 gny
n = (1—t/)"^,

where a, /8 are positive integers ; this gives a kind of extension of Holder's
theorem, although the means employed will correspond to those used for
the summation, of single series by Cesaro, rather than those introduced by
Holder.* Thus, taking a = 2 = /3 , we get

m n

2 2 (i

The analogue to Holder's theorem would have on the right the limit

Km s(2)

(TO, n)

m n

where (m+ l)(n-|-l)«g>H = 2 2 sf],
i=0 j=0 '̂

the sums s^n being themselves denned by arithmetic means.

Compare the form of the theorem given in Art. 123 of my book on Infinite Series.


