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MODULAR INVARIANTS OF A GENERAL SYSTEM
OF LINEAR FORMS

By L. L. Dickson.
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1. After giving an outline of a method of marked simplicity for the
investigation of modular invariants, we state the main results of the
present self-contained treatment of linear forms.

In the simplest case, the coefficients of the forms discussed are integers
reduced modulo p, where p is a prime. In the general case, the co-
efficients are Galois’ imaginaries c¢y+c¢;p+...+cu—1p™!, in which the
c¢’s are integers reduced modulo p, while p is a root of a congruence of
degree m, irreducible modulo p. These p" imaginaries constitute the
Galois field GF[p"].

We consider the system L of ¢ linear forms,

(D = aat+...Famza G=1, ..., 9),

whose coefficients are arbitrary elements of the GF[p"]. Let G be any
given group of linear homogeneous transformations on zy, ..., wu with
coefficients in the field. The p*"* particular systems L’, L", ..., obtained

by assigning to the a’s particular values, can be separated into certain
classes Cy, C, ..., Cs—; under the group G, such that two systems are trans-
formable into each other by transformations of G if, and only if, the
systems belong to the same class.

By a general theorem on interpolation, there exists one, and but one,
polynomial I(a) in ay, @y, ..., tem, With each exponent < p"—1 and
coefficients in the GF[p"], such that I(a) takes a prescribed value v, for
each set of elements @ in the field. In particular, if v, is the same
for all sets a leading to a class C, so that I(a) takes prescribed values
Vg, Uy, .-, Us—1 for the respective classes Cy, Cy, ..., Cs—;, then I(a) is
obviously an invariant of the system of forms (1) under the group G.
Thus I(«) = Z v, I, where I, is the uniquely determined invariant which
has the value unity for the class Cj and the value zero for every class
C; @£=k); I, is called the characteristic invariant for the class Cy. If
Zd,.I; = 0, each d, = 0. Although there is no linear homogeneous
relation between the I's, we have £I; = 1. In the former sense, we
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shall say that I, ..., I, are linearly independent. Hence the total
number of linearly independent invariants under G equals the number
of classes under G.

When G is the total linear group on the m variables, the invariants
just discussed are the absolute invariants of the system L. When the
group is the group G, of all transformations of determinant unity, those
invariants of G, which are multiplied by A” under every transformation
of determinant A are the relative invariants of weight w (absolute when
w i8 a multiple of p"—1). The number N of linearly independent
invariants, relative and absolute, of the system L obviously does not
exceed the number of the linearly independent invariants of G,, the latter
being the number f of the classes under G,. As a matter of fact, N = f, as
I have shown by a rather technical proof.* This result, however, is not
presupposed in the present paper. Indeed, we here exhibit explicitly f
linearly independent invariants of the general system L of linear forms.
Hence N > f. But N < f, by the above simple discussion; whence
N=Vf.

In the algebraic theory, ¢ linear forms in m variables have no rational
integral invariants if ¢ <<m, while, if g > m, the invariants are functions
of the determinants of sets of m forms. If, for & <m, I, ..., I, are
linearly independent, and

by = i+ tenhy,

the ¢’s are obviously invariant under linear transformation ; in the
modular theory (in contrast to the algebraic theory), the ¢’s may be
expressed by rational integral invariants (§ 8). In spite of the greater
variety of invariants in the modular theory, we establish the following
fundamental theorem: Ewvery wnvariant of a system of q > m linear
forms in m variables is a rational integral function of the invariants
of systems of m forms in m variables.

2. When there is a single variable, G, contains only the identity
transformation, so that each system of forms a;, constitutes a class.
As a complete system of linearly independent invariants we may take
the p products of the powers of the a; with exponents O, 1, ..., p*—1.
Henceforth we take m > 1.

For a single form /; there are two classes under G,, one class containing
only /;=0, the other class containing the forms in which not every

* (¢ General Theory of Modular Invariants,”’ Transactions of the American Mathematical
Society, Vol. x., April, 1909.
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;. 18 7ero and hence conjugate with :r;. For the respective classes the
characteristic invariants are 4; and 1—.1;, where
m

(2) di=T Q=) (=p'—1.
-

3. Two forms /;, { may be linearly independent, or dependent with
li# 0, &c. Hence they can be transformed within G, into one of the
four pairs in the following table, which also gives the values of certain
invariants :—

l I Ai 4 Ai 4 Vi
x dy 0 0 0 0
ry ery 0 1—c* 0 c
.1'1 l 0 O
0 1 1 1

Here d = 1, if m>2; while, for m = 2, d is the non-vanishing de-
terminant D;; of a pair of independent forms £, /. For the construction
of an invariant 17 taking the assigned values for the various classes,
we may proceed as in ¥ 8 or as follows. If, in (2), we replace i by
ai,—«xa;, and apply

(3) Pa— K,

we obtain a polynomial in x of degree u = p“—1; the coeflicient of each
power of « is an absolute invariant of 4, {. It will be seen to be con-
venient to separate the terms involving «* and write

nt

(4) I [1—(aw—ra;)] = dit+di(d;—1) e — 5 Sy
r=1 t=1

for every root of (8). For z,, cx,, the non-vanishing a’s are ay = 1,
aj = ¢. Hence in (4) the factors with v > 1 equal unity, while the
factor with v =1 is 1—(1—pc)*. But

(5) (@—Br = 2 «*~'f" (mod p).
Hence, for the pair «, ¢z, (4) becomes

® M
E C‘Kt =—2 'qii( K".
-1 t-1 i
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For the remaining pairs in the table, we find immediately that S;; = 0.
Hence Vi = Sy, Sy = S,;. Thus V; is the sum of the coefficients of

K, €%, €®*1, .. in the expansion of the left member of (4). Applying
(5), get

(6) Vﬁ = zFlzl ng Fmtm
(... +tn=1(mod w); #,...,tn=0,1, ..., ©),
)] F,=— a’t‘v"aj‘.v t>0), Fp=1—a’,

In particular, for m = 2,

TS
- -1 -1 ~t =1 -t
(6') Vij = (a;.‘l— 1) a:.‘g aj3 + (a:tz— 1) a';l Q1 + ¢§1 (l':‘ (LJ.‘ a‘m (l:.'_'; .

By undetermined coefficients it follows, from the above table (or by
the more instructive method of § 4), that the absolute invariants
(8) 1, A,',, Aj, A,;Aj, .V:j (t = 1, veey /.l.)
are linearly independent ; also, that, for m = 2, the only linear relation
between the invariants (8) and D’:J k=1,.., uis
9) D+ Vi =(1—A4)(1—4)).
The number of classes is p*+3 if m > 2, 2p"+1 if m = 2.

TreEOREM.—As a complete set of linearly independent invariants of
two linear forms l; and l; in the GF[p"] on m variables, we may take
the p"+38 absolute wnvariants (8) +f m > 2, and, if m = 2, the 2p"+1
mvartants

(10) Ay A, A4, V', DY (t=1,..p"—0).

)

4. We readily derive the characteristic invariants for the various
classes of two linear forms in m variables. For z;, 0; 0, z,; 0, 0, these
are

(11) A—Aid;, Ai—Ad;, A,

For z,, cx;, where ¢ 5= 0, the characteristic invariant is

(12) -

k

i M+

-k
L C VU'

Indeed, for V = ¢, this sum is —x =1 (mod p), for V =y z£¢; it equals
a fraction with the numerator (¢~'y)**'—c~'y, which vanishes in the
field. For m = 2, the characteristic invariant of x,, dx, (d = 0) is
likewise

m
(18) ——,E] d"‘Df’..

SER. 2. VOL. 7. No. 1032.

o
-
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The linear independence of invariants (10) thus follows from that of the
characteristic invariants (11), (12), (18), where ¢ and d range over the
# elements == 0 of the field. The sum of the u functions (12) is V;‘j,
since* the sum of the k-th powers of the elements of the field is zero for
0<k<wpu, and —1 for ¥k = . But the sum of all the characteristic
ivariants is 1 (§ 1). Hence relation (9) follows.

For m > 2, the characteristic invariant of z;, z, is
(14) 1—4)(1—4) -V,
determined so that the sum of all shall be unity, or directly from the
table of § 8. Since the linearly independent characteristic invariants

(11), (12), (14) are linear functions of invariants (8), the latter are linearly
independent.

5. For a given set of elements E, we shall say that
(15) E,q .. precedes Epa'-r..J Epa... follows E,, ,
fr<p; or,if r=p, s<o; or,if r=p, s=o, t<7; &e.

6. Every invariant of ¢ binary linear forms will be shown to equal
a rational integral function of 4;, Vi, Dj; (1, j =1, ..., q). We employ
a canonical type for each system of ¢ forms with given coefficients in
the field.

First, let not every D; vanish. Let D, # 0 (» <s), but let every
preceding D;; (¢ < j) vanish, viz.,
(16) Dij=06G<1r, Dix=0@r<k<s), D0
After applying an obvious transformation of G,, we have

L=ux, l=cc, ¢=D,
By Diy = Di; =0 (1<), ; is free of z3 and z,. By Dy =0, I is free
of r;, Hence the canonical type is
(17) L=0, L=z, h=cL L=cx, L=—duz+tec,
<r<k<s<tZZgq; cs+0).

Next, let every Dj = 0, but not every /4, vanish identically. Let

l; be the first non-vanishing I. Applying a transformation of G,, we get

(18) L=0, k==, L=mz <f<j<9.

¢ Dickson, Linear Groups, Leipzig, 1901, p. 54.
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Finally, there remains the system
(19) L=0 (G=1,...,9¢q.

A system of forms (17) defines a class A%; a system (18) defines a
class B}"; the system (19) the class Cp. In addition to the definition in
§ 5, we shall say that any class 4 precedes a class B or C,, and that any
B precedes C,. No two classes are equivalent under Gy. As to the A’s,

this follows from the invariance of the Dy; for (17), we have relations
(16) and

(20) Dy=¢, Dy,=¢e, Ds=cc;, De=cd (r<hk<s<i,
so that the ¢, d, ¢ may be expressed in terms of invariants. For (18),
@1 Va=m (f<i<9

where V is the invariant of § 3. Since the ¢, d;, ¢, may take any values
in the field and ¢ any values = 0, it follows from (20) that the products
(22) I DY D!DEDY (y=1,..,u; yen 6 =0,1,...,u)

c=r+l,..,8=1; t=8+1, ..., ¢4
are linearly independent in the field, and that the number of these
invariants (22) is the number of classes 4%*. In view of the factor D,
(22) vanishes for the classes B, C,, and those classes A, which follow
the A,. Similarly,

7] )
(28) 1—A4,, II V;;’ (k;j=20,1, ..., u; not every u; = 0)
j=f+1 "

are linearly independent, of the same number as the classes B, and
vanish for the classes C;, By (¢ > f) which follow the B, Finally, with
the class C, we associate the invariant 1. We deduce at once the linear

independence of the specified invariants whose number equals that of
the classes.

TreoreM—Every tnvariant of q binary linear forms is expressible in
terms of tnvariants of pairs of forms. A complete set of the

(PM— D) ("D =1 /(g = 1) +(p"— 1)/ (p" — )+ 1

linearly independent invariants of q binary linear forms in the GF[ p"]
is given by unity,* (22) and (23) for », s, f =1, ..., ¢; r<s.

7. For ¢ = 3, the p*"+p*+p“+1 linearly independent variants are
DT2D€3D;3 (ay ‘8) Y = Oa 1v ceey :U-), "119 Azy 4'151
Vf?r V‘l,3v Vgs, V‘l'ZV‘lr(i (/)y T = 1’ ey :u)-

* We may introduce 4, 4, instead of 1 by (9). Then, if ¢ = 2, the set becomes (10).
2 F 2
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Other products can be expressed in terms of these by (9) and
AyDyy =0, A Dy = (Dry—1)(Dig—1) Dy,
4V =0, 4V =(Ds—1) D} Dis— Vi~ Vis+ Vs,
DV =0, DpVi=(—1*Di" " Dis(1—Dl),
VeVi = Vi Vi, ViVie = Vi~ Ve,
(1—4,)1—4y) 1—A4y) = Vi2Vis+ Diy Dis+ Dra Dis+ Diis Doy — 2 D5, Difs Dis.

For ¢ =4, we use also Dy3Dg— D g Dyy+ D, Dy = 0 and its pro-

ducts by 4, 1—D, (1—Di)(1—D%.

8. We employ a general function-theoretic process to construct an in-
variant* ¥V =7V, ;. = of h+1 (not necessarily linear forms I, ..., I;, )
in m' variables (m' > h), such that ¥V shall have the value ¢, when

L, ..., l;, are linearly independent, but I, ..., l; | dependent and

(24) by = eyt tals,

while V shall have the value zero for all systems of 4+ 1 forms not having
the preceding two properties. Let a,, ..., @, be the coefficients of {; in

any order; @i, ..., @i, the corresponding coefficients of /. Since ¥V shall
vanish if the 241 forms are linearly independent, we may set
(25) V=9oII01—M") (u=p"—1),

M ranging over the determinants of order A+1 in the matrix of the I's.
It suffices to consider henceforth only sets of coefficients for which every
M =0; for such a set ¥V = . Of these sets, consider one for which

(26) D=laj| @G=12 ..., i J=1J1 --» J)

is not zero, j;, ..., J» being distinet integers < m. Thus there holds

a relation of type (24), so that
h

Tyr = 2 G0y (0 =1, ..., m).

Taking v =Jy, ..., Jn, We have h equations in which the determinant of
the coefficients of ¢, ..., ¢x» equals (26) with rows and columns inter-
changed. Let d denote the determinant derived from (26) by replacing
(in the first row) each a;; by a;, ,;, Then D¢, =d. Thus ¢, =dD*~%.
Let Dy, ..., D, denote the determinants (26), taken in any sequence,

which are defined by the » = (7:) combinations jy, ..., J» of h integers

* The order of the intermediate subscripts i, ..., i) is immaterial.



1909.] MODULAR INVARIANTS OF A GENERAL SYSTEM OF LINEAR FORMS. 487

K m. Let d, ..., d. denote the corresponding determinants d in the
same sequence. We have

v=d,D;™" (when D 0).
From v = d,D;”", when D, 0, we got
v=d, D} 400 —DY).
To determine A;,, we consider a set making D, =0, Dy 0. For such
8 set Dy =0 =\,
go that for every set with D; = 0 A
A = dy D (1 — D).
The product of the two members by 1— D} are equal for every D,. Thus
v =d,D{7 +(1—D5) d, D'+ 2,1 — DY) (1 —Dj)
for all sets. Proceeding similarly, we find by induction that
@7 v=d, D' +0—Dd, D'+ (1 —D) (A —D5 dy D5+

+@A-D) ... A—D;)d, D
with initially the additional term

A(1—=Df) ... A—=Dp).

But for a set for which D,, ..., D, all vanish, (27) becomes v = A,, while
by hypothesis ¥V =0, so that, by (26), v = 0. The invariance of V,
given by (25) and (27), follows from the fact that it takes the same value
for any two systems of 2+1 forms equivalent under the total group.

For h =1 we set 4, = 4, i, = j, and obtain
Vij = {ajl a:1_1+(1 —a:.'") ajga,‘i‘;l-l- SN

+A—=a) ... A1—al

im—

D amalt ILA— M),

where M ranges over the determinants as, aj—asa; (r,s =1, ..., m).

9. We proceed to exhibit & complete set of linearly independent in-
variants of the system of ¢ > m linear forms /i on m variables with
arbitrary coefficients in the GF[p™]. We shall employ a canonical type
for each system with given coeflicients.

First, let m of the forms be linearly independent. Let I, ..., I,
(r, <7...<ry) be independent, but every preceding (§ 5) set of m
forms dependent. Applying a transformation of 7,, we have

(28,) bo=2 k<m), b, =co. €FO).
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For 4, <y, l; and any m—1 of the forms /., ..., /, are dependent by
hypothesis ; whence 4 = 0. For » <4, <y, [, L, and any m—2
of the forms /,, ..., /, are dependent; whence /;, is a multiple of z;.
Proceeding similarly, we get

-1
(28) i, =0, L, = j_Zl bijr; (=2, .., m+1),
(il < " < i? < D) < 7’.3 < | <'l:-m. < T < ‘L‘m+1 < Q)-

Conversely, the ¢ forms (28,) and (28,) obviously have the properties that
l, ..., I, are independent, while every preceding set of m forms give
dependent forms. We employ the determinants of order m :

’Cb,"j (]<'m/)
by G=m
t=2, ...,m+1; 5<i).

The parameters ¢, b are uniquely determined by these determinants,
which are invariant. Hence no two of the classes* 4;; . defined by
(28) are equivalent under the group G;. For given values of the 7's, the
number of these classes equals the number of products

(30) D! , Dl

r .
T S P M R 70 5 P I S

(29) D, ., =¢ D,.

Ti-1 i /7S B

where a particular product is obtained by taking all sets
t=2 ...,m+1; j=1, ..., t—1,

and then allowing i,, ..., 9,,,, to range over all sets of integers 1, ..., ¢
satisfying the inequalities (28,); while the various products are obtained

by taking y=1..,u; Biy=01, ..., 0 =p'—1).

Since the b's are arbitrary in the field, while ¢ has any value 3= 0, it
follows from (29) that the various products (80) are linearly independent
in the field. Allowing the r’s to vary, we obtain as many linearly in-
dependent invariants (30) as there are classes A’,’,‘ Indeed, in view
of the first factor, the product (30) vanishes for any class At’-"ﬁ..r;’, which
follows A% .

Next, for h<<m, let & of the g forms be linearly independent, but
every set of 241 of the forms be dependent. Let

by v by (I <1g... <mi)
be independent, but every preceding set of 4 forms dependent. Apply-

* We employ b to denote the ordered aggregate of the cceficients in (28,).
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ing & transformation of G, we have [, ==z, ..., l,, = z». We derive

(28y), with m replaced by A. For the invariants determined in § 8, we
have

81) VT),T‘".,}_.TJ_“.__i,h,,-‘t =b,; t=2,..,4+1; j<0).

Hence no two of the present classes B} , are equivalent under G.
Fach invariant (31) vanishes for every subsequent class Bﬁl o (MR
and for the class C, composed of the system (19). For given r’s, con-
sider the products

(82) I PP _ (exponents not all zero),

TiTy 1 Te1 - The

a particular product being obtained by taking all sets t =2, ..., h+41;

J=1, ..., t—1 and allowing %, ..., t+1 to range over all sets of A of
the integers 1, ..., ¢ for which

Ly Ly < g < e K14 < g

while the various products are obtained by taking each 8 =0, 1, ..., u,
but not all zero. In place of unity, excluded in (82), we desire an invariant
E which has the value 1 for each class B',’,m,h and the value 0 for the
subsequent classes. Thus E may be taken to be that invariant of the
forms [, ..., I, alone which is characteristic for the class containing

Xy, ..., Tpe Hence
(88) E, ., =1-110—-D",

where D ranges over the determinants of order % in the matrix of the
hm coefficients of the % forms on m > h variables. Indeed, E =1 if
any D0, E =0 if every D = 0. Since the invariants (32) and (33)
vanish for all classes following B}, ., they are linearly independent.
Varying % and the 7’s we obtain as many linearly independent invariants
(82) and (33) as there are classes B. With the class C, of vanishing forms
we associate the invariant * 1.

Since we have exhibited as many linearly independent invariants as
there are classes under the group G;, we have proved the

TueoreM.—For gq > m, every wnvariant of q Ulnear forms in the
GF[p"] on m variables is a rational integral function of the invariants
of m forms on m variables. A complete set of linearly independent
tnvariants of ¢ > m forms is given by (80), (82), (38) and wnity, each
being a polynomial vn the determinants of orders < m of the matriz of
the coefficients of the forms.

*# We may take any invariant, as (35), which does not vanish for C,.
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10. For ¢ < m, the first case of § 9 does not occur. If the g forms
are linearly independent, they may be transformed into z,, ..., z,. For
the resulting class B , the characteristic invariant E, , is given by
(88) for h =q. If, for A <gq, I of the forms are linearly independent,
but every set of 141 dependent, we proceed as in § 9.

THEOREM.—For q <m, a complete set of linearly independent in-
variants of q linear forms on m variables is given by (82) for h <gq,
(88) for I < q, and unity.

11. Instead of introducing the new invariants E, we may make use
of products of the invariants 4; of single forms (§ 2). In place of (83),
we use

(84) Jo. o =Hd4i G=1,..,q; iFr, .., Fn.
For the class C, the characteristic invariant is
(85) A1 44 ... A,

For g > m, there are as many invariants (30), (82), (84), (85) as classes
under G,. Suppose there is a linear (homogeneous) relation between these
invariants. For the class Bg, ..y the D’s and V’s vanish, while

Ay =0, oy Ay =0, A;=1 @FER, oy i F 7).

Taking /& = m—1, we see that the only non-vanishing invariant of the

set (84), (85) is J,, .., ,, whose coefficient in the relation therefore
vanishes. We take in turn the various sets of m—1 subseripts ». Pro-
ceeding similarly with 2 = m—2, ..., h =1, we conclude that no

invariant (34) occurs in the relations. Taking every /; =0, we see that
the coefficient of 4, ... 4, vanishes. The relation now involves only
the D’s and V’s; but these were shown in § 9 to be linearly independent.

For ¢ <m, we replace E, , of § 10 by unity, which takes the place
of (34) for 2~ =gq. For the independence proof we employ in succession
the classes By, ,, for k=g, ¢g—1, ..., 1 and C,. The case & =g shows
that the relation lacks the invariant unity.

THEOREM.—A complete set of linearly independent invariants of q
linear forms on m variables is given by (80), (82), (84), (85) of ¢ > m;
and by (82), (34), (85) and unity of ¢ <m, viz., by (82) and the 2 pro-
ducts A} ... A} (each a =0 or 1).

12. It now follows that the invariant E of /. forms on m variables,
m > h, is expressible in terms of the A’s and V’s. Since £ is the
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characteristic invariant for the class containing z,, ..., £, formula (14)
gives
(86) - E;j=(01—-4)1—-4)—-Vj,

while, by § 2, E;=1—4;. A comparison of (36) with (9) reveals a
fact which is true for any k. If, in the expression for E,, ., in terms
of the invariants 4 and V of & forms on m > A variables, we replace E
by D‘:lmTh’ we obtain a true relation between the invariants of & forms
on h variables, where D is the determinant of the latter forms. The
converse is true if we employ the non-homogeneous linear relation
Dr+4... =1 which hold between the invariants of § 11 for 4 forms in
h variables. Such a relation exists, since the sum of the characteristic
invariants is unity (§ 1) and since the sum of those for the classes
Ly ooey Ly, dzp (d taking all values 5= 0) is .D* (§ 4). This relation not
not only gives at once the desired expresston for K, but is of considerable
importance in the general theory. We shall derive it by certain devices
for h =8 and A = 4.

13. For three forms in m > 8 variables, we have

Vl 3 VQ 13 Vl 32 VI 2 V) K3 V?:( A 1 A -4 A 3
Z, x bz |0 O 0 0 o 0 0 0 0
3 z, cm+dzgl ¢ d | —ed'| 0 c(l=d)|d(1=¢c)| 0 0 (1-c)(1-d)
T, ex, To 0 0 e e 0 0 01-e¢" 0
0 zy 0 0 0 0 0 0 1 0 0
@ fo, gm [0 O O | f g |grt|01-f 1-g°
0 =  ha ) 0 0 o h 10 1-r
0 0 ) 0 0 0 0 o 0 101 0
0 0 0 (V) 0 0 (0] 0 1 1 1

In the first type, 6 =1 if m > 8; while, if m = 8, b may have
any value 5= 0. The remaining parameters ¢, ..., & are arbitrary in the
field. By § 11 a complete set of linearly independent invariants is given,
for m > 8, by A7' A5 A5’ (each a = 0 or 1), the powers of Fy,, and 17,
the products of the powers of Vi and V4, and those for by, and |7,
the exponents being << u. Ior m = 8, unity is to be deleted and the
powers of the determinant D = D,y inserted.

Invariant E,,, defined by (86), equals 1 for the first two types and
0 for the other types. Hence AgE,; is the characteristic invariang for
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the class z;, 25, 0. To obtain its expression as a linear function of the
above invariants, we need A, V3. Now

(87) V‘l‘s‘z— V’1‘23 Vgl& = Wg(l —As" VTa),

since each member vanishes except for the third type and equals ¢* for
the latter.. Hence ‘

(38) A3E12 = AS(I_AI)(I—AQ) + V;‘82~ Vr23 V"Z‘IS- V:L2+ V;LZ V;LS-

For m = 8, Ej;—D* equals 1 for the second type, 0 for the other
types. Hence the characteristic invariant for z,, z,, 0 is given by

(89) Ela-D"+(1—W23)(1—V;13)—1-

Inserting the value (36) of E); and equating the result to (38), we obtain
the desired non-homogeneous linear relation between our invariants for
m=3§:
(40) D* = 2W23 Vgxa— Wza— V;xs— Vrsz'— V;L'z V;‘3+ a _Al)(l "'AQ)(I “Aa)-
The right member is thus the expression for the invariant E,y of three
forms in m variables for m > 8.

We note in passing that it is not difficult to exhibit the characteristic

invariant I 4 of the general class 4, 4 of the second type. As in § 4, we
employ
® "
— —k Yk —_— —k 7k
(41) == 2 Vi, N=— 2 AV

218°

If ¢c#0, k., =1 for 4.4, O for 4, for every d, y, 6, y¥Fc. If
d#0, \a=1 for 4.4, 0 for 4, s for every ¢, v, d, § =d. Hence

(42) La=xN (d#0), ILo=r(l—=Va) (F0),
Ia = Ma(1—=V) (d 5 0), I, in (88) or (89).

As a check, the sum of these p** characteristic invariants was verified to
be E;—D* by means of Zc*d~t = ZcMEd ) =1 if k=t=uy,
otherwise = 0, where the sums range over all elements ¢ % 0, d 5 0.

14. For 4 forms in 4 variables, we obtain two determinations of the
characteristic invariant I for the class z,, g, Z3, 0. As in (39),

(48) I= Elaa—D“+(1—V'1‘234)(1_V§134)(1—V;124)—'1,
where Ky is the right member of (40). Again, I = A,;E;;3. As in (87),
(44) V‘1‘243— V‘;m ng = Wzs(l - A;- V’;Q;— V;M‘}‘ W24 Vgu) .

Hence A, Vis is expressed linearly in terms of our system of invariants
(§ 11). Interchanging subscripts 1, 2 or 2, 3, we get 4, Vas, AVise,
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Multiplying (44) by Vi3 and applying
V213 V3124 = 0' V;IS W243 = V;L243 V§143— W234 V:l34 V;1247

we obtain A4, Vizs Vo linearly in terms of the system. It remains to find
4, V12 V1s. Interchanging 8 and 4 in (87), we have

AV =Vi— Vi Vie+ W, W = Ve Vora— Vi

To find Vi;W, we note that VisW+ Vi Vi vanishes for every class
except that containing z,, z,, ax,+ bxy, ¢z, +dz,; and for it has the value
c¢*d*A*, where A = bc—ad. But

P = Vag Vies— Vies Vare
vanishes except for the same class, and for it has the value A. Thus
VisW = P*Vy Vaiy— Viee Vias.
To P* we apply (56). By additions we obtain 4,FE,,; expressed linearly in
the system. Comparing the result with (48), we obtain
45) D*=(1—4,)1—A4)(1—49)(1—A4,) —8Vizs Virss Varu
+2(Visss Varss+ Viess Vraa+ Vorgs Vorod +2Vss Vorss— Views
— Vars— Viess— Vs — Vitzs— Visar—2 Vs Ving Viay Vi,
— Vi Vig Vis— (Vias Vis+ Viss Vira+ Ving Viae+ Vs Vo)
_(VTSQ V;34+ V;‘52 V‘ELM) - V‘IL42 V’l‘43+ V?S? V1‘34 V;l-l
+ 2 V%22 Vars(Vias + Vire) + 2 Vios Vara(Vizs+ Vi)

"
+ 2 (Vigg Vor" (Vg Vigd* ™"

the terms in any parenthesis being related under the classification in § 9.
The second member of (45) defines E,qq, for m > 4 variables.

15. In addition to the general method in § 8 of constructing the
invarianis V, & second method was employed in § 8 for the case of two
forms. As the latter method, apart from details, is that commonly used
in the algebraic theory, it will prove interesting to give the results obtained
similarly for three forms. In (2) we replace aiy by @i, —«aj,—Aay, and,
in view of (8), express the result in the form

M [l

1 = 414 (4= De[14 de—DN] = 5 Vid— 3 Vit S

®
= =1

TN,

which, for A = 0, reduces to (4). We obtain the value of T, for each
canonical set of the three forms (§ 13). Most of the cases may be treated
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by inspection. But for the second type
II = [1— 1 —eAF][1 = (—k—dN)]

= [;::1 'cw] [d“ =1+ 5 (—1yv (dA)“"] (mod p),
by (5). For the fourth type ‘
0= 1—(1—fe—g\F = — 3 (etgh)
=—3 (r-i—s) [N (r,s=0,1,..,u; r+s=1, .., 4.
We find that T,, = 0 for types 1, 4, 7, 8; (—=1)c**d*~" for 2;

¢ 6=, 0 (< for type 85 —("T¥) fig s <w), 0 (s> w)
for 5; (—1¥'A* (r+s=u or r = s = u), otherwise O for type 6. Hence
Tuw = Vi Th. = Vg Permuting the forms /; and [, we see that the
new function T, is Vj;. Conversely, each T, may easily be expressed

in terms of the V’s and A’s. As a complete set of linearly independent
invariants we may take

(46) Tei, Vi, Vit Vie, ViiView AiVie, 45V, AV, A:‘A;jA:"
(rns=1,..,u; as=0,1),
if m> 8; the same with unity deleted and D" inserted, if m = 8.

The only non-homogeneous linear relation between the invariants for
m =38 is

(17) DT+ Vi = (1—4)(1—4)1—4y).



